Elena Stroescu

A dilation theorem for operators on Banach spaces

Mémoires de la S. M. F., tome 31-32 (1972), p. 365-373
http://www.numdam.org/item?id=MSMF_1972__31-32__365_0
© Mémoires de la S. M. F., 1972, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F.» (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Colloque Anal. fonctionn. [1971, Bordeaux]
Bull. Soc. math. France,
Mémoire 31-32, 1972, р. 365-373.
A DILArION THEOREM FOR OPERATORS ON BANACH SPACES
by

Elena STROESCU

Introduction. -

Let R^{+}be the set of all non-negative real numbers and $\mathbb{B}(x)$ the Banach algebra of all linear bounded operators on a Banach space \mathfrak{X}. In this paper, we present a dilation theorem by which an object $\{\boldsymbol{F}, \Gamma, U\}$ dilates into $\left\{\mathscr{I}^{\boldsymbol{I}}, \varphi, \mathrm{P}, \tilde{\Gamma}, \mathrm{V}\right\}$; where \tilde{X} and \tilde{x} are Banach spaces, φ is a bicontinuous isomorphism of \mathfrak{F} into $\tilde{X}, ~ P \quad$ a continuous projection of \tilde{X} onto $\varphi(\boldsymbol{F})$, $\Gamma=\left\{T_{t}\right\}_{t \in R^{+}} \subset \mathbb{B}(\mathscr{X})$ and $\tilde{\Gamma}=\left\{\tilde{T}_{t}\right\}_{t \in R^{+}} \subset \mathfrak{B}(\tilde{X})$ are operator semi-groups, U is a $\mathbb{B}(X)$-valued linear map on an arbitrary algebra a estimated by a submultiplicative functional and V a $\mathbb{B}(\tilde{X})$-valued representation on a such that $V_{a} \tilde{T}_{t}=\tilde{T}_{t} V_{a}$, for every $a \in a$ and $t \in R^{+}$. This theorem is an extension of some previous results (see [8] , [9]) ; it has arisen from the concern to characterize restrictions of spectral operators on invariant subspaces (or operators which dilate in spectral operators) by a map replacing the spectral representation.

Notations. -

Throughout the following C denotes the complex plane ; $N=\{0,1,2, \ldots\}$; a an arbitrary algebra over C with unit element denoted by $l ; K$ a submultiplicative functional of a into R^{+}(i.e. $K_{a b} \leqslant K_{a} K_{b}$ for any $a, b \in a$) such that $K_{1}=1 ; X$ a Banach space over $C ; \mathcal{F}(X)$ the Banach algebra of all linear bounded operators on $¥$ over C; I the identity operator. Let T_{1}, $T_{2} \in \mathbb{B}(\mathfrak{X})$ two commuting operators ; then one says that T_{1} is quasi-nilpotent equivalent with T_{2} and denotes $T_{1} \sim T_{2}$, if $\lim _{n \rightarrow \infty}\left\|\left(T_{1}-T_{2}\right)^{n}\right\| l / n=0$. A family of operators $\left\{T_{t}\right\}{ }_{t \in R^{+}} \subset \mathcal{B}(X)$ is called semi-group if $T_{0}=I$ and $T_{t+s}=T_{t} T_{s}$ for any t and $s \in R^{+}$.
 a linear map such that $U_{1}=I,\left\|U_{a}\right\| \leqslant K_{a}$, for any $a \in a$.

Then, there exists a Banach space $\tilde{\mathscr{X}}$, an isometric isomorphism φ of \mathfrak{X} into \tilde{X}, a continuous projection P of \tilde{X} onto $\varphi(X)$, a semi-group $\tilde{\Gamma}=\left\{\tilde{\mathbf{T}}_{\mathrm{t}}\right\}_{\mathrm{t}} \in \mathrm{R}^{+} \subset \mathfrak{B}(\tilde{X})$ and a representation $\mathrm{V}: \mathbb{Q} \rightarrow \mathbb{B}(\tilde{X})$ such that :
(o) $\quad\|P\|=1 ;\left\|\tilde{T}_{t}\right\|=\left\|T_{t}\right\|$, for any $t \in R^{+} ; V_{1}=\tilde{I} \quad$ and $\left\|v_{\alpha}\right\| \leqslant K_{\alpha}$, for any $\alpha \in a$.
(i) $\quad V_{\alpha} \tilde{T}_{\tau}=\tilde{T}_{\tau} V_{\alpha}$, for any $\alpha \in a, \tau \in R^{+}$.
(ii) $P \tilde{T}_{\tau} V_{\alpha} \varphi(x) \doteq \varphi\left(T_{\tau} U_{\alpha} x\right)$, for any $\alpha \in a, \tau \in R^{+}, x \in X$.
(iii) $\tilde{\mathfrak{X}}$ is the closed vector space spanned by $\left\{\tilde{T}_{t} V_{\alpha}(x) ; \alpha \in a, t \in R^{+}, x \in \mathfrak{X}\right\}$.
(iv) Let $s \in R^{+}$; then we have the following equivalences :

$$
\begin{aligned}
& 1^{0} \quad \tilde{T}_{s} \varphi(x)=\varphi\left(T_{s} x\right), \text { for any } x \in X ; \\
& 2^{\circ} \quad \tilde{P}_{s} V_{\alpha} \varphi(x)=\tilde{T}_{S} P V_{\alpha} \varphi(x) \text {, for any } \alpha \in Q, x \in \mathcal{X} ; \\
& 3^{\circ} \quad U_{a} T_{s}=T_{s} U_{a}, \text { for any } a \in Q .
\end{aligned}
$$

