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SOME REMARKS
ON THE LOCAL CLASS FIELD THEORY

OF SERRE AND HAZEWINKEL

by Takashi Suzuki

Abstract. — We give a new approach for the local class field theory of Serre and
Hazewinkel. We also discuss two-dimensional local class field theory in this framework.

Résumé (Quelques remarques sur la théorie du corps de classes local de Serre et
Hazewinkel)

Nous donnons une nouvelle approche de la théorie du corps de classes local de
Serre et Hazewinkel. Nous discutons également la théorie du corps de classes local de
dimension deux dans ce cadre.

1. Introduction

The purpose of this paper is twofold. First, we give a geometric description
of the local class field theory of Serre and Hazewinkel ([13], [7, Appendice]) in
the equal characteristic case. The main result is Theorem A below. Second, we
discuss its two-dimensional analog with the aim to seek an analog of Lubin-
Tate theory for two-dimensional local fields. The discussion is taken place in
Section 6 with a partial result.

We formulate Theorem A. The precise definitions of the terms used below
are given in Section 2. Let k be a perfect field of characteristic p > 0 and set
K = k((T )). The group of units of K can be viewed as a proalgebraic group
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2 T. SUZUKI

(more precisely, a pro-quasi-algebraic group) over k in the sense of Serre ([12]);
we denote this proalgebraic group by UK . For each perfect k-algebra R (perfect
means that the p-th power map is an isomorphism), we have the group of its
R-rational points

UK(R) =

{ ∞∑
i=0

aiT
i ai ∈ R, a0 ∈ R×

}
.

Likewise, the multiplicative group K× of K can be viewed as a perfect group
scheme K×, which is the direct product of UK and the discrete infinite cyclic
group generated by T. Let Kp be the perfect closure of K. We consider the
Kp-rational point 1− TT−1 of K× and the corresponding morphism

ϕ : SpecKp → K×.

This morphism induces a homomorphism

η : Gal(Kab/K) = πet
1 (SpecKp)

ab ϕ→ πk1 (K×)

on the fundamental groups. Here Kab is the maximal abelian extension of K
and πet

1 (·)ab denotes the maximal abelian quotient of the étale fundamental
group. The group πk1 (K×) is the fundamental group of K× as a perfect group
scheme over k, which classifies all surjective isogenies to K× with finite constant
kernels. Now we state the main theorem of this paper:

Theorem A. — 1. The above defined map η : Gal(Kab/K) → πk1 (K×) is
an isomorphism.

2. The inverse of η restricted to πk1 (UK) coincides with the reciprocity iso-
morphism θ : πk1 (UK)

∼→ I(Kab/K) of Serre and Hazewinkel ([13], [7]),
where I denotes the inertia group.

Note that Assertion 1 of the theorem says that we have an essentially one-to-
one correspondence between surjective isogenies A � K× with finite constant
kernels and finite abelian extensions L of K by pullback by ϕ, as expressed as
a cartesian diagram of the form

SpecLp −−−−→ Ay y
SpecKp

ϕ−−−−→ K×.

In other words, we have Ext1
k(K×, N)

∼→ H1(K,N) for any finite constant
group N . Another remark is that the proof of Assertion 2 that we give in
this paper does not use the fact that θ is an isomorphism. This means that
Theorem A and our proof of it together give another proof of this fact, more
specifically, the existence theorem of the local class field theory of Serre and
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SOME REMARKS ON THE LCFT OF SERRE AND HAZEWINKEL 3

Hazewinkel ([13, §4], [7, 6.3]). For a generalization of Assertion 2 for the full
groups πk1 (K×) and Gal(Kab/K), see Remark 3.5.

We outline the paper. After providing some preliminaries at Section 2, we
give three different proofs of Theorem A. Each of them has its own advantages
and interesting points. The first proof given in Section 3 may be the standard
one. The method is purely local. In this proof, for Assertion 1, we explicitly cal-
culate the groups Gal(Kab/K) and πk1 (K×) and the homomorphism η between
them individually. For Assertion 2, we interpret the assertion to the compat-
ibility of ϕ with norm maps and prove it by analyzing the diagonal divisors.
The second proof given in Section 4 relies on Lubin-Tate theory. Hence it is
applicable only for finite residue field cases. The third proof given in Section 5
is a geometric proof, which was suggested by the referee to the author. In this
geometric proof, for Assertion 1, we need the Albanese property of the mor-
phism ϕ : SpecKp → K×, which was established by Contou-Carrere in [6] (see
also [5]). For Assertion 2, we need the local-global compatibility and the global
version of Assertion 2, which was obtained by Serre in [13, §5].

In Section 6, we define a morphism analogous to ϕ : SpecKp → K× for a
field of the form k((S))((T )) using the second algebraic K-group instead of
the multiplicative group. If k is a finite field, the field k((S))((T )) is called a
two-dimensional local field ([8]) of positive characteristic. In analogy with the
second proof of Theorem A by Lubin-Tate theory, we attempt to formulate
an analogous theory to Lubin-Tate theory for the two-dimensional local field
k((S))((T )). Although we have not yet obtained an analog of a Lubin-Tate
formal group in this paper, we did obtain a result that may be thought of as
a partial result for abelian extensions having p-torsion Galois groups (Proposi-
tion 6.1). In Section 7, we give an analog of the result of [2, §2.6] on D-modules.
Their result is for fields of the form k((T )) with k characteristic zero while ours
k((S))((T )) with k characteristic zero. This is also regarded as an analog of
Proposition 6.1.

We give a couple of comments on literature. The morphism ϕ : SpecKp →
K× had been introduced by Grothendieck ([4, August 9, 1960]) long before
our paper. Besides Contou-Carrere as mentioned above, the morphism ϕ has
been studied by many people. The D-module version of Theorem A in the zero-
characteristic case had been established in [2, §2.6]. Deligne had given a sketch
of proof of results stronger than Assertion 1. This is written in Section e of his
letter to Serre contained in [3]. His method is different from our method. The
author did not realize these works at the time of writing this paper.

Acknowledgements. — This is an extended version of the master thesis
of the author at Kyoto University. The author would like to express his deep
gratitude to his advisor Kazuya Kato and Tetsushi Ito for their suggestion of the
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4 T. SUZUKI

problems, encouragement, and many helpful discussions. The author is grateful
also to the referee for the suggestion of the geometric proof of Theorem A, and
to Professor Takuro Mochizuki for informing the author of the work [2].

2. Preliminaries

In this section, we give precise definitions of the terms that we used in
Introduction and will use in the following sections, fix notation, prove the in-
dependence of the choice of the prime element T (Proposition 2.3), and reduce
the proof of Theorem A to the case of algebraically closed residue fields.

