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GROUP REPRESENTATIONS IN NON-ARCHIMEDEAN BANACH SPACES

A.C.M, van ROOIJ and W.H. SCHIKHOF

INTRODUCTION.

This paper deals with continuous representations of locally compact groups G
into non-archimedean Banach spaces E. In order that G has sufficiently many of such
representations G must be totally disconnected, which we assume from now on. If G
carries a K-valued Haar measure (where K is the (non-archimedean valued) scalar
field) we have a 1-1 correspondence between the continuous representations of G and
those of the group algebra L(G). If G is compact, then L(G) can be decomposed as &
direct sum of full matrix algebras aver skew fields (Theorem 2.5), which yields as
a corollary that every irreductible continuous representation of G is equivalent to
a minimal left ideal of L(G). Further, all continuous representations of G can be
classified (Theorem 2.8). The theory for compact groups as it is given here is &
generalizacion of the results of [2]. If G is locally compact and torsional (i.e.,
every compact set is contained in a compact subgroup) the results are satisfactory :
G then has sufficiently many continuous irreductible ?epresentations 3 every two-
sided closed ideal in L(G) is the. intersection of maximal left ideals (Theorem 3.1,

and corollaries). About non-torsional G little is known.

1. The Banach algebra L(G).

K is a field with a (possibly trivial) non-Archimedean valuation | | such
that K is complete relative to the metric induced by i \ . The residue class field
of Kis k. If X € K,il] & 1 then A denotes the corresponding element of k. The

characteristic of k is p (which may be 0).

G is a totally disconnected locally compact group, lﬁ the collection of all
open compact subgroups of G, 3 the ring of sets generated by the left cosets of

the elements of . It is known that ¥ consists of the compact open subsets of G
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and is & base for the topology of G.

. A totally disconnected compact group H is called p~free if no open subgroup

of H has an index in H that is divisible by p. (Every H is O-free). We assume that

-G has a p-free compact open subgroup Go .

Then there exists & unique m : & —> K with properties
(1) m is additive
(2) m is left invariant, i.e. m(xA) = m(A) (x € G; A € B)

(3) M(GD) = 1.

This m is a left Haar measure on G.

Let C,(G) be the K-Banach space of all continuous functions G —> K that vanish
at infinity. (If G is compact we also call this space c(G)). More generally, for a
Banach space E, Cy(G — E) will denote the Banach space of all continuous functions

G —> E that vanish at infinity. A left Haar measure m on G induces a unique E-
valued continuous linear map. f r——>[f(x)dm(x) on Cm(G — E) for which

[0 3 et = atw)s wem sxem,
1A denoting the K-valued characteristic function of A. In particular (E=K)
j1A(x) an(x) = m(A) (A€ B).
For all f € C (G —>E),

)I/f(:«) an()| < || -

This integration enables us to make Cm(G) into a K-algebra by defining a
multiplication »; for f,g € Cuo(G)' y€EG:
-1 -1
(£ + g)(y) =]f<x>g(x y)am(x) =/f(yx )g(x)am(x).

In fact, it turns out that f x g € COO(G) and [If % gl s [IT) liey -

Thus, CugG)' actually is a Banach algebra over K. x is called gonvolution.

When we view Cw(G) as a Banach algebra under convolution, we usually call it L(G).
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If He " 1is contained in G, » then m(H) = [Go :H]_1 , 50 |m(H)|= 1.
, _- -1
Set uy = m(H) 1y - Then

lugll =1, [uH(x)dm(x) = 1

Let E be a Banach space. A representation of G in E is a homomorphism
U: x '-—‘Ux of G into the group of all isometric linear bijections E —> E. Such

a representation U is called continuous if x ——-)st is continuous for each 8 € E.

A linear subspace D of E'is U-invariant if Ux(D) C D for every x € G. If {Of
and E are the only U-invariant linear subspaces of E, the representation U is called
algebraically irreducible. If {0( and E are the only closed U-invariant subspaces,
U is irreducible.

For f € Cw(G) and a € G, define the function Laf on G by
(Lo)(x) = fa”'x)  (x¢€ 0.

In this way we have constructed a continuous representation L of G in Cw(G),
the regular representation.