(v) Let $b \in a$; then $v_{b} \varphi(x)=\varphi\left(U_{b} x\right)$, for any $x \in X$ is equivalent with $U_{a b}=U_{a} U_{b}$, for any $a \in a$.
(vi) Let $\sigma \in R^{+}$and $\beta \in Q$ commuting with all the elements of a such that $U_{a \beta}=U_{a} U_{\beta}, T_{\sigma} U_{a}=U_{a} T_{\sigma}$, for any $a \in a$; then $\left\|\left(\tilde{T}_{\sigma}-V_{\beta}\right)^{n}\right\|=$ $\left\|\left(T_{\sigma}-U_{\beta}\right)^{n}\right\|$, for every $n \in \mathbb{N}$.

Proof : A) Let us consider the Cartesian product $x^{R^{+} \times a}=\prod_{(t, a) \in R^{+} \times a} x^{(t, a)}$ and the direct sum $X^{\left(R^{+} \times a\right)}=\underset{(t, a) \in R^{+} \times a}{\oplus} \mathfrak{X}^{(t, a)}$, where $X^{(t, a)}=\mathfrak{X}$, for every $t \in R^{+}, a \in a$. An element $y \in x^{R^{+} \times a}$ is a family $\left(y_{t, a}\right)(t, a) \in R^{+} \times a$ (many times we write $\left.y=\left(y_{t, a}\right)_{t, a}\right)$ of components $(y)_{(t, a)}=y_{t, a} \in X$, for every $t \in R^{+}, a \in a$. If $y \in x^{\left(R^{+} \times a\right)} \subset x^{R^{+} \times a}$, then $(y)_{t, a}=y_{t, a} \neq 0$ for only a finite number of elements $(t, a) \in R^{+} \times a$.

Let us consider a map :

$$
\Theta=\left(\Theta^{t, a}\right){ }_{(t, a) \in R^{+} \times a} \text { of } x^{\left(R^{+} \times a\right)} \text { into } x^{R^{+} \times a}
$$

defined by

$$
\text { @ } y=\left(T_{t} \underset{s, b}{\Sigma} T_{s} U_{a b} y_{s, b}\right)_{t, a} \text {, for every } y \in X^{\left(R^{+} \times a\right)} \text {. }
$$

It is easy to see that Θ is a well defined linear map. Then, we denote by \hat{x} the range of Θ and by $\hat{\mathbf{y}}$ an arbitrary element of $\hat{\mathfrak{x}}$.

For every $\hat{\mathrm{y}} \in \hat{X}$, we have :

$$
\Theta^{-1}(\{\hat{y}\})=\left\{y \in \mathbb{X}^{\left(R^{+} \times a\right)} ; \quad \Theta y=\hat{y}\right\}
$$

 for every $\hat{y} \in \hat{X}$; let us prove that ω is a norm on \hat{x}. Let $\mu \in C$ be non-zero, $\hat{\mathrm{y}} \in \hat{X}$ and $\Delta(\mu \hat{y})=\left\{\mu \mathrm{y} ; \mathrm{y} \in \Theta^{-1}(\{\hat{\mathrm{y}}\})\right.$; then we show that $\Theta^{-1}(\{\mu \hat{\mathrm{y}}\})=\Delta(\mu \hat{\mathrm{y}})$. Indeed, let $\mu y \in \Delta(\mu \hat{y})$, i.e. $y \in \Theta^{-1}(\{\hat{y}\})$, then $\mu \hat{y}=\left(\mu T_{t} \sum_{s, b} T_{s} U_{a b} y_{s, b}\right)_{t, a}=\Theta \mu y$, hence $\mu y \in \Theta^{-1}(\{\mu \hat{y}\})$. Let now $z \in \Theta^{-1}(\{\mu \hat{y}\})$, i.e. $\Theta z=\mu \hat{y}$ or $\Theta \frac{z}{\mu}=\hat{y}$, hence $y^{\prime}=\frac{z}{\mu} \in \Theta(\{\hat{y}\})$ and $z=\mu y^{\prime} \in \Delta(\mu \hat{y})$. Then $\omega(\mu \hat{y})=\inf _{z \in \Theta^{-1}(\{\mu \hat{y}\})} \sum\left\|T_{S}\right\| K_{b}\left\|z_{s, b}\right\|$ $=\inf _{z \in \Delta(\mu \hat{y})} \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|z_{s, b}\right\|=\inf _{y \in \Theta^{-1}(\{\hat{y}\})} \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|\mu y_{s, b}\right\|=$ $=|\mu| \inf _{y \in \Theta^{-1}(\{\hat{y}\})}^{\sum} \underset{s, b}{\sum}\left\|T_{S}\right\| K_{b}\left\|y_{s, b}\right\|=|\mu| \omega(\hat{y})$, i.e. $\quad \omega(\mu \hat{y})=|\mu| \omega(\hat{y})$; whence one deduces also that $\omega(\hat{O})=0$. Then, for $\mu=0$ we have $\omega(0 \hat{y})=0$ and $O \omega(\hat{y})=0$, for any $\hat{y} \in \hat{X}$. Hence $\omega(\mu \hat{y})=|\mu| \omega(\hat{y})$, for any $\hat{y} \in \hat{X}, \mu \in C$. Let $\hat{\mathrm{y}}^{1}, \hat{\mathrm{y}}^{2} \in \hat{\mathrm{x}}$ and

