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PERTURBED OPTIMIZATION PROBLEMS

IN BAN ACH SPACES

Gerard LEBOURG

ABSTRACT -
Families of perturbed, (non-convex) optimization problems in Banach spaces have
been shown to be densely solvable ; this paper tries to present a unified approach
of such density results and highlights their intimate connection with the geometry
of Banach spaces.

INTRODUCTION -
The paper is concerned with families of optimization problems regularly depending
on a parameter, the domain of which is an open subset of a Banach space. Such fami-
lies often arise as "natural" perturbations of a given optimization problem ; be-
side trivial situations, mostly encountered in finite dimensional spaces, the so-
defined perturbed problems may have no solution.

However, typical examples of those natural perturbations have been shown to be den-
sely solvable. Roughly speaking this means that the original problem can be appro-
ximated by perturbed problems, all of which do have solutions. This paper tries to
provide a starting point for the understanding of such density results.

Section 1 is introductory and deals with our starting example of a density result :
the well-known theorem of Bishop-Phelps, considered here through the frame of opti-
mization theory ; section 2 sketches out a proof of a non-convex variant of this
theorem and suggests a possible approach to density results, which is developped in
section 3 and leads to the fundamental result of section 4;section 5 emphazises the
role played by the space of parameters and states an abstract density result in uni-
formly convexifiable Banach spaces.

Examples are taken from former works ( [ 1 ] , [ 2 | and | 5 ) ) , and must be thought of
just as guide marks.

Of course, the paper does not supply a survey of what should be termed a perturba-
tion theory of optimization problems. As a matter of facts, it brings out more ques-
tions than answers.

I. PERTURBATIONS OF OPTIMIZATION PROBLEMS
Throughout the following, E is a Banach space, E its dual space ; | | | | repre-

^sents indifferently the norm of E or E . Unless further specifications are
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given, the topological notions used always refer to the norm topology on E or ' E .

1 . 1 . Let -X be a subset of a Banach space, f a lover semi-continuous mapping
from X into 3R U { + ° o } , bounded from below, and consider the minimization problem :
minimize f on X , "which we write :

P : inf f ( x )
• x£X

A perturbation of the problem P, with domain of parameters an open subset Q, of .
a Banach space, will be the datum of a family of minimization problems :

^ : inf F ( x , v )
v x6:X

where F is a mapping from X x 2̂ into 3R U [+ ° ° } such that :

i ) for every v£^2 , F ; x ->- F ( x , v ) is lower semi-continuous on X and bounded
from below.

ii) for some u£^ , F = f .u
Such a perturbation will be said continuous if the value V ( v ) = inf F ( x , v ) of

X £Xthe problem P continuously depends on the parameter v on ^2.

1 . 2 . Central to the duality theory of Banach spaces, the minimization problem of
a continuous linear functional on a bounded subset provides an elementary example
of a continuous perturbation : define the initial problem Pby : minimize a conti-
nuous linear functional u on a closed bounded subset X of a Banach space E :

P : inf u ( x )
x€.X

This problem is naturally immersed in the family of optimization problems :

( 1 . 1 ) P : inf v ( x )
v xe:X

with domain of parameters an open neighbourhood of u in ^ .

But for weakly compact subsets X , P may have no solution. Nethertheless, in
the case of a convex subset X , the Bishop-Phelps theorem ( [ 7 - ] asserts that IP
is solvable for each v in a dense subset of Q .

