J-B. HIRIART-URRUTY
New concepts in nondifferentiable programming

Mémoires de la S. M. F., tome 60 (1979), p. 57-85
<http://www.numdam.org/item?id=MSMF_1979__60__57 0>

© Mémoires de 1a S. M. F,, 1979, tous droits réservés.

L’acces aux archives de la revue « Mémoires de la S. M. F. » (http:/smf.
emath.fr/Publications/Memoires/Presentation.html) implique 1’accord avec les
conditions générales d’utilisation (http:/www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=MSMF_1979__60__57_0
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Analyse non convexe [1977. Pau] 57
Bull. Soc. math. France,
Mémoire 60, 1979, p. 57-85.

NEW CONCEPTS IN NONDIFFERENTIABLE PROGRAMMING

J-B._ Hiriart-Urruty

Introduction. Numerous studies have been devoted to the determination of the first order necessary

optimality conditions for an optimization problem. The study of such conditions and the applications to

" different problems have first been made in a geometrical form, using for that conical approximations of a
subset (Dubovitskii and Milyutin’s formalism and its extensions) and separation theorems for convex cones.
In differentiable programming, the objective function and the functions defining the constraint set
(equalities, inequalities, mixed data) are supposed to be differentiable at the considered optimal point.
The best known necessary optimality criterion for such a mathematical programming problem is the Kuhn-
Tucker criterion. In order for the Kuhn-Tucker criterion to hold, one must impose a constraint qualification
on the constraints of the problem; various constraint qualifications have been considered: condit~ions on
the geometry of the constraint, on the representétion form of the constraint, conditions combining the
objective function and the functions defining the constraints. .. . The introduction of the notion of
subdifferential in convex analysis has allowed the extension of optimality conditions (and their applications)
to nondifferentiable convex problems by replacing the notion of gradient by that of subdifferential. This
concept has appeared very fruitful to handle nondifferentiable convex problems.

During the last years, different attempts in considering nondifferentiable nonconvex problems have
been made: in the absence of both differentiability and convexity assumptions on the functions involved
in the problem, the first step was in defining a new concept coinciding with the notion of gradient in the
differentiable case and coinciding with the notion of subdifferential in the convex case. In Part |, we
mention some ““disconvexifying” processes which have been recently developed. This enumeration,
although nonexhaustive, may appear to the reader like a catalogue of definitions. We thought it was not
fruitless to recall these different approaches and to show the evolution of ideas and the successive general-
izations. In fact, each of these concepts has its own interest and for each introduced notion, there exists a
class of functions (including the differentiable or convex ones) which is well adapted. Among all these
coneepts, we shall emphasize in the sequel the concept of generalized gradient for locally Lipschitz
functions.

The Part 11 of this paper deals with the different conical approximations of a subset S at x, €S.
Beside the cones of feasible displacements which are classical in mathematical programming, we give some
further details about the concept of tangent cone such as introduced by F.H. Clarke in [13] and we studied
in [35] in a Banach space setting. The functions pg and Ag connected with S and introduced in [35]
play a role similar to those of the indicator function 8g and the distance function; wespecify some of
their properties in the context of convex analysis as well as their influences in the comparison results

between tangent cones.



58

The Part |11 is concerned with the “functional’ part of the ““geometrical” notions of Part 1. Recalling.
the definitions of different generalized subdifferentials and generalized gradients, comparison results and
examples are given.

The Part IV of this study is devoted to some examples of necessarv (and in certain cases of sufficient)
optimality conditions for a nondifferentiable nonconvex optimization problem. The references to develop-
ments on the subject are also indicated.

In many mathematical programming problems, the objective function as well as the functions deﬁnipg
the constraints occur to be composite functions. The Part V is exclusively concerned with chain fules on .
generalized gradients of locally Lipschitz functions. Beside those already existing, we establish a new chain
rule for generalized gradients: the first result in this sense is a general inclusion between generalized -
gradients of the composing functions; after we give sufficient conditions for this inclusion to be an equality.

In the list of references, we just quoted the papers related to the introduction of new concepts in
nondifferentiable programming and to their applications to necessary optimality conditions. In particular,

we hold apart the papers specifically dealing with the study of algorithms for nondifferentiable problems.
Part I: SOME “DISCONVEXIFYING"” PROCESSES.

A.1. B. N. Pschenichnyi’s work [55] was probably one of the first attempts in considering nondifferentiable
nonconvex functions. Let f be a function defined on a topological vector space E and taking values in

R. f issaid to be quasi-differentiable at x, € E in the sense of B. N. Pschenichnyi if

" _ -1 ..
(1.1) f(xgd) = )\l_»>n6+ [flxg +Ad) = fix X" exists for all d
and if
(1.2) there exists a nonempty weak* closed subset Mg(x,) of E* such that

flxq.d) = !Vlax (x*, d
x*EMglx)

If f is Gateaux-differentiable at x, it is quasi-differentiable at x, and Mg(xy) = {Vfix,)}; likewise, if
is a convex function, 9f(xg) = M¢(x,). The properties of quasi-differentiable functions are studied in
B. N. Pschenichnyi’s book [55] ; the notion of quasi-differentiability is examined and related to fractional
programming in [9] ; Lagrangean conditions for a quasi-differentiable optimization problem are considered
in [17].
R. Janin generalized the given definition to functions taking values in R by saying that f is sub-linearizable
at x, when the limit exists in (1.1) (possibly + or =) and when the function d = '(x5;d) is convex

(as a function taking values in R). Theset Mg(x,) is defined as in (1.2) by setting:
(1.3) x* EM¢lx,) « YVdEE, (x’,d)<f’(x°; d)

Particular sub-classes of the class of sub-linearizable functions (a/most convex functions of the 15t order, of

the 29 order . . . ) are also exhibited by R. Janin; properties of such functions are detailed in the Chapter |
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of [38].

In these two neighboring definitions ((1.1), (1.2) and (1.3)), it is supposed on the one hand that the limit
exists in (1.1) and on the other hand that the function d = f'(xq: d) isconvex. This last {stringent)
cendition permits consicering the function #(x;.) as a support functior and introducing the convex
set Mglx,).

We shall consider again the quasi-differentiable functions in the Part V.

A.2. Definitions which come near to the definitions of convex analysis are given by E. A. Nurminskii [48]
in the following manner: given a function f from a finite-dimensional euclidean vector space E,, into

R, f is said to be weakly convex if for every x, € E there exists a nonempty set M¢(x,) of elements
x* such that forall x €E

(1.4) flx) > f(x;) +(x*, x—xg) +rlxy,x)  where

(1.5) (X, x)llx-—xc,ll'1 =0 for x> x, uniformly with respect to x, in each compact
subset of E .

The set M¢(xq) of elements x* satisfying (1.4) is a convex compact subset, supposed to be nonempty by
definition: that is the set of quasi-gradients of f at x,. Of course, by changing the sense of the inequality
(1.4), one has the definition of weakly concave functions. If f is convex, M¢(xg) is the subdifferential
9f(xg) for all points Xo €Eq.

In the definition of weakly convex functions, the relation (1.5) has to be verified uniformly in each
compact subset of En; so,a continuously differentiable function is weakly convex (and concave) with as
unique quasi-gradient at x,, Vf(xg).

By adding —e in the right-hand side of the inequality (1.4), the concept of e-quasi-gradient is introduced
by E. A. Nurminskii and A. A. Zhelikhovskii [49] who also give an iterative procedure for the minimization
of weakly convex functions, formulated in terms of e-quasi-gradients.

The class of quasi-differentiable {resp. sub-linearizable, weakly convex) functions is stable for certain usual

operations such as addition, maximum of a family of functions. .. .
A3. If one sets the inequality {1.4) with only the following condition on the residual term r:
(1.8) lim  rixg, xMix=xoI1 =0

X=Xq

one finds the notion of >gradient (and of <gradient with the reversed inequality for (1.4)) studied by
M. S. Bazaraa, J. J. Goode and Z. Nashed [4]. If f is a convex function, for each point xg, the set of
>-gradients of f at x is the subdifferential oflx,) and if f is concave, the <-gradients are the

supgradients. In relation with the differentiability properties of a function, we have the following results:

(1.7) If x] and x3% are> and <-gradients of f at x, then f is Fréchet-differentiable at x, and
x}=x3=Vflx,) [4, Theorem 4.1]
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(1.8) If f is Fréchet-differentiable at x,, Vf(xy) is the unique >-gradient and the unique <-gradient.
Concerning the support function of the set of =>-gradients of f at Xg (denoted by 3 > f(xo)), one has
necessarily [4, Theorem 3.1]: '

{1.9) For x* €0 2> f(xo), Yd, (x*,3d) < lim i_pf {f(xo +Ad) - f(xo)] Nl
A0
that is
- . . -1
(1.10) vd, & 3>f(xo)(d) < ;:T(I)Q_f [f(x°+)\d) —f(xo)]A

As noticed by M. S. Bazaraa et a/ [4, p. 399], the relation (1.9) gives a necessary but not sufficient
condition for a vector x* to be a >-gradient. In fact, there is very little to change in (1.9) to have a -
necessary and sufficient condition (see A.4 below). j

The notions of > and <-gradients are related to the cones of feasible displacements for the epigraph and
for the hypograph of f from (xo, f(xo)) [4, Theorem 3.2] ; we shall come again to these geometrical

characterizations later on.