2.1. Definitions and notation. — We work on the site (Perf/k)fpqc of per-
fect schemes over a perfect field k of characteristic p > 0 with the fpqc
topology (compare with [11, Chapter III, §0, “Duality for unipotent perfect
group schemes”]; see also [17]). The category of sheaves of abelian groups
on (Perf/k)fpqc contains the category of commutative affine pro(-quasi)-
algebraic groups over k in the sense of Serre ([12]) as an thick abelian full
subcategory. We denote by Extik the i-th Ext functor for the category of
sheaves of abelian groups on (Perf/k)fpqc. For a sheaf of abelian groups
A on (Perf/k)fpqc and a non-negative integer i, we define the fundamental
group πk1 (A) of A to be the Pontryagin dual of the torsion abelian group
inj limn≥1 Ext1

k(A,n−1Z/Z). If A is an extension of an étale group whose
group of geometric points is finitely generated as an abelian group by an
affine proalgebraic group, then inj limn≥1 Ext1

k(A,n−1Z/Z) = Ext1
k(A,Q/Z)

and hence the Pontryagin dual of Ext1
k(A,Q/Z) coincides with πk1 (A). For a

k-algebra R, we denote by Rp the perfect k-algebra given by the injective limit
of p-th power maps R → R → · · · , where the i-th copy of R in this system is
given the map k → R, a 7→ ap

i

as its k-algebra structure map.
Let K be a complete discrete valuation field of equal characteristic with

residue field k. We denote by OK the ring of integers of K and by pK the
maximal ideal of OK . We set UK = U0

K = O×K and UnK = 1 + pnK for n ≥ 1. We
fix an algebraic closure K of K. All algebraic extensions of K are taken inside
K. We denote by Ksep (⊂ K) the separable closure of K, by Kur the maximal
unramified extension of K and by Kab the maximal abelian extension of K,
respectively. Since K has equal characteristic p > 0, the rings OK and K have
canonical structures of k-algebras by the Teichmüller section k ↪→ OK . Hence,
for a sheaf of abelian groups A on (Perf/k)fpqc, we can consider the groups
A(( OK)p) (resp. A(Kp)) of ( OK)p-rational (resp. Kp-rational) points of A. We
denote by A((pK)p) the kernel of the natural map A(( OK)p) → A(k). The
reduction map OK � k and the Teichmüller section k ↪→ OK give a canonical
splitting A(( OK)p) = A(k)⊕A((pK)p).
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SOME REMARKS ON THE LCFT OF SERRE AND HAZEWINKEL 5

We define a sheaf of rings OK on (Perf/k)fpqc by setting OK(R) = R ⊗̂k OK
for each perfect k-algebra R,(1) where ⊗̂ denotes the completed tensor product.
Let K be the sheaf of rings on (Perf/k)fpqc with K(R) = OK(R)⊗ OK

K. We set
UK = O×K . For each n ≥ 0, the sheaf of rings OK has a subsheaf of ideals pnK
with pnK(R) = OK(R)⊗ OK

pnK . The presentation OK = proj limn→∞OK/p
n
K

gives an affine proalgebraic ring structure for OK . Likewise, UK has a subsheaf
of groups Un

K = 1 + pnK for each n ≥ 1 (for n = 0, we set U0
K = UK). The

presentation UK = proj limn→∞UK/U
n
K gives an affine proalgebraic group

structure for UK . We have a split exact sequence 0 → UK → K× → Z → 0.
For a prime element T of OK , let T be the k-rational point of OK defined
by T = 1⊗ T ∈ k ⊗̂k OK = OK(k). If we fix a prime element T , we may write
UK(R) = R[[T]]× and K×(R) = R[[T]][T−1]×, which are the descriptions
of UK and K× given in Introduction. The rational point 1− TT−1 ∈ K×(Kp)

taken in Introduction should therefore be understood to be 1− (T ⊗1)⊗T−1 ∈
((Kp ⊗̂k OK)⊗ OK

K)× = K×(Kp).
For a rational point f ∈ K×(Kp), we denote by ϕf the corresponding mor-

phism of k-schemes SpecKp → K×. An extension 0→ N → A→ K× → 0 with
N finite constant pulls back by ϕf : SpecKp → K× to an N -torsor on SpecKp.
This defines a homomorphism Ext1

k(K×, N) → H1(K,N). By Pontryagin du-
ality, we have a homomorphism Gal(Kab/K) → πk1 (K×), which we denote
by ηf .

2.2. A subset of K×(Kp). — In this subsection, we define a subset ΞK
of K×(Kp) and prove some properties of it. This subset contains 1 − TT−1

for all prime elements T and is convenient for proving both the independence
of the prime element (Proposition 2.3) and the compatibility with norm maps
(Proposition 3.4).

Definition 2.1. — We define ΞK to be the set of elements f ∈ K×(Kp)

satisfying the following conditions:

1. f is in K(( OK)p) and generates as an ideal of K(( OK)p) the kernel of the
multiplication map K(( OK)p) = (( OK)p ⊗̂k OK)⊗ OK

K → Kp and
2. the natural map K(( OK)p)→ K(k) sends f to 1.

Proposition 2.2. — 1. The set ΞK contains 1− TT−1 for any prime T .
2. The group UK((pK)p) = Ker

(
UK(( OK)p)→ UK(k)

)
acts by multiplica-

tion on ΞK transitively without fixed points.
3. The valuation map K× → Z sends every element of ΞK to −1.

(1) This defines a sheaf on the site of perfect k-algebras with the fpqc topology. We actually
need to take its Zariski sheafification to have a sheaf on (Perf/k)fpqc. The two sites here have
equivalent categories of sheaves. The same process is applied to all sheaves in this paper.
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6 T. SUZUKI

4. For every f ∈ ΞK , we have the following commutative diagram with exact
rows:

0 −−−−→ I(Kab/K) −−−−→ Gal(Kab/K) −−−−→ Gal(kab/k) −−−−→ 0yηf

yηf

yo
0 −−−−→ πk1 (UK) −−−−→ πk1 (K×) −−−−→ πk1 (Z) −−−−→ 0,

where the right vertical isomorphism Gal(kab/k)
∼→ πk1 (Z) is the Pontrya-

gin dual map of the natural isomorphism H1(k,Q/Z) ∼= Ext1
k(Z,Q/Z)

times −1.
5. For each prime element T , the restricted homomorphism ηf : I(Kab/K)→
πk1 (UK) for f = 1 − TT−1 ∈ ΞK factors as the composite of
the inclusion I(Kab/K) ↪→ Gal(Kab/K) and the homomorphism
Gal(Kab/K) → πk1 (UK) induced by the morphism SpecKp → UK

corresponding to the rational point −T + T ∈ UK(Kp).

Proof. — 1. Obvious.
2. If f1 and f2 are in ΞK , we have f2 = uf1 for some u ∈ Ker

(
K×(( OK)p)→

K×(k)
)

= K×((pK)p). Such u is unique since K(( OK)p) is a domain. We have
K×((pK)p) = UK((pK)p) since Z((pK)p) = 0. Thus we have Assertion 2.

3. This follows from Assertions 1 and 2.
4. By Assertion 3, we have a commutative diagram

SpecKp −−−−→ Spec kyϕf

y
K× −−−−→ Z,

where the right vertical morphism corresponds to −1 ∈ Z(k). The maps induced
on the fundamental groups give the required commutative diagram. The top
row of the diagram in Assertion 4 is obviously exact. The bottom row of is
exact as well since the sequence 0→ UK → K× → Z→ 0 is split exact.

5. The prime element T gives a splitting K× ∼= UK × Z. The rational
point 1 − TT−1 ∈ K×(Kp) corresponds to the rational point (−T + T,−1) ∈
UK(Kp)× Z(Kp). This implies Assertion 5.

