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A NON-ARCHIMEDEAN '"CURVE INTEGRAL" AND ITS
APPLYICATION TO THF CONSTRUCTION OF POTENTTALS
AND SOLUTIONS OF DYFFFRWNTIAL EQUATIONS

Dietmar TREIBER

In the opinion of many students integration is the conversion of differentia-
tion. That means more exactly : Integration serves for the construction of primitive
functions and potentials. In this article-it will be shown that there is a procedure
of constructing potentials in n.a. Banich spaces, which is similar to that of the

archimedean case by means of the curve integral.

At first let us remember the corresponding statements and the main ideas of

the proofs in the archimedean case :
Let G be an open subset of IRn and let
W: 6 — L(R,R)

be a differential form on G, that means : W is a mapping from G into the Banach
space of all (bounded) linear maps from R" to R. We regard the problem whether there
exists a "potential of ()", that is a differentiable function from G to R, whose
derivative equals to the given W . The following two conditions are suff‘icient‘f_or

the existence of a potential of W ':
1) G is simply connected ;
2) W is differentiable and closed.

If W is differentiable, then the closedness of W 1is also a necessary con-—
dition for the existence of a potential of W , as is known by the theorem about

the equality of the mixed second partial derivatives.

A construction of a potential of @ can be given by means of the curve inte-

gral, especially in the case. G = R" in the following way :
For v € R define the curve c(v) by
c{v) (t) :=tv , 0€t ¢1 .

If condition (2) for ) is fulfilled, then the function
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vF————éu[ w
c(v)

defines a potential of w .

In the n. a. case the special problem of constructing primitive functions to
continuous functions over the fields Qp has already been solved by Dieudonné [1]
in his classical work of 1944, Here the construction of primitive functions appears
as a special case of a theorem about the existence of solutions of certain p-adic
differential equations. In 1967 van der PUT [ﬂ gave a method of solving p-adic
differential equations by means of an orthogonal base of the Bunach space of all

continuous functions from Zb to a n. a. completely valued field K 2 Qp .

It is remarkable that all mentioned researches about the existence of solutions
of n. a. differential equations are restricted to the fields Qp . The reason :
The elements of Qp allow a very useful development into infinite series. Our first
aim is therefore to show that there exists a similar development into infinite se-

ries for the elements of all n. a. Banach spaces.

The procedure of constructing primitive functions over QP , which one gets as
a special case in the works of Dieudonn&, van der PUT and in this work, is essen-—
tially the same.

We use in this work the following notations :

i) R, #, N := real, integer, natural numbers (including O) ;
R+ resp. N+ := positive real resp. natural numbers.

ii) Let K be a n. a. non-trivial completely valued field.

iii) Let E and E' be n. a. Banach spaces over K.

1. Development of the elements of a n. a. Banach space into infinite series

1.1. Definition. Let (ui)i ¢ gz be & sequence of elements of a vector space V over
K. Then we call (“i)ie z left=finite iff there exists an n € Z such tha u; = 0€V

for all i € Z with i < n.

1.2. Lemma. Let E be a n. a. Banach space gver K. Assume a € K such that O0<|al<1.
Then there exists a subset R of E with the following properties :

i) For every left-finite sequence (ui)l. ez of elements of R the series

+00 .
2 u. al
1

i=—w

converges in E.
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ii) Every element u € E has a representation of the form

+% .
1
u = ui a
i=-00

of elements of R.

with a left-finite sequence (ui)ie 7
iii) Let u = Zlui at , V= 21 \ a’ be elements of R, represented as limits of

infinite seriesin the sense of (ii). Assume
n :=inf {i € Z lui # vig € Z.

ll’l+1

la ™ ¢ tumv =y - v b al® g el

This implies especially that the representation of the elements of E in the
sense of (ii) is unique.
Proof : Let R be a system of representatives of
zu €EE| Hul ¢ 1} / {ue€E]| lun g lal t

.
with O € R. Clearly (i) holds.
Assume u € E, u # O. Then there exists an n € Z such that

