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Abstract. — If X is a smooth scheme over a perfect field of characteristic p, and if
D(∞)

X is the sheaf of differential operators on X [7], it is well known that giving an action

of D(∞)
X on an OX -module E is equivalent to giving an infinite sequence of OX -modules

descending E via the iterates of the Frobenius endomorphism of X [5]. We show that
this result can be generalized to any infinitesimal deformation f : X → S of a smooth
morphism in characteristic p, endowed with Frobenius liftings. We also show that it
extends to adic formal schemes such that p belongs to an ideal of definition. In [12],
dos Santos used this result to lift D(∞)

X -modules from characteristic p to characteristic
0 with control of the differential Galois group.

Résumé (Une note sur les modules à descente infinie par Frobenius en caractéristique
mixte)

Si X est un schéma lisse sur un corps parfait de caractéristique p, et si D(∞)
X

est le faisceau des opérateurs différentiels sur X [7], on sait que donner une action
de D(∞)

X sur un OX -module E équivaut à donner une suite infinie de OX -modules
descendant E par les itérés de l’endomorphisme de Frobenius de X [5]. Nous montrons
que ce résultat peut être généralisé au cas d’un morphism lisse X → S qui est une
déformation infinitésimale d’un morphisme de caractéristique p, munie de relèvements
des morphismes de Frobenius. Nous montrons aussi qu’il s’étend aux schémas formels
adiques tels que p appartienne à un idéal de définition. Ce résultat a été utilisé par dos
Santos [12] pour relever les D(∞)

X -modules de la caractéristique p à la caractéristique
0 en contrôlant le groupe de Galois différentiel du relèvement.
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442 P. BERTHELOT

Introduction

Let X0 be a smooth scheme over a perfect field k of characteristic p > 0,
and D(∞)

X0
the sheaf of differential operators on X0 relative to S0 = Spec k (in

the sense of [7, 16.8]). A classical result of Katz [5, Th. 1.3], based on Cartier’s
descent [10, Th. 5.1], asserts that there is an equivalence between the category
of vector bundles on X0 endowed with a left action of D(∞)

X0
, and the cate-

gory of families of vector bundles Ei on X0, i ≥ 0, endowed with OX0 -linear
isomorphisms αi : F ∗X0

Ei+1
∼−→ Ei, where FX0

is the absolute Frobenius en-
domorphism of X0. The purpose of this note is to explain how the theory of
arithmetic D-modules developed in [1] and [2] allows to generalize this result
to infinitesimal deformations of this setup, which are not necessarily character-
istic p deformations. Using limit arguments, we obtain a similar generalization
for separated and complete modules over a formal scheme, including in mixed
characteristics. When the base is a discrete valuation ring of mixed characteris-
tics and dim(X0) = 1, we recover the correspondence defined earlier by Matzat
[11].

We actually start with the more general situation of a smooth morphism
f0 : X0 → S0 between characteristic p schemes. In particular, the perfection
hypothesis on the basis can be removed simply by working with the relative
Frobenius morphism FX0/S0

instead of the absolute Frobenius endomorphism
FX0

(as in [10, Th. 5.1]). We consider a nilpotent immersion S0 ↪→ S and a
smooth morphism f : X → S lifting f0. We assume that an endomorphism
σ : S → S lifting FS0 and an S-morphism F : X → X(1) lifting FX0/S0

are given (denoting by X(i) the pull-back of X by σi). Then our main result
is Theorem 2.4, which asserts that, under these assumptions, the category of
D(∞)

X -modules is equivalent to the category of families of OX(i) -modules Ei

endowed with isomorphisms F ∗ Ei+1
∼−→ Ei. Note that this equivalence holds

without any condition on the modules.
There are two steps in the proof. The first one is to show that, for any

such family, there exists on each Ei a unique structure of D(∞)

X(i) -module such
that the isomorphisms αi are D(∞)

X(i)-linear (Theorem 1.2). The second one is to
show that a D(∞)

X -module can be indefinitely descended by liftings of Frobenius.
While the latter is a direct consequence of the Frobenius descent theorem [2,
2.3.6], the first step is not covered by the results of [2]. It requires the whole
structure provided by the infinite sequence ( Ei, αi), but the theory of arithmetic
D-modules provides a more precise information about the differential structure
obtained after a finite number of Frobenius pull-backs. Namely, the key result is
the following (Proposition 1.7): if a ⊂ OS is the ideal defining S0, and if r is an
integer such that ar = 0, then, for anym ≥ 0 and any OX(m+r)-module F , there
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exists on Fm+r ∗ F a canonical structure of D(m)
X -module, D(m)

X being the ring of
differential operators defined in [1]. To prove the existence of this structure and
its main properties, the main tool is the interpretation of D-module structures
in terms of appropriate notions of stratification, as initiated by Grothendieck
[8, Appendix].

This note has been written to answer questions raised by J. P. dos Santos in
his study of the variation of the differential Galois group associated to liftings
of D(∞)

X -modules from charactristic p to characteristic 0 [12]. It is a pleasure
to thank him for giving me this opportunity to clarify the relations between
the Frobenius descent theorem proved in [2] and the classical interpretations of
D(∞)

X -modules in terms of infinite Frobenius descent.

Conventions. — a) We denote by p a fixed prime number.
b) In this note, modules over non commutative rings will always be left

modules.

1. Frobenius divided D-modules and O-modules

We show here that the notions of Frobenius divided O-module and Frobenius
divided D-module coincide.

