Mémoires de la S. M. F.

ELENA STROESCU A dilation theorem for operators on Banach spaces

Mémoires de la S. M. F., tome 31-32 (1972), p. 365-373 http://www.numdam.org/item?id=MSMF_1972_31-32_365_0

© Mémoires de la S. M. F., 1972, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Colloque Anal. fonctionn. [1971, Bordeaux] Bull. Soc. math. France, Mémoire 31-32, 1972, p. 365-373.

A DILATION THEOREM FOR OPERATORS ON BANACH SPACES

Ъy

Elena STROESCU

Introduction. -

Let \mathbb{R}^+ be the set of all non-negative real numbers and $\mathbb{R}(\mathfrak{F})$ the Banach algebra of all linear bounded operators on a Banach space \mathfrak{F} . In this paper, we present a dilation theorem by which an object $\{\mathfrak{F}, \Gamma, U\}$ dilates into $\{\mathfrak{F}, \varphi, P, \tilde{\Gamma}, V\}$; where \mathfrak{F} and $\tilde{\mathfrak{F}}$ are Banach spaces, φ is a bicontinuous isomorphism of \mathfrak{F} into $\tilde{\mathfrak{F}}$, P a continuous projection of $\tilde{\mathfrak{F}}$ onto $\varphi(\mathfrak{F})$, $\Gamma = \{\mathbf{T}_t\}_{t \in \mathbb{R}^+} \subset \mathfrak{K}(\mathfrak{F})$ and $\tilde{\Gamma} = \{\tilde{\mathbf{T}}_t\}_{t \in \mathbb{R}^+} \subset \mathfrak{K}(\tilde{\mathfrak{F}})$ are operator semi-groups, U is a $\mathfrak{K}(\mathfrak{I})$ -valued linear map on an arbitrary algebra \mathfrak{C} estimated by a submultiplicative functional and \mathbb{V} a $\mathfrak{K}(\tilde{\mathfrak{F}})$ -valued representation on \mathfrak{C} such that $V_a \tilde{T}_t = \tilde{T}_t V_a$, for every $a \in \mathfrak{C}$ and $t \in \mathbb{R}^+$. This theorem is an extension of some previous results (see [8], [9]); it has arisen from the concern to characterize restrictions of spectral operators on invariant subspaces (or operators which dilate in spectral operators) by a map replacing the spectral representation.

Notations. -

Throughout the following C denotes the complex plane; N = {0,1,2,...}; **C** an arbitrary algebra over C with unit element denoted by 1; K a submultiplicative functional of C into R⁺ (i.e. $K_{ab} \leq K_a K_b$ for any $a, b \in C$) such that $K_1 = 1$; \mathfrak{X} a Banach space over C; $\mathfrak{K}(\mathfrak{X})$ the Banach algebra of all linear bounded operators on \mathfrak{X} over C; I the identity operator. Let T_1 , $T_2 \in \mathfrak{K}(\mathfrak{X})$ two commuting operators; then one says that T_1 is quasi-nilpotent equivalent with T_2 and denotes $T_1 \sim T_2$, if $\lim_{n \to \infty} ||(T_1 - T_2)^n||^{1/n} = 0$. A family of operators $\{T_t\}_{t \in \mathbb{R}^+} \subset \mathfrak{K}(\mathfrak{X})$ is called semi-group if $T_0 = I$ and $T_{t+s} = T_t T_s$ for any t and $s \in \mathbb{R}^+$.

THEOREM. - Let $\{\mathbf{T}_t\}_{t \in \mathbb{R}^+} \subset \mathcal{B}(\mathfrak{X})$ be a semi-group of operators and $U: \mathfrak{a} \to \mathcal{B}(\mathfrak{X})$ a linear map such that $U_1 = I$, $||U_a|| \leq K_a$, for any $a \in \mathfrak{a}$.

Then, there exists a Banach space \tilde{x} , an isometric isomorphism φ of \tilde{x} into \tilde{x} , a continuous projection P of \tilde{x} onto $\varphi(\tilde{x})$, a semi-group $\tilde{\Gamma} = \{\tilde{\mathbf{T}}_t\}_{t \in \mathbb{R}^+} \subset \mathfrak{g}(\tilde{x})$ and a representation $V : \mathfrak{a} \rightarrow \mathfrak{g}(\tilde{x})$ such that :

(o)
$$\|P\| = 1$$
; $\|\tilde{T}_t\| = \|T_t\|$, for any $t \in R^+$; $V_1 = \tilde{I}$ and $\|V_{\alpha}\| \leq K_{\alpha}$, for any $\alpha \in \mathcal{C}$.

(i)
$$V_{\alpha}\tilde{T}_{\tau} = \tilde{T}_{\tau}V_{\alpha}$$
, for any $\alpha \in \Omega$, $\tau \in \mathbb{R}^+$.

(ii)
$$P\tilde{T}_{\tau} V_{\sigma} \varphi(x) = \varphi(T_{\tau} U_{\sigma} x)$$
, for any $\alpha \in \mathcal{C}$, $\tau \in \mathbb{R}^+$, $x \in \mathfrak{X}$

(iii)
$$\tilde{\mathfrak{F}}$$
 is the closed vector space spanned by $\{\tilde{T}_{\mathfrak{F}} V_{\mathfrak{p}} \varphi(x); \alpha \in \mathfrak{a}, t \in \mathbb{R}^{\mathsf{T}}, x \in \mathfrak{X}\}$.

