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On Manilas conditional algorithm
Horst G. Zimmer

Manias conditional algorithm [ 2 ] was divised for computing
the rank and a basis of the group <?/. of rational points of an
elliptic curve C defined over the rationals Q . According to
the Mordell-Weil theorem (see [ 8 ] ) , t h e group C is finitely
generated. However, up to now the problem of determining the
rank and a basis of C.. in the general case of an arbitrary
elliptic curve C over Q must be considered a very hard one
(compare, e . g . [ 7 ] ) . Manin's algorithm solves both problems under
the-condition that two famous conjectures, the Well conjecture
and the Birch and Swinnerton-Dyer conjecture, are true. In this
lecture, some ideas will be outlined regarding the implementa-
tion of the algorithm.
Let the elliptic curve C be given in Weierstrass normal fora

Y2 = X5 -». aX + b (a,b0))
•yr f)

with discriminant A:==4a +27b ( ^ O ) . On applying a birational
transformation over Q of type-

X - p^, Y - p^Y (pei.p^O)

to the Weierstrass equation for C , if need be, we may assume
the coefficients a,b of the equation to be integers. Moreover,
it is convenient to set up the birational transformation in
such a way that the new coefficients a,b^2. have minimal p-values
under all p-adic exponential valuations v on Q .
By the Mordell-Weil theorem, the additive abelian group C- is
a direct sum

^ = ̂Ô Q

of its finite torsion subgroup 5',. and a maximal free subgroup/\ u
CQ of finite rank r. We call r the rank of the elliptic curve C
over Q . In Manin*s conditional algorithm first the rank r of. C
over 0 is determined and then a basis of the group
^ r^ ^

^ = ̂Q
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is found. The torsiori subgroup CQ ought to be computed in advance.

As in the proof of the Mordell-Weil theorem, the Neron-Tate
height h on C plays a crucial role in Manias algorithm too.
Ve define h on C/. by means of an auxiliary function d on C-
which is used in place of the Veil height h on C (see [2],
[ 1 1 ] ) . For each point P^^,^)^^, we put ^== | with x,z6Z relatively
prime and define
d(P) := j max(^ log|a|^Hog|z|^, ^log |bL+loglz|^, log|x|j

disregarding those of the rational numbers a,b,x or z which are
equal to zero, where j j^ denotes the ordinary absolute value
on 0. The neutral element 0=(00,00) of the addition in CQ is
included in the definition of d, viz.

d(0) = 0.

The Neron-Tate height h on C,. can then be defined via

^(P) ;=.lim ^2P^ for each P6C,,.
n-co 2^ u

Ve are now in a position to state the fundamental theorem on
which Manias algorithm is based. In our version of the theorem,
the Weil height h on C^ will be replaced by the function d on

^
Let us first introduce some notation.

.A
If P ^ , . . . , P is a basis of C,,, we put

H :== |det(^(n(P^)-h(P^)-^(P^)))^^^^_^lo, .

Clearly, the quantity His independent of the choice of P-,,...,P
since any other basis of C,. is obtained from the given one by
a unimodular transformation of determinant ^ 1 . We call H the
determinant of the elliptic curve ^ over Q..
Furthermore, let h'€R designate an estimate from below 'for the
Neron-Tate height "n on C^X^/ such that we have

0 < h1 $ min{^(P)/PCCQ\S^}.

Finally, let there be given a measure 6^R for the deviation of
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the function d on C^ from the Neron-Tate height ̂  on C .
namely,

d(P)-^(P) ^ 6 for each P^CQ.