1< pun s qal®

la
It follows :

al < Izl ¢ 0.
a

Then there exists an w € R such that :
o - ufll ¢ laj
n n N
a

Therefore :
n n+1
o -u ay ¢ Jal
By iterating this process we get (ii). Part (iii) is a consequence of the

strong triangle iméquality
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2. The curve integral and its application to the construction of potentials

2.1. Definition.  Let L(E,E') be the vector space.of all continuous linear mappings

from E to E'. Then &(E,E') is a n. a . Banach space relative to the norm

i = sup {"—l}-\%)—" |veEr, v#o} , 1€L(E,E")

Assume that G is an open subset of E. A map

©: ¢ ——>(E,E")

is called a differential form (or 1-form) on G (with coefficients in E').

Let W: G -—-ﬂf(E,E') be a differential form on G. A function f : G —— E!'
is called a potential of ) iff f is differentiable on G and for all p € G the

derivative of f at p equals to ®(p).

2.2. Definition. Let G be an open subset of E and

W: G —> L(E,E")

be a continuous differential form on G.

i) A curve ¢ in E is a mapping

c:2—m E,

such that there exist the limits 1lim h and 1lim c_ . We call the left limit of
. n--® n-o0 O

c the "initial point of c¢" , the right limit of ¢ the "end point of c".

ii) A curve ¢ : Z —> E is called curve in G iff the imagé set of ¢, the

initial point of ¢ and the.end point of c¢ lie in G.

iii) Let ¢ : 2 —3E Dbe a curve in G. We define the integral of ) over the

curve ¢ as :
~/Cw:= S m(cn)(cnﬂ - cn)

n=-00

Remember that w(cn)(c - cn) is the image of (c - cn) € E under the

n+1 n+1

map w(cn)e L (E,E").

2.3. Proposition. Let G be an open subset of E and ¢ : 2 —>G be a curve in G.

Then :

i) The curve integral defined in 2.2. is K-linear, that means :
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/-(aw+ba))=ajw+bf¢:)
c c c

ii) The curve integral is continuous, that means : Let (wl)leN be a sequence
of continuous mappings. from G to 5[, (E,E'), which converges locally uniform to a

continuous differential form & on G. Then the sequence (f&)l)l € w converges to
: c

‘/;63 :

iii) Let (W)

len be a sequence of continuous differential forms on G with

coefficients in E', which is uniformly bounded:and converges (pointwise) to a conti-

nuous differential form @ on G. Then ( J “1)1eN converges to f w -
c : c

Proof : simple application of the definitions.

+® .
2.4, Definition. Assume u =Zui a' € E. Define a curve c(u) : 2 —>E by :
' =0

n .
- i
c(u)n : .E_—mui a

for all n € Z. Obviously the initial point of c(u) is 0, its end point is u.

Furthermore :
+00 )
u = n§=_m(c(u)n+1 - c(u)n).

2.5. Lemma. If
W: E _—’i(EsE')

is a continuous differential form, it holds for all u,v € E :

]y‘ w - / WY & sup {Ilh)(p)ll[ Jlp-vi £ |—1l' |]u-v||{‘-"u—v||
e (u) e(v) *

+9 . +0 i
- i
Proof:Assumeu,vGE,u#v,u=Euia ,v=>_'via
—_— I=—10 1=-00

Then there exists a minimal N € 2 such that

uN#VN.
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Therefore :

u/c(u)o - fc(v) Wit =l etuy_ ety - ety

0

+ ) wlelw Melu) - clu))
n=N

- oo(c(v)n)(c(v)n+1 - c(v)n) I
n=N

Now the statement follows with the aid of the following inequalities ; (n€Z, n»N)

IIC(u)N_1 -vi < l—:IT la - v 3
Ilc(u)n -vi, nc(v)n - vl Su - vl

lle(u)

SO N Tu = vy 3

Uc(u)n+1 - C(u)n|l, IIC(V)n+1 - c(v)n“ Slhu - v .