(iv) Let
$$s \in R^+$$
; then we have the following equivalences :
1° $\tilde{T}_s \phi(x) = \phi(T_s x)$, for any $x \in \mathfrak{X}$;
2° $P\tilde{T}_s V_{\alpha} \phi(x) = \tilde{T}_s P V_{\alpha} \phi(x)$, for any $\alpha \in \alpha$, $x \in \mathfrak{X}$;
3° $U_a T_s = T_s U_a$, for any $a \in \alpha$.

(v) Let
$$b \in \mathcal{C}$$
; then $V_b \varphi(x) = \varphi(U_b x)$, for any $x \in \mathfrak{X}$ is equivalent
with $U_{ab} = U_a U_b$, for any $a \in \mathcal{C}$.

(vi) Let
$$\sigma \in \mathbb{R}^+$$
 and $\beta \in \mathcal{A}$ commuting with all the elements of \mathcal{A} such that $U_{\alpha\beta} = U_{\alpha}U_{\beta}$, $T_{\sigma}U_{\alpha} = U_{\alpha}T_{\sigma}$, for any $a \in \mathcal{A}$; then $\| (\tilde{T}_{\sigma} - V_{\beta})^n \| = \| (T_{\sigma} - U_{\beta})^n \|$, for every $n \in \mathbb{N}$.

<u>Proof</u>: A) Let us consider the Cartesian product $\mathfrak{X}^{R^+ \times \mathbb{C}} = \underset{(t,a) \in R^+ \times \mathbb{C}}{\prod_{\substack{(t,a) \in R^+ \times \mathbb{C}}}} \mathfrak{X}^{(t,a)}$ and the direct sum $\mathfrak{X}^{(R^+ \times \mathbb{C})} = \bigoplus_{\substack{(t,a) \in R^+ \times \mathbb{C}}} \mathfrak{X}^{(t,a)}$, where $\mathfrak{X}^{(t,a)} = \mathfrak{X}$, for $(t,a) \in R^+ \times \mathbb{C}$ is a family $(y_{t,a})_{(t,a)} \in R^+ \times \mathbb{C}$ (many times we write $y = (y_{t,a})_{t,a}$) of components $(y)_{(t,a)} = y_{t,a} \in \mathfrak{X}$, for every $t \in \mathbb{R}^+$, $a \in \mathbb{C}$. If $y \in \mathfrak{X}^{(\mathbb{R}^+ \times \mathbb{C})} \subset \mathfrak{X}^{\mathbb{R}^+ \times \mathbb{C}}$, then $(y)_{t,a} = y_{t,a} \neq 0$ for only a finite number of elements $(t,a) \in \mathbb{R}^+ \times \mathbb{C}$.

Let us consider a map :

defined by

+

It is easy to see that Θ is a well defined linear map. Then, we denote by \hat{x} the range of Θ and by \hat{y} an arbitrary element of \hat{x} .

366

For every $\widehat{\mathbf{y}} \in \widehat{\mathfrak{X}}$, we have :

 $\mathbb{S}^{-1}(\{\hat{\mathbf{y}}\}) = \{\mathbf{y} \in \mathfrak{X}^{(\mathbb{R}^+ \times \mathbb{C})} ; \mathbb{O} | \mathbf{y} = \hat{\mathbf{y}}\}$.