2.3. Independence of the choice of the prime element. — We show that the
morphisms SpecKp → K× corresponding to the rational points 1 − TT−1 ∈
K×(Kp) for various primes T actually induce the same homomorphism
Gal(Kab/K)→ πk1 (K×) on the fundamental groups. More generally, we prove
the following.

Proposition 2.3. — The homomorphism ηf : Gal(Kab/K) → πk1 (K×) for
f ∈ ΞK is independent of the choice of f .

tome 141 – 2013 – no 1



SOME REMARKS ON THE LCFT OF SERRE AND HAZEWINKEL 7

Thus we may write η instead of ηf . To prove the proposition, we need the
following lemma, which will also be used in the proof of Proposition 3.4 and in
Section 5.

Lemma 2.4. — Let 0→ N → A→ A′ → 0 be an exact sequence of sheaves of
abelian groups on (Perf/k)fpqc with N representable by an affine scheme. Then
the induced map A((pK)p)→ A′((pK)p) is surjective.

Proof. — Taking cohomology, we have a commutative diagram with exact rows

0 −−−−→ N(( OK)p) −−−−→ A(( OK)p) −−−−→ A′(( OK)p) −−−−→ H1
fpqc( OK , N)y y y y

0 −−−−→ N(k) −−−−→ A(k) −−−−→ A′(k) −−−−→ H1
fpqc(k,N),

where Hfpqc denotes the cohomology with respect to the site (Perf/k)fpqc.
We show that the last vertical homomorphism is an isomorphism. Since N

is affine, we can write N = proj limNλ, where each Nλ is an affine algebraic
group scheme over k viewed as a sheaf on (Perf/k)fpqc ([7, III, §3, 7.5, Cor.]).
We have H1

fpqc( OK , N) ∼= proj limH1
fpqc( OK , Nλ). Since any infinitesimal group

becomes zero over (Perf/k)fpqc, we can take Nλ to be smooth. Then we have
H1

fpqc( OK , Nλ) ∼= H1
et( OK , Nλ) ∼= H1

et(k,Nλ) by [10, Chapter III, Theorem 3.9
and Remark 3.11]. Thus H1

fpqc( OK , N) ∼= H1
fpqc(k,N).

On the other hand, the horizontal homomorphisms have natural sections cor-
responding to the Teichmüller section k ↪→ OK . These facts imply the required
surjectivity.

Proof of Proposition 2.3. — By Assertion 2 of Proposition 2.2, it is enough to
show that ηf : Gal(Kab/K) → πk1 (K×) is a zero map for f ∈ UK((pK)p) =

K×((pK)p). Let 0 → N → A → K× → 0 be an exact sequence of sheaves
of abelian groups on (Perf/k)fpqc with N finite constant. Then the morphism
ϕf : SpecKp → K× lifts to a morphism SpecKp → A by Lemma 2.4. This
implies that ηf = 0.

2.4. Reduction to the case of algebraically closed residue fields. — We assume that
Theorem A is true for algebraically closed k and show that Theorem A is true
for general perfect k. By Assertion 4 of Proposition 2.2, the problem is re-
duced to that for the restricted part η : I(Kab/K) → πk1 (UK). For this, it
is enough to see that the Gal(k/k)-coinvariants of Gal((Kur)ab/Kur) (for the
conjugation action) is I(Kab/K) and the Gal(k/k)-coinvariants of πk1 (UK)

is πk1 (UK). The first assertion follows from the fact that the natural sur-
jection Gal(Ksep/K) � Gal(k/k) admits a section ([15, Chapter II, §4.3,
Exercises]). For the second assertion, we use the natural spectral sequence

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



8 T. SUZUKI

Hi(k,Extj
k
(UK ,Q/Z)) ⇒ Exti+jk (UK ,Q/Z). We have Homk(UK ,Q/Z) = 0

by the connectedness of UK . Thus H0(k,Ext1
k
(UK ,Q/Z)) = Ext1

k(UK ,Q/Z).
Hence Gal(k/k)-coinvariants of πk1 (UK) is πk1 (UK). Thus we get the result.

3. First proof of Theorem A

3.1. Proof of the part “η is an isomorphism”. — In this subsection, we assume
that the residue field k is algebraically closed and fix a prime element T
of OK to prove that η : I(Kab/K) = Gal(Kab/K) → πk1 (K×) = πk1 (UK)

is an isomorphism. By Assertion 5 of Proposition 2.2, this homomorphism is
induced by the morphism ϕ0 : SpecKp → UK given by the rational point
−T+T ∈ UK(Kp). Both groups Gal(Kab/K) and πk1 (UK) are profinite abelian
groups. The Pontryagin dual of Gal(Kab/K) is H1(K,Q/Z). The Pontryagin
dual of πk1 (UK) is Ext1

k(UK ,Q/Z). Therefore the problem is equivalent to show-
ing that the dual map η∨ : Ext1

k(UK ,Q/Z)→ H1(K,Q/Z) is an isomorphism.
Since UK

∼= Gm ×U1
K , we have

Ext1
k(UK ,Q/Z) ∼= Ext1

k(Gm,Q/Z)⊕ Ext1
k(U1

K ,Q/Z).

3.1.1. The prime-to-p part. — We show that η∨ : Ext1
k(UK ,Q/Z) →

H1(K,Q/Z) induces an isomorphism on the prime-to-p parts. It is enough to
show that η∨ : Ext1

k(UK , n
−1Z/Z) → H1(K,n−1Z/Z) is an isomorphism for

each integer n prime to p. Since k is algebraically closed, n−1Z/Z is isomorphic
as a Galois module over k to the group µn of the n-th roots of unity. The group
Ext1

k(U1
K , µn) is zero since the n-th power map is an automorphism on U1

K

while µn is killed by n. The group Ext1
k(Gm, µn) is a cyclic group of order

n generated by the extension class 0 → µn → Gm
n→ Gm → 0. The group

H1(K,µn) is a cyclic group of order n generated by the Kummer character
σ 7→ σ((−T )1/n)/(−T )1/n. The morphism ϕ0 : SpecKp → UK followed by the
projection UK � Gm corresponds to the rational point −T . These generators
correspond each other via the homomorphism η∨ : Ext1

k(UK , µn)→ H1(K,µn)

since we have a cartesian diagram

SpecKp((−T )1/n) −−−−→ Gmy yn
SpecKp −−−−→ Gm.

Hence η∨ : Ext1
k(UK , µn)→ H1(K,µn) is an isomorphism for any integer n ≥ 1

prime to p.
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3.1.2. The p-primary part. — We show that the homomorphism on the p-pri-
mary parts η∨ : Ext1

k(UK ,Qp/Zp)→ H1(K,Qp/Zp) is an isomorphism as well.
We need the following lemmas.

Lemma 3.1. — The Artin-Hasse exponential map
∏
p-n≥1W → U1

K sending

a = (an)p-n≥1 ∈
∏
p-n≥1

W with an = (an0, an1, . . . ) ∈W

to ∏
p-n≥1,m≥0

F (anmTnpm

) ∈ U1
K

is an isomorphism of proalgebraic groups. Here we denote by W the additive
group of Witt vectors and set F (t) = exp(−

∑
e≥0 t

pe

/pe) ∈ Zp[[t]].

Proof. — See [14, Chapter V, §3, 16].