A.4. The condition (1.9) which is necessary for x* €23 > f(x,) leads to the consideration at x, of
different convex subsets the definitions of which are analogous to that of (1.9) but with different lower
and upper limits in the right-hand side‘. This approach (in a general context) is due to J-P. Penot [52, 53]
who,-using the.way in which the derivatives of Denjoy, Young, Saks generalize the notion of a derivative of
a function defined on R, introduced different concepts of generalized subdifferentials.

Let E be areal Banach space, let f: E = R be finite at Xq. In fact, J-P. Penot's definitions are given in
"a more general context, by considering functions defined on a topological vector space and taking values in

an ordered topological vector space [53]. For our particular case, J-P. Penot defines successively:

(1.11) VAEE,  flgid)= limint [fixg +Av) = flxg)] At

v—>d
Fixg:d) = limsyp [fixg +Av) = flxg)] A"
Proid) = Ty (Mo +2) = flxol]

v—>d
and the analogous “radial” definitions:
(1.12) fixg;d) = liminf [flxg +Ad) = f(xg)]A~!
IrlXo )\*Oll o )
Hix A= I _ -1
f(xg: d) lir::(s)gp [f(xg +Ad) — f(x)IX

These definitions lead to the definitions of the Jower subdifferential and of the upper subdifferential of f

at x4 by setting:
(1.13) x* €9f(xy) = ¥ d, (x*,d) < flxq: d)

x* €3f(x,) * Vd, (x*,d) < f(xy;d)
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The radial lower subdifferential 3,f(x,) and the radial upper subdifferential 'a'f(xo) are defined in the
same way starting from the definitions given in (1.12).

To make connections with what is seen above in Section A.3, one easily shows that 3 > fixg) is exactly
3f(xg). As for the preceding approaches, one can relate these different notions to that of subdifferentia-
bility for a convex function and to those of differentiabilities for Gateaux (Hadamard, Fréchet. . . )-
differentiable functions.

The different directional derivatives introduced in (1.11) and (1.12) are not generain convex functions

(as functions of d € E). The support functions of the different generalized subdifferentials are the
biconjugate functions of the corresponding directional derivatives and thereby may be identically equal to
—oo (for instance, B.Qf(xo) = [f(xg:.)]**). When one cons.iders a-nondif‘ferentiable function, one cannot
say if for all points, f has >-gradients or <-gradients or if 9f(x), 3"f(x) ... are nonempty. Thatisa
difficulty in the utilization of these concepts and in the study of necessary optimality conditions [53, §5].
To assure that the generalized subdifferentials 9f(x,) and 5f(x°) are nonenipty, it is necessary to make
assumptions which express a8 boundedness property (in a neighborhood of xo) and a convexity property of
the functions f(xq:.) and f(x,;.). For that, the class of unscarped, tangentially convex functions and

the class of smooth, inwardly tangentially convex functions are considered by J-P. Penot [53, 3.6—3.12] .

A.5. In mathematical programming, an important class of functions is the class of quasi-convex functions.
" Afunction f: E~>R definedona topological vector space is said to be quasi-convex if S, (f) defined by

{x €E | f(x) <A} isconvex for all A. For nondifferentiable quasi-convex functions, two neighboring

concepts have been recently introduced and studied.

Let f be a quasi-convex function, finite at x,. H. J. Greenberg and W. P. Pierskalla [28], Y. I. Zabotin,

A. |. Korablev and R. F. Khabibullin [63] defined the following set:

(1.14) , 3*f(xo) = {x* €E* | f(x) < flxo) = (x*, x—x,) < 0}

Contrary to previous definitions, this concept is a cone which is related to the normal cones to the level
sets Sy (f). H.J. Greenberget af called 3*f(x,) the quasi-subdifferential of f at x., whereas Y. |. Zabotin
et al called it the generalized support of f at xg.

In a slightly different manner, J-P. Crouzeix [18] introduced the tangential of f at xq as following:
(1.15) x* €Tf(xg) < VA<f(xg), Sup [{x*, x—xg)|x €S,(f)] <0

Each of these two concepts has its own interest; the properties of the tangential have been studied in

connection with conjugacy and duality theory in quasi-convex analysis [18, 19].

A.6. A notion which is related in a certain sense to Brf (or 3f) is the notion of generalized gradient of a
function in the s‘ense of F. H. Clarke [12] (see also N. Z. Shor [59]). Let us recall this definition: given a
locally Lipschitz function f: R™ — R, that is to say a function satisfying a Lipschitz condition on all
bounded subsets of R, the generalized gradient of f at X is the convex compact subset denoted of(xy)

(like the subdifferential) and the support function of which is:
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(1.16) d = f(xg/d) = limsup [f(x +Ad) — f(x)]A~"1
X "Xo
Aot

in other words

{1.17) x* €iflxg) ~ Vd, (x*,ds < i"(xg;d)

Owing to the Lipschitz property of f in a neighborhood of Xo, let us remark that we also have:

f'lxgid) = limsup  [flx +av) — f(x)] A"
X=+Xq, v=>d
A-o*

Moreover, if we denote

Yd, fxgd = liminf [f(x +2d) — f(x)]x~"
X "Xo
Aot

an equivalent definition of 9f(x) is:
x* € df(xg) # Vd, (x*,d) > f.(x,;d)

If we consider any function f: R" = R, the function f'(xo,' . ) is necessarily a convex function; if,
moreover, f is a locally Lipschitz function, the generalized gradient is nonempty for all x. The definitions
(1.15) and (1.17) have been considered again in a Banach space context [14, 15].

An equivalent definition of 3f(xg) ina finite-dimensional context is the following one: a locally Lipschitz
function is, according to a Rademacher’s theorem{see [60] or [39] ), differentiable almost everywhere; if

we denote by D the set of points where f is differentiable, we have:
(1.18) 3f(xg) = co { lim Vf(x;) I x; > x4, x; €D}
|=>o0

This kind of characterization of the generalized gradient of a locally Lipschitz function f has been studied
when f is defined on a separable Banach space by L. Thibault [61]. Among all the properties of the
generalized gradient, let us recall those ones which will be continually used in the sequel. Let E be a real
Banach space, let f, f{, fp, ... belocally Lipschitz functions defined on E, let the generalized gradient of
such functions be defined as in (1.17); then we have [14] :

(1.19)  3f(x,) is a nonempty weak*-compact subset of E*

{1.20) if f is Fréchet-differentiable at x, the derivative being strong at x (50, p. 711, [47)),
9f(x,) is reduced to the Fréchet-derivative of f at x5 If f isconvex, of(xg) coincides with
the subdifferential of f at x in the sense of convex analysis.

(1.21)  3(fq + fo)lx) C afyixg) +3fa(x,) '

(1.22)  3(-fxg) = —3f(xy).

General chain rules on generalized gradients will be considered in the last section. The first part of the
relation (1.20) shows that the generalized gradient is a generalization of the concept of strong derivative.

A sub-class of locally Lipschitz functions, called we/l-behaved functions, has been considered for numerical
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purposes by A. Feuer [23]. When E = RM, a concept of e-generalized gradient has been introduced by

A. A. Goldstein [25] in order to define a method of descent for locally Lipschitz functions.

We now consider a nonempty subset S of E and we let dg be its distance function. In a first approach,
F. H. Clarke considered E = R", S closed, [13],and defined the normality to S at X as following: the

normal cone to S at xy €S is the closed convex cone denoted by N(S; xq) (or Ns(xo))' such that
(1.23) N(S;xq) = Eéads(xo) (closed conical hull of 3dg(x,))

or equivalently

(1.24) N(S; xo) =co { ilj_n;nw Aj(xi=X;)} with ;>0, x;=>xq and X; apointof S closest to x;.
A slight different definition is considered when E is a Banach space [14, Definition 2]. The generalization
of the notion of generalized gradient to a class of functions broader. than the class of locally Lipschitz
functions has been attempted by thé way of the normal cone to the epigraph of f at (xg, f(xo)) [13,
Proposition 3.18]. Let f: R" > R’(= R U {+°}) be a lower semi-continuous (l.s.c.) function, let xqo be

a point where f is finite; then the generalized gradient is defined by
(1.25) of(xg) = {x* € R | (x*, —1) € Nepif (xo flxgN} .