Theorem (Manin). Suppose that upper bounds r̂ Z and H^R are
known for the rank r and the determinant H respectively of the
elliptic curve C over Q. Then, the set of points P€C/. satisfying
the inequality

Oy» »

d(P) $ 6 + ——- H*2 maxd,^20"^)
crl

where c^,, stands for the volume of the r1-dimensional unit ball
in Euclidean space, generates a subgroup of $/. ^ ̂ n^n of
index $ rl i
We remark that the set of points P̂ — mentioned in the theorem
is finite since there are only finitely many points in C,. having
bounded Well height (see [ 8 ] , [ 1 1 ] ) .
The proof of the theorem relies on the method of successive
minima with respect to the lattice generated by C in the
r-dimensional -real space C^ ̂  R on which the Neron-'Jate height
h is a positive definite quadratic form ( c f . [ 2 ] , [ 1 1 ] ) . Since th-
kernel of the canonical ̂ -module homomorphism C^-C^iR' is

^ U Ixprecisely the torsion subgroup C^ of e . . , we get an embedding of
the free subgroup Ŝ S Ĉ /Ŝ Ĉ̂  and may therefore identify
CQ with the lattice generated by C in the space C <SR.
Starting off then with the set of generators of the subgroup of\̂finite index in C^ found in accordance with the theorem, one
can exhibit a basis of $ by the "infinite" descent procedure
that is used in the proof of the Mordell-Veil theorem. In the
present lecture we wish to discuss some devices and methods by
which the torsion subgroup S^ and the constants occurring in the
upper bound for d(P) can be computed or at least be estimated.
1 . Determination of the torsion subgroup. Manin [ 2 ]
recommends to apply purely local methods for determining the
torsion subgroup CQ of C . Instead, we propose here to use a
strengthened version of the classical theorem of Nagell and
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Lutz giving a necessary condition for a point P^c to be of
finite order. '
Let us first recall some special results on torsion points
in C^. It is known (see [5] , [5]) that there are elliptic curves
J over Q having rational points of orders
I,2,3,4,5,6,7,8,9,10,12
and that there are no elliptic curves C over Q having rational
points of orders •
I I ,15,14,15,16,17,20,24.

Dem^anenko [1 ] has shown that if the group C^ contains a point
of order 2p or p,p denoting a prime of Q, then p^509 or p<6l44
respectively. On the other hand, Dem'janenko has also proved
that the order of the torsion subgroup C? of C/. is bounded by
a constant not depending on the curve C.
On this background we can cope with the task of computing the
torsion subgroup S^ of C^ by virtue of the following strong form
of the well-known theorem of Nagell and Lutz (compare [,10] , [ 1 2 t ) <
Let IP denote the set of (finite) primes p of Q. Writing v
for the p-adic exponential valuation on a, we put for each^
p€JP

pp := min(^ Vp(a), j ^(h)). In this section we

designate by { y } and [y ] respectively the least integer not
smaller than y€R and the greatest integer smaller than or equal
to y € R . We then use the following symbolic notation.

{m} := n p^, {m2} :=n p^,
P^IP p63P

-{mj:=p^p-p^ n q^.fm^.^p^P'P^1 n q^
p+q€3P P P+q^lP

if p+5 and

(.3):̂  n ^}, 4:^3-^ n ^,
., 5+q€3P J 5k€3P

^^.^ p^p(A)-^}
pClP

l••jl!•,'LP[jl'''].l•|W^^*^lT] r, ^
p+qelp



Theorem: Let P=(x,y)e? be a point of order n.
Then, the following divisibility relations hold:
{m}|x or {m } |x
according as n+p^ or n^p^CN) each for p=5 or 7,

{ m ^ l y or { m ^ j y

according as n^ or n=pv(\/^N) each for p=3,5 or 7,
and 2. 1 i 1
y=0 or ylIn^HA"3} or yltm^A^-3}

according as n=2 or n+2-p^ or n=2•pv(\>€N) each JLb-r p=5.

Remark: This theorem is strong enough to facilitate the complete
determination of the torsion subgroup ̂  of the group C for
large classes of elliptic curves C over Q. For those classes of
curves C , the group C? is generated by points of orders 2^,
3^,5^,2-5^ and 7^ with bounded \ /€N. One might be tempted to
ask the question if a result of this type holds for arbitrary
elliptic curves C over Q.
The proof of the theorem proceeds along the lines of (^10] and is
given in [12].
Example (see Nagell [4]) .