Lemma 3.2. — Let f : A → B be a homomorphism between abelian groups A
and B. If both A and B are p-divisible and p-power torsion, and f induces an
isomorphism on the p-torsion parts, then f itself is an isomorphism.

The group Ext1
k(Gm,Qp/Zp) is zero since the p-th power map is an auto-

morphism on Gm as a perfect group scheme while Qp/Zp is a union of p-power
torsion groups. The group Ext1

k(U1
K ,Qp/Zp) = πk1 (U1

K)∨ is p-divisible since
U1
K
∼=
∏
p-n≥1W by Lemma 3.1 and πk1 (W ) is p-torsion-free by [12, §8.5,

Prop. 5]. The group H1(K,Qp/Zp) is p-divisible since the largest pro-p quo-
tient of Gal(Ksep/K) is pro-p free ([15, Chapter II, §2.2, Corollary 1]). Thus,
using Lemma 3.2, we are reduced to showing that η∨ : Ext1

k(U1
K ,Z/pZ) →

H1(K,Z/pZ) is an isomorphism. We have

Ext1
k(U1

K ,Z/pZ) ∼=
⊕
p-n≥1

Ext1
k(W,Z/pZ) ∼=

⊕
p-n≥1

Ext1
k(Ga,Z/pZ) ∼=

⊕
p-n≥1

k.

Here the last isomorphism comes from the isomorphism k
∼→ Ext1

k(Ga,Z/pZ)

sending an element a ∈ k× to the extension class given by

(1) 0 −→ Z/pZ −→ Ga
a−1℘−→ Ga −→ 0,

where ℘(x) = xp − x ([12, §8.3, Prop. 3]). On the other hand, the map defined
by ⊕

p-n≥1

kT−n → H1(K,Z/pZ),

aT−n 7→
(
σ 7→ σ(℘−1(aT−n))− ℘−1(aT−n)

)
BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



10 T. SUZUKI

is an isomorphism by Artin-Schreier theory. To show that

η∨ : Ext1
k(UK ,Z/pZ) ∼=

⊕
p-n≥1

k →
⊕
p-n≥1

kT−n ∼= H1(K,Z/pZ)

is an isomorphism, we need to calculate the following morphism:

SpecKp → U1
K/(U

1
K)p ∼=

∏
p-n≥1

W/pW ∼=
∏
p-n≥1

Ga.

The morphism SpecKp → U1
K/(U

1
K)p corresponds to the Kp-rational point

1 − T−1T of U1
K/(U

1
K)p. The isomorphism

∏
p-n≥1 Ga

∼→ U1
K/(U

1
K)p sends

each element (an)p-n≥1 of the left-hand side to
∏
p-n≥1 F (anT

n) of the right-
hand side.

Proposition 3.3. — 1. The inverse of the isomorphism
∏
p-n≥1 Ga

∼→
U1
K/(U

1
K)p is given by the map

U1
K/(U

1
K)p

dlog→
∏
n≥1

GaT
n dlog T

α→
∏
p-n≥1

Ga,

where α(
∑
n≥1 bnT

n dlog T) = (−bn/n)p-n≥1.
2. The rational point 1 − T−1T corresponds to (1/(nTn))p-n≥1 via the iso-

morphism U1
K/(U

1
K)p(Kp) ∼=

∏
p-n≥1 Ga(Kp).

3. The map SpecKp →
∏
p-n≥1 Ga gives the Kp-rational point (1/(nTn))p-n≥1

of
∏
p-n≥1 Ga.

Proof. — 1. Using the identity dlogF (t) = −
∑
e≥0 t

pe

dlog t, we have

dlog

Ñ ∏
p-n≥1

F (anT
n)

é
= −

∑
e≥0
p-n≥1

(anT
n)p

e

dlog(anT
n)

=
∑
e≥0
p-n≥1

(−n)(anT
n)p

e

dlog T.

Thus the map α ◦ dlog sends
∏
p-n≥1 F (anT

n) to (an)p-n≥1, as desired.

2. A simple calculation shows that (α ◦ dlog)(1− T−1T) = (1/(nTn))p-n≥1.

3. This follows from Assertion 2.

Now we calculate η∨. Let n ≥ 1 be an integer prime to p and a 6= 0 be an
element of k regarded as an element of

⊕
p-n≥1 k by the inclusion k ↪→

⊕
p-n≥1 k
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into the n-th summand. The corresponding extension of Ga is given by (1). We
have a cartesian diagram

SpecKp(℘
−1(a/nTn)) −−−−→ Gay ya−1℘

SpecKp −−−−→ Ga.

Thus η∨ :
⊕

p-n≥1 k →
⊕

p-n≥1 kT
−n preserves the direct factors and the

map on the n-th factor is given by multiplication by 1/n. This shows that
η∨ : Ext1

k(UK ,Z/pZ)→ H1(K,Z/pZ) is an isomorphism.
This completes the proof of Assertion 1 of Theorem A.

3.2. Proof of the part “η−1 = θ”. — In this section, we assume that the residue
field k is a general perfect field of characteristic p > 0 (see Remark 3.5 below for
the point this generality helps for). To prove Assertion 2 of Theorem A, we first
quickly recall the construction of the reciprocity map θ : πk1 (UK)

∼→ I(Kab/K)

of the local class field theory of Serre and Hazewinkel. Let L be a finite totally
ramified Galois extension of K. We can apply the constructions in Section 2.1
to L to get sheaves UL and L× on (Perf/k)fpqc. Let VL/K be the subgroup
of UL generated by elements of the form σ(u)/u for σ ∈ Gal(L/K) and u ∈ UL.
By [7, Appendice, 4.2], we have exact sequences

0→ Gal(L/K)ab → UL/VL/K

NL/K→ U×K → 0,(2)

0→ Gal(L/K)ab → L×/VL/K

NL/K→ K× → 0,(3)

where the second map NL/K is the norm map and the first map sends σ
to σ(πL)/πL for any choice of a prime element πL of OL, with πL defined
as 1 ⊗ πL ∈ k ⊗̂k OL = OL(k) and σ acting on L× as a morphism of sheaves.
To write the isomorphism θ : πk1 (UK)

∼→ I(Kab/K), note that the Pontryagin
dual groups of πk1 (UK), I(Kab/K) are Ext1

k(UK ,Q/Z), H1(I(Kab/K),Q/Z),
respectively. Now the dual map θ∨ : H1(I(Kab/K), G)

∼→ Ext1
k(UK , G) for

a finite abelian group G is given by sending L totally ramified abelian with
Gal(L/K) = G to the extension class (2) ([7, Appendice, 7.1]).

On the other hand, the dual η∨ : Ext1
k(K×, G)

∼→ H1(K,G) of our isomor-
phism η : Gal(Kab/K)

∼→ πk1 (K×) sends the extension class (3) to the G-torsor
on SpecKp given by pulling back (3) by the morphism ϕf : SpecKp → K×,
where f ∈ ΞK . Therefore our claim η−1 = θ is interpreted as the claim that
the G-torsor on SpecKp thus obtained is SpecLp. Hence Assertion 3 of the
following proposition proves Assertion 2 of Theorem A:

Proposition 3.4. — Assume that the residue field k is perfect of character-
istic p > 0. Let L/K be a finite totally ramified Galois extension.
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1. For any f ∈ ΞK and any g ∈ ΞK , the diagram

SpecLp −−−−→
ϕg

L×y yNL/K

SpecKp
ϕf−−−−→ K×

is commutative “up to a (pL)p-rational point”, namely the ratio of
the two elements of K×(Lp) corresponding to the two morphisms
SpecLp ⇒ K× coming from the above possibly non-commutative diagram
is in K×((pL)p) = Ker(K×( OL)p) � K×(k)).

