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On Manin's conditional algorithm
Horst G. Zimmer

Manin's conditional algorithm [2] was divised for computing

the rank and a basis of the group GQ of rational pointgs of an
elliptic curve C defined over the rationals @. According to
‘the Mordell-Weil theorem (see [8]),the group Cq is finitely
generated. However, up to now the problem of determining the
rank and a basis of C0 in the general case of an arbitrary
elliptic curve C over Q must be considered a very hard one
(compare, e.g.[7]). Manin's algorithm solves both problems under
the condition that two famous conjectures, the Weil conjecture
and the Birch and Swinnerton-Dyer conjecture, are true. In this
lecture, some ideas will be outlined regarding the implementa-
tion of the algorithm.

Let the elliptic curve C be given in Weierstrass normal form

Y2 =x3+ax+0b (a,péq)

. 3 2 N s ,
with discriminant A:=4a”+27b“(3+0). On applying a birational
transformation over Q@ of type-

X - p%x, Y - oY (p€a,p40)

to the Weierstrass equation for C, if need be, we mzy assume

the coefficients a,b of the cguation to be integers. lMoreover,
it is convenient to set up the birational transformation in

such a way that the new coefficients a,b have nminimal p-vaiues
under all p-adic exponential valugtions vy O Q.

By the Mordell-Weil theorem, the additive abelian group CQ is
a direct sum

~ N
CQ = CQ@LO
of its finite torsion subgroup Eh and a2 maximal free subgroup
eh of finite rank r. We call r the rank of the elliptic curve C

over Q. In Manin's conditional alguriihim first the renk r of C
over @ 1s determined and then =z basis of the grecup

N ~
o =/,
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is found. The torslou subgroup Cy ought to te computed in advance.

As in the proof of the Mordell-Weil theorem, the Néron-Tate

height h on C plays a crucial role in Manin's algorithm too.

We define h on Ca by means of an auxiliary function d on C

which is used in place of the Weil height h on Ca (see [ 2],

[41]). For each point P—(s,n)éca, we put §= 7 z w1th x,z€Z relatively
prime and de‘ine

a(p) := max(2 Loglal wtloglz], 3L05 [bltloglzl,, Loglx] )

disregarding those of the rational numbers a,b,x or z which are
equal to zéro, where ! im denotes the ordinary absolute value
‘on Q. The neutral element O=(w,~) of the addition in CQ is
included in the definition of 4, viz.

a(0) =

The Néron-Tate height 3 on C., can then be defined via

Qa

n
%(P) :=.1lim a2 p) for each P&

We are now in a position to state the fundamental theorem on
which Manin's algorithm is based. In our version of the theorem,
the Weil height h on C0 will be replaced by the function d on
co.
Let us first introduce some notation.

- If P1,...,Pr is a basis of‘eo, we put

H := Idet(—;-(?x(P +P) “h(p;)- h(P ).

i, J= 1,...,rloo

Clearly, the quantity H is independent of the choice of P1""’Pr
since any other basis of 60 is obtained from the given one by

a unimodular transformation of detsrminant + 1. We call H the
determinant of the elliptic curve C over Q.

Furthermore, let h'€R designate an estimate from below for the
Néron-Tate height honc \u uch that we have

0<h'< min{h(?)/PECG\ ce}.

Finally, let there be given a measure 6€R for the deviation of
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the function d on co from the Néron-Tate height ﬁ on CQ
namely,

A
d(P)-h(P) <& for each PGCQ.

Theorem (Manin). Suppose that upper bounds r'€Z and H'€R are
known for the rank r and the determinant H respectively of the
elliptic curve C over Q. Then, the set of points PECQ satisfying

the inequality

2r!

a(p) <8 + & u'? max(1,n'2(1-7')y
C
r'

vhere Cpt stands for the volume of the r'—d%fensional unit ball
in Euclidean space, generates a subgroup of CQ = CQAEQ of

index < r'!

