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THE GALOISMODULE STRUCTURE OF ALGEBRAIC INTEGER RINGS

IN FIELDS WITH GENERALISED QUATERNION GROUP

by

A. FROHLICH

Let K and N be algebraic number fields, i .e . , extensions of finite de-

gree of the field Q of rational numbers, with N a normal extension of K

with Galois group Gal(N/K) = r . Let 0- and 0 be the rings of algebraic in-

tegers in K , and in N respectively. Then 0 is a module over the group

ring 0(r) , and we are interested in the global structure of this module. One

knows (Theorem of Emmy N'other) that 0 is locally free over 0(r) (hence lo-

cally free of rank 1 ) , if and only if N/K is at most tamely ramified. We

assume this to be the case, so that we have fixed the local structure of 0

over (3(r) . It is then convenient to introduce the classgroup a(0(r)) of (Mr) .
This classifies the locally free rank one 0(r) -modules to within stable isomor-

phism. Here two such modules M and M are stably isomorphic, if there is

a free (V{T) -module F of finite rank, so that M C F = M ® F . We denote by

fo] the class in a(^(r)) of the module 0 . We wish to determine fo] .

What is known in this direction so far concerns special cases, although it is

possible to define general invariants of an arithmetic nature, which can be used

to describe fo] , to unify the known results and to get more general theorems.

This will be done elsewhere. Here I shall again consider a particular situation

which leads to rather interesting results and problems.

Let now K = 0 , i .e . , (V = Z . Write H. for the (generalised) qua-4m
ternion group of order 4m . We consider tamely ramified extensions N/Q with

Gal(N/Q) = H- . One knows that a(Z(Hj) is of order 2 , and in fact there
8 o

are exactly two isomorphism classes of rank one Z(H)-modules . Martinet (cf.

[4]) derived a handy algorithm to find fo] , and he computed examples both for

0 to be free, and for 0 to be locally free but not free. We now define an

invariant U of tamely ramified fields N with Gal(N/Q) = H taking valuesN o
± 1 , by observing that we have an isomorphism
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(1) 9' : Q(Z(HJ) - ± 1 ,
0

and setting

(2) 9(fo]) = U^ .

We next define a second such invariant. First, let more generally N/K

be a normal extension of algebraic number fields with arbitrary Galois group

Gal(N/K) = F . Let i(j be any character of r , in the sense of representation

theory over the complex numbers. The extended Artin L-series then satisfies a
functional equation

A(s,N/K,i(0 = W(N/K,^ )A( l - s ,N/K,? ) ,

where Ij? is the complex conjugate of ^ , and where the "root number"

W(N/K,^) = W(i|J) has absolute value 1. If if = ^ is real valued, then one
knows that W(ti = ± 1 .

Now return to the case K = Q , Gal(N/Q) = H . All characters of H
o 8

are real valued, and by the multiplicativity of root numbers under character addi-

tion, it suffices to consider only irreducible i|j . Moreover for real Abelian, i.e.,

quadratic or trivial characters one knows that the value of the root number is 1

This just leaves the unique two-dimensional irreducible character ^ of H ,
8 8

and we define

W(N/Q,U = W._ .
o JN

Then I proved (cf. [l]) :

Theorem 1. Jf_ N/Q is tamely ramified. Gal(N/Q) = H- , then U = W .8 ——— N N

My attack on this problem was encouraged by Serre, who had computed

U and W in one case where they both have value -1 , followed by Armi-

tage, who altogether computed twelve examples. I also showed that W takesN
each of the values ± 1 infinitely often, even with further arithmetic "boundary
conditions" imposed (cf. [l]).

This theorem is rather surprising. The proof is based on a good arithmetic

classification of the fields N , which essentially goes back to papers of mine

of twenty years ago, but it does not give any real insight into why such a theo-

rem ' should hold. Some other alternative proof would therefore be desirable.
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Another problem is that of a possible generalisation of Theorem 1. Before

one can formulate a conjecture one has to get good definitions of the invariants

U and W— and this itself involves serious and interesting problems. I shallN N
here concentrate on W .N

For the root numbers our original procedure for H will not work. We
0

shall call ^ = i|j. a quaternion character of order 4m if it is an irreducible

real valued character of H. of degree 2 , corresponding to a faithful repre-4m
sentation of H. . There are such characters (for m > 1 of course), and, for4m
given m , they are all conjugate over Q . In general one cannot expect that

for any two such characters the root numbers coincide. In fact, we have

Theorem 2. There is a unique field N containing QCy5) with Gal(N/Q) = H

so that N/QCy5) has conductor 55 . There are exactly two quaternion charac-

ters ^ and i|i' of order 20 , and for this field N

W(N/Q,ti = -W(N/Q,r) .