THEOREM 1 (Bishop-Phelps)
Let X be a closed bounded convex subset of a Banach space E ; the set of conti-

«nuous linear functionals which achieve their.minimum on X is dense in E

Thus the initial problem P can be approximated by perturbed problems which have
solutions : we shall say that the perturbation defined in ( 1 . 1 ) is densely solva-
ble.
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1 . 3 . A little more work allows us to derive from the Bishop-Phelps theorem that,
for every closed, bounded convex subset X of any Banach space E , and every lo-
wer semi-continuous convex function f : E -»• ]R U {•»-<»} bounded from below on X ,
the "convex" minimization problem " P : minimize f on X" can be slightly per-
turbed in a way that it becomes solvable. As a matter of fact, consider the pertur-
bation :
P ( a , v ) : minimize the continuous linear functional ( A , s ) -*• aA + v . ( x ) on the

epigraph of f above X with domain of parameters ]O,-H»QX E
By the Bishop-Phelps theorem, this perturbation is densely solvable, and, for
every ( c x , v ) £.]o,-K»t x E P ( a , v ) is equivalent to the minimization problem :

P : inf f ( x ) + cT^x)
v x£X

Thus the perturbation P is again densely solvable since ( a , v ) -»• a v is a
continuous mapping from ] o , + ° ° [ x E onto E

The next section sketches out the proof of a non-convex variant of the Bishop-
Phelps theorem which provides a similar result for some non-convex optimization
problems.

2. A NON-CONVEX BISHOP-PHELPS THEOREM IN ASPLUND SPACES
2 . 1 . To release the convexity assumption in theorem 1 , we need a geometric assump-
tion on the space of parameters , recall that an Asplund space ( [ ^ J ) is :

( 2 . 1 ) A Banach space E such that every continuous convex function
defined on an open (convex) subset ft£E is Frechet-derivable at a dense Gr, sub-
set in ft .

THEOREM 2
Let X be a closed bounded subset of a Banach space E , the dual or which is an
Asplund space E , and f a lower semi-continuous mapping from E into JRU{+ 0 0},
bounded from below on X .

The perturbation :
P : inf f ( x ) + v ( x )

x£X
with domain of parameters E , is densely solvable ; moreover, there exists a

^dense G. subset in E , at every point v of which :

i ) P admets a unique solution x ( v )
ii) the minimizing sequences of IP converge to x ( v ) .
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2 . 2 . The proof follows geometrical intuition : the involved perturbation is gene-
rated. "by the deformation :

F : X x Q, ->]R U{-H»} : ( x , v ) -> f ( x ) + v ( x )

of the criterion f . The value function now appears as the pointwise infimum of
the family of functions F̂  : v -> F ( x , v ) . Let j be the canonical injection from
X into E *, a contact unit associated with the family of functions F will bew y^w ^
an element ( v , p , F ^ ( v ) ) in E x E x B where p = j ( x ) stands for the "gra-
dient" of F^ at v . The proof relies on the fact that, subject to Frechet-dif-
ferentiability of the value function V at u£E , there exists, for every mini- '
mizing sequence x of the problem P , a sequence

n̂'̂ x^n^ = ̂  ̂ '^ + V^

of contact units which converges to ( u , v ' ( u ) , v ( u ) ) in E* x E** x ]R (the claim
will be proved in section 4 ) .

Since j is an isomorphism from X onto j ( x ) , the minimizing sequence x con-n
verges to some x eX , which satisfies :

j ( x ) = v ' ( u ) and f ( x ) + u ( x ) = F ( u ) = v ( u )

Thus P admits a unique solution x ( u ) characterized by :

j ( x ( u ) ) = v ' ( u )

Now, we only need the geometrical assumption on E , since v is a continuous
concave function, hence Frechet-derivable on a dense G. subset in E^ .6

2 . 3 . Therefore, every minimization problem on a closed bounded subset of a predual
of an Asplund space can be slightly perturbed in a way that it becomes solvable. We
point out that many classical spaces of functional analysis, among which reflexive
Banach spaces are preduals of Asplond spaces.

The approach used in theorem 2 can be carried on to other types of perturbations ;
however, it first requires to single out a class of suitable perturbations.

3. A SELECTION OF SUITABLE PERTURBATIONS
3 . 1 . Let us consider a perturbation of some initial minimization problem P , defi-
ned as in 1 . 1 . :

P : inf F ( x , v )
X£X

with domain of parameters an open subset ^ of a Banach space E .
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From now on, we shall assume that :

( 3 . 1 ) for every x€X , F : v -> F ( x , v ) is locally Lipschit-
zian on its effective domain {v e^ / F ( x , v ) < + < » } .