For all f,g e Cao(G) we have the identity
fxg =/f(x) L gdm(x).

More generally, let U be a continuous representation of G in some Banach space
E. For £ € L(G) and % € E we define

(1) £ % = [2Gu, S antx).

Thus, E becomes a module over the ring L(G) for which

(ii) e * shspen Jis (f € L(G); § € E)

and

(iii) U(£% 5)=(Lf)xy (f€L(G);3EE; x €G).
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If ¥ ¢ Eand & > 0, then {xeal ||Ux§-§ll<8t is an open subgroup of G.

If H € &' 4is contained in this subgroup, then "“ﬁ * §-%|| ¢ & . Ordering & in

the obvious way we obtain

(iv) 1i ¥§=1% (¢ € E).
v Hleunlf E ' 3

In particular, the uy form a left approximate identity for L(G). Without any

trouble one proves that they actually form a two-sided approximate identity.

A closed linear subspace of E is U-invari

of E. A continuous linear map E — E commutes with every Ux if and only if it is

a mo © ism.

Conversely, a Banach L(G)-module is a Banach space E provided with & bilinear
map ¥ : L(G) X E— E such that £ * (g ¥ §) = (f » g)* ¥ (f,g € L(G); £ € E) and
such that (ii) holds. Such a Banach L(G)-module is continuous (or essential) if (iv)
is also valid. If E is any Banach L(G)-module, the closed linear hull of

2f *%| £€L(G);8eE] is the largest continuous submodule of E.

In any continuous Banach L(G)-module E, formula (iii) defines a continuous

representation U of G that fulfils (i) : we have a one—to—one correspondence bet-

ween continuous L(G)-modules and continuous representations of G.

2 - The structure of L(G) for compact G.

In this chapter we assume that G itself is compact and p—free. We work with -

the left Haar measure m for which m(G) = 1.

Let (l; denote the set of all normal open subgroups of G. It was proved by
Pontryagin that every element of Jr contains an element of ”; . It follows that
the u (H € J/'o) ‘form & left approximate identity for L(G).

For any Banach space F and for n € N we consistently view F* as a Banach space

under the max-norm :

"(31 AL ] § n)“= mi‘x ”Si“ (31 -,«..,!nﬁ F)-
1
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If D is a closed linear subspace of a Banach space E, a projection of E onto D

is a linear P : E — E -for which

(1) el ¢ 1.
(2 P(E) c D.

(3) Px = x for all x € D.

The following lemma is well-known.

2.1. Lemma. Let D be & linear subspace of K" . Then as a normed vector space, D is

isomorphic to some K" . There exists a projection of k" onto D.

The same reasoning used in the classical theory for representations in Banach

spaces now leads to

2.2. Lemma. Let U be a continuous representation of G in K" . Let D be a U-invariant
linear subspace of K" . Then there exists a projection P of K" onto D that commutes
with every U .

X

Every ¥€ K" for which |§Il € 1 determines in a natural vay a § € k" .

Consequently, a K-linear A : K —> K™ with ||All € 1 determines a k-linear

A k" —xk" vy

A(%) =A% (3e ™ ,ls)en).

In particular, a representation U of G in K" induces a representation

U: x+—> ﬁx in k™ . The following lemma can be proved as an application of

lemma 2.2.

2.3. Lemma. Let U be a contipuous representation of G in K® . Then U is irreductible

if and only if U is irreducible.

A useful consequence :

.2.4. Lemma. Let U,V be continuous representatiomsof G in K and in a Banach space E,
respectively. Suppose U to be irreducible. If T : K® —E is & linear map such
that TUx = VxT(x € G),then

el = it well (% e k™).
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If U,V are representations of G in non-trivial Banach spaces E,F, respectively,
we say that they are equivalent if there exists a surjective linear T : E —>F
with TUx = VxT for all x € G and with

T = Hri N8 (2 e k™).

Similarly, two non-zero Banach L(G)-modules, E and F, are called equivalent if

there exists a surjective module isomorphism T : E —> F such that
Wi = Nz s (% e x%).

In either case, if T is an isometry we speak of isomorphism rather than equi-
valence.