1.1. — Let S be a scheme, and a ⊂ OS a quasi-coherent nilpotent ideal such
that p ∈ a. We denote by S0 ⊂ S the closed subscheme defined by a, and
we suppose given an endomorphism σ : S → S lifting the absolute Frobenius
endomorphism of S0. For any S-scheme X and any i ∈ N, we denote by X0 the
reduction of X modulo a, and by X(i) the S-scheme deduced from X by base
change by σi : S → S.

We will consider S-schemes X endowed with an S-morphism F : X → X(1)

lifting the relative Frobenius morphism of X0 with respect to S0. For any
i ≥ 0, we will simply denote by F : X(i) → X(i+1) the morphism deduced
from F by base change by σi. More generally, for any i, r ≥ 0, we will denote
by F r : X(i) → X(i+r) the composition of the r successive morphisms F :

X(i+j) → X(i+j+1) for 0 ≤ j ≤ r − 1. The morphism F is automatically finite
locally free, as a consequence of the flatness criterion by fibers [6, Th. 11.3.10].

In this situation, an F -divided OX-module will be a family ( Ei, αi)i≥0 of
OX(i) -modules Ei, endowed with OX(i)-linear isomorphisms αi : F ∗ Ei+1

∼−→ Ei.
They form a category, for which the morphisms from ( Ei, αi) to ( E′i, α′i) are
the families of OX(i)-linear homomorphisms Ei → E′i which commute with the
αi’s and α′i’s in the obvious sense. Note that our terminology differs a little
from that of [12], where the term “F -divided” is used only when F is the actual
Frobenius in characteristic p, and the term “Φ-divided” is used instead in a
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444 P. BERTHELOT

lifted situation of mixed characteristics. Other terminologies can be found in
the literature; I hope the terminology used here will not cause any confusion.

We will assume that X is a smooth S-scheme, so that we can consider the
sheaf of differential operators on X relative to S, as defined by Grothendieck in
[7, 16.8]. We will denote this sheaf by D(∞)

X , and we recall that, if f : X → Y

is an S-morphism between two smooth S-schemes, the usual inverse image
f∗ F in the sense of O-modules of a D(∞)

Y -module F has a canonical structure
of D(∞)

X -module (see for example [2, 2.1.1], which is valid for D(∞)
X -modules).

Since X(i) is smooth over S for all i, we can introduce the notion of F -divided
D(∞)

X -module as being a family ( Ei, αi)i≥0 of D(∞)

X(i) -modules Ei, endowed with
D(∞)

X(i) -linear isomorphisms αi : F ∗ Ei+1
∼−→ Ei.

The main result of this section is the following:

Theorem 1.2. — Under the previous hypotheses, the obvious forgetful functor

(1.2.1) ΩS : {F -divided D(∞)
X -modules} −→ {F -divided OX -modules}

is an equivalence of categories.

More precisely, given an F -divided OX -module ( Ei, αi), there exists on each
Ei a unique structure of D(∞)

X(i) -module such that the isomorphisms αi are
D(∞)

X(i) -linear, and each morphism of F -divided OX -modules is then a family
of D(∞)

X(i) -linear maps. Endowing each Ei with this D(∞)

X(i)-module structure pro-
vides a quasi-inverse functor to ΩS .

We will prove this statement in subsection 1.10, after a few preliminary
results. We first fix the notation. If A is a commutative ring, I ⊂ A an ideal,
and j ≥ 0 an integer, we denote by I(j) ⊂ A the ideal generated by the elements
apj

, when a varies in I. Assuming that another ideal a ⊂ A has been fixed, we
define for each i ≥ 0

(1.2.2) Ĩ(i) := I(i) + aI(i−1) + · · ·+ ai−jI(j) + · · ·+ aiI.

We will use a similar notation for sheaves of ideals.

Lemma 1.3. — With the previous notation, assume that p ∈ a, and let x ∈
Ĩ(i). Then xp belongs to flI(i+1).

Proof. — We can write x as x = yi + · · ·+ y0, with yj ∈ ai−jI(j). Therefore,

xp ∈ (yp
i , . . . , y

p
0) + p(yi, . . . , y0).

On the one hand, we have

pyj ∈ pai−jI(j) ⊂ ai−j+1I(j) ⊂ flI(i+1).
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On the other hand, for each j such that 0 ≤ j ≤ i, we can write yj as a sum
yj =

∑rj

k=1 aj,kz
pj

j,k, with aj,k ∈ ai−j and zj,k ∈ I . We deduce

yp
j =

rj∑
k=1

ap
j,kz

pj+1

j,k +
∑

n1+···+nrj
=p

∀k, 0≤nk 6=p

Ç
p

n1, . . . , nrj

å rj∏
k=1

ank

j,kz
nkpj

j,k .

Each term of the first sum belongs to ai−jI(j+1) ⊂ flI(i+1). In each term of the
second sum, the multinomial coefficient is divisible by p ∈ a, and the product
belongs to ai−jI(j). So each term of the second sum belongs to ai−j+1I(j) ⊂flI(i+1).

Lemma 1.4. — Under the hypotheses of 1.1, let r ≥ 0 be an integer, and
let I r ⊂ OX(r)×X(r) be the ideal defining the diagonal immersion X(r) ↪→
X(r) ×S X

(r). Then, for i ≤ r, we have

(1.4.1) (F i × F i)∗( I r) ⊂ fi
I (i)

r−i.

Proof. — The ideal I r is generated by sections of the form ξ′ = 1⊗x′−x′⊗1,
where x′ is a section of OX(r) , and we may assume that x′ = 1⊗ x, where x is
a section of OX(r−i) . Let ξ = 1⊗ x− x⊗ 1 ∈ OX(r−i)×X(r−i) .

