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W

ON SUBDIFFERENTIAL CALCULUS AND

DUALITY IN NON-CONVEX OPTIMIZATION

•John F. TOLAND

The purpose of this lecture is to give a brief resume" in an abstract setting of
some results in the theory of duality for non-convex optimisation which have been-
obtained, by the author recently. These results were initially motivated by a pro-
blem arising in mechanics (treated in |_ 1] and f 3 ] ) but appear to have a larger
field of application. This lecture does not contain the applications, for which we
refer the reader to the references [ 1 ] , [ 2]- , [ 3] .

§ . 1 THE GENERAL DUALITY PRINCIPLE
Let V and V be linear topological vector spaces in separating duality, and
let < , > : V x V -> B denote the bilinear form which determines the duality bet-
ween V and V
We shall consider the extremality problem

T inf j ( u )
ueV

As this stage we do not make any assumptions about the behaviour of J , and so we
might just as well consider the maximisation problem

sup - J ( u )uev
instead.

Now let Y , Y be another pair of vector spaces in duality and let $ : VXY -»• ]R
be a functional with the following properties : ^ ( u , 0 ) = - J ( u ) for all ue*V
and for each u £ V the mapping $ : Y ̂  B defined by ^ ( p ) = $ ( u , p ) all pe Y
is either convex and lower semi-continuous on Y , or has the property that
<^*(0) = ̂  ( 0 ) for all ueV •

This assumption is enough to ensure that an extremal principle, equivalent to p
can be defined on Y , in much the same way as.Legendre and Hamilton proceeded
originally.

We begin by defining the Lagrangian functional £ : V x Y -̂  3R as
- S. ( u , p ) = sup { • < p,p > - $ ( u , p ) } •

pcY
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* «» / *\- L p = sup S. (u,p )Now put
uev

Then the dual optimisation problem is

y inf L(p*)

,

THEOREM 1 If $ : V x Y -*• B is any functional such that - $(u,0) = Ju ,
then

inf Ju $
u£V

inf L p

Proof inf Ju = sup $ (0) ^ sup ^ (0)
ueV u£V u -c v uu e v

supsup sup - ^ (p ) = sup
u£v p^Y* p^Y^

sup £(u,p )
u£V

sup - Lp = - inf Lp
p^Y^ p^Y*

Q.E.D.

THEOREM 2 If <̂  ( 0 ) = $ ( 0 ) for all u e V then

inf Ju
u£:V

inf L p
p '̂v*

Proof : Immediate from previous result.

Remarks : We have used the Lagrangian £ to define a dual extremal problem, and
not to define a minimax problem equivalent to P . The existence of a saddle-point
(,u,£ ) for £ ( £ ( , u , p ) ̂  £(u.,£ ) ̂  £ ( u , p * ) ) implies that ^ is a solution of
the, problem Ju^ = sup Ju. So if J is not bounded above £does not have a sad-

ueV
die-point, but nonetheless it can be used to define the dual extremal problem P*
as we have shown.

The duality result in theorem 2 is true whether solutions for Por P* exist or
not. In our next result' we examine the relationship between solutions of P and of
^ .

THEOREM 3 Let $ : V x ' v -^ 3R be such that ( u , 0 ) = Ju for all u e V .
Suppose that _u is a solution of Pand that p^€ 9$ (0). Then P* solves 9*
and . —
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- £ (M^) + <H^,0) = 0 ^ (a)

; ( E )

1 )̂ + £(u,£") = 0 ) (b)

Proof : Because of theorem 1 it will suffice to show that L(j^ ) = J(^).

- S, (j^ ) = sup { <p,£ > - $(u_,p)}
pev

,< sup { <p,p* > - Wju.O) + < p,p* > } }
P 6 V

= - $(u.,0) .

Hence - L(^ ) = sup £ (.".»£*) $- S, (u,?^) ^ ^>(.u.,0) == J(,u_)
u e v

and. so L(j^ ) = Ju^ .

By theorem 1 , L(j^ )= J(u^) , and. it is clear that

- £ (j"L>£*) + <H.u,0) = 0

L(p^) + £ (u.,P*) = 0 Q.E.D.

Remark : It is apparent that these extremality conditions comprise the Euler-La-

grange equations when the extremal problem arises in the calculus of variations

(see \_1^ , [2] for further details). When we treat the important special case of

J in the form G - F with F convex in the next section we will see that they

are not enough to ensure that u^ and j^ solve ^ and P respectively. However

the following result is true. If p c Y and {u } C V is such that

lim £ (u ,p ) = - L(p*) .
n-x» — —

Then p solves IP if and only if {u } is a minimising sequence for fP and
— ?K n

<HU^,O) - £ (^'P ) ^ 0 as n -^ °o •

§.2. AN IMPORTANT SPECIAL CASE

In order to simplify our-discussion further we shall give an analysis of the spe-

cial case which lead us to the results of the previous section and of [ 2 | •
• /

Suppose. Ju = Gu - Fu for all u c V . Then if we put

0(u,p) = F(u + p ) - Gu , for all (u ,p) c V x v



180

S, (u,p ) = < u,p > - Gu - F p

and
L(p ) = F p - G p

In this context theorems 1 , 2 and 3 take the following more specific form :