$$
\Delta\left(\hat{\mathrm{y}}^{1}+\hat{\mathrm{y}}^{2}\right)=\left\{\mathrm{y}^{1}+\mathrm{y}^{2} ; \mathrm{y}^{1} \in \Theta^{-1}\left(\left\{\hat{\mathrm{y}}^{1}\right\}\right), \mathrm{y}^{2} \in \Theta^{-1}\left(\left\{\hat{\mathrm{y}}^{2}\right\}\right)\right\}
$$

then obviously we have $\Delta\left(\hat{\mathrm{y}}^{1}+\hat{\mathrm{y}}^{2}\right) \subset \Theta^{-1}\left(\left\{\hat{\mathrm{y}}^{l}+\hat{\mathrm{y}}^{2}\right\}\right)$ and

$$
\begin{aligned}
& \omega\left(\hat{\mathrm{y}}^{1}+\hat{\mathrm{y}}^{2}\right)=\inf _{\mathrm{z} \in \Theta^{-1}\left(\hat{\mathrm{y}}^{1}+\hat{\mathrm{y}}^{2}\right)} \quad \sum_{\mathrm{s}, \mathrm{~b}}\left\|\mathrm{~T}_{\mathrm{s}}\right\| \mathrm{K}_{\mathrm{b}}\left\|\mathrm{z}_{\mathrm{s}, \mathrm{~b}}\right\| \leqslant \\
& \leqslant \inf _{z \in \Delta\left(\hat{y}^{I}+\hat{y}^{2}\right)} \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|z_{s, b}\right\| \\
& =\operatorname{linf}_{y^{1} \in \Theta^{-1}\left(\left\{\hat{y}^{1}\right\}\right), y^{2} \in \Theta^{-1}\left(\left\{\hat{\mathrm{y}}^{2}\right\}\right) \quad \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|y_{s, b}^{1}+y_{s, b}^{2}\right\| \leqslant} \| \\
& \leqslant \inf _{y^{1} \in \Theta \Theta^{-1}\left(\left\{\hat{\mathrm{y}}^{1}\right\}\right)} \quad \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|y_{s, b}^{1}\right\|+\inf _{y^{2} \in \Theta}{ }^{-1}\left(\left\{\hat{\mathrm{y}}^{2}\right\}\right) \underset{s, b}{\sum}\left\|T_{s}\right\| K_{b}\left\|y_{s, b}^{2}\right\|
\end{aligned}
$$

i.e. $\quad\left(\hat{y}^{1}+\hat{y}^{2}\right) \leqslant \omega\left(\hat{y}^{l}\right)+\omega\left(\hat{y}^{2}\right)$, for all $\hat{y}^{1}, \hat{y}^{2} \in \hat{X}$.

$$
\text { Then, from the definition of } \omega \text {, for every } \hat{y} \in \hat{X} \text {, we have : }
$$

1) $\omega(\hat{y}) \leqslant \underset{s, b}{\leqslant}\left\|T_{s}\right\| K_{b} \| y_{s, b}$, for any $y \in \Theta^{-1}(\{\hat{y}\})$ and
2) $\quad\left\|\hat{y}_{t, a}\right\| \leqslant\left\|T_{t}\right\| K_{a} \omega(\hat{y})$, for $t \in R^{+}$, $a \in a$.

Hence ω is a norm on \hat{X}; we denote by \tilde{X} the ω-completion of \mathfrak{X} and the norm on \tilde{X} also by ω.
B) We define an isomorphism φ of t into $x^{R^{+} \times Q}$ by $\varphi(x)=\left(T_{t} U_{a} x\right)_{t, a}=$ $=\left(T_{t} \underset{s, b}{\sum} T_{s} U_{a b} \delta_{o s} \delta_{l b} x\right)_{t, a} \in \hat{X}$, for every $x \in X$.

Applying 1) and 2) we get
3) $\|x\| \leqslant \omega(\varphi(x)) \leqslant\|x\|$, for any $x \in \mathfrak{X}$.