C: Y2=X3+24.33•5X+24.53.5.79

with discriminant A=28•517 .52< The non-zero points P=(x,y) of
order p=5 in C/. are

t^5^, t 22.34), (22•5•7, :f 22•55).

We have
4 - 1^2^9 ^y^' ^^y and n^=0 for q€P, q+2,5,5, hence

j^=2, ju5=j, J^=^^dj^q=0 for q^P,q+2,3,5.

Therefore,

{^)5}=22.5|x=-25.3, 22 .3•7, whereas {m}=22•3•5 -^x=25•5,22.3.7,

{mj}=22.52|±y^22.34,±22.55, whereas {m2}=22.32.^y^22.34^22.55;
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2 1
ty=±22•34i22.35|[m2]•{A2m~3}<22.3]•36=22•57.

In particular, there are only 6 possibilities for |y|^ 4 0 of a
torsion point P=(x,y) in 6^. An easy calculation (using a pocket
calculator) reveals by means of the theorem that there are no
other torsion points in C. besides those already found.
2. An estimate for the rank. Very little is known about the rank
r of an elliptic curve C over Q. Neron proved that there exist
curves C over Q with rank r=10 but gave no examples. Penney
and Pomerance [ 6 ] exhibited curves C over Q having a rank r^6.
However, one does not know if there are elliptic curves C over
Q of arbitrarilylarge rank or if the rank is bounded.
Following Tate [8] we give here an upper bound r' for the rank
of $„ under the assumption that the elliptic curve C over Q
has a rational point ^r^C^tyo) of order 2 or, what amounts to
the same, that the equation x5+aX+b=0 has a solution x €Z.
In case this assumption is not satisfied for the curve C , one
obtains an upper bound r' for r in a similar manner by adjoining
to Q a solution x of that equation and working over the number
field K==Q(x ) instead of Q. Now we introduce the following
numbers of primes.
s : = | { p e P / p | ( 3 x ^ a ) } | , t : = | { p ^ l P / p l ( 3 x ^ + 4 a ) } ! .

Then, the number

( s+t+1 if -(3x +4a) is not a square )
P t • — - V• — ? ^ rs+t if -(3x^+4a) is'a square j

is the desired upper bound for the rank r, that is,
r ̂  rt •
3. Deviation of d from the Neron-Tate height a-nd a lower bound
for the Neron-Tate height. The deviation of the function d on
C,. from the Neron-Tate height h on C,. is bounded according to
the inequalities (compare [ 1 1 ] )

-2log2 <, d(P)-1i(P)^max(^ logla|^, 5log|b|j+5log2.
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Hence, the quantity

6 := | max(^log|a|^, ^log|b|^)+ 5 log 2

can be taken as the first summand of the bound for d(P) in
Manin*s theorem.
Next we wish to determine a lower bound h1 for the Neron-Tate
height 'n on C A C ? . Note that^P)^ if and only if P^S

(compare [ 1 1 ] ) . According to Manin [2] it suffices to choose

h1 := min{6, n(P) |P^ C^, d(P) < 26 }

because for all P6C such that d(P)^26, we have h(P)^6. Then,
clearly

min{n(P)|P^C^\^} ^ h 1 .

Moreover, since h is positive definite on CAc^ and since
there are only finitely many points P in C,. satisfying d(P)<26,
it follows that

h f > 0.

Hence, the real number h* is the desired lower bound for the
Neron-Tate height^ on C /\C^.

For actually determining h ' , one has to compute h(P) for a
finite number of points P^Co. The points themselves are found
by the same successive minima method from geometry of numbers
which is used in the proof of Manin*s theorem. In order to
compute h(P) for a given po.int P^Q» one can take the relation
(cf.[11])

-n(p) = d(p), ^ d(2 i-1P2 i-1P)
i=1 2"1

in which the expressions

d(2i~1P, 2 i~1P) := d(2iP)-4d(2i"1P)

satisfy the inequalities (compare [ 1 1 ] )

-1^nax(^log|a|^, jloglblj + log 2)$ d(2i-1P,2i"1P)

5 6(^min(^ logja|^, ^ logjb!^)+ log 2)
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for each i^N. Hence, the degree of accuracy in the calculation
of h(P) is evident from

- -^ (Tnax(|r log)a|^, j log|b|j+, log 2)

^s. ^ ^/o^""^n O^-~^D^
< h(P)-d(P)- L d^——^-2——p)

i=1 2"1

$ -ĵ  min(^ log|aL, j log|b|^)+ log 2).

