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LOCAL CHERN CLASSES, MULTIPLICITIES, AND PERFECT COMPLEXES

Paul ROBERTS

ABSTRACT : We define an invariant associated to a homomorphism of free modules and show,
first, that this generalizes the multiplicity in the sense of Samuel and, second, that in the
situation we are considering, the local Chern character of a perfect complex can be defined in
terms of this invariant. Some questions are raised as to the positivity of these numbers and
connections with mixed multiplicities are described.

One of the common methods in studying ideals and modules over a commutative ring has
been to define numerical invariants which reflect their properties. In this paper we look at a few
of these invariants, which have been defined in various contexts, and describe some relations
between them. Let A be a local ring with maximal ideal m, and let I be an ideal of A
primary to the maximal ideal, so that A / I is a module of finite length. This length is the
simplest invariant associated to the ideal, and it could be considered to be the most important
one, but Samuel [7] defined a somewhat more complicated one, called the multiplicity of /, and
showed that it was often more fundamental in studying both algebraic and geometric questions;
since then, of course, this has become a standard part of Commutative Algebra.

The comparison of invariants we discuss in this paper is analogous to the comparison of
length and multiplicity of an m-primary ideal. Take now a bounded complex of free
A—modules, which we denote F^ . In place of the assumption that / be primary, we assume

that the homology of F^ is of finite length. Again, there are two invariants one can associate to

F ^ . The first is the Euler characteristic, denoted \(F^), which is the alternating sum of

lengths of the homology modules. The second was defined by Baum, Fulton and MacPherson and
is defined in terms of the local Chern character. This theory has been extended by Fulton [2],
and certain applications have made it appear that here also this more complicated invariant may
be more fundamental in studying homological questions in Commutative Algebra (see Roberts
[5] [6]).
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We give here an alternative construction of this invariant. More precisely, we define an
invariant of a map of free modules (or of a matrix, if one chooses to look at it that way) with
certain properties (corresponding to finite length, specified below). On the one hand, if this map
goes to a rank one free module, the image is a primary ideal, and this is the multiplicity of
Samuel. On the other hand, the alternating sum of these is the local Chern character in the
second example. We define this, which we call the multiplicity of the homomorphism, in section
1, and, in the process, we show that the connection with multiplicities is more that simply an
analogy, since the definition itself is in terms of the so-called mixed multiplicities of ideals of
minors of the matrix. In section 2 we show that it does agree with the other invariants
mentioned above. In the third section we consider homomorphisms which can be put into a
complex of length equal to the dimension of the ring with homology of finite length and ask some
questions concerning the properties of this invariant in that case. Finally, in the last section, we
work out a couple of special cases to explain how one step of the construction works in practice.

We remark that one motivation behind this work was to investigate the contributions of
the individual boundary homomorphisms of a perfect complex (i.e. a bounded complex of free
modules) to the local Chern character. The fact that a complex can be divided up in this way
was proven in a construction of Fulton ([2], ex. 18.3.12) to prove his local Riemann—Roch
theorem. The construction we give here carries this out explicitly, specifies which locally free
sheaves occur in the decomposition in terms of determinants, and gives a formula for each
contribution in terms of mixed multiplicities. In addition, it .is applied to an independent map of
free modules, so that, in particular, it is defined whether the map fits into a perfect complex or
not. What this number means when the map does not fit into a perfect complex is not clear, but
it is interesting that an invariant like this can be defined in this generality.

1. The multiplicity of a homomorphism of free modules.
Let A be a local ring of dimension d and maximal ideal m, and let ^ : E — ^ F be a

homomorphism of free A-modules. We wish to assume that (|) is generically of constant rank,
and, to simplify the situation here, we assume that A is an integral domain. Let r be the
generic rank of (|). We define the support of (() to be the set of prime ideals of A for which the
localization at P is not split of rank r, by which we mean that it is not of the form

AS® A r — ^ A ^ ® A^

where the map is | An. Let e denote the rank of E and / the rank of F. We assume
^ 0 /

that the support of (|) is the maximal ideal of A. We wish to define a number associated to (|)
which satisfy the properties outlined in the introduction.
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Let M denote the matrix which defines ([). We assume that the bases are chosen so that
both the first r rows and the first r columns of M have rank r.

We first define two sequences of ideals associated to the matrix M. We note that these are
not canonically defined by the map itself, but depend on the bases chosen for E and F (or,
more precisely, on filtrations by free direct summands defined by them). First, for k= 0,1,..., r
we let e& denote the ideal generated by the k by k minors of the first k rows of M (for
k = 0 this is defined to be the unit ideal, i.e. A itself; we include this to avoid special cases in
later notation). Next, for k= 0,1,...,r we let fk denote the ideal generated by the r by r
minors of the first r columns of M which include the first k rows. Note that these ideals are
not necessarily m-primary. We also note that Cr and fo are, respectively, the ideals generated
by the r by r minors of the first r rows and the first r columns of M.