2.6. Theorem. Let
w: E— ¥ (E,E")

be a continuous differential form on E with coefficients in E'. Then the map
F=E—E', defined by

u.l—_——"/ W,
c(u)

is a potential of w .

Proof : The statement is a consequence of the following inequality :

IF(u) - Flv) - @(v) (u=-v)I"*

¢ sup flole) = O [up = vas 135 duvif Ju - vl

for all u,v € E. Proof of this inequality for u,v € E :
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F(u). - F(v) - w(v)(u - v) =

+0
= F() - F(v) - O(¥) [Z (e(w) ,, - °<“>n)]
n=-m
+®
o) | D (elv) - elv)) |
n=-m

Because of the continuity of W(v) : E —>E' we conclude :

+®
= F(u) - F(v) = )7 ol ,, - cl))
n=-®
+ 00
+ W) elv) oy = clv))
=00 -

f [w - w)] —j (w- w(v)] .
c(u) c(v)

Now the statement follows from 2.5.

2.7. Definition. Let G be an open subset of E. We now define a mapping OG , Which
orders to every continuous differential forme) on G with coefficients in E' a po-
tential bG(w) of W:

Let ©) be a continuous differential form on G :

(1) If G =E, let ¢>G(w) be the map

u —_— )@

c(u

which has been regarded in .2.6.

(2) If G is an "open" ball in E, order to ® & continuous differential form G on E

by setting (3 equal to zero outside G and equal to @ on G. Define :

OG(Q» i= ¢E(m)| G .

(3) If G is an arbitrary open subset of E, which is different from E, then there is

a canonical family (Ui)iG 1 of "open" balls in G, disjoint two by two, such that G

is the union of the Ui . Define :
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bo@u; =0 (w]v,)

1

})

for all i € I.

2.8. Theorem. Assume that G is an open subset of E. Then the map #G (defined in 2.7)

has the following properties :

(i) ¢G orders to every continuous differential form on G (with coefficients
in E') a potential ;

(i1) ¢b is K-linear :

(iii) ¢G is continuous relative to the canonical topoleogies of its definition

set and image set (induced by the locally uniform convergence).

(iv) Let (“QX)Xe'N be a sequence of differential forms on G, which is unifor-

mly bounded and converges (pointwise) to a continuous differential form w on G,

then the sequence (OG(Q)X') )XG - converges (pointwise) to ¢G(EJ).

(v) For every continuous differential form & on G the potential G(LJ) is

locally extension-bounded. Example 3.2. will show that there are infinite times

differentiable functions, which have not this property.

(vi) The definition of the curve integral and - as & conseguence — our cons-—

truction of potentials depend on the choice of a development into infinite series of

the elements of E in the sense of 1.2. The mapping ¢G is not characterized by its
properties.

Proof : Applications of the preceding statements.

°.9. Corollary 1. The theorem about the equality of the mixed second partial deri-

vatives does not hold in the n. a. case, more exactly :

There exists an infinité times differentiable function f : K2 -— K, such that
for all p € K2:

? °r 3%
Y ox (p) # Xy (p).
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Proof : Define f by :

fi=¢ (xax + x ay) K2 ——— K.
K
Then we get :
o e
Ix Ay X
therefore :
¥or 22¢

Yax = const(0) %3y = const(1).

2.10. Corollary 2. Let G be an open subset of E and f : G —> E' be a continously

differentiable function on G. Then f can be répresented as the sum of two functions
g,h : G —2> E' such that :

(1) g is differentiable and locally extension-bounded on G ;

(2) n is differentiable on G with everywhere veanishing derivative.

2.11. Remark. Assume Char(K) = O, G an open subset of K. The question arises whether
exists a function §, which orders to every continuous function from G to K a primi-
tive function and furthermore has the following properties :

1

. e . . +
(1) ¢ orders to the function G the primitive function ey < 1lG(n EN) ;

(2) ¢ is K-linear ;

(3) ¢ is continuous -(relative to the canonical topology of the space of all conti-

nuous functions from G to K, which is induced by the locally uniform convergence).