For every H €Jo > Uy ¥ L(G) is a two-sided ideal in L(G) consisting of all
functions G —> K that are constant on the cosets of H. Thus, uy ¥ L(G) is finite-
dimensional, and, as a normed vector space, is isomorphic to K[G:H]. We have already

observed that the uH(H € ()/'o) form a left approximate identity in L(G). Then
2 iuH x L(G) | He.)/;g is dense in L(G)’.

In the set of all central idempotent elements of L(G) we introduce an ordering
€ by

e, s e, if e, ¥ L(G) c e; ¥ L(G).

Let & be the set of all minimal non-zero central idempotents. The elements
of & are linearly independent and have norm 1. Then for every HE€ uVo only finitely

many elements of & are ¢ uy - One proves easlily that uH =Z{ee E: e < qu .
For every e € & there exists an H€ J/‘o with |luH ¥ e-e| € 1; thene ¥ uy # 0.

By the minimality of e it follows that e = e ¥ uy » SO
e*L(G)=e*uHxL(G)=que*L(G)C anL(G).
By lemma 2.1, e ¥ L(G) is isomorphic to some .

We need one more definition before we can formulate the structure theorem

for L(G). Let (Ai) be a family of Banach spaces. We set

i€l
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® A, ={xe T A, | if & > 0, then |ix.li >& for only finitely many if.
ier * ier *t 1

In a natural way, ® Ai is a Banach space under the norm defined
iel
by ||x|l = sup Hxi||. If all the Ai are Banach algebras (or L(G)-modules), & A
iel iel

becomes a Banach algebra (an L(G)-module).

It is now relatively easy to prove the following analog to a classical

structure theorem for finite groups.

2.5. Theorem. For ec & set L(G)e = e # L(G). As a Banach space, L(C-)e is iso-

morphic to some K. Every L(G)e is a two-sided ideal in L(G). If f € L(G), then

f = Z:erfgglwn=swlh*fWTmfwmm
ecé ecd
(Sf)e-=e-)\-f (e€c& 3 £fe L(a))

yields an isomorphism of Banach algebras

8 : L(G) — & L(G)

e€é €

For every Xc & , {f € L(G) | e » £ = O for every e € X§ is a closed two-sided

ideal in L(G) ; all closed two-sided ideals of L(G) are of this form. The minimal

non-zero two-sided idealSare just the L(G)e

In the following lines, instead of "minimal non-zero left ideal of L(G)" we
simply say "minimal ideal'. L(G)e , being a finite-dimensional left ideal of L(G),
contains minimal ideals. As in the purely algebraic representation theory of finite
groups, each L(G)e is a sum of minimal ideals ; every minimal ideal lies in some
L(G)e ; and two minimal ideals are isomorphic (as L(G)-modules) if and only if they

are contained in the same L(G)e

Let n(e) be the dimension (as a K-vector space) of a minimal ideal that is

contained in L(G)e . It follows from lemma 2.1 that for every e € & we can choese

an L(G)-module structure on Kn(E), so that the resulting module I(e) is isomorphic
to the minimal ideals that lie in L(G)e . The module structure of I(e induces a

continuous representation W(e) of G in Kn(e
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The following generalization of 2.5 'is not hard to prove.

2.6. Theorem. Let.U be a continuous representation of G in & Banach space E ; let »

be the corresponding module operation L(G) X E —>E. For e € & set

E, = fexs |¥e€ E{. Each E_ is a closed submodule of E. The formula

(SS)e =e x % (2 € E)

Yields an isomorphism of Banach L(G)-modules

S:E—> O E .
e€ ¥

The restriction of U to Ee is called the e-homogeneous part of U.

If E, = E, then U itself is called e-homogeneous. (Observe that always (Ee)e = Ee).

Let U be an irreducible continuous representation of G in a Banach space E.
Choose 3 €E, % # 0. There must exist an e € & with e x ¥ # O. As L(G)e is a sum
of minimal ideals, there must exist a minimal ideal D c L(G)e with Dx ¥ # (0).

Applying lemma 2.4 (consider the map f == f % § (f € D)) we get

2.7 Corollary. Every irreducible continuous representation of G is equivalent to

one of the W e). In particular, it is finite dimensional.

