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the study of the notion of opposite parabolic subalgebra.

* Research partially supported by an N.S.F. grant.



N.R. WALLACH

Introduction.

Let 9, be a semi-simple Lie algebra over R. Let 9:30 - 9, be a Cartan invo-
lution of g, and let ko= {xe 9, | 8x = x}. Let g (resp. k) denote the complexi-
fication of 9, (resp. 50). Then a (g, k) - module, M, is said to be holomorphic
if there is a 6-stable Borel subalgebra, b, such that M is in the Bernstein-
Gelfand-Gelfand category 0 for b. It is not hard to show that if there exists an
infinite dimensional holomorphic (g,k)-module, then - contains a 6-stable simple
ideal gé such that (gé, Eof\ gé) is a symmetric pair of Hermitian type.

The purpose of this article is to give a description of the Jacquet module of
an irreducible holomorphic representation. No doubt many of the results of this
article are known to several specialists in the field (for example, Casselman and
Zuckerman have communicated certain less precise results to us) . However, there is
no place in the literature where one can find a reference. The importance of these
results now stems from the fact that the unitarizable holomorphic representations
have been classified ([1]).

As it turns out the determination of the Jacquet module of a holomorphic rep-
resentation is relatively easy once one understands the notion of "opposite para-
bolic". The first half of this paper is devoted to a rather detailed study of
opposite parabolics and the relationship between their categories (. We give here

an example for sf(2,8) = g. Let

0 i} 1 -i

H = ’ X =
-i 0 -i -1
1 o) 0 1

h = ’ x =
(o] -1 0 0

Then b =CH + €X and b' = Ch + Cx are opposite parabolics. Indeed

1 -2i

1 -2i
Using € [ ] as a Cartan subalgebra of g one sees that b' is the opposite
0 -1

Borel subalgebra in the usual sense.
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HOLOMORPHIC REPRESENTATIONS

As a consequence of our results in the second part of this paper we describe
the Langlands parameters of holomorphic representations. Collingwood has informed
us that he knows how to do this also (although we have not seen his results or

methods) .
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-N.R. WALLACH

1. Remarks on the Category 0.

Let g be a reductive Lie algebra over C. Let bC g be a Borel subalgebra of g.
We define the category 0°' (b) to be the subcategory of the category M(g) of g-
modules consisting of those M € M(g) such that
(1) M is finitely generated as a U(g)-module.
(2) If m € M, then dimU(b) °m < =,

Lemma 1.1. Let hC b be a Cartan subalgebra of b. If M € 0'(b) and h acts semi-
simply on M then if h'C b is a Cartan algebra of g then h' acts semi-simply on M.

Proof. Let n(b) be the nil radical of b. Then there is X € n(b) such that

eadx-h = h'. By (2) we see that X acts locally nilpotently on M (i.e. if m€ M

k (m)

there is k = k(m) such that X m=0). Thus if t € € we can form

Ttyem = Jt/nnxm, mewm .

The sum is actually finite for all m € M. By the obvious formal relations
one has

T(t+S) = T(t) T(S)

So T(-1) T(1) = T(1) T(-1) = I .

Set T = T(1). Then T is bijective on M. Also if Y € g then

t adX
e

T(E) Ym = ( Y) T(t)m .

Hence

Them = (2% mmm, heh .

This clearly implies the result.

We can thus define the category O(b) to be the subcategory of 0'(b) consisting
of these objects M of (' (b) that are semi-simple relative to some Cartan subalgebra
hck.

Let B denote the space of all Borel subalgebras of g. If b € B we denote by
B(b) the subset of all E € B such that E b is a Cartan subalgebra of g.

We describe B(b). Let h Cb be a Cartan subalgebra. Let ®(g,h) be the root
system of g with respect to h. Let ¢* be the system of positive roots of ¢(g,h)

n(b

) = & . set n(b,h) = 1 g_, - Then
_ aeot n age¢* T 7C
b(b,h) =h + n(b,h) € B. Clearly bNAb=h .

corresponding to b. Then n(
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HOLOMORPHIC REPRESENTATIONS

Lemma 1.2. Let b € B. Then the following statements are equivalent
(1) b eBw ,
(2) there is hC b such that b' =h + n(b,h) ,
(3) b'€Bandb' +b=g.

Proof. (1) implies (2). Let b' € E(p_). Let h=Db' b. Then n(b) = @ + 9
a€ed

ot c ®(g,h) a system of positive roots. n(b') = @ g, , ¥ Co(g,h) a system of
aey

positive roots. Since b'b=h, V¥ (\¢>+ =f@. SoV¥Y = —¢+.