2. For any f ∈ ΞK , there exists g ∈ ΞL such that the above diagram is
indeed commutative.

3. Assume that L/K is abelian. For any f ∈ ΞK and any g ∈ ΞL that makes
the diagram commutative, the induced diagram

SpecLp −−−−→
ϕg

L×/VL/Ky yNL/K

SpecKp
ϕf−−−−→ K×

is cartesian, and is equivariant under the action of Gal(L/K) on the right
vertical arrow coming from the exact sequence (3) and the natural action
of Gal(L/K) on the left vertical arrow.

Proof. — 1. The two elements of K×(Lp) mentioned in Assertion 1 are given
by f and NL/Kg. It is enough to show that f/NL/Kg ∈ K×(( OL)p) since then
we immediately have f/NL/Kg ∈ K×((pL)p) by Condition 2 of Definition 2.1.
The claim f/NL/Kg ∈ K×(( OL)p) is equivalent to the equality (NL/Kg) = (f)

of ideals of the ring K(( OL)p). Let ∆K ⊂ Spec K(( OK)p) be the diagonal
divisor defined by the kernel of the multiplication map

K(( OK)p) = (( OK)p ⊗̂k OK)⊗ OK
K → Kp.

Then we have ∆K = (f) as divisors on Spec K(( OK)p) by Condition 1 of
Definition 2.1. Similarly, for σ ∈ Gal(L/K), let σ(∆L) ⊂ Spec L(( OL)p) be the
σ-twist of the diagonal divisor defined by the kernel of the map

L(( OL)p) = (( OL)p ⊗̂k OL)⊗ OL
L

(1⊗σ)⊗σ−→ Lp.

Then we have p∗∆L = (NL/Kg) as divisors on Spec K(( OL)p), where
p : Spec L(( OL)p) → Spec K(( OL)p) is the natural map. Therefore what
we have to show is the equality p∗∆L = ∆K of divisors on Spec K(( OL)p).
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This equality follows from the equalities

p∗∆L =
∑

σ∈Gal(L/K)

σ(∆L) = ∆K

as divisors on Spec L(( OL)p). This proves Assertion 1.
2. First take g ∈ ΞL to be arbitrary. Then by Assertion 1, we have

f/NL/Kg ∈ K×((pL)p). The homomorphism NL/K : L× → K× and its re-
striction UL → UK are surjective and have the same kernel; see (2) and (3).
Since UL and UK are affine, so is Ker(NL/K). Thus we can choose an element
u ∈ L×((pL)p) so that NL/Ku = f/NL/Kg by Lemma 2.4. Replacing g by ug,
we have NL/Kg = f . This choice of g makes the diagram commutative.

3. Before the proof, note that the field L(Lp) has two different actions
of Gal(L/K). One comes from the action on the sheaf L, which we have already
denoted by h 7→ σ(h), σ ∈ Gal(L/K). The other comes from the action on the
coefficient field Lp, which we denote by h 7→ [σ](h), σ ∈ Gal(L/K).

Now we show the equivariance first. This is the same, in terms of the rational
point g, as the equality [σ](g) = (σ(πL)/πL) · g in (L×/VL/K)(Lp). Below we
use the exponential notation, so the equality to be shown can be written as
g[σ]−1 = πσ−1

L . We have

g[σ]−1 = (g−[σ])σ−1gσ[σ]−1.

By Assertion 3 of Proposition 2.2, the element g−[σ] is a prime element of
the complete discrete valuation ring OL(Lp). Hence (g−[σ])σ−1 = πσ−1

L in
(L×/VL/K)(Lp). Therefore it is enough to show that gσ[σ]−1 ∈ VL/K(Lp).

By Condition 1 of Definition 2.1, the element gσ[σ] generates as an ideal
of L(( OL)p) the kernel of the map

L(( OL)p) = (( OL)p ⊗̂k OL)⊗ OL
L

(σ⊗σ)⊗σ−→ Lp,

which is the same as the kernel of the usual multiplication map L(( OL)p) =

(( OL)p ⊗̂k OL) ⊗ OL
L → Lp. Therefore we have gσ[σ]−1 ∈ L×(( OL)p).

Since g ∈ L×(Lp), we have gσ[σ]−1 ∈ UL(( OL)p). Moreover, we have
gσ[σ]−1 ∈ UL((pL)p) by Condition 2 of Definition 2.1. Furthermore,
we have gσ[σ]−1 ∈ (KerNL/K)((pL)p) since f is K-rational and there-
fore NL/K(gσ[σ]−1) = f [σ]−1 = 1. The exact sequence (2) leads an ex-
act sequence 0 → VL/K → KerNL/K → Gal(L/K)ab → 0, hence
(KerNL/K)((pL)p) = VL/K((pL)p). Thus we have gσ[σ]−1 ∈ VL/K((pL)p).
This proves the equivariance of the diagram.

Finally we show that the diagram is cartesian. The pullback of the exact
sequence (3) by ϕf : SpecKp → K× gives a Gal(L/K)-torsor Z on SpecKp.
The diagram factors through a morphism from SpecLp to Z by universality.
The equivariance just proved says that this is a morphism of Gal(L/K)-torsors
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on SpecKp. Such a morphism is automatically an isomorphism. Therefore Z =

SpecLp and the diagram is cartesian.

Remark 3.5. — In [16, §4], the reciprocity isomorphism θ : I(Kab/K)
∼→

πk1 (UK) of Serre and Hazewinkel was extended to an isomorphism
Gal(Kab/K)

∼→ πk1 (K×). A full discussion about this result was taken
place in [17]. The dual map θ∨ : H1(K,G)

∼→ Ext1
k(K×, G) sends a finite

totally ramified abelian extension L of Galois group G to the extension class
(3). The above proposition also proves the equality η−1 = θ as isomorphisms
between full Gal(Kab/K) and πk1 (K×).

4. Second proof of Theorem A: Lubin-Tate theory

In this section, we assume that the residue field k is finite and give another
proof of Theorem A for finite k using Lubin-Tate theory. Assume k is the
finite field with q elements. We fix a prime element T of OK . This defines a
splitting K× ∼= UK ×Z. By Assertion 5 of Proposition 2.2, the homomorphism
Gal(Kab/K)

η→ K× � UK comes from the morphism ϕ0 : SpecKp → UK

corresponding the rational point −T + T ∈ UK(Kp). We consider the short
exact sequence 0 → UK → UK

F−1→ UK → 0, where F is the q-th power
Frobenius morphism. The isogeny F − 1, called the Lang isogeny, is universal
among isogenies onto UK with (pro-) finite constant kernels ([14, Chap. VI,
§1, Prop. 6]), hence it identifies UK as πk1 (UK).

Proposition 4.1. — There is a cartesian diagram
Spec(Kram

T )p −−−−→ UKy yF−1

SpecKp
ϕ0

−−−−→ UK .