We define a function ω : $\hat{\mathbf{x}} \to \mathbf{R}^+$ by $\omega(\hat{\mathbf{y}}) = \inf_{\mathbf{y} \in \mathfrak{G}^{-1}(\{\hat{\mathbf{y}}\}\})} \sum_{s,b} \|\mathbf{T}_s\| \mathbf{K}_b \| \mathbf{y}_{s,b} \|$, for every $\hat{y} \in \hat{x}$; let us prove that ω is a norm on \hat{x} . Let $\mu \in C$ be non-zero, $\hat{\mathbf{y}} \in \hat{\mathbf{x}}$ and $\Delta(\mu \hat{\mathbf{y}}) = \{\mu \mathbf{y} ; \mathbf{y} \in \mathbb{R}^{-1}(\{\hat{\mathbf{y}}\}) ; \text{ then we show that } \mathbb{R}^{-1}(\{\mu \hat{\mathbf{y}}\}) = \Delta(\mu \hat{\mathbf{y}}).$ Indeed, let $\mu y \in \Delta(\mu \hat{y})$, i.e. $y \in \Theta^{-1}(\{\hat{y}\})$, then $\mu \hat{y} = (\mu T_t \sum_{s,b} T_s U_s)_{s,b}_{s,b}_{s,b}_{t,a} = \Theta \mu y$, hence $\mu y \in \Theta^{-1}(\{\mu \hat{y}\})$. Let now $z \in \Theta^{-1}(\{\mu \hat{y}\})$, i.e. $\Theta z = \mu \hat{y}$ or $\Theta \frac{z}{\mu} = \hat{y}$, hence $\mathbf{y'} = \frac{z}{\mu} \in \Theta\left(\{\hat{\mathbf{y}}\}\right) \text{ and } z = \mu \mathbf{y'} \in \Delta(\mu \hat{\mathbf{y}}) \text{ . Then } \omega(\mu \hat{\mathbf{y}}) = \inf_{z \in \Theta^{-1}(\{u \hat{\mathbf{y}}\})} \Sigma \|\mathbf{T}_{s}\| K_{b} \| z_{s,b} \|$ $= \inf_{z \in \Delta(\mu \hat{y})} \sum_{s,b} \|T_s\| \|K_b\| \|z_{s,b}\| = \inf_{y \in \Theta^{-1}(\{\hat{y}\})} \sum_{s,b} \|T_s\| \|K_b\| \|\mu y_{s,b}\| =$ $= |\mu| \inf_{\substack{\mathbf{y} \in \Theta^{-1}(\{\hat{\mathbf{y}}\}) \\ \text{s.b}}} \Sigma \| \mathbf{T}_{s} \| \mathbf{K}_{b} \| \mathbf{y}_{s,b} \| = |\mu| \omega(\hat{\mathbf{y}}), \text{ i.e. } \omega(\mu \hat{\mathbf{y}}) = |\mu| \omega(\hat{\mathbf{y}});$ whence one deduces also that $\omega(\hat{0})=0$. Then, for $\mu=0$ we have $\omega(0\hat{y})=0$ and $O\omega(\hat{y}) = 0$, for any $\hat{y} \in \hat{x}$. Hence $\omega(\mu \hat{y}) = |\mu|\omega(\hat{y})$, for any $\hat{y} \in \hat{x}$, $\mu \in \mathbb{C}$. Let \hat{y}^1 , $\hat{y}^2 \in \hat{x}$ and $h(\hat{\mathbf{y}}^{1} + \hat{\mathbf{y}}^{2}) = \{ \mathbf{y}^{1} + \mathbf{y}^{2} : \mathbf{y}^{1} \in \Theta^{-1}(\{\hat{\mathbf{y}}^{1}\}), \mathbf{y}^{2} \in \Theta^{-1}(\{\hat{\mathbf{y}}^{2}\}) \}.$ then obviously we have $\Delta(\hat{y}^1 + \hat{y}^2) \subset \Theta^{-1}(\{\hat{y}^1 + \hat{y}^2\})$ and $\omega(\hat{\mathbf{y}}^{1}+\hat{\mathbf{y}}^{2}) = \inf_{z \in \Theta^{-1}(\hat{\mathbf{y}}^{1}+\hat{\mathbf{y}}^{2})} \sum_{s,b} \|\mathbf{T}_{s}\| \mathbf{K}_{b} \| \mathbf{z}_{s,b} \| \leq$ $\leq \inf_{\substack{\mathbf{z} \in \Lambda(\hat{\mathbf{y}}^{1} + \hat{\mathbf{y}}^{2}) \\ \mathbf{z} \in \Lambda(\hat{\mathbf{y}}^{1} + \hat{\mathbf{y}}^{2}) }} \sum_{s,b} \| \mathbf{T}_{s} \| \mathbf{K}_{b} \| \mathbf{z}_{s,b} \|$ $\begin{array}{l} = \inf_{y^1 \in \Theta^{-1}(\{\hat{y}^1\}), y^2 \in \Theta^{-1}(\{\hat{y}^2\})} & \sum_{s,b} \|\mathbf{T}_s\| \mathbf{K}_b\| \mathbf{y}_{s,b}^1 + \mathbf{y}_{s,b}^2 \| \leq \\ \end{array}$ $\leq \inf_{\substack{\mathbf{y}^{1} \in \Theta^{-1}(\{\hat{\mathbf{y}}^{1}\}) \\ \mathbf{y}^{1} \in \Theta^{-1}(\{\hat{\mathbf{y}}^{1}\}) }} \sum_{\mathbf{s},\mathbf{b}} \|\mathbf{T}_{\mathbf{s}}\| \mathbf{K}_{\mathbf{b}} \| \mathbf{y}_{\mathbf{s},\mathbf{b}}^{1} \| + \inf_{\substack{\mathbf{y}^{2} \in \Theta^{-1}(\{\hat{\mathbf{y}}^{2}\}) \\ \mathbf{y}^{2} \in \Theta^{-1}(\{\hat{\mathbf{y}}^{2}\}) }} \sum_{\mathbf{s},\mathbf{b}} \|\mathbf{T}_{\mathbf{s}}\| \mathbf{K}_{\mathbf{b}} \| \mathbf{y}_{\mathbf{s},\mathbf{b}}^{2} \|$ i.e. $(\hat{\mathbf{y}}^1 + \hat{\mathbf{y}}^2) \leq \omega(\hat{\mathbf{y}}^1) + \omega(\hat{\mathbf{y}}^2)$, for all $\hat{\mathbf{y}}^1$, $\hat{\mathbf{y}}^2 \in \hat{\mathbf{x}}$. Then, from the definition of ω , for every $\hat{y}\in\hat{\mathfrak{X}}$, we have :

1)
$$\omega(\hat{y}) \leq \sum_{s,b} \|T_s\| K_b \|y_{s,b}$$
, for any $y \in \Theta^{-1}(\{\hat{y}\})$ and

2)
$$\|\hat{y}_{t,a}\| \leq \|T_t\| K_a \omega(\hat{y})$$
, for $t \in \mathbb{R}^+$, $a \in \mathcal{C}$.

Hence ω is a norm on $\hat{\mathfrak{X}}$; we denote by $\tilde{\mathfrak{X}}$ the ω -completion of \mathfrak{X} and the norm on $\tilde{\mathfrak{X}}$ also by ω .

B) We define an isomorphism φ of \mathfrak{t} into $\mathfrak{X}^{R^+ \times \mathfrak{A}}$ by $\varphi(\mathbf{x}) = (\mathbb{T}_t \mathbb{U}_a \mathbf{x})_{t,a} = (\mathbb{T}_t \overset{\Sigma}{=} \mathbb{T}_s \mathbb{U}_{ab} \delta_{os} \delta_{lb} \mathbf{x})_{t,a} \in \hat{\mathfrak{X}}$, for every $\mathbf{x} \in \mathfrak{X}$.

Applying 1) and 2) we get

3)
$$||x|| \leq \omega(\varphi(x)) \leq ||x||$$
, for any $x \in \mathfrak{X}$.