That (2) implies (3) is clear.

To prove (3) implies (1) we note that dim(b'+b) = dim b' + dim b - dim(bN b").
dimg - £ .

3 for b € B. Here £ is the rank of g. Thus if b+b' = g
dimg = dim g + £ - dim(bN b'). So dimb N Db' = £. The Bruhat lemma implies that

aimb = £ +

b ADb' contains a Cartan subalgebra of g. Hence b)) b' is a Cartan subalgebra of g.
If M € M we define

Iy = e M | g(g)k')\ = 0 for some k} .

Since n(b) acts nilpotently on g under ad it is trivial to see that

(3) jb (M) is a g submodule of M*.

Let m C g be a Lie subalgebra such that the action of m on g relative to ad
is completely reducible. Let C(g.g) denote the category of all (g,m)-modules.
That is M € C(g,m) if as an m-module M splits into a direct sum of irreducible
finite dimensional m-modules. If M € C(g,m) then we say that M is admissible if

for every finite dimensional m-module, F,

dim Homm(E‘,M) < o,

Let A(g,m) denote the full category of all admissible objects in C(g,m). If
M € A(g,m) we define M (the admissible dual of M) by

M o= {Aem | dimumer < =} .

Lemma 1.3. The functor MM defines an equivalence of categories between A(g,m)

and A(g,m) PP (the opposite category).

Proof. Let é denote the set of equivalence classes of irreducible finite dimen-
sional representations of m. If M € A(g,m), Y € & let M(Y) denote the sum of all
m-submodules of M that are in Y. Then admissibility implies that dim M(Y) < =.

Now it is easy to see that M=& M(Y)* as an m-module. Thus Me Alg,m). It is
.~
also trivial to check that (M) = M for M € A(g,m) (in the sense that M C (M*)*

naturally), and M —*M is an exact functor from A(g,m) to A(g,m). The result now
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N.R. WALLACH

follows.
We note that if b € B and if h¢ b is a Cartan subalgebra then
0(b) = 0'(b) N A(g,h).

Lemma 1.4. Let b € B, b' € B(b). If MeO(D) then 3 (M) = M where M is defined
relative to h = b b'. -

Proof. b=h + n,b'=h + n(b,h) =h + n . Since M € 0'(b), M is finitely

v (M/ék m”* . Thus since dim M/_;_:kM <ew,

- k=1 -

MC M. Let M= @ M(E) (h*=h). IfXeMthen A= ] Ag v
E€h* ges,

s,C h* a finite set, )‘E e M(E)". We note that (ﬁkn)n M(E) = (0), E € s, for

k sufficiently large. Thus §kx= 0 for k sufficiently large. Hence M & e ).

generated as a U(é) -module. Now jb' M) =

jEI

It is well known that if M € O(b) then M has finite length. Thus if EC b
is a Cartan subalgebra, l~4 is also finitely generated. Combining this observation

with the previous results we have

Proposition 1.5. Let b € B. Let b' € 5(9). Then

(1) 1f M€ 0(b), Iy (M) € 0(x').

(2) The functor M jb' (M) defines an equivalence of categories between
0(b) and 0(p") °FP, -

Let now g C g be a parabolic subalgebra. Let B(g) ={b € B | bc g}. we
set O(@) = N 0(b) .

beB(q)

Lemma 1.6. Let g =m + n(g) (n(g) the nilradical of g and m a Levi factor of g).
Let hC m be a Cartan subalgebra of m. Let b € B(q) be such that hC b. Then

0@ = 0N Clgm .

Proof. Let M€ (0(g). b=h @& & 9y ot c ¢(g,h) a system of positive roots.
- = T T €t ter =

m=h@® @& . Let ]} =0¢%-0(mh. Then '=h@® & g @
a€d(mh) a€

® € B(g). setn'= @ , n'= & g . Then
ae®+-2€u agl o a¢] T

m = n' + h + n' .

If m € M then dim U(b") m < =, b" € B(g). Thus dim U(m)m < @ since n' C b',
h + n'C b. Since h acts semi-simply on M we see that
M e 0N C(g,m) .
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HOLOMORPHIC REPRESENTATIONS

Let M € O0(b) N C(g.m). Let b' € B(g). Since mtb = g we see that if m € M,
dim U(g)*m < ®. Thus dim U(b')m < ©, m € M. Since b\ b'D h’ a Cartan subalgeb-
ra of g, Lemma 1.1 implies M € O(b'").