For i = 1, the morphism F : X(r−1) → X(r) is a lifting over S of the relative
Frobenius morphism of X(r−1). So we can write

F ∗(x′) = xp +
∑

k

akyk,

with ak ∈ a, yk ∈ OX(r−1) . It follows that

(F × F )∗(ξ′) = 1⊗ xp − xp ⊗ 1 +
∑

k

ak(1⊗ yk − yk ⊗ 1)

= (ξ + x⊗ 1)p − xp ⊗ 1 +
∑

k

ak(1⊗ yk − yk ⊗ 1)

= ξp +

p−1∑
k=1

Ç
p

k

å
(xp−k ⊗ 1)ξk +

∑
k

ak(1⊗ yk − yk ⊗ 1).

Since p ∈ a, both sums belong to a I r−1, and we get that (F ×F )∗(ξ′) belongs

to I (1)
r−1 + a I r−1 =

fl
I (1)

r−1 as wanted.
We can then argue by induction on i. Assuming the lemma for i − 1, it

suffices to prove that

(1.4.2) (F × F )∗(
·�
I (i−1)

r−i+1) ⊂ fi
I (i)

r−i.
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Since ai−j−1‡I (j+1)
r−i ⊂ fi

I (i)
r−i, it suffices to show that, for any η ∈ I r−i+1 and

any j ≥ 0, (F × F )∗(ηpj

) ∈ ‡
I (j+1)

r−i . But (F × F )∗(ηpj

) = ((F × F )∗(η))pj

, and

we have seen that (F × F )∗(η) ∈ fi
I (1)

r−i. Applying repeatedly Lemma 1.3, the
claim follows.

1.5. — We now recall briefly some notions about arithmetic D-modules; read-
ers looking for an introduction with more details can refer to [3].

On an open subset where X has a set of local coordinates t1, . . . , td relative
to S, the ring D(∞)

X is a free OX -module which admits as basis a set of operators
∂[k], for k = (k1, . . . , kd) ∈ Nd, satisfying the following properties:

(i) If k = (0, . . . , 0), then ∂[k] = 1.
(ii) If ki = 1, and kj = 0 for j 6= i, then ∂[k] is the derivation ∂/∂ti from the

dual basis to the basis of 1-forms (dtj).
(iii) For all k, k′ ∈ Nd, we have ∂[k]∂[k′] =

(k+k′

k

)
∂[k+k′].

The last property shows that the operators ∂[k] behave “as 1
k!

∏
i(∂/∂ti)

ki in
characteteristic 0”. It also shows that, outside characteristic 0, prescribing the
action of the derivations ∂/∂ti does not suffice to define an action of D(∞)

X . It
is well known that such an action is determined by the action of the operators
(∂/∂ti)

[pj ] for all i and all j ∈ N. In particular, prescribing an action of D(∞)
X

on an OX -module is a process of infinite nature.
When the integers prime to p are invertible on the base scheme (as in our

situation), one way to do it is to use the “rings of differential operators of finite
level” D(m)

X , for m ∈ N [1]: these form a direct system of rings such that

(1.5.1) lim−→
m

D(m)
X

∼−→ D(∞)
X .

In a local situation as above, D(m)
X is a free OX -module. It has a basis of

operators ∂〈k〉(m) such that ∂〈k〉(m) maps to q!∂[k], where q = (q1, . . . , qd) is
defined by

(1.5.2) ∀i, ki = pmqi + ri, 0 ≤ ri < pm.

In particular, the homomorphism D(m)
X → D(∞)

X is not injective when p is
nilpotent on S, but it induces an isomorphism of OX -modules between the
subsheaves of differential operators of order < pm+1 (note in particular that,
for j ≤ m, (∂/∂ti)

〈pj〉(m) maps to (∂/∂ti)
[pj ] in D(∞)

X ). An important differ-
ence between the sheaves D(m)

X and D(∞)
X is that an action of D(m)

X on an
OX -module is known when the action of the operators (∂/∂ti)

〈pj〉(m) is known
for j ≤ m (this is a consequence of the decomposition of the operators ∂〈k〉(m)
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[1, (2.2.5.1)]). Thus prescribing an action of D(m)
X is a process of finite nature,

and this will be illustrated by Proposition 1.7 below.
To define the action of differential operators of order > 1, we will have to

use the notion of stratification in the case of D(∞)
X -modules (see [4, 2.10]) and

its divided power variants in the case of D(m)
X -modules (see [4, 4.3] and its level

m generalization [1, 2.3]). If I is the ideal defining the diagonal immersion
X ↪→ X×S X, we will denote by Pn

X the sheaf OX×X/ I n+1 (sheaf of principal
parts of order n on X), by PX,(m) the m-PD-envelope of I [1, Prop. 1.4.1],
by I the canonical m-PD-ideal defined by I in PX,(m), and by Pn

X,(m) the

quotient PX,(m)/ I
{n+1}(m) , where I

{n+1}(m) is them-th step of them-PD-adic
filtration (as defined in [2, App., A.3]). We recall that a stratification (resp. an
m-PD-stratification) on an OX -module E is a family of linear isomorphisms

εn : Pn
X ⊗ OX

E ∼−→ E⊗ OX
Pn

X(1.5.3)

(resp. εn : Pn
X,(m) ⊗ OX

E ∼−→ E⊗ OX
Pn

X,(m)),(1.5.4)

compatible when n varies, such that ε0 = Id, and satisfying a cocycle relation
on the triple product X ×S X ×S X (the OX -algebra structures used on Pn