Now let F be any Banach space. Every n X n-matrix induces in a natural way a
map F* — Fn . Thus, every W(e)

(e)

induces a continuous e-homogeneous representation

w(e)

) IdF in F* (To explain the notation we observe that F is linearly iso-

metric to K° ®I{ F?). Together with Theorem 2.6 the following gives a complete clas-

sification of all continuous representations of G.

2.8. Theorem. Every e-homogeneous continuous representation of G is isomorphic to

w(e) ® IdF for some Banach space F. The given representation determines F up to an

isomorphism of Banach spaces.

(e) (e)

For e€ & let lle be the set of all linear module homomorphisms I — I .

Obviously, a;e is a K-Banach algebra. But it follows from lemma 2.4 that & o €ven

is a valued skew field containing K. It turns out that every commutative subfield
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of &, is obtainable by adjunction of roots of 1 to K. Hence, if K contains

"enough" roots of 1, then tle = K.

(e

In a natural way, I ) becomes a normed vector space over iie . As in the
algebraic theory, L(G)e (as an algebra or an L(G)-module) is isomorphic to the

algebra of all & e—linear maps I(e)-——+ I(e) . But this time the isomorphism is

also an isometry. It follows that, if G is abelian, then every L(C—)e is a valued
field, and L(G) is power-multiplicative. (A Banach algebra A is power-multiplicative
it ||a®)l = llall™ for all a €A and n € N).

As a Banach space, I(e) is isomorphic to (Q'e)n(e) for some n(e) € N. It
follows that L(G)e (as a Banach algebra or a Banach L(G)-module) is isomorphic to

the algebra of all n(e) x n(e) matrices with entries form aﬁe . Here the norm of

a matrix is the maximum of the norms of its entries.

3 - Representations of locally compact groups.

K,k,p,G are as in chapter 1. We assume every element of (M to be p-free.

G is called torsional if every compact subset is contained in a compact
subgroup. If G.is torsional then so is every closed subgroup and every quotient of

G by a closed normal subgroup.

The additive group of a non-trivial valued local field is torsional : for
each n € N, {x ||xlus ni is a compact open subgroup. The multiplicative group is
not torsional : if |Ix| > 1, then lim ]xnl = o . The general and special linear
groups are not torsional. However, the following group G of triangular m x m ma-

trices

G = iﬂd ij)l a:ij =0if i< j; | i3 | =1 for all i}

is torsional : for each n € N, B = f(ot .

. . i-3, ey s
lj) € G| 'Nijl < n for all 1,J§ is a.

compact open subgroup.

We now formulate the main
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3.1. Theorem. Let G be torsional and let I < L(G) be a proper closed two-sided

ideal. For every f © L(G) there exists a maximal modular left ideal N o I such
that ||f mod I|| = {|f mod N||

Proof. First, assume that G is compact. Then L(G) = @ L(G)e where & is the
ect
collection of minimal central idempotents of L(G). (Theorem 2.5).

Then I = @ L(G)eforsome Dece , D48 ,andar-= Z e % f.

e€d . ecé
Clearly, |[Ifmod Il =max |If xell = {If »dll for certain d ¢ &
e¢d
We identify L(G)d with the algebra of all n(d) x n(d) matrices over ad .
(See the end of Chapter 2). There exists a % € (% d)n(d) with
[l(a % )31 = dla w £11 1% . Let N, = tg€e L), | &b = oY ; then
Hd;,fmodeH = la *xf|l.Foreect ,e# D set Ne=L(G)e , and let
N ¢ L(G) be the closure of Z Ne . Then N is a maximal modular left ideal contai-
ecé
ing I, and |If mod N|| = [ld % £ mod Nyl = la » £I = IIf mod IN .

<
Observe that one can make a non-zero n(d) x n(d) matrix s over &d such that
Ny x s = {Ok and s # s = s. (The columns of s are suitable multiples of ¥ ). We

need this remark in the second part of this proof.

For the general case we may assume that f has compact support, so f =0 outside

a compact open subgroup H. We have the obvious embedding L(H) “> L(G).