This is a geometrical definition and thereby it is more difficult to work with it. We adopted the same
definition in a Banach space context for a function taking possibly values in R; for details see [35]. For a
function taking values in R, f'(xo;. ) defined in (1.16) is convex (as a function from E to ﬁ) and one
would have defined a sort of generalized gradient by adopting the same definition as in (1.17). Let us note
at once that this notion does not coincide with that one geometrically defined in (1.25); exarﬁp|e:

f(x) = —|x|y’, af(0) = P and adopting the definition (1.17), af(0) would be R.

For some comparison results between the generalized gradient and some other concepts recalled in this

Part |, see Parts |1l and V.

Part I1: CONES CONNECTED WITH A SUBSET OF A BANACH SPACE.

1LA. Let E be areal Banach space, let S be a subset of E. By /ntS, ¢ and bdS, we denote respectively
the interior, the closure and the boundary of S. By S we mean the complementary set of S in E and
the interior of SC will be denoted exzS. In the sequel, by E; we shall mean the topological dual space E*
endowed with the weak* topology. B* is the unit ball in E* and the norm of an element x* €E* is
denoted by [[x*[l. .

If L is alinear topological space and L* its topological dual space, the polar cone of A C L is given by:
A°=(x*EL*|VaEA, (x*a) <0}

We recall the definitions of several kinds of feasible displacements which are classical in mathematical
programming. Let S be a nonempty subset of E and x, € cfS.

Let Sy(xg) = (S—xe)t‘1 for every t>0; V(x,) denoting the filter of neighbo;hoods of x4 in E, the
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family {st("o’ 1t>0; VIxo)} is a filtered family [6, p. 126—126].
Definition 1. d €E /s said to be an adherent displacement for S from x if and only if
de tIITSI..Lp Sylxg)= {dEE |3 u, 40, d, = d with xq +p,d €S}

An equivalent definition of an adherent displacement d is given by saying that there exists a sequence
{xp} €S converging to x, and a nonnegative real sequence {A,} such that d= 'I1i_rr’1‘,l° Aplxp=xg). A
_slightly different definition consists in considering the weak adherent displacements d, that is to say by

supposing in the definition above that X (x,—x,) converges weakly to d; see (5, 27].

Definition 2. d € E /s said to be an interior displacement for S from x iff for every sequence {dp}
-
converging to d and for every sequence {\,} CR + converging to 0, one has xo +\d €S for n

sufficiently large.

The set of interior displacements will be denoted by I(S; x,) {or Ig(xy)) and the set of adherent
displacements by T(S;xo) {or Tglxo)). IfS:xy) isan open cone and T(S; x,) a closed one. For various

properties of these cones, we refer to the Chapter | of P-J. Laurent’s book [40].

The radjal cones of feasible displacements which correspond to T(S; x,) and I{S; x,) are defined as

following:

Definition 3. d €E /s said to be a radial adherent displacement for S from x if there exists a sequence

{)\n} C R: converging to O such that Xg+ A d €S forall n.

Definition 4. d EE /s said to be a radial interior displacement for S from x if there exists € >0 such
that x, +\dES forall A€ 10, €l.

The set of radial adherent displacements will be denoted by T'(S; xg) lor T;(xo)) and the set of radial
interior displacements by D(S;x,) (or DS(xo))' If S is locally star-shaped at x,, D(S;x,) = TAS; Xg).
Generally, T(S; xo) and D(S;x,) have no topological property.

All these cones have been extensively used (under different names) in mathematical programming since
their definitions for geometrical purposes in the thirties. The cone of interior displacements is essentially
used when the constraint set S is defined by inequalities and the cone of adherent displacements when S
is defined by equalities. The cone D(S;x) (sometimes called cone of feasible directions) has a particular

interest for the algorithmic point of view (see for instance [64, §2.4]).

Beside these notions, F. H. Clarke introduced in the case where E is finite-dimensional and S a closed
subset of E the notion of tangentconeto S at x; €S [13, Definition 3.6] . We adopted the same defi-
nition in the context of a Banach space for S being an arbitrary nonempty subset of E and x4 € ¢S
[35, Definition 3]. We recall that the tangent cone ,_O/‘('S; o) is the closed convex cone defined as

following:

(2.1) J(5: %) = [3dg(xo)]° = {d € E | dglxgid) =0}
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We have given a sequential characterization of 978 ;%) when x, € cfS [35, Theorem 1]. We make
here the case Xo € bdS a little more precise.

Theorem 1. Let SCE and x,€bdS; d€ 975; Xo) iff for every sequence {x,} C bdS converging to
Xq and fcr every sequence {\yl C R: converging to 0, there exists a sequence {d.} converging tc d
such that x, +\,d, €S for all n. )

Proof. The same characterization has been proved by replacing ** {xp} € bdS” by “{x,} CcS” [35,
Theorem 1] ; so the announced property holds if d € QO/TS; "o)- Conversely, let us consider a sequence
{xn} € cfS converging to x, and a sequence Al c R: converging to 0. We examine the quantity
dg(xp +And).

If ds(xn +2nd) >0, x, +A,d € extS; so, there exists in € [xn, Xp + knd[ which is on bdS. Let

o, € 10, 1] be such that Xn=Xp+(1- a,.l)('xn +Apd) and we set pj = o A, The sequence {u,} C R:_
converges to 0 and T‘n +pnd=x,+Ad. {X;} CbdS convergesto x, and according to the announced
property, there exists a sequence {d,} convergingto d such that X, + p,d, €S forall n. Therefore,
dg(Xp, + upd) S pplid,—dll S Aplldy—dli . Briefly, in any case [dglx, + 7\nd)] kn—1 <|ld,—dll ; conse-
quently, .-I.Tw [dglxp +Apd)] )‘n_1 =0 for the considered sequences {x,} and {A,}. So,d€ 975; Xg)
[35, characterization (1.2)].

Observations. 1. As for T(S; x.), f/v'(s; Xo) depends only on adherent points of S (%;xo) is
chQS; Xg)). Let us bear in mind that g"(s; Xg) isaconvex cone which a/ways is included in the
(non necessarily convex) cone T(S; Xo) [35, Theorem 2]. A more precise comparison result between

thése two types of cones is given for E finite-dimensional in [32].

2. The elements d € 10](18: Xg) express a certain *“tangency”’ property in a neighborhood
of Xo but contrary to the other cones 1(S; x,), T(S; xo), ..., One cannot say that @S;X ) isreally
a conical approximation of S at x,. For example, if S1 = {(xq, xg) [ xo + xf +|x4/=0} and
32 = {(xq, x2) I xg — Log (Ix4] + 1) <0}, at Xo = {0,0) one has: g781;x°) = {0} and @sz;xo) is
{ixq, x9) 19+ Ixq] <0} .

Concerning th_e cones of adherent displacements, we only have:
bd(T(S; xo)) C T(bdS; x4) C TI(S; x) N T(SS; Xg) (xg € bdS)

whereas for the tangent cones, we always have: gjbds; Xg) = CO]'(S; Xg) N LJ/TSC; xo) [35].
3. Itis worthwhile observing that if S4 C Sy and if x4 € (bdS¢) N (bdSy) we generally
cannot assert that 9781 ; xo) C 9781 ;Xg). Example:

$1= ((x9, xg) €RZ [ xg =x2 >0}, 5= {(x, xg) € R*XR | xg — x3 sin 1/x4 >0} U {(0,0)}
$1CSy andat xq = (0,0), F(S1:x,) = RXR, , J(52i %) = {(x1, X9) € RZ [ x = Ix4]> 0} .

The radial counterpart of the characterization given in Theorem 1 is the definition of the radial tangent

directions.
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Definition 5. d € E /s said to be a radial tangent direction to S at Xq if for every sequence {xn}CS

converging to xq and for every sequence {\n} C R: converging to 0, one has xp +\,d €S for n

sufficiently large.