Note however that N/Q is wildly ramified. In fact we do get

Theorem 3 Let N/K be a normal extension with Gal(N/K) = H. . I f N/K—— ———————————————————— 4^ —

is tamely ramified, then the values of the root numbers W(N/K,^) , for all

quaternion characters of order 4m coincide.

Using this theorem we can now define, for a tamely ramified field N/Q

with Gal(N/Q) = H, , the invariant W-- as the common value of the4m JN
W(N(Q,ti) . f o r ^ a quaternion character of order 4m .

We shall say a few words about the background to Theorems 2 and 3. If

Gal(N/K) = H then we have a field tower K c E c N , where E is qua-4m
dratic over K , N cyclic over E . Let 0 be the idele class character of

T^ K , for which E = K is the class field. Let \ be an idele class
y - 0

character of E with N = E . Viewed as a character of Gal(N/E) ,/^
this x, will induce a quaternion character ^ of order 4m of

E Gal (N/K) , and all such quaternion characters are given in this manner.

Moreover, we ave W(N/K,1!1) = W(y) , and the various Abelian charac-
K

ters X , with N = E , are all conjugate over Q . Finally, the fact
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that x induces a quaternion character is expressed exactly in the equation

x | C = 0 , where x|C is the restriction of \ to the idele class group
C^ of K . We thus have to compare root numbers of Abelian characters which
are conjugate over Q .

Let Q070 be the maximal cyclotomic field inside the field of complex

numbers. The Galois group GaKO070/^ can be identified with n U (product
p P

over all finite primes), where U is the group of p-adic units. This Galois

group acts in a natural manner both on the Abelian characters and on their root

numbers. Namely if r\ is an r-th root of unity, and un = l(mod r) , with
n $ Z , then r^ = r^ . For u C n U , a ^ Q^ define (-u-) byp p a

(•UL) = in-"-^-6-). (product of Hilbert symbols),f a p P z

or equivalently
, u. _u / ,—
(f) = -Va A/a

We then have

Theorem 4. For any Abelian character x of an algebraic number field E
and for u ^ II U = GaKQ^/Q) ,

W^WfxWu)^)^) ,

where Nf(x) is the absolute norm of the conductor f(x) , and where

c(x) = (-1)^ , Y being the number of real places of E at which x is rami-
fied.

Note for the definition of x^u) that u is a rational idele, hence an
idele of E . The case relevant to us is given by the

Corollary. IjL W(x) = ± 1 then

W(x)/W(x") = X^u)^)^) .

Serre has pointed out that the formula of Theorem 4 yields a similar for-
mula for non-Abelian characters, namely

W WW"^ w(^(u)(^)(^) .

Here 6^ is the "determinant" of * , i.e. viewed as a character of a Galois
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group it is given by

6 (Y) = det T(Y) ,

if Y -» T(Y) is a representation corresponding to ^ . Also c(^) = lie W ,

v running through the real places of the base field E , with c W = (-1)^ .,

where n is the number of eigenvalues -1 of the v-Frobenius element a

in a representation corresponding to ^ . In other words c (ti = 6 (o ) .

Note that formula (^) allows one to regain a result of Dwork's, in answer
to a question of Hasse, on the field in which W(i@ lies.

To get Theorem 2 one takes E = QCs/5) , with the appropriate X of order

10 , ramified at 5 and at 11 . The operator u is then chosen to be

u- = 3_ , u = 1 for p ^ 5 .5 5 p

Theorem 3 follows from an explicit formula for W(x) . Let h be the
2discriminant of E/K and let E = K(A) , A ^ K , with A integral and square

free at all prime divisors p of b in E . The part of (/\) "prime to b " is

then a fractionnal ideal a in K . Let moreover f* be the part of f(\)

"prime to b ". f is an ideal in K . One then has

Theorem 5. I f _ N = E , E = K quadratic over K , and if N/K is tamely
X 0

ramified and Gal-(N/K) = H , then

W(x) = (-^(f*) n, X.(A) .
b ^ Ib ^

Theorem 3 follows almost immediately. For, W(x) , ( — ) and 0(f*)b
clearly, take only ±1 as possible values, hence so does ^ ^uS^ • Therefore
replacing X by \1 will not alter anything.

The proofs of Theorems 2-5 are contained in reference [3] below.
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