Therefore φ is an isometric isomorphism of $\mathfrak X$ into $\widetilde{\mathfrak X}$.

We define a projection P of $\hat{\mathfrak{X}}$ onto $\varphi(\mathfrak{X})$, by $P\hat{\mathfrak{y}} = \varphi(\hat{\mathfrak{y}}_{0,1})$, for every $\hat{\mathfrak{y}} \in \hat{\mathfrak{X}}$. Applying 3) and 2), we get $\omega(P\hat{\mathfrak{y}}) = \omega(\varphi(\hat{\mathfrak{y}}_{0,1})) \leq ||\hat{\mathfrak{y}}_{0,1}|| \leq \omega(\hat{\mathfrak{y}})$, i.e.

4) $\omega(P\hat{y}) \leq \omega(\hat{y})$, for any $\hat{y} \in \hat{x}$. Hence, P can be extended by continuity to a continuous projection of \tilde{x} onto $\varphi(\tilde{x})$, that will be denoted by the same symbol.

Let now $\tau \in R^+$; then for every $\hat{y} \in \hat{x}$ we put

$$\begin{split} \tilde{\mathbf{T}}_{\tau} \, \hat{\mathbf{y}} &= (\mathbf{T}_{t} \quad \sum_{\mathbf{s},\mathbf{b}} \mathbf{T}_{\mathbf{s}+\tau} \, \mathbf{U}_{\mathbf{a}\mathbf{b}} \, \mathbf{y}_{\mathbf{s},\mathbf{b}})_{t,\mathbf{a}}^{\cdot} = (\mathbf{T}_{t} \quad \sum_{\sigma,\mathbf{b}} \mathbf{T}_{\sigma} \, \mathbf{U}_{\mathbf{a}\mathbf{b}} \, \mathbf{y}_{\sigma-\tau,\mathbf{b}})_{t,\mathbf{a}} = \\ &= (\mathbf{T}_{t} \quad \sum_{\sigma,\mathbf{b}} \mathbf{T}_{\sigma} \, \mathbf{U}_{\mathbf{a}\mathbf{b}} \, \boldsymbol{\xi}_{\sigma,\mathbf{b}})_{t,\mathbf{a}}^{\cdot} = \boldsymbol{\Theta}_{z} = \boldsymbol{\hat{\boldsymbol{\xi}}} \in \boldsymbol{\hat{\boldsymbol{x}}} , \end{split}$$

where we denote $s + \tau = \sigma$; $z_{\sigma,b} = y_{\sigma-\tau,b}$ for $\sigma \ge \tau$ and $z_{\sigma,b} = 0$, for $0 \le \sigma < \tau$, with $b \in a$.

For every $\hat{\mathbf{y}} \in \hat{\mathbf{x}}$, denoting $\Delta(\tau, \hat{\mathbf{y}}) = \{ \mathbf{\dot{z}} \in \mathbf{x}^{(\mathbb{R}^+ \times \mathfrak{a})} ; \mathbf{\dot{t}}_{\sigma,b} = \mathbf{y}_{\sigma-\tau,b}$ for $\sigma \ge \tau$ and $\mathbf{\dot{z}}_{\sigma,b} = 0$ for $0 \le \sigma < \tau$, $b \in \mathfrak{a}$, $\mathbf{y} \in \Theta^{-1}(\{\hat{\mathbf{y}}\})\}$, we see that $\Delta(\tau, \hat{\mathbf{y}}) \subset \Theta^{-1}(\{\tilde{\mathbf{T}}_{\tau}, \hat{\mathbf{y}}\})$. Then, we have $\omega(\tilde{\mathbf{T}}_{\tau}, \hat{\mathbf{y}}) = \inf_{\mathbf{z} \in \Theta^{-1}(\{\tilde{\mathbf{T}}_{\tau}, \hat{\mathbf{y}}\})} \sum_{\sigma,b} \|\mathbf{x}_{b}\| \mathbf{\dot{z}}_{\sigma,b}\| \le \mathbf{z}_{\sigma,b}$

$$\begin{split} \inf & \sum_{\boldsymbol{\mathfrak{T}}_{\sigma}} \| \boldsymbol{\mathfrak{T}}_{\sigma} \| \boldsymbol{\mathfrak{K}}_{b} \| \boldsymbol{\mathfrak{Z}}_{\sigma,b} \| &= \inf \sum_{\boldsymbol{\mathfrak{T}}_{\sigma} | \boldsymbol{\mathfrak{T}}_{\sigma} \| \boldsymbol{\mathfrak{T}}_{\sigma} \| \boldsymbol{\mathfrak{K}}_{b} \| \boldsymbol{y}_{\sigma-\tau,b} \| \\ \boldsymbol{\mathfrak{T}}_{\varepsilon} \in \mathbb{C}^{1}(\{\tilde{\boldsymbol{\mathfrak{T}}}_{\tau} \hat{\boldsymbol{\mathfrak{y}}}\}) \quad \sigma, b &= \inf \sum_{\boldsymbol{y} \in \Theta^{-1}(\{\hat{\boldsymbol{\mathfrak{y}}}\}) \quad s, b} \| \boldsymbol{\mathfrak{T}}_{s+\tau} \| \boldsymbol{\mathfrak{K}}_{b} \| \boldsymbol{y}_{s,b} \| \leq \| \boldsymbol{\mathfrak{T}}_{\tau} \| \boldsymbol{\omega}(\hat{\boldsymbol{\mathfrak{y}}}), \text{ i.e.} \end{split}$$

5)
$$\omega(\tilde{\mathbf{T}}_{\tau} \, \hat{\mathbf{y}}) \leq ||\mathbf{T}_{\tau}|| \, \omega(\hat{\mathbf{y}})$$
, for any $\hat{\mathbf{y}} \in \hat{\mathbf{x}}$

Thus, for every $\tau \in \mathbb{R}^+$, $\tilde{\mathbb{T}}_{\tau}$ can be extended by continuity to an element of $\mathfrak{B}(\mathfrak{X})$, that will be denoted by the same symbol. Then, we see easily that $P\tilde{\mathbb{T}}_{\tau} \phi(x) = \phi(\mathbb{T}_{\tau} x)$, for any $x \in \mathfrak{X}$.