The set of radial tangent directionsto S at x,, is called the radjal tangent cone to € at Xo and denoted
by JFisixg) (or Thix).
1t clearly follows from the definitions that 97(5; Xg) © LG/.-(S,‘XO) and that gT(S; xg) C TAS; Xg)-
1,
Example: S= {{x, xp) € RZ | x + Ixq 1% >0}; at xo = (0,0), onehas JF(S; x) = {0}XR,,
T(s: xo) = {0}XR and TT(S; xo) = {(xy, Xg) X7 %0 or x5>0} .

11.B. Let S be asubset of E;in [35], we have introduced the function ng defined as following:

(2.2) ugfx) = +oo jf x €S¢, —d sc(x) if x€S (dg= +=)

When $ is nonempty and different from the whole space, ug takes its values in R" and is not identically
equal to +es. From the definition (2.2), it is obvious that {x € E | ug{x) <0} = intS and that

S1CSy« Hsy < Hsy: Moreover, pg isal.s.c. function iff .S is a closed subset. - Let us also note that
Hogs < Shg:

First of all, we shall study the properties of ug in view of convexity.

Proposition 1. Hg is a convex function iff S is convex.

Proof. If Mg is convex, S={x€E| ps(x) <0} is convex. Conversely, if S is a nonempty convex set,
different from E, it is sufficient to show that for all A € [0,1] and forall x,y €S

dsc()\x +(1=-0y) 2 )\dsc(x) + (1—)\)dsc(y)
This is easily done using the convexity property of c¢S.

The convexity of ng is suggested in an equivalent form as an exercise by N. Bourbaki [10, p. 150 Exercise
18]. At this stage, we assumed no closedness property of S. If S is a nonempty convex subset of E such
that extS+ 0, Hegg is @ proper l.s.c. convex function and we easily deduce that u og = cug = (us)".
For the properties and characteristics related to pg in view of convex analysis, we may suppose without
loss of generality that S is closed. I(S;xg) and T(S;x,) are referred to as convex approximations to the
set S at Xo: SOme connections between these cones and the subdifferential of ug are expounded in the

following proposition:

Proposition 2. Let S be a nonempty closed convex subset of E, different from E.
(@) dug(x) is nonempty forall x €S. ’
(b} . if xo € bdS, we have:
(b1) aps(xo) C N(S;xg) and )\bus(xo) C Bps(xo) forall A2 1.
(bg)  [Bug(xo)]® =T(S;xo) and {d €E | uglxo;d) <O} =1(S;xo).

Proof. Under the assumptions made: Hg is a proper l.s.c. convex function with "8—1 (R)=S. If intS=0,
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ng is the indicator function 8g. So, forall x €S, duglx) = N(S; x) and the announced results are
verified.
(a) Let us consider now the case where intS #@. If x, €intS, aus(xo) is obviously a nonempty compact

subset of E; . Let xq € bdS; we consider the directional derivative h of ;‘S at x,, thatis

VAEE, hid)=uglxeid) = Inf  [uglxg +Ad)] A= Jim | luglxo + Xd)] A1

h is a positively homogeneous convex function and we first prove that
(2.3) c(domh) = T(S;xy) .

Let de 1(sS; X¢); according to the definition of 1(SS; Xo), for every sequence (A} C R: converging to

0, one has xq +Ad € SC for n sufficiently large. Consequently, h(d) = +o and by the relation

1(SS; xg) = [T(S; x,)1C, we have: domh C T(S; xg).

Conversely, let d € 1(S;x,). For asequence (A} C R; converging to 0, one has x, + A\, d €S if n is
sufficiently large. Thus, uglxy+And) = ‘dsc(xo +Apd) and since —|id|l < ;_112 [dsc(xo + Xqd)] )‘n-1 <0,
we have h(d) €R. So, I(S; x5} C domh. But S being a convex set with nonempty interior, cfI(S;x,) is
T(S; xo) [40, Ch. 1]. Hence the result (2.3).

Let dy €T(S;x,) and we consider a sequence {d,} convergingto d,. We have

VA>0, [pglxg+Ady)] PN [—dsc(xo +2Adp)] 1> =lidgll .
So, h(dn) 2 —|ild,ll and consequently cSZh(do) 2 —lidgll. cfh takes its values in R"; then (cfh)** =cfh
is the support function of a nonempty set, namely of dpg(xy).

(b) ng<8g and if x, € bdS, Bglxg) = SS(xo) = 0. This implies that duglxy) C a&s(xo) =N(S; x). By
definition of dugl(x,),

x* €duglxg) « VxES, {x*, x—x4) < —dsc(x)

Obviously, Aaps(xo) C aps(xo) forall A=>1.

The support function of dug(xe) is cgh;so, [aps(xo)] °= {dE€E|cth(d) <0} . Following the construc-
tion of cfh, cth(d) <O iff cfh(d) is finite. We also have: domh= {d €E | h(d) <0}. Consequently,
dom(cgh) is cf(domh), that is to say T(S;x,) (by the equality (2.3).

Since we supposed intS # @ and x, €bdS, 0 <3 duglxg). So, there exists d such that u’s(xo; d) <0;let
us take such a d.

For every sequence {d,} converging to d ‘and every sequence {\,} C R; converging to 0, we have for
n sufficiently large
[~dgeleq + And)) AT < luglxg + Agd) Ay~ + lidy—dl

Since /.t's(xo; d) <0, for n>n,, _dsc(xo +2,d) <0, thatis: xo +N\qdp € S. Therefore,
{d€E | uglxyid) <O} CUS;xo) .

Conversely, let d € intS — x,. We consider u € intS such that d =u —xg; there exists € > 0 such that
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d s’c(u) > €. By the concavity property of the function d s on S (Proposition 1), we have:
dsc(xo +And) = e .

Consequently u's(xo; d) <0 and intS —x, C {dEE lu's(xogd) < 0}. The result then follows from the
relation I(S;xg) = R;(ints —Xg) and from the homogeneity property of u's(xo; R

As we shall see now, there are analogies between the conjugate function pg and the support function 55 .
Proposition 3. S being a nonempty closed convex subset of E, we have

(a) Vx*€ xédeS duglx), #s(x‘) = Ss(x*).

(b) if S is compact, ug is a finite function such that 8% < pé < Bg +a where a= ug(O).

Proof. (a) Since Hg < 65, 65 < F‘; . Let x.“ GXLEdes ans(x); let us consider x € bdS such that

x* € duglxo). According to the characterization property of a subgradient [40, Theorem 6.4.2], we have
x* € aus(xo) - pg(x‘) +glxo) = {xo, x*) .
But dug(xq) C N(S;xq) = 38g(x,); consequently
Bg(x*) +Bglxg) = (xg, x*) .

For x5 € bdS, uglxy) = 8g(x) = 0; hence the equality us(x’) = 5§(x‘).
(b) a=pus(0) is by definition Sup d oix). 1f S is compact, u& is a finite function and
S xeg S S

* o *oew
v x*, gix*) <pglx ) <8gx*) +a .
Example: Let us take the unit ball B in E; then ”E =Max (1, 11-11,).

Remarks. 1. Under the assumptions of Proposition 2, let x5 € bdS. From the definition of ug, we have

the following equivalences:
(0€ duglxy)) « (VxEbdS,0& dug(x)) + (intS+#0) « (I(S;x,) #0) .
Otherwise, we recall that the center of S [11] is defined as following:
ClS)={(x€8| dsc(i) > dsc(x) forevery x€S} .
In this definition, d Sc(i) is supposed to be finite. If S |s compact, the center C(S) is precisely apg(O).

The function Ag defined by: Aglx) = dg(x) ~ dsc(x) is obtained by infimal convolution of
g and of the norm function [|-|| [35, Proposition 1]. If S is nonempty and different from E, Ag isa
Lipschitz function with cons$ant 1.
It Sq C Sy, we know that ”32<"‘S1 and consequently ;132 AR <ps1 v lI*ll. So,if Sy and Sy are
closed subsets of E, then

$1CS = Ag, < 4g,

Proposition 4. /f S is convex, Ag is convex. If Ag is convex, then cfS /s convex.



Proof. If S isconvex, pg is convex (Proposition 1) and Ag which is ug ¥ II*ll is also convex {40,
Corollary 6.5.3]. Conversely, if Ag isconvex, c8 = {x€E| As(x) <0} isconvex.

Propasition 5. Let S be @ nonempty closed convex subset of E. If x, € bdS,
04g(xg) = duglx) NB* .
Proof. When x, € bdS, uglxq) = Aglx,) = 0; so
x* € 0Ag(xg) # Aglx*) = (xg,x*) .
But Aé ={ugVI-N*= ‘-‘§ +8g. 140, Corollary 5.5.4] . Consequently,
x* € aAg(xo) - (#;(X’) =(xq, x*) and BB.(x‘) =0) . Hence the result.