Therefore φ is an isometric isomorphism of \mathscr{X} into \tilde{X}.
We define a projection P of \hat{X} onto $\varphi(\mathcal{X})$, by $P \hat{y}=\varphi\left(\hat{y}_{0,1}\right)$, for every $\hat{y} \in \hat{X}$. Applying 3) and 2), we get $\omega(P \hat{y})=\omega\left(\varphi\left(\hat{y}_{o, 1}\right)\right) \leqslant\left\|\hat{y}_{0,1}\right\| \leqslant \omega(\hat{y})$, i.e.
4) $\omega(P \hat{y}) \leqslant \omega(\hat{y})$, for any $\hat{y} \in \hat{X}$. Hence, P can be extended by continuity to a continuous projection of $\tilde{\mathfrak{X}}$ onto $\varphi(\mathbb{X})$, that will be denoted by the same symbol.

Let now $\tau \in R^{+}$; then for every $\hat{y} \in \hat{X}$ we put

$$
\begin{aligned}
\tilde{T}_{\tau} \hat{\mathrm{y}} & =\left(\mathrm{T}_{\mathrm{t}} \underset{\mathrm{s,b}}{\sum} \mathrm{~T}_{\mathrm{s}+\tau} \mathrm{U}_{\mathrm{ab}} \mathrm{y}_{\mathrm{s}, \mathrm{~b}}\right)_{\mathrm{t}, \mathrm{a}}=\left(\mathrm{T}_{\mathrm{t}} \sum_{\sigma, b}^{\sum} \mathrm{T}_{\sigma} U_{a b} \mathrm{y}_{\sigma-\tau, b}\right)_{t, a}= \\
& =\left(\mathrm{T}_{\mathrm{t}} \underset{\sigma, b}{\sum} \mathrm{~T}_{\sigma} U_{a b} Z_{\sigma, b}\right)_{t, a}^{\prime}=\Theta_{z}=\hat{z} \in \hat{X}
\end{aligned}
$$

where we denote $s+\tau=\sigma ; z_{\sigma, b}=y_{\sigma-\tau, b}$ for $\sigma \geqslant \tau$ and $Z_{\sigma, b}=0$, for $0 \leqslant \sigma<\tau$, with $b \in a$.

We see easily that $\tilde{\mathbb{T}}_{\tau}$ is a well defined linear map of \hat{X} into $\hat{\mathfrak{X}}$. Let us prove that also it is continuous.

For every $\hat{\mathrm{y}} \in \hat{\mathfrak{X}}$, denoting $\Delta(\tau, \hat{\mathrm{y}})=\left\{\mathcal{Z} \in \mathfrak{X}^{\left(\mathrm{R}^{+} \times a\right)} ; \mathcal{Z}_{\sigma, b}=\mathrm{y}_{\sigma-\tau, \mathrm{b}}\right.$ for $\sigma \geqslant \tau$ and $\mathcal{Z}_{\sigma, b}=0$ for $\left.0 \leqslant \sigma<\tau, \mathrm{b} \in \mathrm{a}, \mathrm{y} \in \Theta^{-1}(\{\hat{\mathrm{y}}\})\right\}$, we see that $\Delta(\tau, \hat{\mathrm{y}}) \subset \Theta^{-1}\left(\left\{\tilde{\mathrm{~T}}_{\tau} \hat{\mathrm{y}}\right\}\right)$. Then, we have $\omega\left(\tilde{T}_{\tau} \hat{\mathrm{y}}\right)=\inf _{\mathcal{Z} \in \Theta^{-1}\left(\left\{\tilde{T}_{\tau} \hat{y}\right\}\right)} \sum_{\sigma, b}\left\|T_{\sigma}\right\| K_{b}\left\|\boldsymbol{q}_{\sigma, b}\right\| \leqslant$ $\inf _{\mathcal{Z} \in \Delta(\tau, \hat{y})} \quad \sum_{\sigma, b}\left\|T_{\sigma}\right\| K_{b}\left\|\mathcal{F}_{\sigma, b}\right\|=\inf _{\mathcal{F} \in \Theta^{-1}\left(\left\{\tilde{T}_{\tau} \hat{y}\right\}\right)} \sum_{\sigma, b}\left\|T_{\sigma}\right\| K_{b}\left\|y_{\sigma-\tau, b}\right\|$ $=\inf _{y \in \Theta^{-1}(\{\hat{y}\})} \sum_{s, b}\left\|T_{s+\tau}\right\| K_{b}\left\|y_{s, b}\right\| \leqslant\left\|T_{\tau}\right\| \omega(\hat{y})$, i.e.
5) $\quad \omega\left(\tilde{T}_{\tau} \hat{y}\right) \leqslant\left\|T_{\tau}\right\| \omega(\hat{y})$, for any $\hat{y} \in \hat{X}$.

Thus, for every $\tau \in \mathrm{R}^{+}, \tilde{T}_{\tau}$ can be extended by continuity to an element of $\mathcal{B}(\mathfrak{X})$, that will be denoted by the same symbol. Then, we see easily that $P \tilde{T}_{\tau} \varphi(x)=\varphi\left(T_{\tau} x\right)$, for any $x \in \mathscr{X}$.