X

for the source and target of εn are defined respectively by the second and first
projections X×S X → X). Then the datum of a structure of left D(∞)

X -module
(resp. D(m)

X -module) on an OX -module E, extending its OX -module structure, is
equivalent to the datum of a stratification [4, Prop. 2.11] (resp. an m-PD-strat-
ification [1, Prop. 2.3.2]). The relation between these two types of data is made
explicit by the “Taylor formula”, which describes the isomorphisms εn in local
coordinates,

(1.5.5) ∀x ∈ E, εn(1⊗ x) =
∑
|k|≤n

(∂[k]x⊗ 1)τk,

and by its analogue for D(m)
X -modules [1, 2.3.2] (here, we have set τi = 1⊗ ti−

ti ⊗ 1, and |k| = k1 + · · ·+ kd).

Proposition 1.6. — Under the hypotheses of 1.1, let r ≥ 1 be an integer such
that ar = 0, and let m ∈ N be another integer.

(i) There exists a (unique) ring homomorphism ϕm,r : OX(m+r) → PX,(m)

such that the diagram
(1.6.1)

OX(m+r)

F m+r ∗

��

//
// OX(m+r)×X(m+r)

(F m+r×F m+r)∗

��

// PX(m+r),(m)

(F m+r×F m+r)∗

��

// // OX(m+r)

ϕm,r

xx
F m+r ∗

��
OX

//
// OX×X

// PX,(m)
// // OX
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commutes.
(ii) If m′ ≥ m, the square

(1.6.2) OX(m′+r)

F m′−m ∗

��

ϕm′,r // PX,(m′)

can

��
OX(m+r)

ϕm,r // PX,(m),

where the right vertical arrow is the canonical homomorphism [1, 1.4.7],
is commutative.

(iii) If s ≥ r, then the homomorphisms ϕm,r ◦F s−r ∗ : OX(m+s) → OX(m+r) →
PX,(m) and (F s−r × F s−r)∗ ◦ ϕm,r : OX(m+s) → PX(s−r),(m) → PX,(m)

are both equal to ϕm,s.

Proof. — The kernel of the homomorphism PX(m+r),(m) � OX(m+r) is the
m-PD-ideal generated by I m+r. Since (Fm+r×Fm+r)∗ is an m-PD-morphism,
the factorization ϕm,r exists if and only if the image of I m+r in PX,(m) is 0.

Using Lemma 1.4, it suffices to prove that the image of
·�
I (m+r) in PX,(m) is 0.

An element x ∈ ·�
I (m+r) can be written x =

∑m+r
j=0

∑
k aj,kz

pj

j,k, with aj,k ∈
am+r−j OX and zj,k ∈ I . Since ar = 0, aj,k = 0 for j ≤ m. On the other
hand, I is mapped by construction to the m-PD-ideal I ⊂ PX,(m). Such an
ideal is equipped with partial divided power operations z 7→ z{k}(m) , k ∈ N,
such that zk = q!z{k}(m) where q is the quotient of k by pm as in (1.5.2) [1,
1.3.5]. For j > m, we obtain zpj

j,k = pj−m!z
{k}(m)

j,k . Since p ∈ a, aj,kz
pj

j,k maps to
am+r−j+j−m PX,(m) = 0. This shows the first assertion.

To prove the second one, it suffices to show that the square commutes af-
ter composing with the surjection OX(m′+r)×X(m′+r) � OX(m′+r) . Thanks to
(1.6.1), the composition of this surjection with can ◦ ϕm′,r is equal to

OX(m′+r)×X(m′+r)

(F m′+r×F m′+r)∗−−−−−−−−−−−−→ OX×X −→ PX,(m),

while its composition with ϕm,r ◦ Fm′−m ∗ is equal to

(1.6.3) OX(m′+r)×X(m′+r)

(F m′−m×F m′−m)∗−−−−−−−−−−−−−→ OX(m+r)×X(m+r)

(F m+r×F m+r)∗−−−−−−−−−−−→ OX×X −→ PX,(m).

The assertion follows, and the third one is proved similarly.

Proposition 1.7. — Under the hypotheses of 1.1, let r ≥ 1 be an integer such
that ar = 0, and let m ∈ N be another integer.
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(i) For any OX(m+r)-module F , there exists on Fm+r ∗ F a canonical
D(m)

X -module structure extending its OX-module structure. This structure
is functorial with respect to F , and the functor Φm,r defined in this way
from the category of OX(m+r)-modules to the category of D(m)

X -modules
fits in a commutative diagram of functors

(1.7.1) { OX(m+r)-modules} F m+r ∗
//

Φm,r

**

{ OX -modules}

{D(m)

X(m+r)-modules} F m+r ∗
//

forget

OO

{D(m)
X -modules}.

forget

OO

(ii) If m′ ≥ m, the diagram of functors

(1.7.2) { OX(m′+r) -modules}
Φm′,r //

F m′−m ∗

��

{D(m′)
X -modules}

restr

��

{ OX(m+r)-modules}
Φm,r // {D(m)

X -modules}

commutes up to canonical isomorphism.
(iii) If s ≥ r, then Φm,s ' Φm,r◦F s−r ∗ ' F s−r ∗◦Φm,r, where the last functor

F s−r ∗ is the inverse image functor for D(m)

X(s−r)-modules.