Then we can still define a contact unit associated with the family of functions
F as an element ( v , p , F ( v ) ) in Q x E x ]R , with p a continuous linear
functional on the space E of parameters, which belongs to the generalized gra-
dient 3F ( v ) of F at veQ ( [ 3] ) .

p can still be thought of as the "gradient" of a tangent hyperplane in E x ]R to
the epigraph of F above Q, , at the point ( v , F ( v ) ) .x x

The following criterion provides a convenient substitute to the situation encounte-
red in section 2.

The perturbation. :

P : inf F(x,v)
v x£X

with domain of parameters an open subset Q, of a Banach space E , is said to be
proper if :

( 3 . 2 ) for every sequence (u , p ,F (u ) ) of contact units con-» n n x^ n
verging in Q, x E x ]R , the sequence x has at least one cluster point x£X .

The linear perturbation introduced in theorem 2 is clearly a proper one. Other
easy examples suit this "rough" criterion ; for instance, the elementary perturba-
tion derived from the nearest points problem :

3 . 2 . The initial problem is to minimize the distance of a given point u in a
Banach space E to the elements of a closed subset X C E :

P : inf [ | x - u [ |
xe:X

The family of associated perturbed problems is :

(P : inf | | x - v | |
x£X

with domain of parameters a neighbourhood ^ of u in E . This define a natural
perturbation of the problem P which is clearly continuous ( c f . 1 . 1 ) . We claim that,
for a weakly relatively compact closed subset X , it is also a proper one, as soon
as the norm of E satisfies the following geometric condition :

( 3 . 3 ) every weakly convergent sequence in the unit sphere of E
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converges in fact in the norm topology.

We shall prove in fact a little more sophisticated result :

PROPOSITION 1

Let X be a weakly relatively compact closed subset of a Banach space E , f a

lower semi-continuous mapping from E into ]R U{+°o} , bounded from below on X ,
and q? a lower semi-continuous mapping from ]R into ]R U{+<»} , locally Lipschitzian
on its effective domain {t<£]R / ^ ( t ) < + < » } .

Consider the minimization problem :

P : inf f (x ) + <P(||^-u|| )
X€:X

and assume that the generalized gradient of <p at t ^ 0 never contains 0 , and
the norm of E satisfies (3.3) , then the family of minimization problems :

P : inf f(x) + (P(| |x-v| | )
x<£X

with domain of parameters an open neighbourhood ^2 of u in E defines a proper
perturbation of P .

3.3. Proof : Denote by F the mapping (x,u) -»• f ( x ) + (p ( || x-v|| ) from X x Q
into B U{+oo} . Then, for every V e^ , F : 'X -»- F(x ,v) is lower semi-conti-

nuous on X and bounded from below ; thus, according to 1.1. the family of mini-

mization problems P defines a perturbation of the problem P. Moreover, it sa-

tisfies (3 .1 ) . Therefore, we only have to check condition (3 .2 ) . Let (u ,p ,F (u ))
« xn

be a sequence of contact units which converges to (u,p,a) in Q, x E x ]R . By as-

sumption, there always exists a subsequence (u ,p ,F (u ) ) such that x weaklym m x m mm
converges to some X €: E , and ||x -u [| converges to £ in ]R

Now, for every me:B , p^ = r .Q where r e:9^(| |x -u || ) and a belongs to
the generalized gradient of the norm at x - u , that is :m m

^\-^ = IÎ JI ' ll^ll ^ ^ •
If 3 = 0 , x converges to x = u in X ; otherwise , r converges to some
reiB^fO) and qi = r .p converges to r .p . It follows :