Hence $\left\|T_{\tau} x\right\|=\omega\left(\varphi\left(T_{\tau} x\right)\right)=\omega\left(P \tilde{T}_{\tau} \varphi(x)\right) \leqslant \omega\left(\tilde{T}_{\tau} \varphi(x)\right) \leqslant\left\|\tilde{T}_{\tau}\right\| \omega(\varphi(x))=\left\|\tilde{T}_{\tau}\right\|\|x\|$, i.e.
6) $\quad\left\|T_{\tau} x\right\| \leqslant\left\|\tilde{T}_{\tau}\right\|\|x\|$, for any $x \in X$. At last, we see easily that $\left\{\tilde{T}_{\tau}\right\}_{\tau \in R^{+}}$is a semi-group of operators, that we denote by $\tilde{\Gamma}$.
C) Let us define a representation V. Let $\alpha \in a$; then for every $\hat{y} \in \hat{X}$, we put

$$
\begin{aligned}
& V_{\alpha} \hat{y}=\left(T_{t} \sum_{s, b} T_{s} U_{a \alpha b} y_{s, b}\right)_{t, a}=\left(T_{t} \sum_{s, c} T_{s} U_{a c} \sum_{b \in a_{c}} y_{s, b}\right)_{t, a}= \\
&=\left(T_{t} \sum_{s, c} T_{s} U_{a c} u_{s, c}\right)_{t, a}=\Theta u=\hat{u} \in \hat{X} \text {, where } \\
& a_{c}=\{b \in a ; \alpha b=c\} \text { and } u_{s, c}=\sum_{t \in a_{c}}^{\sum} y_{s, b} \text {, for } s \in R^{+}, c \in a .
\end{aligned}
$$

The map $\mathrm{V}_{\alpha}: \hat{X} \rightarrow \hat{X}$ is well defined. Indeed, let $\hat{\mathrm{y}}^{1}=\hat{\mathrm{y}}^{2} \in \hat{X}$; then there exists $y^{1}, y^{2} \in x^{\left(R^{+} \times a\right)}$ such that $\hat{y}^{1}=\Theta y^{1}$ and $\hat{y}^{2}=\Theta y^{2}$, hence

$$
T_{t} \sum_{s, b} T_{s} U_{a b} y_{s, b}^{1}=T_{t}^{1} \sum_{s, b} T_{s} U_{a b} y_{s, b}^{2} \text {, for any } t \in R^{+} \text {, } a \in a \text {. }
$$

Then, $T_{t} \underset{s, b}{ } T_{s} U_{a \prime b} y_{s, b}^{1}=T_{t} \sum_{s, b} T_{s} U_{a^{\prime} b} y_{s, b}^{2}$, for $t \in R^{+}$and $a^{\prime}=a \alpha \in a$ with $a \in Q$. We see easily that for every $\alpha \in Q, v_{\alpha}: \hat{X} \rightarrow \hat{X} \quad$ is a linear map and $V_{1} \hat{y}=\hat{y}$, for any $\hat{y} \in \hat{X}$. Moreover, $v: a \rightarrow \mathcal{L}(\hat{X})$ is a representation (see [4]; for a vector space $X, \mathcal{X}(X)$ denotes the algebra of all linear maps of X into X). Now, we prove that, $v_{\alpha}: \hat{\mathfrak{X}} \rightarrow \hat{\mathfrak{X}}$ is continuous, for every $\alpha \in a$. Let $\alpha \in a$, $\hat{\mathrm{y}} \in \hat{X}$ and $\Delta(\alpha, \hat{\mathrm{y}})=\left\{u \in \mathfrak{X}^{\left(\mathrm{R}^{+} \times a\right)} ; u_{s, c}=\sum_{b \in a_{c}} \mathrm{y}_{\mathrm{s}, \mathrm{b}}, \mathrm{y} \in \Theta^{-1}(\{\hat{\mathrm{y}}\})\right\}$, then we see $\Delta(\alpha, \hat{y}) \subset \Theta^{-1}\left(\left\{V_{\alpha} \hat{y}\right\}\right)$. Therefore, we have :

$$
\begin{aligned}
& \omega\left(V_{\alpha} \hat{y}\right)=\inf _{u \in \Theta^{-1}\left(\left\{V_{\alpha} \hat{y}\right\}\right)} \sum_{s, c}\left\|T_{s}\right\| K_{b}\left\|u_{s, c}\right\| \leqslant \\
& \inf _{u \in \Delta(\alpha, \hat{y})} \quad \sum_{s, c}\left\|T_{s}\right\| K_{c}\left\|u_{s, c}\right\|=\inf _{y \in \Theta^{-1}(\{\hat{y}\})} \quad \sum_{s, c}\left\|T_{s}\right\| K_{c}\left\|\sum_{b \in a_{c}} y_{s, b}\right\| \leqslant \\
& \inf _{y \in \Theta} \inf ^{-1}(\{\hat{y}\}) \quad \sum_{s, b}\left\|T_{s}\right\| K_{\alpha b}\left\|y_{s, b}\right\| \leqslant K_{\alpha} \inf _{y \in \Theta^{-1}(\{\hat{y}\})} \quad \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|y_{s, b}\right\|=K_{\alpha} \omega(\hat{y}) ;
\end{aligned}
$$

i.e. for every $\alpha \in Q$ we get
7) $\quad \omega\left(V_{\alpha} \hat{y}\right) \leqslant K_{\alpha} \omega(\hat{y})$, for any $\hat{y} \in \hat{x}$. Hence, V_{α} can be extended by continuity to an element of $\mathbb{B}(\tilde{X})$ that will be denoted by V_{α}, for every $\alpha \in a$.