Proof. — To define a D(m)
X -module structure on Fm+r ∗ F , we endow it with

an m-PD-stratification as follows.
For each i ≥ 0, let PX(i),(m) = Spec PX(i),(m), and let p0, p1 : PX(i),(m) →

X(i) be the morphisms induced by the two projections X(i) × X(i) → X(i).
Using the morphism φm,r : PX,(m) → X(m+r) defined by the homomorphism
ϕm,r provided by Proposition 1.6, and denoting ∆ : X(i) ↪→ PX(i),(m) the
factorizations of the diagonal immersions (defined by PX(i),(m) � OX(i)), we
obtain isomorphisms

(1.7.3) p∗1(Fm+r ∗ F )
∼−→ (Fm+r × Fm+r)∗p∗1 F ∼−→ φ∗m,r∆∗p∗1 F ∼−→ φ∗m,r F ,

and similarly for p∗0(Fm+r ∗ F ). Composing and reducing mod I
{n+1}(m) for

all n, we obtain a compatible family of isomorphisms εn : p∗1(Fm+r ∗ F )
∼−→

p∗0(Fm+r ∗ F ) as in (1.5.4). To prove that they define an m-PD-stratification,
one must check the cocycle condition. This is formal, once one has checked that
Proposition 1.6 (i) can be generalized to the product X ×S X ×S X. Since the
argument is the same than for the proof of 1.6 (i), we omit the details.

This m-PD-stratification is clearly functorial in F . Endowing Fm+r ∗ F with
the corresponding D(m)

X -module structure defines the functor Φm,r, and the
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upper triangle in (1.7.1) commutes by construction. To prove that the lower
one commutes, one must check that, if F has a D(m)

X(m+r)-module structure
corresponding to an m-PD-stratification (δn)n≥0, the m-PD-stratification on
Fm+r ∗ F deduced from (δn) by scalar extension via the homomorphisms
Pn

X(m+r),(m) → Pn
X,(m) defined by Fm+r ×Fm+r coincides with (εn). This is a

consequence of the commutativity of diagram (1.6.1).

If m′ ≥ m, an m′-PD-stratification defines an m-PD-stratification by scalar
extension via the canonical homomorphisms Pn

(m′) → Pn
(m). From the point of

view of D-module structures, this corresponds to scalar restriction from D(m′)

to D(m) (this can be easily checked using the corresponding Taylor formulas
for D(m) and D(m′)-modules). Therefore, the commutativity of (1.6.2) implies
the commutativity of (1.7.2).

Finally, the third statement follows immediately from Proposition 1.6 (iii),
using the definition of the inverse image functor for D(m)-modules in terms of
m-PD-stratifications [2, 2.1.1].

Corollary 1.8. — Under the hypotheses of 1.1, let r ≥ 1 be an integer such
that ar = 0. If F is any OX(r)-module, F r ∗ F is endowed with a canonical
integrable connexion, functorial in F . If F itself is endowed with an integrable
connexion ∇, the inverse image of ∇ by F r is the canonical connexion of F r ∗ F .

Proof. — Since the datum of an integrable conexion is equivalent to the datum
of a D(0)-module structure [4, Th. 4.8], this is the particular case of Proposition
1.7 (i) obtained for m = 0.

Example 1.9. — Assume that a = 0, so that S is a characteristic p scheme,
and F is the relative Frobenius morphism FX/S . Then we may take r = 1,
and the corollary gives the classical connexion on the pull-back by FX/S of any
OX(1)-module [10, Th. 5.1] (see also [2, 2.6]). Note that, in this case, Cartier’s
theorem provides a characterization of the essential image of F ∗X/S as being
the subcategory of the category of OX -modules with integrable connexion such
that the connexion has p-curvature 0. It would be interesting to have a similar
characterization of the essential image of F r ∗ in the more general situation of
Corollary 1.8, at least in the case where S is flat over Z/prZ, and a = p OS .

Assuming again that a = 0, but for arbitrary m, Proposition 1.7 is then a
consequence of the combination of the previous remark with [2, Prop. 2.2.3],
which grants that, for any m, s ≥ 0, the inverse image of a D(m)

X(s)-module by
F s

X/S has a canonical structure of D(m+s)
X -module.

tome 140 – 2012 – no 3



FROBENIUS DIVIDED MODULES 451

1.10. — Proof of Theorem 1.2. We fix an integer r such that ar = 0.

(i) Unicity. Let ( Ei, αi) be an F -divided D(∞)
X -module. To prove that the

D(∞)

X(i)-module structure of each Ei is determined by the family ( Ei, αi)

viewed as an F -divided OX -module, we can use the isomorphism (1.5.1) to
reduce to proving that, for each m and each i, the underlying D(m)

X(i) -mod-
ule structure of Ei is determined by the F -divided OX -module ( Ei, αi).

Composing the isomorphisms αi, one gets a D(m)

X(i)-linear isomorphism
ψm,r,i : Fm+r ∗ Ei+m+r

∼−→ Ei. By Proposition 1.7 (i), the D(m)

X(i)-module
structure of Fm+r ∗ Ei+m+r does not depend on the D(m)

X(i+m+r)-module
structure of Ei+m+r, and is equal to the canonical structure we have
defined on the inverse image by Fm+r of an O-module. This proves the
unicity.