Let now P be the set of all parabolic subalgebras of g. If g € P define
P(g) to be the set of all g' € P such that 9N g' is a Levi factor of both g and q'.

We describe the elements of P(g) . Let h be a Cartan subalgebra of g, h¢ q.
Let n(g) be the nilradical of g. Let ¢(g,h) = {a € ¢ | g C g}. set

¥(g.h) = {a€ogh | g,c n@} .
Let m=m(g,h) =h ® @ . Then m is a Levi factor of gq.
a€ d(g,h)-Y(g,h)

set n(g,h) = @ g_ . Then g=m ® nig,h) € P(g).

ae¥(ghn °

Lemma 1.6. Let q € P, Then g' € P(g) if and only if g'€P and there exists hc g
a Cartan subalgebra of g such that g' = m(g,h) @& n(g,h).

Proof. Let g' € ﬁ(g). Let m = g' g. Let hc m be a Cartan subalgebra of g.

Then m = m(g,h), n(g') = & 9y ¢ Bl@ = & . Letb,Dh bea
a€V¥(g',h) a€Y(g,h)

Borel subalgebra of m. Let b,(b,h) be as above. Then b, & n(g) =b and
_!31 ® n(g') = b' are Borel subalgebra of g. Now b'N bC g'N g = m. Hence
B'Ab=b b =h. Thusb' €B(b). Hence 0(b .MU ¥(g',h) = -¢(B,MV -¥(g.n).
Thus ¥(g',h) = -¥(g,h). Hence n(g') = n(g,h). Q.E.D.

If g€ P, M € M define

jg(l‘l) = {} € M* | g(g)k')\ = 0 for some k} .
Then j3 : Mw M°PP 5 a functor.

Lemma 1.7. Let g € P, g' € P(g) and g" € P such that g'> g". Then

j (M) = 3 _.(M) for all M e O(g) .
ig iq q

Proof. Since n(g") D n(g') it is clear that j_g" (M) C js,(M).
Let h € g be a Cartan subalgebra such that g' = m(g,h) + E(g,g) .
Since g = .E_(S'E) + m(g,h) + n(g), Lemma 1.6 implies that M is finitely

generated as a U(n(g'))-module. Thus
dim M/g(g')kn <o, k=1,2,...,

This implies that (m = m(g,h)),
(1) If ) € jg,(M) then dim U(m) X < =,

Now n(g") = n(g")A m + n(g'). Using (1) we see that if X € jg,(M) then
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(n(g")N 5))(')\ =0 for some k .

Thus 5(3')k'°)\ = 0 for some k'. Thus jg.(M)C jg,,(M).

Proposition 1.8. Let g € P, q' € P(g) . Then the functor Mv- j_g' (M) is an equi-
valence of categories between 0(g) and 0(g") PP,

Proof. Let b' € B(g'). Then there exists b € B(q) such that b' € B(b). By Lemma
1.7, jS' (M) = jb,(M) € 0(2'). Hence jg,(M) € 0(g'). The rest follows from Lemma
1.7 and Proposition 1.5.

The last results we need have to do with parametrizing the irreducibile objects
O(b) for b € B. Let L € O(b) be irreducible. Then

in12® . (ver|nm v=o}=1 .

2® by A € (E/g(l_a))*. As is well known A determines L up to

Hence b/n(b) acts on
equivalence. If A € (_13/5(2))' then A defines a one dimensional representation CA
of b. Let MA =U(g @ Ch (the usual Verma module). Let LA be the irreducible

U(b)
non-zero quotient of M" . Then (LA)E(B)

=C as a b-module.
A A * A -
We set L = L for A e (b/n(b)) .
If hCbis a Cartan subalgebra then b/n(b) # h. Thus we may look upon the
roots of h on b as elements of (E/E(E))' denoted 0(2) . We can also pull back the
Killing form to get a non-degenerate form on b/n(b) which is clearly independent of

the choice of h. We therefore get a form ( , ) on (g/g(_lg))'.