Here Kram
T is the field K adjoining all the Tm-torsion points (where m runs

through the integers ≥ 1) of the Lubin-Tate formal group Ff ([9]) whose equa-
tion of formal multiplication by T is equal to f(X) = TX + Xq. The mor-
phism Spec(Kram

T )p → UK corresponds to the rational point
∑∞
m=0 αm+1T

m,
where αm is a generator of the module of Tm-torsion points of Ff such that
f(αm+1) = αm. The induced isomorphism Gal(Kram

T /K) ∼= UK coincides with
the one given by Lubin-Tate theory.

Proof. — We calculate the geometric fiber of F − 1 over −T + T. Let g =∑
amTm be an element of UK(K). The equation F (g)/g = −T + T is equiv-

alent to the system of equations f(a0) = 0, f(am+1) = am, m ≥ 0. Thus, for
each m ≥ 0, am is a generator of the module of Tm+1-torsion points of Ff . This
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proves the existence of the above cartesian diagram. Next we calculate the ac-
tion of Gal(Kram

T /K) on the fiber of F −1 over −T +T. The Lubin-Tate group
Ff for f(X) = TX+Xq is the formal completion “Ga of the additive group with
formal multiplication of each element

∑
bmT

m of OK being given by the power
series

∑
bmf

◦m(X) ∈ End “Ga, where f◦m is the m-th iteration of f . Hence, if
σ corresponds to u(T ) =

∑
bmT

m via the isomorphism Gal(Kram
T /K) ∼= UK

of Lubin-Tate theory, we have

σ

Ñ∑
m≥0

αm+1T
m

é
=
∑
m≥0

σ(αm+1)Tm =
∑

0≤k≤m<∞

bkαm+1−kT
m

= u(T)
∑
m≥0

αm+1T
m.

Thus the action of σ on the fiber of F−1 over −T+T is given by multiplication
by u(T), as required.

Therefore the map η : Gal(Kab/K) → πk1 (K×) factors through the restric-
tion map Gal(Kab/K) � Gal(Kram

T Kur/K), the isomorphism of Lubin-Tate
theory Gal(Kram

T Kur/K)
∼→ (K×)∧ (the profinite completion of K×) and the

natural isomorphism (K×)∧ ∼= πk1 (K×). Thus the assertion that η is an iso-
morphism is equivalent to the local Kronecker-Weber theorem for Lubin-Tate
extensions: Kab = Kram

T Kur. Since the isomorphism θ of Serre and Hazewinkel
for finite k coincides with the one given by Lubin-Tate theory, the equality
η−1 = θ for such k follows.

Remark 4.2. — This proof also shows that the proof for η being an isomor-
phism given in Section 3.1 gives another proof of the local Kronecker-Weber
theorem for Lubin-Tate extensions in the equal characteristic case.

5. Third proof of Theorem A: geometry

In this section, we give a geometric proof of Theorem A. This method was
suggested by the referee to the author. As in Section 3, we assume the residue
field k is algebraically closed and fix a prime element T of OK . Both the mor-
phism ϕ : SpecKp → K×, which corresponds to the rational point 1− TT−1,
and the morphism ϕ0 : SpecKp → UK , which corresponds to the rational point
−T +T, give the same homomorphism η : Gal(Kab/K)→ πk1 (K×) = πk1 (UK).
We use the same letter to express morphisms and corresponding rational points.
It is enough to study the part η∨ : Ext1

k(UK , N) → H1(K,N) for each finite
constant group N .
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For the proof of Assertion 1 of Theorem A, we need the following result due
to Contou-Carrere ([6]). Let A be a commutative quasi-algebraic group over k.
Then the homomorphism

Hom(UK , A)→ A(Kp)/A(( OK)p)

induced by the morphism ϕ0 : SpecKp → UK is an isomorphism ([6, Théorèm
(1.5)]). If A is a commutative proalgebraic group over k, the homomorphism
Hom(UK , A) → A(Kp)/A(( OK)p) induced by the morphism ϕ0 : SpecKp →
UK is still an isomorphism.

First we show that η∨ : Ext1
k(UK , N) → H1(K,N) is surjective, that is,

every finite abelian extension L of K with Galois group N is obtained by
the pullback of an extension 0 → N → A → UK → 0 by the morphism
ϕ0 : SpecK → UK . Since k is algebraically closed, the abelian extension L/K
is a composite of a Kummer extension of degree prime to p and Artin-Schreier-
Witt extensions. A Kummer extension of K of degree n, p - n, is the pullback
of Gm

n→ Gm by some morphism SpecKp → Gm. An Artin-Schreier-Witt
extension of K of degree pn is the pullback of Wn

℘→ Wn by some morphism
SpecKp → Wn, where Wn is the additive group of Witt vectors of length n,
℘(x) = Fx− x and F is the Frobenius. Combining them, we can find an exact
sequence 0 → N → A′

α→ A′′ → 0 of commutative quasi-algebraic groups and
a cartesian diagram

SpecLp −−−−→
β

A′y α

y
SpecKp

γ−−−−→ A′′.

Since ϕ0 : SpecKp → UK induces an isomorphism Hom(UK , A
′′)

∼→
A′′(Kp)/A

′′(( OK)p) by the result of Contou-Carrere quoted above, we
have γ + ε = ϕ0 ◦ δ for some δ : UK → A′′ and ε ∈ A′′(( OK)p). Since
α : A′ → A′′ is surjective and k is algebraically closed, Lemma 2.4 shows
that α : A′(( OK)p) → A′′(( OK)p) is also surjective. Hence ε = α(ζ) for some
ζ ∈ A′(( OK)p). The above diagram is still commutative and cartesian if we
add ζ to β and ε to γ. The resulting cartesian diagram splits into the following
commutative diagram with cartesian squares:

SpecLp −−−−→ A −−−−→ A′y y α

y
SpecKp

ϕ0

−−−−→ UK
γ−−−−→ A′′

Thus we get the surjectivity of η∨ : Ext1
k(UK , N)→ H1(K,N).
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Next we show that η∨ is injective. Let 0 → N → A
α→ UK → 0 be an

extension whose image in H1(K,N) by η∨ is trivial, i.e. α ◦ β = ϕ0 for some
β ∈ A(Kp). The diagram

Hom(UK , A) A(Kp)/A(( OK)p)yα α

y
Hom(UK ,UK) UK(Kp)/UK(( OK)p)

is commutative. Let γ ∈ Hom(UK , A) correspond β ∈ A(Kp) via the top
horizontal map. Then we have α ◦ γ = id by the equality α ◦ β = ϕ0 and this
diagram. Hence the extension 0 → N → A

α→ UK → 0 is trivial. Thus we get
the injectivity of η∨ : Ext1

k(UK , N)→ H1(K,N).