(ii) Existence. We can again use the isomorphism (1.5.1) to reduce to defining
for all i and m a D(m)

X(i) -module structure on Ei so that αi is D(m)

X(i) -linear,
and so that, for m′ ≥ m, the D(m)

X(i)-module structure is induced by the

D(m′)

X(i) -module structure.
To statisfy the first condition, it suffices to endow Ei with the

D(m)

X(i)-module structure deduced by transport via ψm,r,i from the canon-
ical structure of Fm+r ∗ Ei+m+r: the fact that, with this definition, αi

is D(m)

X(i)-linear follows then from Proposition 1.7 (iii). As to the second
condition, it is a consequence of Proposition 1.7 (ii). �

Remarks 1.11. — (i) Assuming that S is affine, the same result holds when
X is the spectrum of a localization of some smooth Γ(S, OS)-algebra.

(ii) One can also construct directly the D(∞)

X(i) -module structure of Ei by ob-
serving that Lemma 1.4 implies that

(Fm+r × Fm+r)∗ : OX(i+m+r)×X(i+m+r)/ I pm+1

i+m+r → OX(i)×X(i)/ I pm+1

i

can be factorized through OX(i+m+r) as in the construction of ϕm,r. Argu-
ing as in the proof of Proposition 1.7, one gets the isomorphisms εn of the
stratification of Ei for n < pm+1. Letting m go tend to infinity, one gets
the whole stratification. This allows to prove Theorem 1.2 without using
D(m)

X -module structures as intermediates. However, this method does not
provide informations on the differential structure of pull-backs by a finite
iteration of F similar to those provided by Proposition 1.7.

1.12. — We end this section with a result showing how to compute explicitly
the D(m)

X -module structure defined by Proposition 1.7 on Fm+r ∗ F , for an
arbitrary OX(m+r) -module F .
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Let E be a D(m)
X -module, and let x be a section of E. We will say that x is

horizontal if, for all n ≥ 0, we have

(1.12.1) εn(1⊗ x) = x⊗ 1,

where (εn)n≥0 is the m-PD-stratification corresponding to the D(m)
X -module

structure on E. On an open subset endowed with local coordinates, this condi-
tion can be expressed using the basis of operators ∂〈k〉(m) : it follows from the
Taylor formula that x is horizontal if and only if

(1.12.2) ∀k 6= 0, ∂〈k〉(m) · x = 0.

Thanks to the decomposition formula [1, 2.2.5.1], this is equivalent to the con-
dition

(1.12.3) ∀i, ∀j ≤ m, ∂
〈pj〉(m)

i · x = 0.

Proposition 1.13. — Under the assumptions of Proposition 1.7, let F be
an OX(m+r)-module. Then the extension of scalars F → Fm+r ∗ F maps the
sections of F to horizontal sections of Fm+r ∗ F = Φm,r( F ).

Proof. — Let x′ be a section of F , and x = Fm+r ∗(x′) ∈ Fm+r ∗ F . Then, if

(εn) is the m-PD-stratification of Fm+r ∗ F , εn is the reduction mod I
{n+1}

of the composition of (1.7.3) with the inverse of the analog of (1.7.3) starting
from p∗0(Fm+r ∗ F ). Via (1.7.3), 1 ⊗ x maps to φ∗m,r(x′), and the same holds
for the image of x⊗ 1 via the inverse of the analog of (1.7.3) for p∗0(Fm+r ∗ F ).
Therefore, εn(1⊗ x) = x⊗ 1, which proves the proposition.

Remarks 1.14. — (i) Locally, a section of Fm+r ∗ F can be written as x =∑
i ai ⊗ x′i, where ai ∈ OX and x′i ∈ F . Together with the Leibniz for-

mula [1, Prop. 2.2.4, (iv)], the previous proposition implies that, for any
operator P ∈ D(m)

X , the action of P on x is given by

(1.14.1) P · x =
∑

i

P (ai)xi,

with xi = Fm+r ∗(x′i).
(ii) We can apply the previous proposition to F = OX(m+r) , and this shows

that the homomorphism OX(m+r) → OX → D(m)
X maps OX(m+r) to the

center of D(m)
X . So, for any operator P ∈ D(m)

X , we can let P operate on
Fm+r ∗ F by P⊗Id F . Formula (1.14.1) shows that the D(m)

X -module struc-
ture obtained in this way on Fm+r ∗ F is the one defined by Proposition
1.7.
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(iii) When a = 0 and m = 0, the homomorphism F → E := F ∗ F identifies F
with the subsheaf E∇ of horizontal sections of E [10, Th. 5.1]. This is no
longer true in general. For example, let k be a perfect field of characteristic
p, S = SpecWr(k), endowed with its natural Frobenius action, and a =

p OS . If X is a smooth S-scheme, and m = 0, O∇X = Ker(d : OX → Ω1
X)

can be identified with the sheaf Wr OX0 of Witt vectors of length r on X0

[9, III, 1.5], thanks to the map

(x0, . . . , xr−1) 7→ x̃pr

0 + · · ·+ pr−1x̃p
r−1,

where x̃i is any section OX lifting xi. In particular, if dim(X/S) ≥ 1 and
r ≥ 2, O∇X is not flat over S, hence cannot be identified with OX(r) .

2. Frobenius descent

We now apply the theory of Frobenius descent developed in [2] to the case
of D(∞)

X -modules.

Theorem 2.1. — Under the hypothese of 1.1, the functor F ∗ defines an equiv-
alence of categories between the category of D(∞)

X(1)-modules and the category of
D(∞)

X -modules.

Proof. — Using (1.5.1), we can again view a D(∞)
X -module as an OX -module

endowed for all m ∈ N with a structure of D(m)
X -module extending its OX -mod-

ule structure, in a compatible way when m varies.
Let r be such that ar = 0, and let m0 be an integer such that pm0 ≥ r.