We remark that the set of points PGCQ mentioned in the theorem
is finite since there are only finitely many points in cG having
bounded Weil height (see [8], [11]).

The proof of the theorem relies on the method of succeszive
minima with respect to the lattice generated by C in the
r-dimen51onal real space CQ ® R on which the Neron Tate heignt
A is a positive definite quadratic form (cf.(2],[11]). Since th:
kernel of the canonical Z-module homomorphism CQ*CQ®§Z is
precisely the torSion subgroup 50 of c we get an embedding cf
the free subgroup CQ— c X? & C a®R and may therefore identify
CQ with the lattice generated by c in the space CQQR

Starting off then with the set of generators of the subgroup of
finite index in cﬂ fougf in accordance with the theorem, one

can exhibit a basis of CQ by the "infinite" descent procedure
that is used in the proof of the Mordell-Weil theorem. In the
present lecture we wish to discuss some devices and methods by
which the torsion subgroup EQ and the constants occurring in the
upper bound for d(P) can be computed or at least be estimated.

1. Determination of the torsion subgroup. Manin {2]
recommends to apply purely local methods for determining the
torsion subgroup Eb of cﬁ' Instead, we proposz here to use a
strengthened version of the classical theorem of Nagell and
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Lutz giving a necessary condition for a point PGCQ to be of /
finite order. ,

Let us first recall some special results on torsion points

in ¢,. It is known (see [3],[5]) that there are elliﬁtic curves
¢ over Q having rational points of orders
1,2,3,4,5,657,8,9,10,12

and that there are no elliptic curves c over Q having rational
points of orders :

14,13,14,15,16,17,20, 24.

Dem'janenko [ 1] has shown that if the group CQ contains a point
of order 2p or p,pdenoting a prime of @, then p<509 or p<6144
respectively. On the other hand, Dem'janenko has also proved
that the order of the torsion subgroup EQ of CQ is bounded by

a constant not depending on the curve C.

On this background we can cope with the task of computing the
torsion subgroup 80 of CQ by virtue of the following strong form
of the well-known theorem of Nagell and Lutz (compare [10],[12]).
Let P denote the set of (finite) primes p of Q. Writing o

for the p-adic ekponential valuation on Q, we put for each

p€IP

Hp i= mln(2 vp(a), 3 v (v)). In this section we
designate by {y} and [y] respectively the least integer not

smaller than y€R and the greatest integer smaller than or equal
to y€R. We then use the following symbolic notation.

2 3
{m} := 17 p{“p}. {m%} =11 p{zup},
p€lP p€IP

, 3 {3-2) Zug)

o~ =2 fu} 2y, 15 527 SHq
{m;}:=p'¥p” p-1 qugemq cl1 » {m3} :=p p#EeIP q
if p$3 and

usg) ugb 2. {(3us-3 Zu)
{mf}°_3 +E P > {n3he=s spqep -
{A'g' _3} -7 {2V (a)- 3¥1 }

pEIP
2 3 3 3

Uﬁy_ ﬂpgzup],h%h=gg“p*5%' I [Z“q]



On Manin's algorithm 215

Theorem: Let P=(x,y)€2§'0 be a point of order n.
Then, the following divisibility relations hold:
{m}lx or {m }lx

according as n+ pv or n=pV(v€N) each for p=5 or 7,

(}y or {mg}ly

aécording as n#pV or n=pv(v€N) each for p=3,5 or 7,
and 2 1 2 1
y=0 or yl(w’]{s’n™3} or yl(n3){s% %}

according as n=2 or n4=2-pv or n=2-pv(v€N) each for p=5.

Remark: This theorem is strong enough to facilitate the complete
determination of the torsion subgroup ﬁh of the group CQ Tor
large classes of elliptic curves C over Q. For those classes of
curves C, the group EQ is generated by points of orders 27,
3V,5Y,2-5Y and 7Y with bounded véN. One might be tempted to

ask the question if a result of this type holds for arbitrary
elliptic curves C over Q.