<l(x-u) =lim ||x^-uj| = g ? ||x-u|| , 1|q|| § 1
n

lim ||x^-uj| = ||x-u|| > 0 and —n———m is a sequence in the unit
n I I x -u I I" m m"
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sphere of E weakly converging to —x u . Thus, we derive from ( 3 . 3 ) that
||x-u||

x converges to X in the norm topology, and x €:X . Q . E . D . -

3 . 4 . This proposition arouses some comments :
i) the geometric assumption on the norm is satisfied in L . U . C . Banach spa-

ces, among which Hilbert spaces and 1̂  spaces ( 1 < p < + ° ° ) , although B has
an equivalent norm which satisfies this assumption and is not even strictly convex
( [ 2 ] 2 . 1 ) .

ii) the proposition applies, in particular, with if any function t ->• t
(a ̂  0) (with the convention 0 = + oo , for negative a ) or any strictly in-
creasing locally Lipschitzian function on E

iii) If E is a reflexive Banach space and lim inf q » ( t ) = + oo the^assump-
t-H<o

tion X is weakly relatively compact can be dropped ; as a matter of fact, if
f(x^)+ ^([(x^-u | | ) converges in ]R , then [ | x -u [ | is necessarily bounded
hence x -u remains in a weakly compact subset of E .

3 . 5 . Finally, adding these remarks, we point out that in reflexive L . U . C . Banach
spaces (in particular in Hilbert spaces and L15 spaces ( 1 < p < + ° o ) ) the propo-
sition gives, setting f = 0 and p̂ = Id̂  , a proper continuous natural perturba-
tion of the nearest points problem :

P : inf ||x-u | |
xeX

for every closed subset X CE .It is a well-known result of convex optimization
that, for a convex subset X , P is always solvable. This is no longer true if the
convexity assumption is dropped ; however, we shall give in section U necessary
conditions under which this problem can be approximated by perturbed problems
which have solutions ; in fact, we shall give necessary conditions under which
every proper continuous perturbation is densely solvable.

k. THE FUNDAMENTAL RESULT.
4 . 1 . Let us say that a function f which maps an open subset ft of a Banach
space E into 1R is strictly derivable at u eft if it is Lipschitzian on some,
neighbourhood of u in ft and its generalized gradient 3f is reduced to a sing-
leton and continuous at u ( [ 3 " ! ) > then f must be Frechet-derivable at u and
3f(u) = { f ' ( u ) } ; the converse holds for a continuous convex function although it
fails in general ,
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However, a locally Lipschitzian function is strictly derivable on an open subset ̂
if it is continuously Frechet-derivable on !>2 (Then, it will be termed a C* func-
tion on ^ ) .

If f maps an open subset ^ of a Banach o-pace into ]RU{+oo} we shall say that a
mapping h from ^l into ]R is an exact minorant of f at u&ft if :

i) h ( v ) ̂  f ( v ) for every ve^2

ii) h ( u ) = f ( u )

We can now state our fundamental result :

THEOREM 3. Let us consider a proper perturbation :

P : inf F ( x , v )
v X€EX

of some minimization problem P , as defined in 1 . 1 . , with domain of parameters
an open subset ^ of a Banach space E .

Assume that the value function admits at some u^^2 , an exact minorant, strictly
derivable at u , then :

i ) the set S ( u ) of solutions of the problem P is non-vacuous.

ii) Every minimizing sequence of the problem IP admits at least one cluster
point in S ( u ) ; in particular, it converges to the unique solution of P , if
S ( u ) is reduced to a singleton.

iii) n a? ( u ) ^ 0
xe:S ( u ) x

iv) For every sequence u converging to u in ^ , and every sequence
x £S(u ) , the set of the cluster points of x is non-vacuous and contained in
S ( u ) .

Proof : Let h be an exact minorant of the value function at ueS'2 , strictly de-
rivable at u . The proof relies on the :

Lemma : for every sequence (x ,u ) £X x ̂  satisfying :

( U . 1 ) lim | | u - u | | = 0 , lim [F(x^,u )-v(u )] = 0
n n

there exists a sequence of contact units (v ,p ,F ( v ) ) , p ^9F (v ) , which^ n n x^ n n . x̂  n
converges to ( u , h ' ( u ) , h ( u ) ) in S'2 x E x ]R

Proof of the lemma : the proof is divided in two steps :



construction of the sequence (v ,p ,F (v,,)) : .