We endow the ideal p OS ⊂ a with its canonical PD-structure. Because any
section a ∈ a is such that apm0

= 0, and pa ⊂ p OX , the PD-ideal p OX defines
for all m ≥ m0 an m-PD-structure on a (called the trivial m-PD-structure,
see [1, 1.3.1, Ex. (ii)]). So we can apply the Frobenius descent theorem [2,
Th. 2.3.6], and we obtain that, for each m ≥ m0, the functor F ∗ defines an
equivalence of categories between the category of D(m)

X(1)-modules and the cate-
gory of D(m+1)

X -modules. Moreover, for m′ ≥ m, the remark of [2, Prop. 2.2.3]
implies that these equivalences commute with restrictions of scalars from D(m′)

X(1)

to D(m)

X(1) , and from D(m′+1)
X to D(m+1)

X . The theorem follows formally.

Remark 2.2. — Instead of deducing Theorem 2.1 from the Frobenius de-
scent theorem for D(m)

X -modules, one could also prove it directly by repeating
for stratifications the arguments developed in the proof of [2, Th. 2.3.6] for
m-PD-stratifications. Let us recall that the proof builds upon the fact that F
is a finite locally free morphism, as are the morphisms induced between ap-
propriate infinitesimal neighbourhoods of X and X(1) in their products over
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S. Then one shows that the stratification induces a descent datum from X to
X(1), which allows to descend the OX -module underlying a D(∞)

X -module as an
OX(1)-module. The same type of argument allows to descend the isomorphisms
εn defining the stratification corresponding to the D(∞)

X -module structure. Fi-
nally, using fppf descent again, one shows that the cocycle condition for the
εn’s implies the cocycle condition for the descended isomorphisms.

Corollary 2.3. — Under the hypotheses of 1.1, the functor

(2.3.1) {F -divided D(∞)
X -modules} −→ {D(∞)

X -modules}, ( Ei, αi) 7→ E0,

is an equivalence of categories.

Proof. — Let A be the functor (2.3.1). One can construct a functor B in the
opposite direction by observing that, for a given D(∞)

X -module E, successive
applications of Theorem 2.1 on each X(i) provide functorially in E an F -divided
D(∞)

X -module ( Ei, αi) such that E0 = E. Then A ◦ B = Id by construction.
Conversely, if ( Ei, αi) is an F -divided D(∞)

X -module and B( E0) = ( E′i, α′i),
with E′0 = E0, one can apply inductively Theorem 2.1 to define a family of
D(∞)

X(i) -linear isomorphisms ϕi : E′i
∼−→ Ei such that αi ◦ F ∗(ϕi+1) = ϕi ◦ α′i,

and this gives an isomorphism of functors B ◦A ∼−→ Id.

Theorem 2.4. — Under the hypotheses of 1.1, there exists an equivalence of
categories

(2.4.1) ∆S : {F -divided OX -modules} ≈−−→ {D(∞)
X -modules}

which satisfies the following properties:
(i) If ( Ei, αi) is an F -divided OX-module, the OX-module underlying

∆S( Ei, αi) is E0.
(ii) ∆S is exact, OS-linear, and commutes with tensor products in both cate-

gories.
(iii) If (S′, a′, σ′) statisfies the conditions of 1.1, if u : (S′, a′, σ′)→ (S, a, σ) is

a morphism commuting with σ and σ′, and such that u−1(a) → a′, then
∆S and ∆S′ commute with base change by u.

(iv) If S = Spec k, where k is a perfect field of characteristic p, ∆S is the
equivalence defined by Gieseker in [5, Th. 1.3].

Proof. — We define the equivalence ∆S by composing the quasi-inverse to the
forgetful functor ΩS defined in 1.2 with the equivalence (2.3.1). Each of these
is clearly exact and OS-linear. As for the compatibility with tensor products, it
follows from the fact that the D-module structure on the tensor product over
OX of two D(m)

X -modules is defined by the tensor product of the corresponding
m-PD-stratifications.
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To check the commutation with base change, one uses again the descrip-
tion of the D(m)

X -module structures in terms of m-PD-stratifications. Then this
property follows from the fact that the construction of the homomorphism ϕm,r

defined in Proposition 1.6 commutes with base change.

The last assertion follows from (1.14.1) and from the definition given in [5],
p. 4, l. -12, thanks to the fact that the homomorphisms D(m)

X → D(∞)
X induce

isomorphisms between the submodules of operators of order < pm+1.

2.5. — Theorem 2.4 implies a similar result on adic formal schemes. We now
consider the following setup. Let S be a locally noetherian adic formal scheme,
and let a ⊂ O S be an ideal of definition of S. For each r ≥ 0, we denote by
Sr the closed subscheme of S defined by ar+1. We assume that p ∈ a, and
that we are given an endomorphism σ : S → S lifting the absolute Frobenius
endomorphism of S0.

Let X → S be an a-adic formal scheme over S, with reduction Xr → Sr

mod ar+1. We assume that X is smooth over S, i.e., that Xr is smooth over
Sr for all r. For all i ≥ 0, we denote again by X (i) the pull-back of X by σi

in the category of a-adic formal schemes, and we assume that we are given a
morphism F : X → X (1) lifting the relative Frobenius morphism FX0/S0

. We
extend the notation as in 1.1 to define F : X (i) → X (i+1) for all i. Note that, in
a neighbourhood of some point x ∈ X , the relative dimension d of Xr over Sr

does not depend on r. Then each Xr is finite locally free of rank pd over X(1)
r

in a neighbourhood of x. By taking inverse limits, we get that O X is a finite
locally free over O X(1) , and similarly for each O X(i) over O X(i+1) .