Thus, (0) is completely proved. The property (i) is immediate, since for every $\alpha \in a$ and $\tau \in R^{+}$, we have $\tilde{T}_{\tau} V_{\alpha} \hat{y}=\left(T_{t} \sum_{s, b} T_{s+\tau} U_{a \alpha b} y_{s, b}\right)_{t, a}=$ $=V_{\alpha} \tilde{T}_{\tau} \hat{y}$, for any $\hat{y} \in \hat{X}$. Using the definitions of φ, P, V_{α} and \tilde{T}_{τ}, for $\alpha \in \mathbb{Q}, \tau \in \mathrm{R}^{+}$, we obtain immediately (ii), (iii) and (v).
D) Let us prove (iv). From $\tilde{T}_{s} \varphi(x)=\left(T_{t} T_{s} U_{a} x\right)_{t, a}$ and $\varphi\left(T_{s} x\right)=\left(T_{t} U_{a} T_{s} x\right)_{t, a}$, we see that 1° and 3° are equivalent. Now chosing $\alpha=1$ in 2°, and using $P \tilde{T}_{\tau} \varphi(x)=\varphi\left(T_{\tau} x\right)$ for $\tau \in R^{+}$, $x \in X$ (see (ii)), we get 1°.

Conversely, taking into account of (ii) and writting 1° with $U_{\alpha} x$ instead of x, for $\alpha \in a$, we get 2°.

At last, we show (vi). Let $\sigma \in R^{+}$, and $\beta \in Q$, as in the assumption, also let $n \in \mathbb{N}$ and $\hat{y} \in \widehat{x}$; then, we write :

$$
\begin{aligned}
& \left(\tilde{T}_{\sigma}-V_{\beta}\right)^{n} \hat{y}=\sum_{k=0}^{n}(-1)^{n-k} \quad(k) \tilde{T}_{\sigma}^{k} V_{\beta}^{n-k} \hat{y}= \\
= & \sum_{k=0}^{n}(-1)^{n-k}(k)\left(T_{t}^{n} \sum_{s, b}^{\sum} T_{s} U_{a b} T_{\sigma}^{k} U_{\beta}^{n-k} y_{s, b}\right)_{t, a}=\Theta v=\hat{v} \in \hat{X} \quad,
\end{aligned}
$$

where v is defined by

$$
\left.v_{s, b}=\sum_{k=0}^{n}(-1)^{n-k} \stackrel{n}{k}\right)_{n}^{T_{\sigma}^{k}} U_{\beta}^{n-k} y_{s, b} \text {, for } y \in \dot{\Theta}^{-1}(\{\hat{y}\}) \text {, } s \in R^{+} \text {, and }
$$

$b \in a$.
Denoting by $\Delta(\sigma, \beta, \mathrm{n}, \hat{\mathrm{y}})=$ the set of all element v so defined, we see that :

$$
\left.\Delta(\sigma, \beta, n, \hat{y}) \subset \Theta^{-1}\left(\left\{\tilde{T}_{\sigma}-V_{\beta}\right)^{n} \hat{y}\right\}\right)
$$

Then, we have :

$$
\begin{aligned}
& \omega\left(\left(\tilde{T}_{\sigma}-V_{\beta}\right)^{n} \hat{y}\right)=\inf _{\left.v \in \Theta^{-1}\left(\left\{\tilde{T}_{\sigma}-V_{\beta}\right)^{n} \cdot \hat{y}\right\}\right)} \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|v_{s, b}\right\| \leqslant \\
& \inf _{v \in \Delta(\sigma, \beta, n, \hat{y})}^{\sum} \quad \underset{s, b}{ }\left\|T_{s}\right\| K_{b}\left\|v_{s, b}\right\|= \\
& =\inf _{y \in \Theta^{-1}(\{\hat{y}\})} \quad \sum_{s, b}\left\|T_{s}\right\| K_{b}\left\|\sum_{k=0}^{n}(-1)^{n-k} \stackrel{n}{(k)} T^{k} U_{\beta}^{n-k} y_{s, b}\right\| \leqslant \\
& \leqslant\left\|\sum_{k=0}(-1)^{n-k} \stackrel{n}{(k)} T_{\sigma}^{k} U_{\beta}^{n-k}\right\| \underset{y \in \Theta^{-1}(\{\hat{y}\})}{\inf _{s, b}} \sum_{s}\left\|T_{b}\right\| K_{b, b}\left\|y_{s}\right\|=
\end{aligned}
$$