First notice that : h (u) = v(u) = inf F(x,u) < + °° . Thus, for every 6 > 0 ,
. - X £ X

there exists x£X such that :

F(x,u) < v(u) + 6 . -

Then, for every n6:]N , v(u ) ^ F(x,u ) and : lim sup v(u ) .$ lim sup F(x,u ) »
n n

Since. F(x,u) < + °° , we deduce from ( 3 . 1 ) that :

lim sup v(u ) .< F(x ,u) < v (u) + 6
n

Therefore, v is upper semi-continuous at u and v(u )-h(u ) converges to 0.

Now, let £ = F(x ,u )-h(u ) , then by ( 4 . 1 ) , c converges to 0 .n n n n n

If £ = 0 , F(x ,u ) = h(u ) .$ v(u ) thus x is a solution of the probem P^

and :

0 = F(x -u )-h(u ) = inf F(jc,v) -h(v)n n n ^v £ ̂  .

Therefore, 06.3F (u )-9h(u ) ( [3] prop.6 and prop.8) and we can choose :
n

(4 .2 ) v = u and p <=.9F (u ) n 3 h ( u ) •n n . n x n nn

If £ > 0 , the mapping from E into ]R U {+00} defined "by

( F(x^,v^)-h(v) i

v -^ G(v) . ' =

F(x ,v )-h(v) if ve:n

^ 0 if v^

is lower semi-continuous, bounded from below, and satisfies :

G(u ) = £2 «$ inf G + £2 •n n n

Thus, we can apply theorem 1.1 of [4] (i.Ekeland), whence we derive :

( U . 3 ) 3 v €;E G(v ) < G(u )n n n

||v -U || <: £" n n" s n

V v e E G(v) ^ G(v^) - £^ ||v^-v||

( 4 . 1 ) and (4 .3 ) show that, for n large enough, v e-^i and thus the mapping

v -> G(v) + £ |l v -v || from E into ]R U {+00} is Lipschitzian on some neighbour-

hood of v in ^ , and achieves" its minimum at v . Hence, it follows from [ 3 ]
(prop.6* and prop.8) :

(h.k) . aq^eSG(^) ||qj| ^ £^
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But 3G(v )c:3F (v^)-3h(v ), therefore we can choose :
n

(4.5) v^ as in (4.3) and P^^x ^r^0^ + ^^n^
n.

Convergence of the sequence (v ,p ,F (v )) :
n

The sequence v converges to u by (4.3) or (4.2) and ( 4 . 1 ) . The sequence

p^ converges to h'(u) since, by assumption, 3h(u) = {h*(u)} and 3h is conti-

nuous at u ,, using (4.$) and (4.4) or (4.2). Finally :

h(v^) ^ F^ (v^) = G(v^) + h(v^) ^ G(u^) + h(v^) = F^ (u^) + h(v^)-h(u^)
n n

(using (4.3) for e > 0)

and lim sup F (u ) ^ lim[F (u )-v(u )J + lim sup v(u ) ^ v(u)
n n n n

together implie :

V(u) = h(u) = lim inf h(v ) ^ lim inf F (v ) ,< lim sup F (v )
n n n "n n n "n n

^ lim-sup F^ (u^) + lim sup D'i(v^)-h(u^)] <: v(u)
rî  n . n ^

whence : h(u) = lim F (v ) . Q.E.D.
n ^n

Now we can achieve the proof of theorem 3. ;

For every minimizing sequence x of the problem P , the sequence (x ,u) satis-

fies. ( 4 . 1 ) ; then it's a straightforward consequence of the previous lemma and the

•definition of a proper perturbation that the sequence x 'has at least one cl-uster

point x € X . By the semi-continuity of F , x satisfies : F (u) .$ h(u) = v(u)

Moreover, we derive from [^ prop. 6 that h^u^BF (u).