We will say that an O X -module E is separated and complete if E ∼−→
lim←−r

E/ar E. Note that this is a local condition which depends only on the
underlying O S-module, and that a finite direct sum of O X -modules is separated
and complete if and only if each factor is separated and complete. It follows
that an O X(i)-module F is separated and complete if and only if F ∗ F is
separated and complete. Coherent O X -modules are separated and complete.

As in 1.1, we define F -divided O X -modules as being families ( Ei, αi)i≥0 of
O X(i) -modules endowed with O X(i) -linear isomorphisms αi : F ∗ Ei+1

∼−→ Ei.
We will say that an F -divided module is separated and complete if each Ei is
separated and complete.

Let D(∞)
X = ∪n(lim←−r

D(∞)
Xr,n), where D(∞)

Xr,n is the subsheaf of differential

operators of order ≤ n on Xr. We will say that a D(∞)
X -module is separated

and complete if the underlying O X -module is separated and complete.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



456 P. BERTHELOT

Theorem 2.6. — Under the hypotheses of 2.5, there exists an equivalence of
categories

(2.6.1) ∆ S : {Separated and complete F -divided O X -modules}
≈−−→ {Separated and complete D(∞)

X -modules}

which satisfies the following properties:

(i) If ( Ei, αi) is a separated and complete F -divided O X -module, the O X -mod-
ule underlying ∆ S( Ei, αi) is E0.

(ii) ∆ S is O S-linear, preserves exactness for exact sequences of separated and
complete modules, and is compatible with completed tensor products.

(iii) For each r, ∆ S induces the equivalence ∆Sr
between the subcategories of

objects annihilited by ar.
(iv) If S = Spf V , where V is a complete discrete valuation ring of mixed char-

acteristics, a is the maximal ideal of V , and X is affine over S with local
coordinates, then ∆ S is the equivalence described in [12, 3.2.2] (introduced
by Matzat in the context of local differential modules over 1-dimensional
local differential rings [11]).

Proof. — Let Fr : Xr → X
(1)
r be the reduction of F modulo ar+1. Using the

Fr’s, Theorem 2.4 provides for each r an equivalence between the category of
F -divisible OXr

-modules and the category of D(∞)
Xr

-modules. Moreover, these
equivalences are compatible when r varies, thanks to 2.4 (ii). So, starting from
a separated and complete F -divided O X -module ( Ei, αi), we obtain an inverse
systeme of F -divided OXr

-modules ( Ei/a
r+1 Ei, αi mod ar+1), from which we

deduce compatible structures of D(∞)
Xr

-modules on the quotients E0/a
r+1 E0.

Viewing these as comptatible structures of D(∞)
X -modules, they define a struc-

ture of D(∞)
X -module on E0

∼−→ lim←−r
E0/a

r+1 E0. This defines the functor ∆ S ,
and property (i) is satisfied.

Conversely, given a separated and complete D(∞)
X -module E, the inverse sys-

tem ( E/ar+1 E) defines an inverse system of F -divided OXr -modules ( Ei,r, αi,r)

such that E0,r = E/ar+1 E. Since a D(∞)

X(i) -module F is separated and complete if
and only if F ∗ F is separated and complete, and F ∗ lim←−r

F r
∼−→ lim←−r

F ∗r F r for
any inverse system of O

X
(i)
r
-modules ( F r), we obtain by taking inverse limits

a separated and complete F -divided O X -module ( Ei, αi) such that E0 = E. .
The O S-linearity and the compatibility with completed tensor products are

also clear from the definition of ∆ S , as is assertion (iii). Compatibility with ex-
act sequences follows from (i), since, on the one hand a sequence of D(∞)

X -mod-
ules is exact if and only if it is exact as a sequence of O X -modules, on the other
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hand a sequence of F -divided modules is exact if and only if the sequence of
terms of index 0 is exact (as F is finite locally free).

To prove the last assertion, we apply the description given in (1.14.1) for the
action of differential operators on the reduction mod ar+1, for all r. Indeed,
let us fix an integer r and a multi-index k, and let m be such that |k| ≤ pm.
Then the homomorphism D(m)

Xr
→ D(∞)

Xr
maps ∂〈k〉(m) to ∂[k]. Let ( Ei, αi) be

an F -divided O X -module, and let ψm,r+1 : Fm+r+1 ∗ Em+r+1
∼−→ E0 be the

isomorphism defined by the αi’s. If x is a section of E0, we can write locally
x as a finite combination x = ψm,r+1(

∑
j ar,j ⊗ x′r,j), where ar,j ∈ O X and

x′r,j ∈ Em+r+1. Let xr,j = ψm,r+1(Fm+r+1 ∗(x′r,j)) ∈ E0. As the image of
xr,j in E0/a

r+1 E0 is horizontal for the structure of D(m)
Xr

-module, thanks to
Proposition 1.13, we obtain that, for any k′ 6= 0, ∂[k′]xr,j ∈ ar+1 E0. Thus the
Leibnitz formula implies that ∂[k]x ≡

∑
j ∂

[k](ar,j)xr,j mod ar+1 E0. If we let r
tend to infinity, we obtain

(2.6.2) ∂[k]x = lim
r→∞

∑
j

∂[k](ar,j)xr,j .

This shows that the D(∞)
X -module structure defined by ∆ S on E0 coincides with

the one defined in [12, 3.2.2] (see also [11, Cor. 1.5]).
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