Hence $\|\mathbf{T}_{\tau} \mathbf{x}\| = \omega(\phi(\mathbf{T}_{\tau} \mathbf{x})) = \omega(P\tilde{\mathbf{T}}_{\tau} \phi(\mathbf{x})) \leq \omega(\tilde{\mathbf{T}}_{\tau} \phi(\mathbf{x})) \leq \|\tilde{\mathbf{T}}_{\tau}\| \omega(\phi(\mathbf{x})) = \|\tilde{\mathbf{T}}_{\tau}\| \|\mathbf{x}\|$, i.e.

6) $\|\mathbb{T}_{\tau} x\| \leq \|\tilde{\mathbb{T}}_{\tau}\| \|x\|$, for any $x \in \mathfrak{X}$. At last, we see easily that $\{\tilde{\mathbb{T}}_{\tau}\}_{\tau \in \mathbb{R}}^+$ is a semi-group of operators, that we denote by $\tilde{\Gamma}$.

C) Let us define a representation V . Let $\alpha\in \mathcal{C}$; then for every $\widehat{y}\in\widehat{\mathfrak{X}}$, we put

$$V_{\alpha} \hat{y} = (T_{t} \sum_{s,b} T_{s} U_{a\alpha b} y_{s,b})_{t,a} = (T_{t} \sum_{s,c} T_{s} U_{ac} \sum_{b \in \mathcal{A}_{c}} y_{s,b})_{t,a} =$$

$$= (T_{t} \sum_{s,c} T_{s} U_{ac} u_{s,c})_{t,a} = \Theta u = \hat{u} \in \hat{x} , \text{ where}$$

$$a_{c} = \{b \in a; ab = c\} \text{ and } u_{s,c} = \sum_{t \in \mathcal{A}_{c}} y_{s,b} , \text{ for } s \in \mathbb{R}^{+}, c \in a.$$

The map $V_{\alpha} : \hat{\mathfrak{X}} \to \hat{\mathfrak{X}}$ is well defined. Indeed, let $\hat{y}^{1} = \hat{y}^{2} \in \hat{\mathfrak{X}}$; then there exists y^{1} , $y^{2} \in \mathfrak{X}^{(\mathbb{R}^{+} \times \mathbb{Q})}$ such that $\hat{y}^{1} = \Theta y^{1}$ and $\hat{y}^{2} = \Theta y^{2}$, hence $T_{t} \overset{\Sigma}{\underset{s,b}{}} T_{s} U_{ab} y^{1}_{s,b} = T_{t} \overset{\Sigma}{\underset{s,b}{}} T_{s} U_{ab} y^{2}_{s,b}$, for any $t \in \mathbb{R}^{+}$, $a \in \mathbb{Q}$.

Then, $T_t \underset{s,b}{\Sigma} T_s U_{a'b} y_{s,b}^1 = T_t \underset{s,b}{\Sigma} T_s U_{a'b} y_{s,b}^2$, for $t \in \mathbb{R}^+$ and $a' = a \alpha \in \mathcal{A}$ with $a \in \mathcal{A}$. We see easily that for every $\alpha \in \mathcal{A}$, $V_{\alpha} : \hat{x} \to \hat{x}$ is a linear map and $V_1 \hat{y} = \hat{y}$, for any $\hat{y} \in \hat{x}$. Moreover, $V : \mathcal{A} \to \mathcal{L}(\hat{x})$ is a representation (see [4]; for a vector space X, $\mathcal{L}(X)$ denotes the algebra of all linear maps of X into X). Now, we prove that, $V_{\alpha} : \hat{x} \to \hat{x}$ is continuous, for every $\alpha \in \mathcal{A}$. Let $\alpha \in \mathcal{A}$, $\hat{y} \in \hat{x}$ and $\Delta(\alpha, \hat{y}) = \{u \in \hat{x}^{(\mathbb{R}^+ \times \mathcal{A})}; u_{s,c} = \sum_{b \in \mathcal{A}_c} y_{s,b}, y \in \Theta^{-1}(\{\hat{y}\})\}$, then we see $\Delta(\alpha, \hat{y}) \subset \Theta^{-1}(\{V_{\alpha}, \hat{y}\})$. Therefore, we have :