The function 0, defined in 2.7. is linear and continuous. But it has not the
property (1) : For instance the primitive function of x : K — K, which one calcu-"'

lates using the method described above is the following :
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where g : K —> K is defined by

+00 +9

g( Z & a") := Z(an a)? .

n=-0 n=-0n0

=

The following theorem will show that the properties (1) and (3) are not inde-
pendent and that from this reason a function as described above generally does not

exist.

2.12. Theorem. Assume Char(K) = O and that the restriction of the valuation of K

to @ is non-trivial. Let G be an open subset of K and let C°(G,K) denote the space

of all continuous functions from G to K. Then generally it does not exist a mapping

¢ : c°(G,k) — > C°(G,K) ,

which is continuous and fulfills

1 +1
0(x"16) = == ¥ |¢

for all . n € N.

Proof : (cf. Dieudonné [1]) Let G be the "open" ball in E of radius 1 around the
center O. Assume that § is a mapping as described above. Let p be the unique prime
number such that the restriction of the valuation of K to @ is equivalent to the

p-adic valuation of Q.

Put :

converges to the zero-function on G, but (P(f ))

for all n € N. Then (f ) W nen

n‘ne€N

does not converge at all (Convergence relative to the canonical topology of
€°(G,K)).

Remark. Assume k € N, k > 1, G an open subset of E. In the same way as in the real
analysis one can define k-differential forms on G with coefficients in E' also in
the n. a. case. Using the preceding results it is easy to show that in this case

too every continuous k-differential form on G has a potential.
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3. Examples.

The examples of this section shall illustrate the connection between the
notions of continuity, (partial) differentiability and existence of primitive func-
tions. Furthermore they show some consequences of the lack of a mean value theorem

in the n. a. analysis.

3.1. Example. (cf. Dieudonné [1]) There exists an injective function £ : E —E ,

which is differentiable on E and whose derivative is vanishing everywhere.

Proof : Define f by

We get the following inequality : For all v,w € E :

v - wl? €le(v) - )" ¢ —,;—luv -wie .

3.2. Example. There exists a function f : E —> K, which is differentiable on E

with everywhere vanishing derivative, but which is not locally extension-bounded.

Proof : The valuation of K is non-trivial. Therefore there exists an a € K such
that O< |a| < 1. Assume v € E, |vll > 1. Then we can find a map i : ¥ —> N such

that
i

i(n) ]
(n+1). v

¢ minflal® la] 2"

for all n € N. Define for n € N :

n n i(n)
= = + .
Pn av , a, av a v

Let Un be the "open" ball of radius lall(n)uvu around av and Xn its charac-

teristic function. Define :
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Obviously f is differentiable on E.with everywhere vanishing derivative.
Furthermore :

I£(,) = £la)l % (ari)oivil & 2P < (aeyip, - oy

3.3. Example. There exists a function f : K2 —3> K, which is partially differen-
tiable on K2 and whose partial derivatives are vanishing everywhere, but which is
not continuous in O. Especially continuous partial differentiability does not imply
continuity.

Proof : Assume a € K, O¢ j al|< 1. For all n € N let Un be the "open" ball in K2
of radius l|a|® around the center (a" , a®). Define f as the characteristic func-—

tion of the union of the Un .

3.4, Example. There exists a function f : K — K, which is extension-bounded on K

and therefore equicontinuous on K, but which is nowhere differentiable on K.

Proof : Define f by :

+00 o +00 on
£( E a &) = S “f2n a
n=— n=-—

Obviously it holds for all b,d € K :
j£() - £(a)| ¢Iv - al ,

thus f is extension-bounded on K. Assume

.
b= b a’¢K.
n

n=-0

Let R be the subset of K defined in 1.2. Then R has at least two elements.