Finally we show that η−1 = θ. For this, we need generalized Jacobians
([14]). We denote by P1 the projective line over k with coordinate T . For each
effective divisor m on P1 with support Supp(m) ⊂ P1, let JP1,m be the mod-
uli of line bundles on X with level m structure, which is isomorphic to the
direct product of Z and the generalized Jacobian of P1 with modulus m. Let
Φm : P1 − Supp(m) → JP1,m be the Abel-Jacobi map times −1. Since P1 has
trivial Jacobian, JP1,m is an affine algebraic group times Z. The groups JP1,m,
the schemes P1−Supp(m) and the morphisms Φm : P1−Supp(m)→ JP1,m form
projective systems with respect to m. Let JP1 (resp. Φ: Spec k(T ) → JP1) be
the projective limit of the JP1,m (resp. the Φm), the limit being taken over all ef-
fective divisors m on P1. They are naturally regarded as sheaves on (Perf/k)fpqc

and morphisms of sheaves on (Perf/k)fpqc. The inclusion k(T ) ⊂ k((T )) = K

identifies K as the fraction field of the completion of the local ring of P1 at T =

0. This identification gives a natural morphism SpecKp → Spec k(T )p and a
natural homomorphism K× → JP1 . Consider the following (non-commutative)
diagram:

SpecKp −−−−→
ϕ

K×y y
Spec k(T )p

Φ−−−−→ JP1 .

This diagram gives two morphisms SpecKp → JP1 , or equivalently, two Kp-ra-
tional points of JP1 . Under the natural identification JP1 = (

∏
a∈P1(k)−{0}Ua×

K×)/Gm with Ua defined by Ua(R) = R[[T−1 − a−1]]×, the difference
of these two rational points is given by ((1 − TT−1)a∈P1(k)−{0}, 1), which
is in JP1((pK)p). Hence this diagram induces, on fundamental groups, a
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commutative diagram

Gal(Kab/K) −−−−→
η

πk1 (K×)y y
Gal(k(T )ab/k(T )) −−−−→ πk1 (J(P1))

by the same argument as in the proof of Proposition 2.3. The top horizontal
map η is an isomorphism by Assertion 1 of Theorem A. The bottom horizontal
map is an isomorphism as well by [14]. Regarding this diagram, Serre proved
the global version of the equality η−1 = θ and the local-global compatibility
([13, §5.2, Prop. 2 and §5.3, Lem. 2]; actually Serre’s Proposition 2, which says
ψ−1 = θ in his notation, should be corrected as −ψ−1 = θ). This implies the
local equality η−1 = θ.

6. A two-dimensional analog

In this section, we discuss an analog of the above theory for a field of the form
K = k((S))((T )). We denote byK2 the functor of the second algebraicK-group
([1]). For each perfect k-algebra R, we have the abelian group K2(R[[S,T]]).
This gives a group functor that we denote by K2[[S,T]]. The Kp-rational point

{−S + S,−T + T} ∈ K2[[S,T]](Kp) = K2

(
k((S))((T ))p[[S,T]]

)
gives a morphism ϕ0 : SpecKp → K2[[S,T]], where {·, ·} denotes the symbol
map. This is an analog of the map Spec k((T ))p → Uk((T )) we have defined and
studied before this section.

Now assume k is the finite field Fq with q elements. Define a functor X by
the following cartesian diagram:

X −−−−→ K2[[S,T]]y yF−1

SpecKp
ϕ0

−−−−→ K2[[S,T]],

where F is the q-th power Frobenius morphism over k. Then we expect that
K2[[S,T]] can be viewed as a sort of an “algebraic group over k” and the
equation (F − 1)x = {−S + S,−T + T} gives a two-dimensional analog of
Lubin-Tate theory so that X is the Spec of the perfect closure of a large totally
ramified abelian extension of K (compare with Proposition 4.1).

Although this hope is hard to be made precise, we can formulate and prove
a rigorous partial result (Proposition 6.1 below). For each perfect k-algebra R,
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we have the space of 1-forms Ω1
R[[S,T]]/R and the space of 2-forms Ω2

R[[S,T]]/R.
We denote these functors by Ω1

[[S,T]], Ω2
[[S,T]], respectively. We have

Ω1
[[S,T]] =

∏
i,j≥0

GaS
iTjdS×GaS

iTjdT,

Ω2
[[S,T]] =

∏
i,j≥1

GaS
iTj dlog S ∧ dlog T,

where dlog S = dS/S, dlog T = dT/T. Consider the following sequence:

0 −→ K2[[S,T]]/pK2[[S,T]]
dlog−→ Ω2

[[S,T]]
C−1−1−→ Ω2

[[S,T]]/dΩ1
[[S,T]].

Here dlog is the dlog map of algebraic K-theory and C−1 is the inverse Cartier
operator. We do not claim the exactness of this sequence; however, it should
be compared with Bloch-Kato-Gabber’s theorem ([8, Chapter 2, §2.4, Theo-
rem 5]). We study Ker(C−1 − 1) instead of K2[[S,T]]/pK2[[S,T]]. We have a
commutative diagram

X −−−−→ K2[[S,T]] −−−−→
dlog

Ker(C−1 − 1)y yF−1

yF−1

SpecKp
ϕ0

−−−−→ K2[[S,T]]
dlog−−−−→ Ker(C−1 − 1).

We put ϕ1 = dlog ◦ ϕ0.

Proposition 6.1. — 1. There is a cartesian diagram

SpecLp −−−−→ Ker(C−1 − 1)y yF−1

SpecKp
ϕ1

−−−−→ Ker(C−1 − 1).

Here we put L := K[xij | i, j ≥ 1, p - gcd(i, j)]/(xqij − xij − S−iT−j).
2. The ring L is actually a field. The extension L/K is an abelian (infinite)

extension with Galois group isomorphic to the group of k-rational points
of Ker(C−1 − 1) (see (4) below for the structure of this group).

Proof. — 1. First we show that the projection gives an isomorphism

(4) Ker(C−1 − 1)
∼→

∏
i,j≥1, p-gcd(i,j)

GaS
iTj dlog S ∧ dlog T.
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We have Ω2
[[S,T]]/dΩ1

[[S,T]] =
∏
i,j≥1 GaS

piTpj dlog S∧dlog T. The map C−1−1

sends an element
∑
i,j≥1 aijS

iTj dlog S ∧ dlog T of Ω2
[[S,T]] to∑

i,j≥1

(apijS
piTpj − aijSiTj) dlog S ∧ dlog T

=
∑
i,j≥1

(apij − api pj)S
piTpj dlog S ∧ dlog T

∈ Ω2
[[S,T]]/dΩ1

[[S,T]] =
∏
i,j≥1

GaS
piTpj dlog S ∧ dlog T.

Hence
∑
i,j≥1 aijS

iTj dlog S∧dlog T is in Ker(C−1−1) if and only if apij = api pj
for any i, j ≥ 1. This gives the required description of Ker(C−1 − 1).