$$\begin{split} & \omega(\mathbb{V}_{\alpha} \ \hat{\mathbf{y}}) = \inf_{\substack{\mathbf{u} \in \Theta^{-1}(\{\mathbb{V}_{\alpha} \hat{\mathbf{y}}\}) \quad \mathbf{s}, \mathbf{c}}} \mathbb{I}_{\mathbf{s}} \| \mathbf{K}_{\mathbf{b}} \| \mathbf{u}_{\mathbf{s}, \mathbf{c}} \| \leq \\ & \leq \inf_{\substack{\mathbf{u} \in \Delta(\alpha, \hat{\mathbf{y}}) \quad \mathbf{s}, \mathbf{c}}} \| \mathbf{T}_{\mathbf{s}} \| \mathbf{K}_{\mathbf{c}} \| \mathbf{u}_{\mathbf{s}, \mathbf{c}} \| = \inf_{\substack{\mathbf{y} \in \Theta^{-1}(\{\hat{\mathbf{y}}\}) \quad \mathbf{s}, \mathbf{c}}} \mathbb{I}_{\mathbf{s}} \| \mathbf{K}_{\mathbf{c}} \| \sum_{\substack{\mathbf{b} \in \mathcal{A}_{\mathbf{c}}}} \mathbf{y}_{\mathbf{s}, \mathbf{b}} \| \leq \\ & \leq \inf_{\substack{\mathbf{v} \in \Theta^{-1}(\{\hat{\mathbf{y}}\}) \quad \mathbf{s}, \mathbf{b}}} \mathbb{E} \| \mathbf{T}_{\mathbf{s}} \| \mathbf{K}_{\alpha \mathbf{b}} \| \mathbf{y}_{\mathbf{s}, \mathbf{b}} \| \leq K_{\alpha} \quad \inf_{\substack{\mathbf{y} \in \Theta^{-1}(\{\hat{\mathbf{y}}\}) \quad \mathbf{s}, \mathbf{b}}} \mathbb{E} \| \mathbf{T}_{\mathbf{s}} \| \mathbf{K}_{\mathbf{b}} \| \mathbf{y}_{\mathbf{s}, \mathbf{b}} \| = K_{\alpha} \omega(\hat{\mathbf{y}}); \end{split}$$

i.e. for every $\alpha \in \mathcal{A}$ we get

7) $\omega(\mathbb{V}_{\alpha}|\hat{\mathbf{y}}) \leq \mathbb{K}_{\alpha} \omega(\hat{\mathbf{y}})$, for any $\hat{\mathbf{y}} \in \hat{\mathbf{x}}$. Hence, \mathbb{V}_{α} can be extended by continuity to an element of $\mathfrak{g}(\tilde{\mathbf{x}})$ that will be denoted by \mathbb{V}_{α} , for every $\alpha \in \mathfrak{a}$.

Thus, (0) is completely proved. The property (i) is immediate, since for every $\alpha \in \alpha$ and $\tau \in \mathbb{R}^+$, we have $\tilde{T}_{\tau} V_{\alpha} \hat{y} = (T_t \sum_{s,b} T_{s+\tau} U_{a\alpha b} y_{s,b})_{t,a} = V_{\alpha} \tilde{T}_{\tau} \hat{y}$, for any $\hat{y} \in \hat{x}$. Using the definitions of φ , P, V_a and \tilde{T}_{τ} , for $\alpha \in \alpha, \tau \in \mathbb{R}^+$, we obtain immediately (ii), (iii) and (v).

D) Let us prove (iv). From $\tilde{T}_{s} \phi(x) = (T_{t} T_{s} U_{a} x)_{t,a}$ and $\phi(T_{s} x) = (T_{t} U_{a} T_{s} x)_{t,a}$, we see that 1° and 3° are equivalent.

Now chosing $\alpha = 1$ in 2°, and using $P\tilde{T}_{\tau} \phi(x) = \phi(T_{\tau} x)$ for $\tau \in R^+$, $x \in \mathfrak{X}$ (see (ii)), we get 1°.

Conversely, taking into account of (ii) and writting 1° with $U_{\alpha} \times ins-$ tead of x, for $\alpha \in a$, we get 2°.

At last, we show (vi). Let $\sigma \in \mathbb{R}^+$, and $\beta \in \mathcal{Q}$, as in the assumption, also let $n \in \mathbb{N}$ and $\widehat{y} \in \widehat{x}$; then, we write :

$$(\tilde{\mathbf{T}}_{\sigma} - \mathbf{v}_{\beta})^{n} \hat{\mathbf{y}} = \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} \tilde{\mathbf{T}}_{\sigma}^{k} \mathbf{v}_{\beta}^{n-k} \hat{\mathbf{y}} =$$

$$= \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} (\mathbf{T}_{t} \sum_{s,b} \mathbf{T}_{s} \mathbf{U}_{ab} \mathbf{T}_{\sigma}^{k} \mathbf{U}_{\beta}^{n-k} \mathbf{y}_{s,b})_{t,a} = \Theta \mathbf{v} = \hat{\mathbf{v}} \in \hat{\mathbf{x}}$$

where v is defined by

$$\mathbf{v}_{s,b} = \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} \mathbf{T}_{\sigma}^{k} \mathbf{U}_{\beta}^{n-k} \mathbf{y}_{s,b} , \text{ for } \mathbf{y} \in \mathbb{Q}^{-1}(\{\hat{\mathbf{y}}\}) , s \in \mathbb{R}^{+} , \text{ and}$$

b€û .

Denoting by $\Delta(\sigma,\,\beta,\,n,\,\hat{y})$ = the set of all element $\,v\,$ so defined, we see that :

$$\Delta (\sigma, \beta, n, \hat{y}) \subset \Theta^{-1} (\{ \tilde{T}_{\sigma} - V_{\beta} \}^{n} \hat{y} \}).$$