THEOREM 1 ' : inf G ( u ) - F ( u ) ̂  inf F*(p^) - .G*(p*) .
u£V p £ V

THEOREM 2' : If F is convex and lover semi-continuous on V , then

inf Gu - Fu = inf F*p - G p
ueV p £ V

THEOREM 3' : If u £ V is such that

G(^) - F(^) = inf G ( u ) - F ( u )
u£V

and p £3F(_a) , then

« ^ * * . _» » ^ *F p - G p = inf F p - G p
p^e ^

Fu + F*?^ = < u,,p* > (a)

Gu + G p = < u_,p > (b)

( E ' )

Remark : It is clear in this special case -why the extremality conditions E, E'
of theorems 3, V are not enough to ensure that a pair (u.,j? ) are solutions of
P and ^* respectively. In fact E' holds if and only if

p*e3G(u,) n 3F(,u) .

We can make the' following definition. A point u £ V is a critical point of G-F
if 3G(u)n3F(u)9 p* for some p* £ .V* .

It is then a natural question to ask if E' is satisfied "by a pair (_a,p )£V x V,
under what circumstances can we be sure that _u is a minimiser for (3 . In kee-
ping with our approach throughout this lecture we want the answer in terms of sub-

differentials.

THEOREM h Suppose G and F are convex functionals which are such that 3F

and 8G are single-valued and hemi-continuous mappings from V into V . Sup-

pose that u_ £ V is a critical point of G - F in the sense which we have just

defined ( i .e . 8G(u) = 3 F ( u ) ) .
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If
< 3 G ( u ) , u-_u> > <3F(u),u-u>

for all u in a neighbourhood N of _u in V , then G(u^)-F(ju) ^ G(u)-F(u) for

all u c N , and. u_ is a local minimiser of G - F .

Proof : Let u c N ; define the mapping

h( t ) = G(tu + (l-t)jj.) - F(tu + ( l - t ) ju)

Now h : [o»lj "> B is continuous and we want to show that h(l-) .̂ h(0) . By a

classical result due to Borel it will suffice to show that the lower symmetric de-

rivative of h is non-negative at each point of ( 0 , 1 ) . In other words we must

show that

^ ̂  h(t^s) - h(t-s) ^ Q

s -^ 0 s

for all t c ( 0 , 1 ) .

But G((t+s)u + (l-t-s),u) - G((t-s)u + (l-t+s)_a)

^ < 8G((t-s)u + (l-t+s),u_) , 2s(u-u_) >

and F((t-s)u + (l-t+s)_u) - F((t+s)u + (l-t-s)u_)

> < 3F((t+s)u+(1-t-s)^), -2s(u-_a) > .

So

-——^—————s- >- < 8G((t-s)u + (l-t+s)_u) - 3F((t+s)u+( 1-t-s)_u_, u-,u, >

—> • < 3G(tu + (l-t)jj_) - 9F(tu+( 1-t)^) , u-u, > >0 .

Hence h is an increasing function on ( 0 , 1 ) and the result is established. Q.E.D

Now it is obvious that there is a symmetry between problem ^ :

inf Gu - Fu
uev

and problem ^

« « « «
inf F p - G p

p^v*
If (.^»£ ) satisfy E' then we say that _u_ is a critical point of G - F . By

the same token p is a critical point of F - G , and we can apply theorem h

to decide whether or not j^ is a local minimiser for ^ . But it is also an
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interesting question to ask whether we can deduce the local properties of ^ from
a knowledge of the local properties of _a .

THEOREM c? Let (^,p ) e V x V satisfy E* , and suppose that ^ is a local
minimiser of G - F .

^ ^ ^If 3G is single-valued and continuous on V , then p is a local minimiser
for F* - G* .

Proof : Since ;u is a local minimiser for G - F there exists a neighbourhood
N of u such that if u e N then

Gu - Fu > Gu. - Fu_ .
Now "by the continuity of 3G there exists a neighbourhood M of p such that
if p* e M then 3G*(p^) = u £ N. Thus if p £ M , then for some u £ N

« « »
Gu + G p = <u,p >

and

Fu + F p ^ <u,p >

Thus Gu - Fu ̂  FV - GV

But F p - G p = Gu - F̂ i by E* ,
« « » » « « « «and so F p - G p ^ F p - G p

for all p £ M and the proof is complete.' Q . E . D .
So, in this lecture we have illustrated in an abstract setting how the subdifferen-
rial calculus may play a useful role in the problems of non-convex optimisation and
in the calculus of variations. In a recent paper ĵ J the author has established
the results on problems of the form G - F quite independently of the considera-
tions of section 1 of this lecture. There results on the duality of minimising se-
quences are established,and the theory is applied in the analysis of a problem in
mechanics. In [^ the results of section 1 are analysed in greater detail than
here, and their application to the calculus of variations is given. In particular
the Euler-Lagrange equations are seen to hold under weak hypotheses on the inte-
grands. In [3] the duality between local properties of critical points is develo-
ped in the spirit of theorem 5 above ; but a more sophisticated context is needed
for the intended application to "the stability question for the heavy chain -which
is also treated in that paper.
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