Remarks. 1. Letus remark that for x, € bdS, the infimal convolution of the functions pg and ||| is
exact at (xg, 0). The expression of 3Ag(x,) at x, € bdS is similar to that of 3dgix,) which is
N(S;x,) N B*. This yields

ddglxq) N duglxy) = dAg(x,)

The result of the preceding proposition completes the properties of Proposition 2 on the structure of
duglxe) since’

2.4 9 = U AJA, .
(2.4) Hglxol = 3 N3A(xg)}

The following figure illustrates this special structure,

T(S:xg)
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2. If S is convex, dsc =dg— Ag (or §g— dsc) appears as a difference of two convex functions.
The conjugate of the difference of two convex functions may be calculated with the « -difference introduced

by B. N. Pshenichnyi [56] ; this gives additional relations between 5§c . ug and A; .

3. It SCE and x4 €bdS, the index of angularity of bdS at x,, denoted by abds(xo), is
defined by: abds(xo) =d(0, 3Ag(x,)) [35, Definition 5]. Moreover, X is said to be a regular point of
bdS if & o(xo) >0. If S isanonempty closed convex set of E and if x, € bdS, we remark that
o 450l = (0, dug(xo)) ; therefore:

xo‘ is a regular point of bdS iff every x on the boundary of S is a regular point.

Starting from the structure of 9Ag(x,) for an arbitrary subset S C E, we defined in [35, Definition 4] the
concept of symmetric tangent cone 10 S at x, € bdS by taking the polar cone of 3Ag(x,); let us recall
this definition:

Definition 6. The symmetric tangent cone to S at X, € bdS is the closed convex cone of E; denoted by
Z[(S :Xg) and defined by:

2 xo) = 18g(x)1° = (8i %) N =T 8% %)
For comparison results between Zl(s; xo) and 975; Xo), between, intZdS; Xgo) and I(S; x,), see
(35, §11.

Part I1l: GENERALIZED SUBDIFFERENTIALS AND GRADIENTS OF A FUNCTION.

Let us denote by F(E,F) the set of functions from E to F(F =R, R,...); f€ F(E,R) is said to be
Lipschitz in a neighborhood of x, if f is finite in a neighborhood V, of x, and if there exists k such
that |f(x) — fly)| <k|Ix —y|| forall x,y € Vo X
The different generalized subdifferentials described in Part | (A.4, A.6) may be connected with the different

kinds of feasible displacements for epif from (xo fixg)) in the following manner:

fixg:d)=Inf (t€R|(d, W ET (xq, flxg))}  (inf @ = +eo)

epif
flxg:d) = Inf (n € R1(d, w) €1 (x, fixg))

ey fyixoid) = Inf (u € R 1(d, W) € T (x, flxoN}
flxgid) = Inf (W ER | (d, 1) €Dt (X, fixoh}
and
Bf(xg) = {x* EE* | x*, -1 € Ui (Xor flxgh1°} -
(3.2) aflxg) = {x* B | (x*, =1) € [Ty (xo, Flxo1°}

A flxg)=..., dfixg)=...

The radial directional derivatives f(x,;.) and ?"(xo; .) have also been used by M. S. Bazaraa and



J. J. Goode [3] ; in their work, they noticed the connection with the radial cones of feasible displacements
asin (3.1).

In a similar way, the generalized gradient of f at x (Defmmon (1.25)) may be described as followmg

af(x°)={x" E* [{x*, &)< f7xq;d) forall d}
where

Plxg:d) = Inf (LER|(d, p) € g:pif (%o, flxg))  [35, Proposition 2].

The support function of 3f(x,) is the biconjugate function [fn(xo; . )] **. By the same construction, the

concept of radial tangent cone induces the concept of radial generalized gradient of f at x.:

3"lxg) = {x* €E* |{x*, d) < (xy; d) forall d}
where : '

iy -y = afr
rixgid) = Inf WER 1 d, W) € I e (x, flxo)} -
According to the inclusions between the cones used in these definitions, we have

3f(xo) C 3f(x,) € 3"Flx)
3flxo) C 3"lx,)

Examples. 1. f:x = —|x]|; 2f(0) =3,f(0) = @ and 3f(xg) = arf(xo) =[-1, +1]
2. f:x »—Ix%; 2f(0)= @ and ?"f(x,) =R

As application, we shall examin properties of the generalized gradient of the function Hg. Some of them

are slight generalizations of properties established in the convex case (Proposition 2).

Proposition 6. Let S be a nonempty subset of E,different from E. Then

(a) if xo€intS, duglxg) = —-adsc(xo) if xo €S NbdS, duglxy) is nonempty.

(b) forevery xo €S, Tg( Jep, 2 s(xc,, nglxo))) = J (S; xq) where TIg designates the projection
on E in a parallel direction to R.

() if xo€S NbdS, dAglxy) C duglxg) N B*

(d) forevery xo €S, [duglxo)]®= {d1(d,0) € Jep i g (xg. gixg) } .

Proof. (a) If x5 €intS, ng = —dsc is Lipschitz in a neighborhood of x, and duglxq) is a nonempty
convex compact subset of E . If xg €S NbdS, ps(xo) =0 and Jpuglx,) # @ iff (0,-1)€ Jepl #S(XO,O)
[35, Theorem 5]. Letus suppose that (0,—1) € e/epl B (xo.0). We consider a sequence {x,}CS
converging to Xg; the sequence (xp, —dsc(xn)) is a sequence of epi ug converging to (x4,0).

According to the sequential characterization of the tangent cone, for every sequence (A} C R:_ converging
to 0, there exists a sequence (d, o) convergingto (0,—1) such that (x, +A.dp, _dsc(xn) +\n0q) isin
epi ug forall n. So,

aglxp + Apdp) = _dsc(xn +A\pdp) < —dsc(xn) +A0n -
Consequently



—lidpll < ldsc(x,,)-ds‘,(x,.,+)\"dn)])\n--1 <o .

Now, (dj,, o) convergesto (0,—1). This yields the contradiction.
(b) We have Mg (epi pg) = dom ug = S. Let (d,0) € szi u S(x°' 0) and let us consider a sequence
{xp} €S converging to X, and a sequence {Aj} C R; converging to 0. There exists a sequence
{ldp, 0,)} convergingto {d, o) such that (x, +\,dp, —dsc(xn) +An0p) € epipg forall n, thatis
Xp +And €S forall n. So,

el Fepiuglxe, O € T S:ix0) -
Conversely, let d € {O]‘(S; Xg). We have to show that there exists ¢ € R such that (d, o) € g:pi “S(x°'0)'
Let us take o > ||dll. We consider a sequence {{xp, y,}} C epi ng converging to (x4, 0) and a sequence )
Anlc R:_ converging to 0. Since d € 978; Xg), there exists a sequence {d,} convergingto d such
that x, +\d, €S forall n. Weset o, =0;
pglxp +Apdy) = fdsc(xn +\pdy) < —dsc(xn) +\ylidll
Sy, +A o forn=ng .

Thus (d,0) € Jopi slo, O)

(c) We know that: x* €3Ag(x,) * VAEE, &*, d) < Aé(xo; d) .
Ag isa Lipschitz function with constant 1; therefore Aé(xo; d) <|idll and 3Aglx,) C B*. The inclusion
aAs(xo) C aus(xo) is equivalent to this one:

(3.3) Tosi pg¥or O C Tevi ag*o: 0

Let (d,0) € z%pi "S(xo' 0). We consider a sequence {(x,, Yn) } € epi Ag converging to (xo, 0) and a

sequence {A,} C R: converging t6 0. We construct the sequence {Xn} as following:

Xn=Xxq if x, €S
%, €S such that lix, —Xoll < dglxy) +22 if x, €SC .

Similarly, we set Y, =vy,, if x,€8; y,=0 if x, €S.
The sequence {X,, ¥} convergesto (x,, 0) and by the construction itself (X, V) € epipug. Since

(d,0) € !%pi #s(xo, 0), there exists a sequence {d,, 0,} converging to (d, @) such that
Ay + Andn) = ~dcFn + Agd) <V + Aoy

forall n. If x, €S, this reduces to: Aglxp +Adp) Sy + Aoy -
If x, € S¢, by the Lipschitz property (with coefficient 1) of Ag, we have

Aglxp +Npdp) <llxp =Xl + Mo,
Sdglxp) +hplon +A) Sy +Aglon +A) .