Then, we have :

$$\begin{split} & \omega(\left(\tilde{\mathbf{T}}_{\sigma} - \mathbf{V}_{\beta}\right)^{n} \ \hat{\mathbf{y}}) = \inf_{\substack{\mathbf{v} \in \Theta^{-1}\left(\left\{\tilde{\mathbf{T}}_{\sigma} - \mathbf{V}_{\beta}\right)^{n} \cdot \hat{\mathbf{y}}\right\}\right) \\ \mathbf{v} \in \Theta^{-1}\left(\left\{\tilde{\mathbf{T}}_{\sigma} - \mathbf{V}_{\beta}\right)^{n} \cdot \hat{\mathbf{y}}\right\}\right) \\ & \leq \inf_{\substack{\mathbf{v} \in \Delta(\sigma, \beta, n, \hat{\mathbf{y}}) \\ \mathbf{v} \in \Delta(\sigma, \beta, n, \hat{\mathbf{y}}) \\ \mathbf{y} \in \Theta^{-1}\left(\left\{\tilde{\mathbf{y}}\right\}\right) \\ \mathbf{s}, \mathbf{b} \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{K}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{K}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{K}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{s}} \| \mathbf{x}_{\mathbf{b}} \| \\ \mathbf{x} = 0 \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{T}_{\mathbf{$$

 $= \left\| \begin{smallmatrix} n \\ \Sigma \\ k=0 \end{smallmatrix} \right|^{n-k} \begin{pmatrix} n \\ k \end{smallmatrix}) \left\| \begin{smallmatrix} n \\ \sigma \end{bmatrix}_{\sigma}^{k} \bigcup_{\beta}^{n-k} \left\| \begin{smallmatrix} \omega(\hat{y}) \end{smallmatrix} \right\| \text{ Therefore, for every } n \in \mathbb{N} \text{ ,}$

we have $\omega((\tilde{T}_{\sigma} - V_{\beta})^{n} \hat{y}) \leq || (\tilde{T}_{\sigma} - U_{\beta})^{n} || \omega(\hat{y})$, for any $\hat{y} \in \hat{x}$; hence $|| (\tilde{T}_{\sigma} - V_{\beta})^{n} || \leq || (T_{\sigma} - U_{\beta})^{n} ||$. Conversely, since $(\tilde{T}_{\sigma} - V_{\beta})^{n} \phi(x) = \phi((T_{\sigma} - U_{\beta})^{n} x)$, for any $x \in \mathfrak{X}$, we get easily $|| (\tilde{T}_{\sigma} - V_{\beta})^{n} || \leq || (T_{\sigma} - U_{\beta})^{n} ||$.

DEFINITION. - Let { \mathfrak{X} , Γ , U} be an object, where \mathfrak{X} is a Banach space, $\Gamma = \{T_t\}_{t \in \mathbb{R}^+} \subset \mathfrak{G}(\mathfrak{X})$ a semi-group of operators and $U: \mathcal{A} \rightarrow \mathfrak{G}(\mathfrak{X})$ a linear map as in the above theorem. Then, an object { $\tilde{\mathfrak{X}}$, φ , P, $\tilde{\Gamma}$, V} where $\tilde{\mathfrak{X}}$ is a Banach space, φ a bicontinuous isomorphism of \mathfrak{X} into $\tilde{\mathfrak{X}}$, P a continuous projection of $\tilde{\mathfrak{X}}$ onto $\varphi(\mathfrak{X})$, $\tilde{\Gamma} = \{\tilde{T}_t\}_{t \in \mathbb{R}^+} \subset \mathfrak{G}(\tilde{\mathfrak{X}})$ a semi-group of operators and $V: \mathcal{A} \rightarrow \mathfrak{G}(\tilde{\mathfrak{X}})$ a representation such that $V_1 = \tilde{I}$, $V_{\alpha} \tilde{T}_{\tau} = \tilde{T}_{\tau} V_{\alpha}$, for any $\alpha \in \mathcal{A}$, $\tau \in \mathbb{R}^+$, is called an \mathcal{A} -spectral dilation of { \mathfrak{X} , Γ , U} if the property (ii) is satisfyed. An \mathcal{A} -spectral dilation is called minimal if also we have (iii).

<u>Remark 1</u>. - When \mathcal{C} is a Michael algebra and $U : \mathcal{C} \to \mathcal{B}(\mathfrak{X})$ a linear continuous map, then K is the seminorm which estimates U.

<u>Remark 2.</u> - Let $T \in B(\mathfrak{X})$; then the above theorem is obviously true with $\{T^n\}_{n \in \mathbb{N}}$ instead of $\{T_t\}_{t \in \mathbb{R}^+}$.

Application. - Let \mathcal{U} be an admissible algebra in the sense of [1]. Then, an operator $\mathbf{T} \in \mathcal{B}(\mathfrak{X})$ is called \mathcal{U} -subspectral (see [9]) if there is a Banach space containing \mathfrak{X} as a closed subspace, a continuous projection P of \mathfrak{X} onto \mathfrak{X} , a \mathcal{U} -spectral operator $\mathbf{T} \in \mathcal{B}(\mathfrak{X})$ having a \mathcal{U} -spectral representation $\mathbf{V} : \mathcal{Q} \to \mathcal{B}(\mathfrak{X})$ with the properties $\mathbf{V}_{\mathbf{Z}} \mathfrak{I} \subset \mathfrak{X}$ and $\tilde{\mathrm{PTV}}_{\mathbf{f}} \mathbf{x} = \tilde{\mathrm{TPV}}_{\mathbf{f}} \mathbf{x}$, for any $\mathbf{f} \in \mathcal{U}$, $\mathbf{x} \in \mathfrak{X}$, such that $\mathbf{T}|_{\mathfrak{X}} = \mathbf{T}$.