By the foregoing there exists a maximal modular left ideal M of L(H), with
identity e_ , for which M> I A L(H) and IIf mod T A L(MIl = I £ moa MUl , and there
exists an idempotent s € L(H) with M » s = {0} . By maximality,

M={ge L(H | gxs =0} .5etJ =L(G) * M+ I. J is a closed left ideal of L(G),
containing I. For all g€ L(G)

gxe -g= lei:ndll‘ (gx‘u.v*eo-g’(uv)CL(G)*MCJ,
v

so J is modular. We next prove J # L(G).

Let j € J N L(H). Then (j-j % s) ¥ s =0, so j-j » s € M. Also,.
j#se€e (LG)* M+ I) #sc I xscIlandj *s€L(H), sojx s€ M Therefore,
J0 L(H) ¢ M, so that J # L(G). Trivially, J n-L(H) o M, so J N L(H) = M.
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Being a proper modular left ideal, J extends to & maximal modular left ideal N
of L(G). By the maximality of M we still have N N L(H) = M.

By lemma 2.4, the canonical map

p: L(H)/M —> L(G)/N

satisties  lp(q)li = llpl 19l (n € L(H)/M). Using the fact that

lim || mod M|| = 1lim | w, mod N|| = 1 we see that |lp]l = 1, so is an
VeX v Vedr B p P
isometry. Hence, |/fmod N|| = [|f mod M|l = [If mod I n L(H)|l >

IIf mod I > |If mod N||.

3.2. Corollary. Let HE " and let I be a closed two-sided ideal in L(G).

Then the canonical map L(H)/I N L(H) —>L(G)/I is_an isometry.

3.3. Corollary. If G is abelian and if I is a maximal modular ideal of L(G),

then L(G)/I is a valued field which is the completion of an algebraic extension
of K.

Proof. For évery He d’, T A L(H) is a maximal ideal of L(H) of finite codimension,
and L(H)/I N L(H) is a valued field.

The corollary now follows from the observation that the union of the canonical
images of the L(H)/I n L(H) (He d') is dense in L(G)/I.

3.4. Corollary. For each two-sided closed ideal I C L(G) the Banach algebra L(G)/I

is reduced ("Spectral synthesis"). In particular, for each f € L(G) there exists an

(algebraically) irreducible continuous representation T of L(G) in some Banach

space such that HTfII = |If|l (f€ L(G)). ("The Fourier transformation is an
isomet:x"). For each x € G, x # e there exists a continuous irreducible represen-=

tation U of G 'in some Banach space such that Uxﬁi I. {"Gelfand-Raikov Theorem").

‘The representation space of an irreducible . representation of an abelian group

may have dimension greater than 1. If K is "big enough" this cannot happen :
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3.5. Theorem, Let G be an abelian torsional group and suppose that the equation
0oy has n distinct roots in K for every n € {(H2 : H1] D Hy s Hy €Ny H2/H1

cyclicl. Let G™be the group of all continuous homomorphisms of G into ﬁ;l : =1,

topologized with the compact open topology. Then every maximal modular ideal M of

L(G) has codimension 1 and there is an °(M € G"such that the homomorphism
L(G) —> L(G)/M has the form

£ > f(oly) =jf(X)0(M(x_1)dx (r €1(c))

The map M —> & M is a homeomorphism of the collection of maximal modular

ideals, with the Gelfrand topology, onto G. The dual group G"is also torsional and

the Fourier transformation f > f§ given by

(o) = ff(x) o (x ax (f «L(a))

is an isometrical isomorphism of L(G) onto C_(G). Finally, the canonical map

G —>» G""is an isomorphism of topological groups.

Proof. See Corollary 3.4 and [1], L4.3.16 and 5.2.11.

We mention (without proof) a result for not-necessarily torsional groups.
Define B(G) = {x €G : Ux = I for every continuous irreductible representation U of

G}. It is clear from the definition that B(G) is a closed normal subgroup.

3.6. Thecrem. B(G) is a discrete torsion-free subgroup of G, and is contained in

every open normal subgroup of G. If G is either abelian or discrete or torisonal

then B(G) ={ e}. B(G) has a trivial intersection with the cemter of G.

We end with a

Conjecture : Let G be a ;Loe‘élly compact totally disconnected group, such that all

elements of UVEEQ p-free, where p is the characteristic of the residue classe field x

of K. Then B(G) = {e}, i.e. G has sufficiently many continuous irreductivle repre-
sentations. '
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