$$
=\quad \prod_{k=0}^{n}(-1)^{n-k} \stackrel{n}{(k)} \quad T_{\sigma}^{k} U_{\beta}^{n-k} \| \quad \omega(\hat{y}) \text {. Therefore, for every } n \in N \text {, }
$$

we have $\quad \omega\left(\left(\tilde{T}_{\sigma}-V_{\beta}\right)^{n} \hat{y}\right) \leqslant\left\|\left(\tilde{T}_{\sigma}-U_{\beta}\right)^{n}\right\| \omega(\hat{y})$, for any $\hat{y} \in \hat{X} \quad$; hence $\left\|\left(\tilde{T}_{\sigma}-V_{\beta}\right)^{n}\right\| \leqslant\left\|\left(T_{\sigma}-U_{\beta}\right)^{n}\right\|^{\circ}$. Conversely, since $\left(\tilde{T}_{\sigma}-V_{\beta}\right)^{n} \varphi(x)=\varphi\left(\left(T_{\sigma}-U_{\beta}\right)^{n} x\right)$, for any $x \in \mathfrak{X}$, we get easily $\left\|\left(\tilde{T}_{\sigma}-V_{\beta}\right)^{n}\right\| \leqslant\left\|\left(T_{\sigma}-U_{\beta}\right)^{n}\right\|$.

DEFINITION. - Let $\{X, \Gamma, U\}$ be an object, where X is a Banach space, $\Gamma=\left\{T_{t}\right\}_{t \in R^{+} \subset \mathbb{F}(X) \quad \text { a semi-group of operators and } U: Q \rightarrow \mathbb{Z}(X) \quad \text { a linear map }}^{\sim}$ as in the above theorem. Then, an object $\{\tilde{X}, \varphi, P, \tilde{\Gamma}, V\}$ where \tilde{x} is a Banach space, φ a bicontinuous isomorphism of \mathscr{X} into \tilde{X}, P a continuous projection of \tilde{X} onto $\varphi(\tilde{X}), \tilde{\Gamma}=\left\{\tilde{T}_{t}\right\}_{t \in R^{+}} \subset \mathfrak{Z}(\tilde{X})$ a semi-group of operators and $V: Q \rightarrow \mathbb{B}(\tilde{X})$ a representation such that $V_{I}=\tilde{I}, V_{\alpha} \tilde{T}_{\tau}=\tilde{T}_{\tau} V_{\alpha}$, for any $\alpha \in Q, \tau \in R^{+}$, is called an a-spectral dilation of $\{X, \Gamma$, U\} if the property (ii) is satisfyed. An Qmspectral dilation is called minimal if also we have (iii).

Remark 1. - When a is a Michael algebra and $U: Q \rightarrow \mathbb{Z}(\mathscr{X})$ a linear continuous map, then K is the seminorm which estimates U.

Remark 2. - Let $T \in \mathbb{Z}(\mathfrak{X})$; then the above theorem is obviously true with $\left\{T^{n}\right\}_{n \in N}$ instead of $\left\{T_{t}\right\}_{t \in R^{+}}$.

Application. - Let U be an admissible algebra in the sense of [1]. Then, an operator $T \in \mathbb{Z}(\mathscr{X})$ is called \mathcal{U}-subspectral (see [9]) if there is a Banach space containing \mathfrak{X} as a closed subspace, a continuous projection P of \tilde{X} onto \mathfrak{X}, a U-spectral operator $\tilde{T} \in \mathbb{Z}(X)$ having a U-spectral representation $V: a \rightarrow \mathbb{F}(\tilde{X})$ with the properties $V_{z} \mathscr{X} \subset \mathfrak{X}$ and $\tilde{P I}_{V_{f}} x=\tilde{T} P V_{f} x$, for any $f \in \mathcal{U}$, $x \in \mathscr{X}$, such that $\left.\tilde{T}\right|_{X}=T$.

We have the following characterization for U-subspectral operators : an operator $T \in \mathbb{F}(\mathscr{X})$ is U-subspectral if and only if there is a linear map $U: U \rightarrow \mathbb{B}(X)$ with the properties :
(I) $\mathrm{U}_{1}=\mathrm{I}$,
(2) $U_{f z}=U_{f} U_{z}$,
(3) $\quad\left\|U_{f}\right\| \leqslant M L_{f}$ for any $f \in \mathcal{U}$,
(where M is a positive constant and $L: U \rightarrow B(y)$, a linear map satisfying
(j) $\quad\left\|L_{f g}\right\| \leqslant\left\|L_{f}\right\|\left\|L_{g}\right\|$, for any $f, g \in \mathcal{U}$ and the function
(ji) $\quad \xi \rightarrow L_{f \xi}$ is analytic in ℓ supp f, for every $f \in U$;
Y is a Banach space), such that $T U_{f}=U_{f} T$, for any $f \in U$ and $U_{z} \sim T$, (see [8] and [9]).