We have the following characterization for \mathcal{U} -subspectral operators : an operator $T \in \mathfrak{g}(\mathfrak{X})$ is \mathcal{U} -subspectral if and only if there is a linear map $U : \mathcal{U} \rightarrow \mathfrak{g}(\mathfrak{X})$ with the properties :

- (1) $U_{1} = I$,
- (2) $U_{f_z} = U_f U_z$,
- (3) $\|U_{\mathbf{r}}\| \leq M L_{\mathbf{r}}$ for any $f \in \mathcal{U}$,

(where M is a positive constant and $L: \mathcal{U} \rightarrow \mathcal{B}(\mathcal{Y})$, a linear map satisfying

(j) $\|L_{f\sigma}\| \leq \|L_{f}\| \|L_{\sigma}\|$, for any f, $g \in \mathcal{U}$ and the function

(jj) $\xi \neq L_{f\xi}$ is analytic in $\int supp f$, for every $f \in \mathcal{U}$;

 \mathcal{Y} is a Banach space), such that $TU_f = U_f T$, for any $f \in \mathcal{U}$ and $U_z \sim T$, (see [8] and [9]).

If \mathcal{U} is an admissible topologic algebra with the topology of Michael algebra, then the property (3) of U is replaced by its continuity.

For instance, let $\forall = \{z \in C \ |z| = 1\}$; one denotes by $L^p(\gamma)(p < \infty)$ the Banach space of the all complex-valued functions f on γ such that $|f|^p$ is integrable with respect to the Lebesgue measure. (Thus a function $f \in L^p(\gamma)$ if and only if the function \tilde{f} defined by $\tilde{f}(\theta) = f(e^{i\theta})$ for $\theta \in [-\pi, +\pi]$ belongs to $L^p(\frac{1}{2\pi} - d\theta))$.

In the same way one considers the Banach algebra $L^{\infty}(\gamma)$ of all complexvalued essential bounded functions with respect to the Lebesgue measure on γ , (i.e. a function $f \in L^{\infty}(\gamma)$ if and only if the function \tilde{f} defined by $\tilde{f}(\theta) = f(e^{i\theta})$ belongs to $L^{\infty}(\frac{1}{2\pi} d\theta))$.

Let $p \ge 1$, as usual, the space H^p is the set of analytic functions in $D = \{z \ ; \ |z| < 1\}$ such that f_r defined by $f_r(\theta) = f(re^{i\theta})$, for $\theta \in [-\pi, +\pi]$, belongs to $L^p(\frac{1}{2\pi} d\theta)$ for every $0 \le r \le 1$, or with the other words, H^p is a closed subspace of functions f of $L^p(\gamma)$ such that $\int_{-\pi}^{+\pi} e^{in\theta} f(e^{i\theta}) = d\theta = 0$, $n = 1, 2, 3, \dots$

Taking $\mathfrak{X} = L^p(Y)$ and $\mathcal{U} = L^{\infty}(Y)$, we define a representation $V : \mathcal{U} \to \mathfrak{G}(\mathfrak{X})$ by :

 $V_{\!\phi}$ f = ϕ f , for every $\phi \, \in \, L^{\infty}(Y)$, $f \in \, L^{p}(Y)$.

From the theorem of M. Riesz ([3], cap. IX) we have $L^p(\gamma) = H^p \oplus \overline{H}^p_{O}$, l \infty, where \overline{H}^p_{O} is the space of complex-conjugate functions of H^p becoming zero at z = 0. Let P be the continuous projection of $L^p(\gamma)$ onto H^p . We define the continuous linear map U : $L^{\infty}(\gamma) \rightarrow \mathfrak{g}(H^p)$ by :

 $U_{_{\!C\!N}} \ f$ = P $V_{_{\!C\!N}} \ f$, for every $\phi \in L^{^{\infty}}(\gamma)$, $f \in H^{^{\rm D}}$.

Obviously, U is a continuous linear map with the above properties (1) and (2). Then an operator $T \in \mathfrak{g}(H^p)$ such that $U_{\varphi} T = T U_{\varphi}$, for $\varphi \in L^{\infty}(\gamma)$ and $T \sim U_{e^{i\theta}}$ is a $L^{\infty}(\gamma)$ -subspectral operator. For p = 2, $V_{e^{i\theta}}$ is the bilateral shift and $U_{e^{i\theta}}$ is the unilateral shift (see [2]).

BIBLIOGRAPHIE

- COLOJOARA (I.) and FOIAS (C.). Theory of generalized spectral operators. Gordon and Breach Sci. Publ. New-York, (1969).
- [2] HALMOS (P. R.). A Hilbert space problem book. D. Van Nostrand Company, Inc., Princeton, (1967).
- HOFFMAN (K.). Banach spaces of analytic functions. Prentice-Hall, Inc., Englewood Cliffs, (1962).
- [4] IONESCU TULCEA (C.). Scalar dilations and scalar extensions of operators on Banach spaces (I). J. Math. Mech., 14 (1965), 841-865.
- [5] IONESCU TULCEA (C.) et PLAFKER (S.). Dilatations et extensions scalaires sur les espaces de Banach. C. R. Acad. Sci. Paris, 265 (1967), 734-735.
- [6] NAGY (B. Sz.). Appendix to "Leçons d'Analyse Fonctionnelle" by F. Riesz and B. Sz Nagy, Paris, (1965), 439-473.
- [7] STINESPRING (W. F.). Positive functions on C^{*}-algebras. Proc. Amer. Math. Soc. 6, (1955), 211-216.
- [8] STROESCU (E.). U-scalar dilations and U-scalar extensions of operators on Banach spaces. Rev. Roum. Math. Pures et Appl., XIV, N° 4 (1969), 567-572.
- [9] STROESCU (E.). Q-spectral dilations for operators on Banach spaces. (to appear in Journal of Math. Anal. and Appl.).

Academia R.S. Romania Institutul de Matematicà Calea Grivitei 21 BUCURESTI 12 (Roumanie)