The set S(u) of the solutions of the problem P is non-vacuous ; every minimi-

zing sequence of the problem P has at least one cluster point, which belongs

to S(u) , and :

h'(u)C 0 3F (u)
xes(u) x

It remains to prove, that, for every sequence u which converges to u in ft ,

and every sequence x eS(u ), the sequence x has at least one cluster point

which belongs to S(u) ; but the sequence (x ,u ) again satisfies ( 4 . 1 ) . The

claim follows thus from the lemma and the definition of a proper perturbation.Q.E.D.

4.2. According to theorem 3., a necessary condition for a proper perturbation to

be densely solvable is that the value function densely admits an exact strictly
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derivable minorant ; the condition is trivially satisfied if the value function is
itself densely strictly derivable. Thus the next density result appears as a
straightforward consequence of theorem 3 i

COROLLARY : Let us consider a continuous and proper perturbation :
P : inf F ( x , v )

xeX
of some minimization problem P , with domain of parameters an open subset ft of
an Asplund space.

If for every xcX , F̂  : v -»• F ( x , v ) is a concave function on ft , then the per-
turbation is densely solvable.

In fact, assertions i) to' iv) of theorem3. hold for each v in a dense G« sub-6
set of ft .

By theorem 3. we only need to prove that the value function is strictly derivable
on a dense G. subset in ft , but this follows directly from assumptions since it
is obviously a concave continuous function on ft , and ft is an open subset of
an Asplund space ( c f . ( 2 . l ) ) .

Theorem 2. is a trivial consequence of this latter corollary ; another interesting
application is given in the following :

PROPOSITION 2 (Baranger-Temam)
Let x be a closed bounded subset of a reflexive Banach space E , f a lower
semi-continuous mapping from E into 3R U {+00}, bounded from below on x , and >̂
a continuous strictly decreasing Concave function on [o,+00^ .
Assume that the norm of E satisfies ( 3 . 3 ) , then the perturbation :

P : inf f(x ) + < - P ( | | x - v | | )
xcX

with domain of parameters an open subset ft CE , is densely solvable. Moreover,
for each v in a dense G , , subset of E , assertions i) to iv) of theorem 3
hold.

is uniformly continuous on each bounded subset, hence the perturbaton is con-
tinuous ; moreover, we proved in proposition 1 that perturbations of this type are
proper ones. Now according to the corollary of theorem 3 . , assertions i) to iv) of
theorem 3 hold for a dense G- subset in ft .u
The comments on the technical assumptions involved in proposition 1 still apply to
proposition 2.

We point out that theorem 3. provides a complete description of the "typical"
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situation encountered in proposition 2. For instance, if, moreover, the norm of E
is assumed to be strictly convex, then assertion iii) of theorem 3. implies the uni-
city of the solution (the technical argument is,left to the "interested" reader) ;
thus, the problem P densely admits a unique solution and every minimizing se-
quence converges to this solution.

Proposition 2. applies, in particular, with f = 0 and (p = - Id . Then the pertur-
bation becomes :

P : sup | | x - v | |
x€:x

which is the natural perturbation of the "farthest points problem", clearly matched
•with be nearest points problem introduced in section 3.

In order to apply theorem 3. at its best, one is led to investigate the class of
functions mapping open subsets of Banach spaces into 3R U {'+00} which densely admit
an exact strictly derivable minorant. Clearly, such functions must be lower semi-
continuous and lower semi-continuous convex functions are suitable. The natural
question is : does each lower semi-continuous function defined on an open subset
of a Banach space have this property ? • In fact, the answer turns out to depend on
the geometry of the underlying space of parameters :

5 . DENSITY RESULTS IN UNIFORMLY CONVEXIFIABLE BANACH SPACES
5 . 1 . Let us introduce the class of Banach spaces E which satisfy the following
structural condition :

( 5 . 1 ) Every lower semi-continuous mapping f from E into ]R U{+00},bounded
from below, admits, at a dense set of points in its effective domain {U GE/f(v)<+<»}
an exact minorant of type C1 .
Then, we derive obviously from theorem 3. :