Let now g € P. Then O(g) = M O(b). 1If b€ B(g) then b/n(g) € B(g/n(g)).
beB(g)
Clearly ¢(b/n(g)) € ¢(b). One has LQ € 0(g) if and only if

2(h,0)/(a,0) eN = {0,1,2,...}

for a € $(b/n(g)).
It is also convenient to choose h € b, h a Cartan subalgebra of b. Then if

A A
A € h* we may extend A to b by A(n(b)) = 0. Thus we have L= Ly pr A€ h*. Let
- o v

b' € B(E) . And let C be an inner automorphism of g such that Cé(E'ﬂ) = b'. Then
b'=Ch @ Cn(b,n).
1

. A _ _=Aec”
Lemma 1.9. JE'(LR'E) s lb"cﬂ

A
Proof. Proposition 1.5 implies that L = jb'u‘b h) is irreducible and in O(E').

-1
It is a simple matter to see that L = L;/,\. Thus we need only see that L-I,\ = L;/,\ gh'
- . — — - ’ —
But Ch acts on (Lb/,\)E(E ) by -A pulled back from b'/n(h') to Ch. The lemma now
follows. -
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2. Applications to Holomorphic Representations.

Let 9, be a real reductive Lie algebra. Let B:go hde 9, be a Cartan involution.
Let k = {x €9, | ex = x} , = {x €g, | 6x = -X}. We apologize to the reader
for using r in place of the more customary p in order to save the notation p for
parabolic subalgebras. If 50 is a Lie algebra or vector space over R we denote by

c the complexification of S We say that (30.50) is an irreducible symmetric pair

if the action of 50 on xr_ under ad is irreducible. We say that an irreducible sym-
metric pair is Hermitian if the action of k on r reduces. As is well known this is
equivalent to saying that there exists H € k which is central in k and

(1) ad H‘r has eigenvalues 1 and -1.

Set £+ ={Xe r adH*X = X}. Then g=k + _r_+ is a parabolic subalgebra of g.
Fix gkc k a Borel subalgebra. Then b = _l_:_k + 5* is a Borel subalgebra of g which
is 6-stable. Fix hC gk a Cartan subalgebra of g. Let ot = ®(b,h), 0; = @(gk,h) '
o ={aedlgn | am £0}, 8 =6 ¢ =¥(gn. Fix a linear order on
¢ = ¢(g,h) such that ¢t ={oeo | @ > 0}. We define Y, > --+ > Y_ by the usual
recipe. Y, is the largest element of @:. Y, = {a € 0; | o ¢ Y, £0 U {o}}.
If ¥ # @, Y, is the largest element of ¥, and ¥, = {a € ¥, | a2 Y, ¢ oU {0}}, if
Y and Y. have been defined as above then Yj is the largest element of Y. and

j-1 j=1 j=1
‘l‘j = {a € wj-l | a2 Yj ¢ YU{0}}. This gives ‘4’13 \P2D v D‘i’r_l 'D‘{’: =g,

setg +g_ o+ [g_Y‘, '9'°Y.] = £j' Then £j is isomorphic with s£(2,C).
J J J J
Clearly, 62 =£.. If (£)) =2, Mg, - Then it is easy to see that there exists
=] =) =J o 3

an isomorphism nj: (£j)o hd 52(2, 1R) such that nj(BX) = - tnj(x) . We can thus choose

H. € , X. € Y.L € such that
s €lay ra ) Xy €9, Y €9
J J J
0 i
n.(H,) =
J ]
-i (o]
1 -1
n.(x,) =
J ]
=i -1
1 i
n.(y,) = ]
J 3 J
i -1
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Then

(X +Y =
n:'(J )

3
o -2

Set 30 = ii]_ R(xi+Yi) . Then Eoc Eo It is part of the standard theory of
symmetric pairs that a, is a maximal abelian subalgebra of g subject to the condi-
tion that it is contained in .-

Let C (the Cayley transform) be defined by

x
C = I exp(adX,) exp(d(log2) adH,) exp(-ady,)
=1 i i i

Then CH, = =(X_.+Y.), i =1,...,r .
i i'i

It is also standard that CE(E'E) N Eo = Eo is a maximal nilpotent subalgebra
of [go,go] . Set b =b(bh) =h + n(b,h). Then the formula for C immediately
implies

(2) cbe B .

Now applying Lemma 1.9 we have

-1
A);L-Ac .

(3) Ly cb.ch

Iep!

Define m = Cﬁo(go) ={xe 9, | X,a) = o}. Then m @& n_ = p_ is a minimal
parabolic subalgebra of 9. One checks that

(4 p Dcb .

Set g=k + r , p' =Cg. Then

(5) p' € P(g) by the formula for C.

Applying Lemma 1.7 we have

(6) 1f M € 0(g) then

jE' (M) = jCE(H) .