On the basis of these inequalities, an approximate computation
of h(P) is to be carried out for all P=(g ,Ti)€CQ\Csuch that d(P)<25 ,
that is , in view of § ~ for x,2^

H max(|r log|a|^+log|z1^, ^ log|b|^+loglz|^, logjxl^)

< 9max(^ logjal^, ^ log|b|^)+ 10log2,
This procedure yields eventually the searched bound h 1 .
^. The "infinite" descent. Let us suppose that we have found by
trial and error all points P'GCAc/. satisfying the inequality
for d(P t ) as it was given in Manias theorem. Denote these points
by R-* ,...,?,,. According to the theorem, the points PJ,, . •. ,P,,
generate a certain subgroup C/1 ^ C/'/Cp of finite index in the
maximal free subgroup C^^.yfi^ o^ rank r in C,-.. Since there,̂ \ . ̂  . -p u u u u
holds |C.1 /2G^|=2 , it is at this point already possible to
determine the rank r of C over Q by finding all relations modulo
A

2^Q satisfied by PJ.,...,P,,. Here one has to use the duplication
formula.
To exhibit a basis for the group C/, we first compute the classes
of the points PJ,...,P,1, modulo the subgroup 2^ of C.. by
trying to "divide by two" all differences P.'-P^I^Kj^k*). This

~ <J """
is again accomplished by virtue of the duplication formula. Let
PJ , . . . ,P? be representatives of the distinct classes modulo
^1 ^

2^ thus obtained. Then, one carries out the "division by two"
as often as possible for each of the points P.' ,...,P. and all
their finite sums. In this way one ends up with certain maximal
2-powers 2 l^1...^a such that

\ +"'+ \, = ̂ ''"^ ^....a ̂ ^ --^a^)
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A
for some points P ^rr This is true because the subgroup

^ • - • \ > a u

C- has finite index in C,.. Observe also that the P. ( p=1 , . . . , k )

have bounded d-value and hence bounded Neron-Tate height'?! by
their construction in accordance with Manin's theorem. If need be,
this process has to be repeated for the new points which result
from the above "divisions by two".
After finitely many steps of this type we shall have constructed

/\ , ^
a set of generators for the whole group 0^/2^. Let P ^ , . . . , P ^ be
representatives in CQ of a basis of the factor group 0^/23^.
Then, by the "infinite" descent made in the proof of the
Mordell-Weil theorem, these points together with certain other
points Q - » , . . . , C L in C.. of bounded height^ and hence of bounded
d-value generate the whole group C^ itself. It can in fact be
shown that it suffices to choose Q ^ , . . . , Q as the entirety of
all points Q6C \£' fulfilling the condition

'h(Q) < 1+max{h(P.+ • • • +P- )/1 < O-i < • - • < 3 < r}.*° J1 Jp ' P

By virtue of the estimate indicated for the difference d(P)-h(P)
in section 5, this condition can be converted into an inequality
for the d-values, namely,

d(Q) < 1-h5+2(2r-1)r log 2+(2r-1)r max {d(P,)} .
i=1,—^ 1

^ ^Here we have utilized the property of the Neron-Tate height h to
be a positive definite quadratic form on C/.. The values d(P.)
are bounded by an expression which depends in some way on the
bound displayed in Manias theorem. For example, if the process
of "dividing by two" comes 'to an end already after the first
step, one easily gets for d(P . ) the crude bound

d(p ) ^ 6+ ^2k,"1')k (2 log 2^)+ —— H1 2 maxO.h120"^)) where
2 c^- ^

l:=min{l } is taken from the relations by which the points
1 * * ' a

1^ <.. •<v^k

P. arise from the P . » .
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In any case the points Q ^ , « . . » C L satisfying the above
inequality for d(Q) are found by applying once more the
successive minima method from geometry of numbers.