THEOREM U .
Every continuous proper perturbation with domain of parameters an open subset of a
Banach space which satisfies ( 5 . 1 ) is densely solvable.
It should be observed that the converse holds, at least in reflexive spaces :

PROPOSITION 3.
Let E be a reflexive Banach space such that every continuous proper perturbation
with domain of parameters an open subset of E is densely solvable, then E satis-
fies ( 5 . 1 ) .
We shall deduce the proposition from two lemmas :
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Lemma 1. Let E be a reflexive Banach space the norm of which satisfies (3.3)
and f a lower semi-continuous mapping from E into ]R U {+00} bounded, from below,

the effective domain of which {v€-E / f (v ) < + 00} is non-vacuous. For every posi-

tive real number C , the perturbation :
2

P : inf f(x) + C||x-v||
v xCE

with domain of parameters the whole space E , is continuous and proper.

The value function is always finite, since the effective domain of f is non-va-

cuous, and upper semi-continuous as a pointwise i.nfimum of continuous functions.
Thus, for every uCE , there exists a constant K ( u ) such that V(v ) < K(u) for

every v in an open ball B(u) of center u and radius r in E . Now let v

and w belong to B(u) ; for every x€"E , satisfying :

2
(5 .2 ) f (x ) + C||x-v|| ^ K ( u )

we derive :

1 /p
||x-v|| < (K^^./

2 2
whence : F (v) - F (w) = C (||x-v|| - ||x-w|| )

$ C(||x-v|| + ||x-w||). ||v-w||

^ 2 C (M + r) ||v+w||

and : V ( w ) ,< F^(w) ^ F^(v) + " 2 C ( M + 2 ) . ||v-w|| .

Taking the infimum along the X satisfying ( 5 . 2 ) , we deduce :

V(w) ̂  V(v) + 2C (M+2). ||v-w||

Therefore V is Lipschitzian on B(u) and the perturbation is continuous ; fi-
nally the perturbation is proper by proposition 1 (and the third following remark).

Lemma 2. Let E be a Banach space, the norm of which is Frechet-derivable at each

non-zero point, and f a lower semi-continuous mapping from E into ]R U{+°°} ,
bounded from below, the effective domain of which is non-vacuous. Assume that for

every positive real number C

the perturbation :
2

p : inf f(x) + C||x-v ||
v xe:X

with domain the whole space E , is densely solvable, then f admits an exact
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minorant of type 0 at each point of a dense subset in its effective domain.

Let u "be any point in the effective domain of f , and £ a positive real number ;

we shall exhibit a minorant of f -which is a C function on E and is exact at

some point of the open ball of center , u and radius e in E . Define :

(5.3) . C = 8. ^[^(u) - inf f] ^ 0

- If C = 0 , f achieves its minimum on E at u and the claim is trivial.

- Otherwise, there exists, by assumption, v e£. such that :

(5.^) ||v-u|[ < e ^2/k

and the problem P admits a solution xe:E . Thus, it follows :

(5 .5) Vye:E f(x) + C||x-v|[2 + C||y-v|[2 ^ f(y)

which shows that the function :

? 2

h : y -> f(x) + C ||x-v|r - C[|y-v[|

is a minorant of f which is of type C? and is exact at x£E .

(5 .5 ) moreover implies :

f(x) + C||x-v||2 + Cllu-vj l2^ f(u)

hence :

C||x-v|[2 < f(u) - inf f + C||u-v||2 „

Using now (5 .3) and ( 5 . ^ - ) » we get :

||x-v||2 < e2/Q + ^/Q = e2^

whence : .

(5 .6) ||x-v || < e/2

Finally, combining (5.6) and (5 .^) ;

| |x-u||<||x-v|| +||x-u|| ^ e/2 + e/2 = c ,

Therefore, X belongs to the open ball of center u and radius £ in E , which

ends the proof . ,.

Now the previous proposition is a straightforward consequence of the lemmas, since

every reflexive Banach space can be renormed both in a Frechet-derivable and locally
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uniformly convex manner ( [7] V.5 Cor.3) ; such a norm satisfies (3.3) ( |7] 11.2.