Finally, (xn+Xndp, Y +Al0n + X)) Eepi Ag. Thereby, (d, 0) belongs to toj‘;p; As(xo, 0)
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and the inclusion (3.3) is verified.

(d) Let x5€S and let us consider u such that (u,0) € CO]:pi ps(xo' ng(xg)). This means that
(u,n)<0 forall (n,8)E Nepi b (xq, uglxg)); consequently u€ [aus(xo)]".
Conversely, Nepn a Q(xo, #g(xo)) being the normal cone to an epigraph, 6 <0 forall (n, 8) in this cone.
We distinguish two cases: § <0 and 6§ =0, If 8 <0, -no—le aps(xo) forall uE [aps(xo)]
(u, —n6~1<0 and u,mM<0. Let 6=0. duglx,) is nonempty; so, there exists a sequence {ny, oy }
of Nep| “S(x°' ng(xg)) convergingto (n, 0) and such that 0y <0 forall k. Consequently,

{u,n)= hm {u, ny ) <0, thatis tosay (u,0) € g

epi g (X, mgx)).

Remarks. 1. If %o € S N bdS, the results (c) and (d) of the proposition above bring the discrepancy
between the tangent cone and the symmetric tangent cone. We have

TSixg) = Mgl Tap g o O

. 7

Usixg) > weeiwone I, §Xo/ 01}
So, if the domain of the support function d yé (xg:d) is equal to the level set {d € E | uglxq;d) <0},
then 2/(8; Xg) = 975; Xo).

2. The tangent cone to the epigraph of the indicator function 8g is 973; xo)XR+ . If xg €S NbdSs,

in general we have not the inclusion: fﬂs; xo)XR + C gzpi “S(x°’ 0); consequently, the inclusion

duglxy) € N(S; x,) is not generally true. Likewise, other properties of dug(x,) established in the convex

case (Proposition 2) cannot be extended to the nonconvex case.

Example. Let S = {[x;, xo) € R? | xp — Ix1 % < 0}; then at xo =0, J(S; %) is the set {(0x) Ix2 € R}
whereas g:pi “s(xo, 0) isequal to {(x1, X2, xa) Ix9=0, Max (0, x2) <x3} .

In [35] we introduced the notion of symmetric generalized gradient of a function as following: let x, €E

where f € F(E, R) is finite; the symmetric generalized gradient of f at x, denote by Df{xy) is defined by
Dfixg) = {x* EE* | ¥ dEE, (x*, &< M(xg;d))

where f"(xo; d)=Inf (tE€ER|d,pu) EZ/epif(xo' flxg} .

Some elementary properties of f"(xo; .} are collected in the following Proposition.

Proposition 7. Let f be finite at x,. Then,

(a) (xq:.) isal.s.c., convex, positively homogeneous function from E to R and
f°(x°; < Vxgi. )

(b) if there exists d such that f"(xo; d) = —oo, domf¥(xy;.) which is equal to

{d€E | f'(xy:d) =~}

is a nonempty closed convex cone with apex 0.

(é) the support function of Df(xo) is [f"(xo,. )1** and if Df(xg) #0, BDf( Y(x Xgi- )
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(d) Dfixg)*@ = (xy;.) takesits valuesin R’
« (0,-1) € 0ppisixo, Fixo)
(e) if the function d ~ fV(xo; d) is bounded in a neighborhood of 0, Df(x,) is a compact subset

-
ong.

Proof. The inclusion %pif("o' fixg)) € e.o]:pi fxq, flxg)) implies that fn(xo; )< fxg;.). The proofs
of different properties are similar to those of-[35, Theorem 5] .

v : v

Remarks. For a nonempty subset S of EXR, let S be defined by: (x,6) €S + (x, —8) €S; we.remark
v

that if (xq, 6) € ¢85, %(xo, -6,) x%(xo, 84). This remark combined with the general result

Us: ug) = -2AS%; ug)
(o]

yields that D(—f)(x,) = —Dffx,). [34, Chapter VII]. This equality (or the equivalent relation
(—f)V(xo ;dy=+fY (xo: —d)) allow us to derive optimality conditions for maximization problems from

corresponding conditions for minimization problems.

Comparison results. 1. Generally, we have: 3f(xg) C Df(x,). From the theorems comparing
the tangent cone and the symmetric tangent cone (see [35, §1]), it follows that 9f(xo) = Df(x,) atleast
in two cases: first when f is convex (in a neighborhood of xo) and secondly when f is Lipschitzin a
neighborhood of x,. In'fact, when f is a convex function, finite and continuous in a neighborhood of
X o 8!l the notions we Have spoken about coincide. '

2. if {xgq, fixg)} isa regular point of the graph of f, intZ/ep”(xo, f(xg)) is included in ‘epif("or fixo)
[35, Theorem 4] . So, cQ(?(xo; < f"(xo; .) and 5f(x°) C Df(xg). More particularly, this last inclusion
may be directly proved if f is Lipschitz in a neighborhood of x.

3. If f is Lipschitz in a neighborhood of X g, We also have: brf(xo) = 3f(xy). The question whether
the different subdifferentials and the generalized gradient are generically equal has been recently investigated .
{411+, (54].

Part IV: NECESSARY OPTIMALITY CONDITIONS, SUFFICIENT OPTIMALITY CONDITIONS.

We consider the optimization problem of mathematical programming in general form. For S a

nonempty subset of E and f€ F(E,ﬁ), we consider
(P) Minimize t (locally) on the subset S.

IV.A. x5 €S is said to be a/ocal minimum of f on S if f is finite at x and if there exists a neighbor-
hood V, of x, such that f(x) > f(xg) forall x€SNV,,. For sake of simplicity, we shall give examples

of necessary optimality conditions in particular cases.
Theorem 2. If x is a local minimum of f on S and if f is Lipschitz in a neighborhood of x, then

(4.1) f'(xo; d) >0, VAETIS; xo)



P
Theorem 3. Let x, €S and let us consider a convex cone M with apex 0 included in T(S:xg). If fis
a function Lipschitz in a neighborhood of X4 and if x4 is alocal minimum of f on S, then

4.2 0 € 3f(x,) + M° .

Proofs. See [32] or [35, §l11.1].

For developments on necessary optimality conditions in a general context (non necessarily locally Lipschitz

functions), we refer the reader to the papers [53, 35] ; for the locally Lipschitz case, see more particularly
[14, 32].

1V.B. In this section, we give some indications about sufficient optimality conditions. In [31], we intro-

duced the following definition of pseudo-convexity in the nondifferentiable case:

Definition 7. A Jocally Lipschitz function f: E— R s said to be locally pseudo-convex at X if there
exists a neighborhood V of xq such that

(4.3) VxEV, f'(xo; X = xg) = 0= f{x) > f(x)

If the property holds for all x, € E, we shall simply say that f is locally pseudo-convex. If the relation
(4.3) holds globally (i.e. V = E), f will be simply called pseudo-convex. Let us remark that, as in the differ-
entiable case [44], we have:

f pseudo-convex = f “strictly”quasi-convex.

A similar kind of concept was introduced by H. Tuy [37] (semiconvex functions) but Tuy's definition
requires the existence of the directional derivative d = '(xg: d). We give now some examples of sufficient

optimality conditions extracted from [34, Chapter V].

Theorem 4. Under the following hypotheses,
(a) f is/ocally pseudo-convex at Xg
(b) the constraint set S verifies the condition (L) below
(L) 3V, neighborhood of X, such that forall x EV NS, x —xo €T(S;xg). Ifthe necessary

optimality condition (4.1) is verified at x, then x is a local minimum of f on S.

Theorem 5. Let Xq €S besuch that T(S; xo) is convex; a necessary condition for Xo tO be a local

minimum of f on S is that

(4.4) Aiflxg) N =[T(Six)°#0 .

Moreover, if t is locally pseudo-convex at xy and if S verifies the assumption (L) at x, then (4.4) is a
sufficient condition for X being a local minimum of fon S.

Part V: GENERALIZED GRADIENTS OF COMPOSITE FUNCTIONS. APPLICATIONS.

The principal results of this section have been announced as a Compte Rendu Acad. Sciences de Paris [36].
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V.A. In numerous problems (optimal control, fractional programming, best approximation, estimation . . .),

the objective function and the functions defining the constraint set occur to be compbsite functions.