Lemma 2.1. p'Dp .

- ) - +
Proof. Letm ={Xxeg| [X,H] =0, i=1,...,7}. Let ¥ =0 h). Ifo,Bed
then (a+8) (H) = 2. Thus o+B € ¢. This implies that if a,B € @n and (a,B8) =0

then atB ¢ ¢U{0}. Thus ¥ f\@; ) (\‘Pi =@, so¥YC 4>k. Hence m
= Cm

1C k. Now

m ,- Thus p CC(M,+b) C Cg = p'.

Now Lemma 1.8 implies
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Lemma 2.2. If M € O(g) then j_(M) = j_, (M).
pd P
Lemma 1.8 and (5) now imply

Proposition 2.3. j :0(g)“? O(p') ( 0(p)) defines an equivalence of categories
between 0(g) and O(E'j".'

Let now (g")oC 9, be a subalgebra containing B, Then p" is a parabolic
subalgebra of g. Let p=m @ n as above, then p" = m" @ n(p") with m" a O-stable
Levi factor of p" and m" D m, n(p") C n. sSet ’g" =pnnm.

Lemma 2.4. If L € O(p) is irreducible then
(1) L/n(p")L is an irreducible (m", k A m")-module.

(2) j'.E" (L/n(p")L) is an irreducible m" module.

Proof. We first show that (2) implies (1). Indeed, j"E" (L/n(p")L) is the real
Jacquet module in the sense of [2]. Thus Mwj, ,(M) is an exact functor on the
category H(m",k N m") of finitely generated admissible (m",k N m") modules.
Also Casselman's theorem implies that if M € H(m", kA m"), M # O then j_E,, (M) #0.
This clearly implies that (2) implies (1).

We now prove (2). j'E" (L/n(p")L) = jE(L)P-(‘E"). Since jE(L) is irreducible

and in 0(2) , jE(L)E(B") is irreducible as an m"-module. Q.E.D.

To get more refined results we must introduce some more notation and (well
known) structural results.
Let €, € a* be defined by €, (X_.+Y.) = ¢ .. Then it is standard that the root
i -0 i3 3 1)

system of a_on denoted 0(20.5 ) consists of the linear functionals
—o —-o

n
—o

ZEi ' i=1,...,r

and possibly ci, i=1,...,r.
1f the ci do not occur then we see that Q(po.go) is a positive root system of

type Cr' If the ei occur then ¢‘(p_°.g°) is a non-reduced positive root system of

type BC:'
In the Cr case the simple roots are 51-62, ceoy cz—l-cr' 26r and in the ch
case the simple roots are 61-62, ceer e!-l-ir' cr .
. . = C , . =
set (a) = '2 RX#Y) . Set (m) = Co (a)) ). (n)), @ (o)
j<r “c A€ @(Eo,a )
- —o

A‘ (gi)o"o
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Set (p), = (m))  + (n;) . Then (p,) D (p,) O <-2[,), = By-

We now give a slightly different description of the Ei' We preface it with
the following well known result.

Lemma 2.5. If 0 € ¢ and (@, y;) =0 thena vy, ¢ U {o0}.

Proof. It is well known that (Yi,‘)’i) = ('Yl,Yl) i=1,...,r. Hence there is
si € W(g,h) (the Weyl group of g relative to h) such that Sin = Yi' Since Yl is
the largest root in d>+ we see that Yi is the largest root in Si¢+. Hence the
result.
Let for 1 < j < r,
Cc., = I exp(adX,) exp(i(log2) adH,) exp(-adY,) .
3 i<j i i i
Cj is usually called a partial Cayley transform. We note that CjHi = -(Xiﬂ'i) for

1<jand1fhj-{Heh|Y(H)-0,1<J},C|h =1I.

Set mJ ={xeg| [XH, j0 =00 i=1,.00,5) Then clearly C, m. = m. Now

=3
m, = h+ @ .
J a€d %o
(a,v;)=0,i%]
Thus C, m, = a_ h, by Lemma 2.5.
v J 3] =3J ® = @ ue? 90 of
(ﬁ,Yi)-O
We set b. = b m. and b' = C. b, = a_ ) .
by=kNmjandbj=C;b;=2;,0 0 & seot
(C'-,Yi)-o
Lemma 2.6. Setm! =h & @& 9 -
77 aed