The proof of the theorem proceeds along the lines of [1C] and is

given in [12].
Example (see Nagell [4]).

c: Y2=x342%.33.5x42%.33.5.79

with discriminant A=28-317-52. The non-zero points P=(x,y) of

order p=5 in CQ are

(-23.3, + 22.3%), (22.3.7, + 22.39).

We have

“2=%’ uz=1) p5=%, end =0 for q€P, q$2,3,5, hence

Therefore,

{m}=22.3|x=-2.3, 22.3.7, whereas {m}=22.3.5¢x=27.3,22.3.7;
5

2 .
{m2}=22-32]+y=+22-34,+22-35, whereas {m2}=22-32-5f1y=+22~3h,+2
5 Iy=t I Ty=¢ b
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2 1
+y=+22.3%22.35|(n?]. {20~ 3}=[ 22.3]-30=22. 57,

)

In particular, there are only 6 possibilities for Iyl°° $0ofa
torsion point P=(x,y) in 56. An easy calculation (using a pocket
calculator) reveals by means of the theorem that there are no

other torsion points in 50 besides those already found.

2. An estimate for the rank. Very little is known about the rank
r of an elliptic curve C over Q. Néron proved that there exist
curves C over Q with rank r=10 but gave no examples. Penney

and Pomerance [6] exhibited curves C over Q having a rank r>6.
However, one does not know if there are elliptic curves C over
Q of arbitrarilylarge rank or if the rank is bounded.

Following Tate [8] we give here an upper bound r' for the rank
ofé\Q under the assumption that the elliptic curve C over Q

has a rational point Po=(xo,y ) of order 2 or, what amounts to
the same, that the equation Xg+aX+b=0 has a solution xOGZ.

In case this assumption is not satisfied for the curve ¢, one
obtains an upper bound r' for r in a similar manner by adjoining
to @ a solution Xo of that equation and working over the number
field K:Q(xo) instead of Q. Now we introduce the following
numbers of primes.

s:=|{peP /p| (3x2+a) } |, t:=|{p€P /p| (3xZ+ta) }1.
Then, the number

, s+t+1  if -(3x§+ka) is not a squari}
r' =

s+t if -(3x§+4a) is'a square

is the desired upper bound for the rank r, that is,
r<r'.

3. Deviation of d from the Neron-Tate height znd a lower bound
for the Néron-Tate height. The deviation of the function d on
cQ from the Néron-Tate height'% on Cgy is bounded according to
the inequalities (compare [11])

A
-2log2 < d(P)—h(P)fgmax(% loglal,, %loglblm)+5LogZ.
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Hence, the quantity

o == % max(%Loglalm, %Loglblw)+ 5 log 2

can be taken as the first summand of the bound for d(P) in
Manin's theorem.

Next we wish to determine a lower bound h' for the Néron-Tate
neight h on C\&. Note that h(P)=0 if and only if P&,

(compare [11]). According to Manin [2] it suffices to choose

~

h' := min{5, Q(P)lpeca\co, d(P) < 20}

' A
because for aLL'PecQ such that d(P)>25, we have h(P)>. Then,
clearly ‘

A ~
min{h(P)IPECQ\CQ} > h'.

Moreover, since‘% is positive definite on ca\€e and since
there are only finitely many points P in cQ satisfying d(P)<25,-
it follows that ‘

h' > 0.

Hence, the real number h' is the desired lower bound for the
Néron-Tate height A on CQ\E'Q.