An example: The response of a physical system is a quantity y(t) satisfying a relation of the type

y(t) = 8(t; a) where 8 is a known function of t and a, t an auxiliary parameter (time for example) and
a an unknown parameter of RM. For severa| values of t, t4, .. .tm, oneonly has access to noisy obser-
vations of y(t;), namely y; =y(t;) + §;. By making m observations (m >> n), one chooses a* € A
(constraint set) minimizing fla) = ®lyq —6(tq;a), ...y, —0(ty;a) on A. In particular, the choice of

m
<I>(u1, .. .,um) = '21 uiz corresponds to the least squares estimation.
i=

A sécond example: Generalization of the problem of Fermat-Weber.

Let {K;}!;o be a family of nonempty subsets of E, let {ai}:’=1 be a family of functions from R+ to

R. The optimization problem consists on minimizing i§1 °i[dK;(x)] on K. In the problem of Fermat-
Weber, the subsets K; are reduced to points and K, = E. The consideration of distances to subsets and the
introduction of a constraint set come naturally, specially for localization problems. In particular, the

constraint K, may have the following structure:
dF;(X) <di Yi=1,...qa. dFk(x) =>dg Vk=g+1,...r where {Fp}isafamily of subsets of E.

. [ )
If the functions o; are locally Lipschitz, the criterion f= _21 oj o dg. islocally Lipschitz. More generally,
i= i

one may consider criterions of the following type: x — \p(dK1(x), .. .,dKP(x)) with ¢ locally Lipschitz.

Beside those already existing, we shall establish a new chain rule for the generalized gradient of composite
functions.

First of all, let us recall a definition and a property of a class of locally Lipschitz functions.

Definition 8: [15]. A function f€ F(E, ﬁ), Lipschitz in a neighborhood of x, is said to be regular at xq

if the directional derivative Flxg;d) = lim _ [f{xq +Ad) — f(x,)] A1 exists and/is equal to f'(xo; d) for
Aot

all dEE.

In this definition and in the sequel, we refer to regularity at x, only for functions which are Lipschitz in

a neighborhood of x,. Convex or continuously differentiable functions f: E > R are examples of

functions which are regular at each point of E. As an immediate consequence of the definition, we have:

(5.1) if £ is regular at xo and if 0 : R~ R /s continuously differentiable at f(xg) with
o'(f(xg)) >0, then o f isregular at x,.1n particular,

(5.2) if —f isregular at xg with t(xg) #0, 1/f is regular at x,.

In(6.1), 0 o f is not regular at x in general when o’(f(x,)) <O (take for example ofu) = —u). We
emphasize that in the context of nondifferentiable problems, the regularity condition is a rather stringent
hypothesis; geometrically, the regularity of f.at x, means that

€@ (I, ik, fixoh) } = Ty ielxo, flxgh = T iteg, fixo))



If f: E— R isregular at each point, f is clearly quasi-differentiable on E and the quasi-differential
M¢(xo) is equal to 3f(x,) (see definitions in Part I). Conversely, F. H. Clarke (15, § 16] proved the

following interesting result:

(5.3) if :E— R is quasidifferentiable, if My is compact-valued in E; and if the set-valued mapping

Mg : E:. E*® is upper semicontinuous, then f is regular and Mg = of.

A counter-example typical in this respect is the following one: E =R, f4(x) = xZsin 1/x if x# 0,
f1(0) = 0. fy islocally Lipschitz, quasi-differentiable at each point (since differentiable); f4 is not regular
at 0 and Mf1(0) = {0}, 3f4(0) = [=1, +1].

V.B. Chain rules for generalized gradients.
E, Eq, Ep, ... arereal Banach spaces; we shall not distinguish the duality products (.,.) between the
different spaces and their topological dual spaces.

The first two chain rules (Rules No 1, No 2) are from F. H. Clarke [15, § 13, 14] ; we recall them here for

the convenience of the reader.

Rule No 1
£ (i) Let F be continuously differentiable, let f be locally Lipschitz.
& E2 Then, by denoting DF(xo) € L(Eq, Eq) the differential operator of
foF P F at x, one has:
3{f o F)(xy) C 3f(F(xp)) o DF{x,)
R .
(i) Equality holds if either t(or —f) is regular at F(x,) or DF{xg) is
surjective.
Rule No 2
(i) Let f and o belocally Lipschitz; then:
f
E 'R 3o o f)ix,) C co {0(flxo)) . 3Flxg)} -
gof ‘lo (ii) Furthermore, if o is continuously differentiable, or if a (or —a) is
regular at f(xo) and f continuously differentiable, one has:
R
(o o f){xg) = da(fxy)) . f(xy)

Rule No 3

E .L_) RM Theorem 6. Let F = (fy,.. .,fm)T and ¢ be locally Li/?schitz. Then,

m
0 dlpo Fllxg) Ceo { ,;21 upx*ilug, . oup) € 3p(F(xy))
poF ' m
h () € T Bl }

Moreover, if the functions f; are regular at xo, if ¢ is regular at F(xg) and if dp(Flxg)) C RT , the

equality holds.
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Proof. (i} Let d €E. Let us consider a sequence {x,} convergingto x, and a sequence M} C R
converging to 0O; let us set:

Eq= WlFlxy +Ad)] —plFlx)]} -2

¢ :RM™ =R islocally Lipschitz and by the mean value theorem [41], there exist Fn € IF(xp), Fixp + Apd)
in R™ and T, € 3¢(F,) such that

(5.4) En = (Flxn + 0d) = Flxg), G+ AT @ =@} ...8M)

According to the same theorem, there exist i:_, € 1xp, X, +Apdl and ?:_l € afi(i'i‘) forall i=1,...m
such that

il + And) = filxg) = MG, o)
Briefly, from (5.4):

= @ = -l._l
(5.5) = 21 n(?n d)= (F'.,1 n¥n ,d) .

The set-valued mappings 3f; : E = E; and 3y : RM=Z} R™M are upper semicontinuous [14, Proposition 7].

When n—>o, F = F(xg) and i:_‘ - Xq So, by taking appropriate subsequences,

. E*
Vi=t...m  § —% §€3ix)
(5.6)

G — G €d(Fix,)) .

Let usdenote by D theset {x*€E*|x*= E ux®, (uq,...up) € a«p(F(xo)), (x’1, ceaX in

=1
H 9fi(xo)} . D is a compact subset of E; and we derive from (5.5) and (5.6):

im)

lrl‘n_lgp E,<Max {{x*,d)|x* €D} .
So, (p o F)’(xo; d) < SB(d) forall d €E and consequently, 3{yp o F){xgy) C coD.

(ii) Let us consider the expression E° = {p[Flxg + N d)] —¢[F(x°)] 1 . f; being supposed to be

regular at X, one has for each i:
fitxo + And) = filxg) = Apfilxoid) + hqe  with  lim e =0 .

Let e, be the vector (e:‘,. . .,e:')T, let Vix,; d) be the vector (f1(x°;d), .. .,f;n(xo; d))T. Since ¢ is
Lipschitz, E; may be written as

ES = {plF(xg) + A Vxg: )] —9lF(xg] 1+ A" +0(Nile,l -
¢ is regular at F(xo)'; 0, ||-||T)a° E‘; = \p'(F(xo);V(xd; d)). Let (u1, LU € aw(F(xo)) and

m
(x%y, . xt ) € T 3fiix); since 3p(F(xg)) € Ry

E uxy, &) < 2 uifilxgid) < @ (Flxo): Vixg:d)) .

Consequently, B'D(d) < (po F)'(xo; d) for all d;hence the announced result.
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Comments. These different calculus rules have many consequences and applications,b Let us begin by the
Rule No 3 we have just proved.

m Rule No 3. As a first consequence, we have

Cq. If ¢ iscontinuously cifferentiable,
T 3y
(5.7) L Blpo Filxg) C Z, =5 (Flxgh 3fjixo)
i

with equality if the functions f; are regular at x4 and if Vo(F(xy)) € RT.

One cannot expect the equality in (5.7) with only the hypothesis that ¢ is continuously differentiable (at
least with m > 1). That is this estimate (5.7) (with equality if %&(F(xo))>0 for all i) which was proved by
A. Auslender [2] for functions of the type lx, f1(x), .. S :Nhere the (regular) functions f; have

a particular structure. We shall give later the exact evaluation of 3(p o F){x,) when E is finite-dimensional.

m
By taking ¢{x) = i[l X, one has as a particular application:

1

m m
(5.8) A, filxo) € 2 I Filx)ofixg)

with equality if the functions f; are regular at xq and if f,(xo)=>0 forall i.