THM.4).

5.2. To end. this discussion, we shall exhibit a particular class of reflexive Ba-

nach spaces satisfying ( 5 . 1 ) :

THEOREM 5.

Every uniformly convexifiable Banach space satisfies ( 5 . 1 ) .

Proof : Every uniformly convexifiable Banach space E can be renormed in -a way

that E and E are both uniformly convex ( [7] III Notes and remarks) ; the norm

of E is then Frechet-derivable at every non-zero point ( [7^ II. U. THM 1 . ) . Ac-

cording to lemma 2. we only need to prove that, for every lover semi-continuous

mapping f from E into ]R'J{+oo}, bounded from below, the effective domain of

•which is non-vacuous, and every positive real number C , the perturbation :
2

P : inf f (x) + C||x-v||
xe-E

with domain of parameters the whole space .E , is densely solvable. Let u any

point in E and K ( u ) a constant such that V(v ) < K ( u ) for every v in an

open ball B(u) of center u -and radius r in E :

2 1 /?
f(x) + C||x-v|| < K(u)=>f(x) ^ K(u) , ||x-u|| ^ ( î Ĵ LJl) + ^

For every ve:B(u), the problem P is thus equivalent to :

2
P : inf f(x) + C||x-v||

x<EX(u)
i /?

where X(u) = {xe:E / f(x) .$ K(u) , ||x-u|[ ^ ( K(u) "inf f ) + r;
C

i.s a closed bounded subset in E . The claim is then a direct application of f5]

proposition 3 . 1 U .

COROLLARY : Let E be a uniformly convexifiable Banach space ; then every conti-

nuous proper perturbation with domain of parameters an open subset .of E is den-

sely solvable.

In particular :

PROPOSITION U. (Ekeland-Lebourg)

Let X be a closed subset of a uniformly convexifiable Banach Space E , f a

lower semi-continuous mapping from E into 3RO {+00}, bounded from below on X ,
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and q> a lower semi-continuous mapping from |o,+<»[ into I R l ' I + o o } , locally Lips-
chitzian on its effective domain.
Assume that :

i ) X is bounded or lim ^ ( t ) = + °°
t-»-+oo

ii) the generalized gradient of ip at t ̂  0 never contains 0
iii) the norm of E satisfies ( 3 . 3 )

Then the perturbation :

P : inf f ( x ) + <p ( | | x - v | | )
xe X

with domain of parameters the whole space E is densely solvable.

Note that E is reflexive, hence the perturbation is proper by proposition 3.
(and the following remarks). Furthermore, the value function is easily checked to

• be locally Lipschitzian on its effective domain ; the perturbation is thus conti-
nuous on the effective domain of the value function and the proposition follows
directly from the latter corollary.

Theorem 3. together with the assumption that ( 5 . 1 ) is satisfied gives in fact much
more information on the perturbation ; for instance, if moreover the norm of E
is assumed to be strictly convex, then p densely admits a unique solution and
every minimizing sequence converges to this solution.

Proposition 4. applies, in particular, with f = 0 and ̂  = Id̂  . Then the pertur-
bation becomes :

P : inf | | x - v | |
xeX

Thus proposition 4. asserts that, in every uniformly convexifiable Banach space E ,
and for every closed subset XCE , the set of the points U&E which have (at
least) a nearest point in X is dense in E . We point out that E can be equip-
ped with a not even strictly convex norm, inasmuch as it satisfies ( 3 . 3 ) .

Taking now f = 0 and c? = - Id̂  in proposition 4 . we get a similar result as
well for the farthest . points problem.

To conclude this section, we notice that a standard argument shows that Banach
spaces which satisfy ( 5 . 1 ) are Asplund spaces ; so it should come as no surprise
that Asplund spaces appeared in the statement of density results such in theorem 2.
or the corollary of theorem 3. However, it seems to be unknown if there exist As-
plund spaces which do not satisfy ( 5 . 1 ) .
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