For actually determining h', one has to compute'%(P) for a
finite number of points PGCQ. The points themselves are found
by the same successive minima method from geometry of numbers
which is used in the proof of Manin's theorem. In order to
‘compute‘ﬁ(P) for a given point PGCQ, one can take the relation
(c£.[11])

o i-15 ,i-1
AP) = ap)+ ¢ 2 P2° P)
' i=1 221

in which the expressions

i-1

a(2i-1p, 21-1py := a(2ip)-ua(2i-'p)

satisfy the inequalities (compare [11])

-15ax(Floglal,, Floglbl,)+ log 2)< a(ei~'p,2 ")

< 6(%‘min(% loglal,, % logibl )+ log 2)
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for each i€N. Hence, the degree of accuracy in the calculation
A
of h(P) is evident from

- -g; (max( loglal,, Loglbl )+ log 2)
2
n - i-1
_<_/l;(P)—d(P)—Z aee! 1;?2 P)
i=1 2
(4 mln(l loglal,, loglbl )+ log 2).

On the basis of these inequalities, an approximate computation
of'ﬁ(P) is to be carried out for all P:(g,n)echEuch that d(P)<2s,
that is, in view of g:—’£ for x,z¢Z,

% max( loglal wtloglzl, Loglbl otloglzly, loglx|,)

< 9max(§ loglal,, % Log]blm)+ 10log 2.
This procedure yields eventually the searched bound h'.
4. The "infinite" descent. Let us suppose that we have found by

trial and error all points P'GCQ>8h satisfying the inequality

for d(P') as it was given in Manin's theorem. Denote these points
by P{ yose k" According to the theorem, the points P1...., k'
generate a certain subgroup c' CQ/C of finite index ixn the
max1mal free subgroup t =CQ/€ of rank r in Cg.
holds lC /2c'| =2¥, it is at this point already possible to
determlne the rank r of C over Q by finding all relations modulo
2L' satisfied by P
formula.

To exhibit a basis for the group C we first compute the classes
of the points P1,...,Pk, modulo the subgroup 23 of c0 by

trying to "divide by two" all differences pi- P5(1fl<J§k'). This
is again accomplished by virtue of the dupLication formula. Let

Pi ,...,Pi be representatives of the distinct classes modulo
k

Since there

1""’Pk" Here one has to use the duplication

23 thus obtained. Then, one carries out the "division by two"
as often as possible for each of the points P ,...,Pi and all
their finite sums. In this way one ends up WLtA certa
2-powers 21v1...va such that

ig maximal

1
P! +eee4 P! = 2 V1oV P (1<v,< eoe<v, <k)
iv1 iva Vqeeovg - =01 o -
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i

Pal
for some points Pv v GCQ. This is true because the subgroup
1+ Va

A N
c& has finite index in C

a Observe also that the P! (p=1,...,k)
P

have bounded d-value and heace bounded Néron-Tate heighth by
their construction in accordance with Manin's theorem. If need be,
this process has to be repeated for the new points which result
from the above "divisions by two".

After finitely many steps of this type we shall have constructed
a set of generators for the whole group < /22 . Let P1,...,P be
representatives in CQ of a basis of the factor group C ﬂI

Then, by the "infinite" descent made in the proof of the
Mordell-Weil theorem, these points together with certain other
points Q1""’Qn in c0 of bounded height‘i and hence of bounded
d-value generate the whole group CQ itself. It can in fact be
shown that it suffices to choose Q1,...,Qn as the entirety of
all points 0600\56 fulfilling the condition

%(Q) < 1+max(ﬁ(P.f+ cee #PL)/1 <34 < +e. <3 <T}
- J1 Jp - p =

By virtue of the estimate indicated for the difference a(P)-h(p)
in section 3, this condition can be converted into an inequality
for the d-values, namely,

d(Q) < 1% +2(2r-1)r log 2+(2r-1)r max {d(P;)},

=1y 00T
Here we have utilized the property of the Néron-Tate height %.to
be a positive definite gquadratic form on‘ea. The values d(Pi)
are bounded by an expression which depends in some way on the
bound displayed in Manin's theorem. For example, if the process
of "dividing by two" ccmes'to an end already after the first
step, one easily gets for d(Pi) the crude bound

2r
d(P;) <o+ 125%115 (2 Log 2+ + 27? H'2 max(1,h'2(1"r)))’ where
2 Cp
L:=min{1v1.._v } is taken from the relations by which the points
o

QU< ooy <
1_J1 v K

P, arise from the P!, .

i
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In any case the points Q1,...,Qn satisfying the above
inequaltiy for d(Q) are found by applying once more the
successive minima method from geometry of numbers.