y\Finally, one gets a basis of the group C^ by applying the
elementary divisor theorem to the set of generators P ^ , . . . , P -•^ <̂ > i rC L , . . . , Q ofC^. Since the torsion subgroup C,. of the rational
point group C is already known by section 1 , we arrive at au ^ ̂basis of the whole group ̂ ^nO^o-
3. An estimate for the determinant. It is at this stage where the
Well conjecture and the Birch and Swinnerton-Dyer conjecture enter
the picture and hence where things become hypothetic.
Let us briefly report on Manin's [ 2 ] ideas in this connection.
For NCN denote by Xjr the curve uniformizable by the group
F^(N) := { ( ^ ^)€PSL(2,Z)|C = 0 mod N}

such that Xxr can be identified with the compactification of
H/r^(N), H designating the complex upper half-plane. An elliptic
curve C over Q of conductor N is said to be a Veil curve if
it arises from X̂  by a morphism and if certain additional con-
ditions are fulfilled (see [ 2 ] ) . Veil^ con.iecture now asserts
that every elliptic curve C over a is a Weil curve. Taking the
Well conjecture for granted, it can be shown that the canonical
L-series of C over a defined by the Euler product
L ( C , s ) = n L(C , s ) ,

p^JP p

which is known to converge in the complex half-plane Re s> | " ,
can be analytically continued over the whole complex plane.
Here we h a v e ( c f . [ 7 ] , [ 9 ] )

L (Cp,s) := (d-app-^d-TTp p^ ) ) " 1

for all primes p€3P at which C has good reduction such that
C :==Cmod p is again anelliptic curve, this time defined over
the prime field JF of characteristic p. The quantities a and
a are characterized by the properties that
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l^pL = l^pL = \TP and Np == l+p-Op-^,

N designating the number of points of C over ]F , For the

primes pCP at which C has bad reduction we have

L(Cp,s) := d-p"^)"1, d+p'5)"1, or 1

according as the reduced curve C :=C mod p has an ordinary d o u b V e
point with distinct rational tangents, an ordinary double pbimt
with irrational tangents or a cusp. (cf. [2]).

The Birch and Swinnerton-Dyer conjecture is now the assert!or'
that, near s=1, there holds the asymptotic expansion ..

„ I L U l H
L(C,s) - (s-1)3- ———— M,p.i2
wh,erelil stands for the Tate-Shafarevich group and M is a well-
defined factor due to the infinite prime of Q and to the primes
p€3P at which C has bad reduction. Using this conjecture.r-m

1 (r*'\upper bound A for the r-th derivative —7- L' '(c.s) of L(c,s) atr •
s=1 such that

l^rL^e.Dl^A,

and a lower bound \ for the factor M such that

M ^ X > 0,

Manin [2] derives the estimate

H $ H* := IS^A x~1

for the determinant H of the elliptic curve C over G,
It is because of this portion of Manin's algorithm that it must
be termed "conditional".

6. Concluding remarks. Although we have outlined here soae
handy methods and devices for the implementation of certain
subroutines of Manin1s algorithm, there remains still a tot
of detailed work to be done. Moreover, our discussion is somewhat
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theoretical and speculative. Manin quotes in [ 2 ] Shafarevich*s
opinion on the algorithm according to which the algorithm should
be used to prove the algorithmic insolubility ( . l ) of the problem
of determining a basis of the group C/. of rational points of an
elliptic curve C over Q and to refute ( ! ) the Birch and
Swinnerton-Dyer conjecture. Perhaps it would be a good possibility
to start with a consideration of the elliptic curves treated by
Stephens [ 7 ] and combine the methods of Manin with those of
Stephens.
Hopefully this lecture will stimulate further research on Manin*s
algorithm with the ultimate aim of settling the above-mentioned
problems one way or the other.
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