If U is an admissible topologic algebra with the topology of Michael algebra, then the property (3) of U is replaced by its continuity.

For instance, let $\gamma=\{z \in C ;|z|=1\}$; one denotes by $L^{p}(\gamma)(p<\infty)$ the Banach space of the all complex-valued functions f on γ such that $|f|^{p}$ is integrable with respect to the Lebesgue measure. (Thus a function $f \in L^{p}(\gamma)$ if and only if the function \tilde{f} defined by $\tilde{f}(\theta)=f\left(e^{i \theta}\right)$ for $\theta \in[-\pi,+\pi]$ belongs to $\left.L^{p}\left(\frac{1}{2 \pi} d \theta\right)\right)$.

In the same way one considers the Banach algebra $L^{\infty}(\gamma)$ of all complexvalued essential bounded functions with respect to the Lebesgue measure on γ, (i.e. a function $f \in L^{\infty}(\gamma)$ if and only if the function \tilde{f} defined by $\tilde{f}(\theta)=f\left(e^{i \theta}\right)$ belongs to $\left.L^{\infty}\left(\frac{l}{2 \pi} d \theta\right)\right)$.

Let $p \geqslant 1$, as usual, the space H^{p} is the set of analytic functions in $D=\{z ;|z|<l\}$ such that f_{r} defined by $f_{r}(\theta)=f\left(r e^{i \theta}\right)$, for $\theta \in[-\pi,+\pi]$, belongs to $L^{p}\left(\frac{l}{2 \pi} d \theta\right)$ for every $0 \leqslant r \leqslant l$, or with the other words, H^{p} is a. closed subspace of functions f of $L^{p}(\gamma)$ such that $\int_{-\pi}^{+\pi} e^{i n \theta} f\left(e^{i \theta}\right)=d \theta=0$, $n=1,2,3, \ldots$

Taking $\mathscr{X}=L^{p}(\gamma)$ and $U=L^{\infty}(\gamma)$, we define a representation $\mathrm{v}: U \rightarrow \mathbb{B}(X)$ by :
$V_{\varphi} f=\varphi f$, for every $\varphi \in L^{\infty}(\gamma), f \in L^{p}(\gamma)$.
From the theorem of M. Riesz ([3], cap. IX) we have $L^{p}(\gamma)=H^{p} \oplus \vec{H}_{0}^{p}$, $1<p<\infty$, where \vec{H}_{o}^{p} is the space of complex-conjugate functions of H^{p} becoming zero at $z=0$. Let P be the continuous projection of $L^{p}(\gamma)$ onto H^{p}. We define the continuous linear map $U: L^{\infty}(\gamma) \rightarrow \mathbb{B}\left(H^{p}\right)$ by :

$$
U_{\varphi} f=P V_{\varphi} f, \text { for every } \varphi \in L^{\infty}(\gamma), f \in H^{p}
$$

Obviously, U is a continuous linear map with the above properties (1) and (2). Then an operator $T \in \mathbb{B}\left(H^{p}\right)$ such that $U_{\varphi} T=T U_{\varphi}$, for $\varphi \in L^{\infty}(\gamma)$ and $T \sim U e^{i \theta}$ is a $L^{\infty}(\gamma)$-subspectral operator. For $p=2, V_{i \theta}$ is the bilateral shift and $U e^{i \theta}$ is the unilateral shift (see [2]).

BIBLIOGRAPHIE

[1] COLOJOARA (I.) and FOIAS (C.). - Theory of generalized spectral operators. Gordon and Breach Sci. Publ. New-York, (1969).
[2] HALMOS (P. R.). - A Hilbert space problem book. D. Van Nostrand Company, Inc., Princeton, (1967).
[3] HOFFMAN (K.). - Banach spaces of analytic functions. Prentice-Hall, Inc., Englewood Cliffs, (1962).
[4] IONESCU TULCEA (C.). - Scalar dilations and scalar extensions of operators on Banach spaces (I). J. Math. Mech., 14 (1965), 841-865.
[5] IONESCU IULCEA (C.) et PLAFKER (S.). - Dilatations et extensions scalaires sur les espaces de Banach. C. R. Acad. Sci. Paris, 265 (1967), 734-735.
[6] NAGY (B. Sz.). - Appendix to "Leçons d'Analyse Fonctionnelle" by F. Riesz and B. Sz Nagy, Paris, (1965), 439-473.
[7] STINESPRING (W. F.). - Positive functions on C*-algebras. Proc. Amer. Math. Soc. 6, (1955), 211-216.
[8] STROESCU (E.). - U-scalar dilations and U-scalar extensions of operators on Banach spaces. Rev. Roum. Math. Pures et Appl., XIV, $\mathbb{N}^{\circ} 4$ (1969), 567-572.
[9] STROESCU (E.). - a-spectral dilations for operators on Banach spaces. (to appear in Journal of Math. Anal. and Appl.).

Academia R.S. Romania
Institutul de Matematicà
Calea Grivitei 21
BUCURESII 12 (Roumanie)