The map ϕ1 : SpecKp → Ker(C−1 − 1) corresponds to the rational point

dlog{−S + S,−T + T} =
d(−S + S)

−S + S
∧ d(−T + T)

−T + T

=
∑
i,j≥1

S−iT−jSiTj dlog S ∧ dlog T,

which corresponds to
∑
i,j≥1, p-gcd(i,j) S

−iT−jSiTj dlog S∧dlog T via the above
isomorphism. If

∑
i,j≥1, p-gcd(i,j) xijS

iTj dlog S ∧ dlog T lies in the geometric
fiber of F − 1 over this rational point, it must satisfy

(F − 1)
∑

i,j≥1, p-gcd(i,j)

xijS
iTj dlog S ∧ dlog T

=
∑

i,j≥1, p-gcd(i,j)

(xqij − xij)S
iTj dlog S ∧ dlog T

=
∑

i,j≥1, p-gcd(i,j)

S−iT−jSiTj dlog S ∧ dlog T

This proves Assertion 1.
2. By Artin-Schreier theory, we have an isomorphism K/℘q(K)

∼→
Hom(Gal(Ksep/K),Fq) which sends an element f ∈ K/℘qK to the char-
acter σ → (σ − 1)℘−1

q (f), where ℘q(x) = xq − x. Consider the (non-
commutative) Fq-algebra Fq〈Gal(Fq/Fp)〉 with Fq-basis Gal(Fq/Fp) and
relations σa = σ(a)σ for each a ∈ Fq and σ ∈ Gal(Fq/Fp). It naturally acts
on Fq and hence on Hom(Gal(Ksep/K),Fq). The action of the p-th power
Frobenius ∈ Gal(Fq/Fp) corresponds to the p-th power map on K/℘q(K)

via the isomorphism K/℘q(K)
∼→ Hom(Gal(Ksep/K),Fq). By the following

lemma, the proof for L being a field is reduced to showing that the elements
S−iT−j for i, j ≥ 1, p - gcd(i, j) generate a free Fq〈Gal(Fq/Fp)〉-submodule of
K/℘q(K).
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Lemma 6.2. — Let χ1, . . . , χn be n elements of Hom(Gal(Ksep/K),Fq) and
let Ki correspond to Ker(χi) via Galois theory, 1 ≤ i ≤ n. Assume χ1, . . . , χn
generate a free Fq〈Gal(Fq/Fp)〉-submodule of Hom(Gal(Ksep/K),Fq). Then the
fields K1, . . . ,Kn have degree q and are linearly disjoint.

Proof of the lemma. — The natural map Fq〈Gal(Fq/Fp)〉 → EndFp-linear(Fq)
is an Fq-algebra isomorphism since it is injective by the linear independence
of field automorphisms and they have the same dimension over Fq. Let ψ =

(ψ1, . . . , ψn) be an Fp-linear map F⊕nq → Fq which vanishes on the image of⊕
i χi : Gal(Ksep/K)→ F⊕nq . Then

∑
i ψi◦χi = 0. By this and the assumption

on χi, we have ψi = 0 for any i. Hence ψ = 0. This implies the surjectivity of⊕
i χi : Gal(Ksep/K)→ F⊕nq . This proves the lemma.

The additive group K can be written as the direct sum of V :=⊕
i,j≥1 FqS−iT−j and {

∑
max{i,j}≥0 aijS

iT j ∈ K}, both being stable un-
der the action of ℘q. The space V/℘q(V ) injects into K/℘q(K) and has
S−iT−j for i, j ≥ 1, q - gcd(i, j) as an Fq-basis. Hence V/℘q(V ) is a free
Fq〈Gal(Fq/Fp)〉-module with basis S−iT−j for i, j ≥ 1, p - gcd(i, j). This
implies that L is a field.

The latter half of Assertion 2 follows from the cartesian diagram of Assertion
1.

Remark 6.3. — By a similar argument to the proof of Assertion 2, we have

Hom(Gal(Ksep/K),Fq) ∼= K/℘qK

∼= Fq ⊕
⊕
q-i≥1

FqS−i ⊕
⊕
q-j≥1

FqT−j⊕

⊕
i≥1

∏
q-j≥1

FqSiT−j ⊕
⊕
q-i≥1

∏
j≥1

FqSiT−j ⊕
⊕

i,j≥1, q-gcd(i,j)

FqS−iT−j .

The last summand
⊕

FqS−iT−j corresponds to the abelian extension L in the
proposition.

7. D-modules on two-dimensional K

In this section, we give an analog of the result of [2, §2.6] on D-modules,
for a field of the form K = k((S))((T )) with k characteristic zero. This is also
regarded as an analog of what we have done in the previous section.

We formulate our result (Proposition 7.1 below). For a k-algebra R, we define
Ω2

[[S,T]](R) to be the projective limit of the space of 2-forms of R[S,T]/(S,T)n

over R, the limit being taken for n ≥ 0. Let ϕ1 : SpecK → Ω2
[[S,T]] be the

k-morphism corresponding to the rational point dlog{−S + S,−T + T} =
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dlog(−S + S) ∧ dlog(−T + T). We say that a D-module M of O-rank one
on Ω2

[[S,T]] is compatible with the group structure if µ∗M ∼= pr∗1M ⊗ pr∗2M ,
where µ : Ω2

[[S,T]] × Ω2
[[S,T]] → Ω2

[[S,T]] is the addition map and pri is the i-th
projection for each i = 1, 2. Let C be the category of D-modules of O-rank
one on Ω2

[[S,T]] that are compatible with the group structure and let C ′ be the
category of D-modules of O-rank one on SpecK. The categories C and C ′ are
k-linear Picard categories under the tensor operation. The endomorphism ring
of any object of C or C ′ is equal to k. Let Isom( C) (resp. Isom( C ′)) be the
abelian group of isomorphism classes of objects of C (resp. C ′). Since Ω2

[[S,T]]

and SpecK are the Spec’s of unique factorization domains, line bundles on
them can be trivialized. We can associate connection forms to objects of C and
C ′ whose underlying line bundles are trivial. Thus Isom( C) (resp. Isom( C ′))
can identified with a subquotient (as an abelian group) of the space of 1-forms
on the k-scheme Ω2

[[S,T]] (resp. SpecK).

Proposition 7.1. — 1. The pullback by ϕ1 : SpecK → Ω2
[[S,T]] gives a

fully faithful embedding C ↪→ C ′ of k-linear Picard categories.
2. Under the above identification of C ′, we have

Isom( C ′) ∼= (k((T ))/Z) dlogS ⊕ (k((S))/Z) dlog T

⊕ d
(
S−1k[S−1]⊕ T−1k[T−1]

⊕ T−1Sk[[S]][T−1]⊕ T−1S−1k[S−1, T−1]
)
.

3. The image of Isom( C) in Isom( C ′) by the pullback functor by ϕ1 corre-
sponds to the last summand d(T−1S−1k[S−1, T−1]) via the isomorphism
of Assertion 2.

Proof. — 2. The group Isom( C ′) is identified with Ω1,d=0
K/k /dlogK×. A straight-

forward calculation shows that Ω1,d=0
K/k /dlogK× is equal to the right-hand side

of Assertion 2.

3. The group Ω2
[[S,T]] is the product of copies of Ga labeled by n,m ≥ 1

with coordinates znm := SnTm dlog S ∧ dlog T. Hence a connection form of
any object M of C is of the form

∑
n,m≥1 anmdznm for some anm ∈ k that

are uniquely determined by the isomorphism class of M . Therefore Isom( C) ∼=⊕
n,m≥1 kdnm. Since dlog{−S + S,−T + T} =

∑
n,m≥1 S

−nT−mznm,
the pullback of a connection form

∑
n,m≥1 anmdznm with anm ∈ k is∑

n,m≥1 anmd(S−nT−m) = d(
∑
n,m≥1 anmS

−nT−m). Thus we get the re-
sult.
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1. The above proof of Assertion 3 also shows that the homomorphism
Isom( C) → Isom( C ′) induced by the functor C → C ′ is injective. The result
follows from this.
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