Finally, one gets a baéis of the group 8 by applying the
elementary dlvisor theorem to the set of generators P1""’Pr’

1,...,Qn of c . Since the torsion subgroup c of the rational
point group c is already known by section 1, we arrive at a
basis of the whoLe group C =c0&0

5. An estimate for the determinant. It is at this stage where the
Weil conjecture and the Birch and Swinnerton-Dyer conjecture enter
‘the picture and hence where things become hypothetic.

Let us briefly report on Manin's [2] ideas in this connection.

For Ne€N denote by XN the curve uniformizable by the group

‘I‘O(N) 1= {(é g)EPSL(Z,l)IC = 0 mod N}

such that XN can be identified with the compactification of
H/PO(N), H designating the complex upper half-plane. An elliptic
curve C over Q of conductor N is said to be a Weil curve if

it arises from XN by a morphism and if certain additional con-
ditions are fulfilled (see [2]). Weil's conjecture now asserts
that every elliptic curve C over Q is a Weil curve. Taking the
Weil conjecture for granted, it can be shown that the canonical
L-series of C over Q defined by the Euler product

L(C,S) =T L(Cp,s),

p€EIP
which is known to converge in the complex half-plane Re s> %,
can be analytically continued over the whole complex plane.
Here we have (c£.[7],[9])

. -sy -5y)-1
Lcyrs) = ((1-ap s‘)(1-rrp p~ %))

for all primes p€IP at which C has good reduction such that

=Cmod p is again amnelliptic curve, this time defined over
Epe prime field Iﬁp of characteristic p. The quantities cp and
ap are characterized by the properties that
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lo:pl°° = IEbL” =Vp eand N, = 1+p-ap-Eb,

Np designating the number of points of C_ over Iéa. For the

P T
primes p€IP at which C has bad reduction we have

Leys) 1= (1-p™)7, (1407%)77, or 1

according as the reduced curve cp:=(: mod p has an ordinary decuble
point with distinct rational tangents, an ordinary double point
with irrational tangents or a cusp. (cf. [2])t

The Birch and Swinnerton-Dyer conjecture is now the assertion
that, near s=1, there holds the asymptotic expansion .

jWwix
LE,s) ~ (s=1)F M,

& 12

IS !

whereLU stands for the Tate-Shafarevich group and M is a well-
defined factor due to the infinite prime oflo and to the primes
p€IP at which C has bad reduction. Using this conjecture,an
upper bound A for the r-th derivative ET L(r)«:,s) of L{C,s) at
s=1 such that

PR AN

and a lower bound A for the factor M such that
M>x>0,

Manin [ 2] derives the estimate

H<H = T2 A

for the determinant H of the elliptic curve ¢ over Q,
It is because of this portion of Manin's algorithm that it must
be termed "conditional®.

6. Concluding remarks. Although we have outlined here some

handy methods and devices for the implementation of certain
subroutines of Manin's algorithm, there remains still a lot

of detailed work to be done. Moreover, our discussion is somewhat
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theoretical and specutative. Manin quotes in [2] Shafarevich's
opinion on the algorithm according to which the algorithm should
be used to prove the algorithmic insolubility (!) of the problem
of determining a basis of the group ¢, of rational points of an
elliptic curve C over Q and to refute (!) the Birch and
Swinnerton-Dyer conjecture. Perhaps it would be a good possibility
to start with a consideration of the elliptic curves treated by
Stephens [ 7] and combine the methods of Manin with those of
Stephens.

Hopefully this lecture will stimulate further research on Manin's
algorithm with the ultimate aim of settling the above-mentioned
problems one way or the other.
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