Therefore there exists for all j € IN an
s
b. €R - 1b.t.
5 R o

CL .
Define & := b - by ad + B ad € K. Then we get 4, # b snd
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f(da.) - £(b) g 1, if j is even,
4; = ® | o, if j is oaa.
Furthermore : 1lim dj = b, therefore : f is not differentiable at b.
J >

3.5. Example. There exists a function f : K —> K, which has no primitive function.

Proof : Let S be the set of all elements of-K, whose development into a series in
the sense of 1.2. is finite. It is easy to show that the characteristic function of

S has no primitive function.

4. Application of the curve integral to the solution of differential equations over

n. a. Banach spaces.

In this section we give an existence theorem about the solutions of n. a.
differential equations. The proof - a construction by means of the curve ‘integral-

is omitted.

L.1. Definition. Let G resp. G' be an open subset of E resp. E'. Let

Q:6x6 — L(E,E")

be a mapping. We are searching solutions f : G —> G' of the differential equation

ar= Q (p,£(p)) ()

for all p € G.

In the case E = K© , E' = Kn(m,n € N+) we regard the differential equation

dr, '«)f1
,a—;— ..... e E— F1(P’f(P))
1 m
: : (p)= :
s VW '
_n
T e

pd

m

5;“— v F (p,£(p)]
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for all p € G. Especially in the case E = E' = K we search for solutions of the

differential equation

f'(x) = F(x,f(x)).

4.2, Theorem. Let G resp. G' be an open subset of E resp. E'. Let

Q: 6 x6' — X (E,E') be a continuous mapping. Assume that
: 0:a —R,_,8g: G — G!'

are continuqus functions, Let N be an isolated subset of E. Then there exists a

solgtion
f:G——mmG
of the differential equation (%) such that
I£(p) - g(pll' < &lp)

for all p € G and moreover f and g have the same values on N.

4.3. Corollary. The set of solutions of the differential &quation (%) is dense in
the canonically topologized space of continuous functions from G to G'.

Espacially the set of potentials of a continuous differential form is dense

in the space of continuous functionms.

5. Analytic solutions of n. a. differential equations.

In the last section we have seen that the set of solutions of a n. a. diffe-
rential equation is dense in the space of continuous functions. If one regards
analytic n. a. differential equations and searches only for analytic solutions; one
gets a uniqueness theorem. Moreover an estimation of the radius of convergence of

a solution will be given which generally cannot be improved.
5.1. Theorem. Assume Char(K) = O. Let

X n-m 2
F = 2 a -x y :K —K

nm
n,m=0

be an analytic function in a neighbourhood of O.  Then there exists a unique analytic
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solution f of the differential equation
f' = F(x,f)) (1)

such that f(0) = O.

Furthermore we have the following estimation for the radius of convergence of
f : If F converges on the "closed" ball in K2 of radius r € R, around 0, then we

get :

P(£) »flexp) . (2)
maxl sup |a
n,mEMN

The exponential function and its differential equation show that this estima-

tion generally cannot be improved.

Proof : It is easy to show that there is a unique sequence (bn)n N of elements of

K such that the formal power series
00
b x®
:a n
n=

fulfills the differential equation (1). Now the statement follows if the inequality
(2) is proved.
Obviously for all k € N the (k+1)-th formal derivative of f is a sum, whose

single terms are of the form

.b n+m

9" 3y"

(,) (3.)
Flx,£(x)) £ | .. £ B, (3)

(n,m € W, , n+m c{1,...,k§ s 3y aeees jmc N, 51 o4 jm~+ n=k).

Assume r € R+ according to the assumption above. Put

oi= sup e | ™ ¢ .
n,mEWN nm
Then it holds n,m € N :
n+m o
K F(x,£(x)) (0,0)] = |ntmta_| < C ()

Snaym " n+
B aym nm Lot



37k

D. TREIBER

Using (3) and (4) one proves the following inequality :

154D (0] ¢ maxid: i
r

for all k € N. Therefore and because of the wellknown formula

we get :

0l

[2)

i)

1]
[5)

lim B [nt[ = p(exp)
n->m
. n : o 122 (0)
lim sup lbn, = 1lim sup
n—»o ' n -=>® Int|
1 max o, 1}
plexp) r
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