Co. Letus consider ¢ defined by ¢(x) = il\_/i?x m X;. ¢ Is obviously regular and if e; is the i-th row
vector of the identity (m,m) matrix, one has: a:p(F('xo)) =co {e; |, filxg) = Miax fi(xg)}. Applying the
formula of Rule No 3, one finds again the estimate (and the exact evaluation when the functions f; are

regular) of the generalized gradient of Max fi [14, 34 Chapter V].
i

C3. Letus point out that the Rule No 1 (ii) with Ep= R™M also gives another case implying the equality in
the estimate of the Rule No 3 without any regularity assumption on ¢, when F is continuously differen-

tiable.

2 Rule No 1
C4. Let x,, dE€E, let fxo,d be defined on R by fxo,d()‘) = f(xo + Ad). By applying the Rule No 1 with
Ey=R, Ep=E and F= Fxo,d t A = Xg +Ad, one obtains:
5.9 of, 0) C (af(x,), d>
(5.9) g d(0) € (aflxy)
with equality if £ (or —f) is regular at x.

f E=RN, as pointed out by F. H. Clarke, one can state:

(5.10) for almost all x,, anO'd(x)‘z (3f(xg +Ad), d) forall \.

The inclusion (5.9) can be directly obtained by proving that for all vER, f;‘o dloivi < ' {xg; vd); with this
relation, the mean value theorem can be proved in a straightforward manner. When E«‘ and Ez are finite-

dimensional, the estimate of Rule No 1 also appears as a consequence of results of [33].

®Rule No 2. The estimate (i) given in this rule appears as a particular case of the inclusion given

in Theorem 6 but the conditions (ii) ensuring the equality work only when f is real-valued.
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Let us give some examples of applications.

Cg. By taking a(x) = 1/x, we have:
3f(x,)

) 1
(5.11) if flxg) #0, 3L )xg) = ~
© 7% (k)2

This relation, combined with (5.8) and the remark (5.1) yields:
alxg)3f(xg) — dglxo)flxo)
laixg)2

(5.12) i glxg) #0, 3()xg) <

with equality if f and —g are regular at x,, f(xg) >0 and g(xy) >0.

These different relations allow us to apply the necessary (resp. the sufﬁciént) optimality conditions (see

Part 1V) to fractional programming, that is to say to optimization problems where the objective function f
m

has the form x = f(x) = [ ig1 fi(x)] [ j1;11 g‘-(x)] =1 particular, the context of our approach is more

general than that of J. M. Borwein [9] who treats the quasi-differentiable case.

Cg- By applying the Rule No 2 (ii) to. o(x) = |x], one derives that /f f is continuously differentiable and if
f(xo) =0, dlfl{xg) = [~V f(xy), Vf(xy)]. Generally speaking, we only have

9fl{xy) C co {3f(xg) U —3f(xg)}
if flxg) = 0; the equality does not hold even for functions regular at x.

C7. There is another case where the convexifying operation “co” is unnecessary in the formula of Rule No 2,
that is when ¢ is monotone in a neighborhood of f(xo). Indeed, if 0 : R~ R isan increasing (resp.
decreasing) function in a neighborhood of ug, one has aa(uo) CR " (resp. R_) (this result remains true if
o :R—R is not necessarily locé.lly Lipschitz).

The Rule No 3 (ii) applied with m = 1 yields another equality case in the frame of Rule No 2, that is:

(6.13)  if f isregular at xq, if o is regular at f(xy) and if aa(fixy)) CR_, then

o
9o o f)(xo) =3a(f(xg)) . bf(xo) .
Example: if f is regular at x, and if f(xg) =0, one has: Bf+(xo) = [0,1] 3f(xy).

Remarks. Due to the local nature of the notion of generalized gradient, the required properties on the
functions (Lipschitz property, continuous differentiability . . .) need to be assumed only in a neighborhood
of the considered points.

The results (5.13) and (5.7) are extensions of analogous results established in the convex case by

C. Lescarret [42, Propositions 3 and 6].
V.C. An exact chain rule in the finite-dimensional case.

In this section, we shall suppose that E = R,
For g:Rf— RS satisfying a Lipschitz condition in a neighborhood of x, € R', F. H. Clarke [16] defined
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the generalized Jacobian matrix of g at x as following:

Definition 9. The generalized Jacobian matrix of g at x, denoted by y (g; xo), is the set of matrices
defined by

Flaixg) =co { lim Jg;x;)}
j—>o0

in this definition, X; converges to X, g is differentiable at x; for each i and J(g;x;) is the usual

Jacobian matrix.

tﬂ(g; Xo) isaset of (s,r) matrices and we denote by ,fr (g; o) the set of transposed matrices AT with
A€ ﬂ(g; xg). If g is continuously differentiable at Xg ,ﬂ(g;xo) is reduced to {Jlg:xy)}. Inthe

case where s=1, g'(x) is represented by a row vector (% (x)) whereas the column vector is the gradient
vgix) € R". In order to preserve the given definition of ag(x'o) (see (1.18)) and the coherence of notations,

we shall consider the elements of 9g(x) as elements of Rf (and not of (R")*). So, we generally have:

(5.14) Figixg) € 13g1(x), . - .234(%o)

This inclusion is strict even for very regular functions g;; for example, if g: R~ R2 is defined by
alx) = (Ix], X} T, we have f(g: 0)= {{u,u) lue[-1,+1]}.
Let us consider again the frame of Rule No 3 with a continuously differentiable function ¢; we shall give

an exact evaluation of d(p o F)(xo)' using the generalized Jacobian matrix of F at Xor

Rule No 3 bis
RN __F__, RrM Theorem 7. Let F be a Jocally Lipschitz function, let ¢ be continuously
differentiable. Then,
poF (4

Bl Flixg) =P (F: xg) T elFixo))

R
Proof. According to Definition 9, it is easy to show that 3{p o F)(x,) contains the set JT(F; xo)Vp(F(x)).
For the converse inclusion, we follow the proof given by F. H. Clarke [16, Lemma 2] in the case where
m =n. This proof is based on the following property: if g: R9— R isa locally Lipschitz function, if A
is a subset of R" of measure 0, one does not modify 9g(x,) if the points x; are constrained to the com-
plement of A in the definition (1.18). We then apply this result to g=ypo F by taking A= {x€R" | F is
nondifferentiable at x).

As examples, if F = (f1, . .,fm)T: R" - RM js Jocally Lipschitz, one has:

a ig::’ flxg) = { 21 AlAg, .. Ap € FTEx)
m m T
o [, o) = (Ey I oA A A € ﬂ (Fixgl}

By taking ¢(x) = x;, we find again the following “’projection” property:

Afi(xg) = {Aj1 (A1, .. LA, .. Ap) € JT(F; xgl} .
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Remarks. 1. An exact chain rule such as in Theorem 7 with a nondifferentiable function ¢ cannot be
obtained; the function ¢(x) = Max x; allow to construct simple counterexamples.

2. Other generalizations of Ithe notion of derivative have been successively introduced for vector-valued
functions: the notion of “derivate containers’’ by J. Warga [62] and the concept of “screens” by H. Halkin
[29] ; although conceptually related to the notion of generalized Jacobian matrix, their definitions seem

more difficult to handle.

Addendum. After having finished this work, we Became aware of three papers which also deal with the
generalized gradient and related definitions. The first paper is that of B. Pourciau [J. of Optim. Theory and
Applications, Vol. 22, No 3 (1977), 311—351] ; B. Pourciau gives a definition of the generalized derivative
of afunction f: R RK by taking 3Pf(xg) = N & (F(x) |x €B,lxg) N L(F)}; in this definition,
L(f') is the Lebesgue set of f'. When f is real-valued, BPf(xo) is exactly the generalized gradient but in the
vectorial case (k > 1), we do not know whether an(xo) and tg(f; Xg) really coincide.

The two other papers are those of R. Mifflin and have reference to semismooth and semiconvex functions
[SIAM J. Control and Optimization, Vol. 15, No 6 (1977), 959—972, Math. of Operations Research, Vol 2,
No 2 {1977), 191-207]. Semismooth functions are particular locally Lipschitz functions possessing a
semicontinuous relationship between their generalized gradients and directional derivatives. In the first
paper quoted above, R. Mifflin gives a chain rule (inclusion) as in Theorem 6 (with E = R") and shows that
a semismooth composition of semismooth functions is semismooth. Note that the functions called quasi-
differentiable by R. Mifflin are in fact regular following the terminology of F. H. Clarke. In the second

R. Mifflin’s paper, the class of weakly upper semismooth functions is introduced; such functions also have
a semicontinuous relationship between their generalized gradients and directional derivatives but this rela-
tionship is weaker than the corresponding one for semismooth functions.
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