(a,Y;)=0,1%3
Then (E;jﬂ go, ES(\ 50) is an irreducible symmetric pair of Hermetian type.
+ .
- ' .
Proof. Set (gj)o Lol S S @ 9o

J ae 0:
(alYi)-ol 15]

- + -
r.= 0@ g_, - Then r. =r & r. .
I sedt a J 3 3

n
(a,y;)=0,i%3

Thus the result follows if we show that (55 Ng, l_ﬂ'j N k,) is irreducible.
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: * -
For this set 2y - 2 C(xi-wi)., .ﬂj = g_(gj)n By *m mMAm.. Then

i>j =3 =3
"_gj e '53. & "gj is a minimal parabolic over R of (5:")0 - _n_xj Ng,. The root
system of .-a»j on 'Ej is easily seen to be either of the form Cr-j' Bcr-j' In
either case it is irreducible. The result now follows.
j 20y .
If A € h* define A° = - T € . We look upon A as an element of
Iy !
_5;. We note i i
A
(7) 1f LB'h € 0(g) then
-Re(A,Yz)/(Yz,YZ)) < e < -Re((A.Y.)/(Y.:Yj)) .
Indeed, if a € 0 then a = Yy -Q with Q sum of elements of ¢k Now if
A

Lon€ 0(g) then 2(/\.8)/(8.3) €N for B € ¢k. Thus if a € O then

Re(A,a) < Re(l\,yl) .
Since (Yi,Yi) = (Yl,Yl), i=1,...,r. This implies (7).
If u € g']!, M€ M(E:'j) we denote by cu ® M the Ej-module, M with E;'j acting on

M as given and E-j acting by uI.

Lemma 2.7. Let A € h* be such that LQ € 0(g). Then
A . |h
LE'D / Ej (b,h) LB'E s C ® Lb
Furthermore A‘Ej € 0(g!), gt =g nm
! ng.gj 304 =3

Proof. We already know that the left hand side, L, of the asserted equivalence is
irreducible. Thus L & CU ® L', WuEat L' E€ M(Es) and L' is irreducible.
Applying (3) above we find that u = At .+ Now
=3
-1
(AeC ) (X.4Y,) = =A(H,)) =
1 1 1

= - i <5 .
Z(A.Yi)/(Yi,Yi). i<3
Hence U= l\:i as asserted. On the other hand since C b € B(b) we see that
(Lb h)E(B) / "(Bj) Lb h = (0) (E(EJ) (- _rl(Cj_b)) Thus (L' )n(b ) must have the
weight A[h relative to h.. Q.E.D.

J
Using Lemma 2.7 it is now a simple matter to describe the Langland's para-
meters of the I.Q , that are in 0(g) relative to 6(p).

is in the
/D

o=

set ¥* = ¢t U -0, 1f LA is in 0(g) then we say that L
k n b,n S

“closure of the discrete series” if

|
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Re(A+p,2) > O, aey
Here p = % ) + ¢ (as usual).
?\e#)
(8) Lb n is in the closure of the discrete series if and only if
’

+

(1) 2(A+p,0)/(a,2) € ww-{0}, aed,

(ii) Re 2(A+p,¥ ) /(YY) €O .

Indeed, LQ n is in 0(3) if and only if (i) is satisfied (see the end of
=
Section 1, (ii) is clearly necessary. (*) in the proof of Lemma 2.6 implies that

it is sufficient (assuming (i)).

Proposition 2.8. Let A € h* be such that LA = € 0(g). 1If LA is not in the

o" >

closure of the discrete series then there exists a unique 1 < j < r such that

(here ORj(H) = ¢tr (adH‘E(Rj) , HE _a_j)

1) Re(A,-p_ ,A) <0, X € ®(p.,a.
(1) e(JDE) (gjgj)

A
h.
(2) Lb|—g is in the closure of the discrete series for Eg.
2323
Proof. P = —D'C_l‘a Thus (1) is the same as saying that
jla, =j
J
* - < - <
(*) Re (=2(A+p,Y,) /(Y;,Y)) < Re(=2(A+0,Y,) / (Y,,Y,))

... < Re(=2(A+p,Y, .0Y)) <0
e(-2( DY])/(Y] Y;’

and (2) says

(**) Re(-Z(A+°'Yj+1)/(Yj+1'yj+1)) > 0.

Now if LA is not in the closure of discrete series then (*) is either true for all
1 < j<r and the result follows since g; k. Otherwise (*) is true for a maxi-

mal j

<
< r. Hence (**) is true for j+1. Q.E.D.
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