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APPROXIMATION PROPERTIES AND UNIVERSAL BANACH SPACES

^y
Przemyslaw WOJTASZCZYK

1. - In this talk we are dealing with two kinds of concepts.

The first one, approximation properties, has its orgin in the concepts
of Schauder basis [10] and metric approximation property of Grothendieck [2]. By

"approximation property" ve mean the answer to the question in what a way we can

approximate the identity operator on a Banach space X by finite dimensional ope-

rators. The second one, universality, has its orgin in the classical Banach-Mazur
theorem on the universality of the space of continuous functions on the Cantor
discontinuum [1]. The question is, to find for a given class of Banach spaces a
space which contains (in a nice way) any element of the given class.

2. - Definitions.

DEFINITION 1. - A Banach space X has the bounded approximation property, shortly

BAP (resp. unconditional bounded approximation proper tyV,shortly UBAP) iff there
exists a sequence of finite dimensional operators A : X - » - X , n = l , 2 , . . . , such

that for each x € x x = E A (x) (and the series is unconditionally convergent).
n=l

Those concepts are modifications of the metric approximation property of
Grothendieck [2].

DEFINITION 2. - A Banach space X has a (uncondit ional) basis of finite dimen-

sional sub spaces iff there exists a sequence (X ) of finite dimensional sub spaces

21. ^ s^ch that for each x^ X we have a unique decomposition x = Z x where
n=l n

x € X (and the series is unconditionally convergent) • If moreover dimX = 1

for n = 1,2,... the Banach space X has the Schauder basis (resp. unconditional
Schauder basis).

It is easily seen that those concepts are in fact "approximation proper-
ties".

DEFINITION 3. - Let us have a class B of Banach spaces. A space X is comple-
ment ably universal for the class B iff for each Y€ 6 there exists in X a
complemented sub space Y- which is isomorphic to Y .
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3. - About this concepts the following results are proved.

THEOREM 1. - [9] A Banach space X has UBAP iff X is isomorphic to a comple-

mented subspace of a Banach space with the unconditional basis of finite dimensional
sub spaces. Moreover there exists one space U^ with the unconditional basis of

finite dimensional subspaces such that any X having UBAP is isomorphic to a com-
plemented subspace of U^ . The space U^ is unique up to isomorphism among
spaces with UBAP.

Remark 1. - Some constructions used in the proof of theorem 1 has applications in
simultaneous extensions of continuous functions (cf. [9]).

THEOREM 2. - A Banach space X has BAP iff X is isomorphic to a complemented
subspace of a Banach space with the Schauder basis. Moreover there exists one space
B with the Schauder basis which is complementably universal for the class of all
Banach spaces with BAP. The space B is unique up to isomorphism among spaces
with BAP.

This theorem was proved independently in [U] and [8] using results of
[9] and [T].

Remark 2. - In [3] among others is proved the following fact.

There exists a family of separable Banach spaces C , Kp<oo such that

for any Banach space X such that X* has BAP and any p the space X €>C has the
Schauder basis. ^

Remark 3. - The space B was constructed by different ways in [T], [9] and [5].

The proof that spaces constructed in this papers are exactly the same follows from
[8]. The construction of Kadec [5] has interesting applications to the theory of
preduals of L^ (cf. [9] and [12])•

Remark U. - Many interesting results concerning various approximation properties
are proved in [ k ] .

^' ~ To finish this talk we are going to state some unsolved problems.

Problem 1. - Is any Banach space with UBAP isomorphic to a complemented subspace
of a Banach space with an unconditional basis ?

Problem _g^ - Find an example of a separable Banach space with UBAP not having an
unconditional basis.
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It is probably that such an example can be found among spaces constructed in [6].

Problem 3. - Prove that in a reflexive Banacji space X with BAP there exists a

sequence of finite dimensional projections P such that P (X)cP (x) for
n = 1, 2,..., and P^(x) ^ x for any x^ X .

Problem 4. - Does any reflexive Banach space with a basis of finite dimensional
subspaceshave a Schauder basis ?

The positive solution of problems 3 and 4 together with results of [2]
and [4] would imply that a separable, reflexive space with approximation property
of Grothendieck [2] has a Schauder basis.

Problem '5 . - [7]. Does there exist a separable Banach space complementably uni-
versal for the class of separable Banach spaces ?

The solution of this problem would have important consequences conected
with "basis problem" and "approximation problem" (cf. [11] p. 386).
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