The invariant we define is in terms of mixed multiplicities, so we next recall some facts on
mixed multiplicities of sets of ideals. These were introduced for two ideals by Bhattacharya [1]
and later also by Teissier [8], and more recently the definition was extended to a set of d ideals,
where d is the dimension of the ring by Rees (see [3]). We briefly recall the situation we need
for our construction. This appears to by slightly different than that considered by Rees; he
considered d ideals (not necessarily distinct) such that it is possible to choose one element from
each of the ideals to form a system of parameters for the ring A. We require instead that at
least one of the ideals be m-primary. So let ai,...,an be n ideals of A such that aj is
m—primary. If all of the ideals were m—primary, there would be a polynomial P in n variables
of degree d such that we would have

P(5i,..,5n) = lengt^A/a?^52...^")

for large values of 5i,...,5n. In our case these lengths are not finite, so this does not make sense.
However, since aj is m—primary, there is still a polynomial P' in n variables of degree d — 1
such that we have

P-(5i,...,5n) = length(aflai2...a /̂afl+lai2...a252...a^)

for large values of si,...,5n. In the case in which all ideals are m—primary, this is the difference
P(5i + l,...,5n) — P(5i,...,5n) and one can recover those coefficients of P which invove at least
one factor of ai. In our case, this gives a well-defined coefficient for each term of the
polynomial for which at least one m—primary factor occurs. We summarize this in the following
definition :
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DEFINITION. Let ai,...,dn be n ideals of A such that ai,...,ajf are m-primary. We call the
mixed multiplicity polynomial of ai,...,ak; a^+i,...,an the homogeneous polynomial P in n
variables of degree d such that

(1) for i = 1,...,A; we have P(5i,...,5f + l,...,Sn) — P(si,...,Si,...,5n) = the part of degree d— 1
of the polynomial which gives the length of afl...afi...a^n/afl...af2+l...a^n. For large
Sl,...,Sn,

(2) all coefficients involving only the last n - k variables are zero.

We make two remarks on this definition. First, it might seem reasonable to call it the
Hilbert—Samuel polynomial in analogy with the case of one ideal; the terminology we have
chosen is because we have taken only the part of degree ,̂ and these coefficients are (up to
certain multinomial coefficients) the mixed multiplicities of the ideals. The second is that the
last condition, letting those coefficients which are not well-defined be zero, may seem arbitrary,
but it turns out to be exactly what is needed in our formula.

We give an alternative description of the coefficients of the polynomial which will be useful
later. We begin by taking the multigraded ring whose Si,...,5n component is af1 a^.^ai". In
conformity with the usual terminology for one ideal, we call this the Rees ring associated to
ai,...,an. By taking the projective scheme associated to this, one gets a scheme X proper over
Spec A with an imbedding into the product of projective space over Spec(A); this imbedding is
defined by choosing a set of generators for each of the ideals. Finally, on X there are invertible
sheaves of ideals 0(— Ai),..., 0[— An) associated to divisors Ai,...,An defined by the ideals
ai,...,dn. The coefficients of the mixed multiplicity polynomial can then be defined as the degrees
of the intersections of these divisors. More precisely, one has coefficient of

W...̂ ° = (-l)d-i(̂ ± )̂A ,̂.,A .̂

In this intersection product one must first take the exceptional divisor corresponding to an ideal
which is m—primary, which reduces the situation to a subscheme which lies over the closed point
of Spec(A), and then intersect with the other divisors. In ring—theoretic terms, this can be done
by first dividing the Rees ring by the image of one of the ideals which is m-primary, which
reduces the situation to a multigraded ring over an Artinian ring, and then dividing by generic
enough elements in appropriate graded pieces of the Rees ring (this works at least if the residue
field of A is infinite). The sign occurs because every intersection after the first is with one of the
hyperplanes coming from the embedding into a product of projective spaces, and this is the
negative of the corresponding exceptional divisor. The mixed multiplicity polynomial can thus be
expressed more simply as
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(~~l)d~l^)((^l 4- A252 +...+ AnSn)d-(Ak.lSk.l +...-4- AnSnW.

We remark that this expression is simpler, but that to actually compute the polynomial it
is necessary to compute the individual mixed multiplicities. On the other hand, sometimes some
of the divisors can be combined and this can be used to simplify the computations.

We now define the invariant of the homomorphism (|) in terms of mixed multiplicities of
the ideals cjc and fjc defined above plus some other ones defined in terms of these. Let k be an
integer between 1 and r. We consider the four ideals ejr-i, €k, ft-i, and fc. As described
above, there is a Rees ring associated to these ideals, as well as an associated projective scheme
A" proper over Spec(A) with four divisors which we denote j%-i, Ek, Fk-i, and Fk. Take the
map :

W-i -Ek)->0(Fk.i-Fk)

defined locally as follows : the scheme X is covered by affine pieces corresponding to choices of
one generator of each of the ideals e^-i, c^, fjc-i, and fjc. Choose four such generators to be the
determinants A^-i, Af, A[-i, and A^. The local expression for the map above is then

A E A F

multiplication by the element k k ~ 1 .
ALiA[

^E^F
LEMMA. The element ^ k •^ is in the coordinate ring defined by the generators

Aft - iAk
A^-i,Af,AL, and A[ of c^-i, e^, fk-i, and fa.

Proof: What must be shown is that the element in question can be written as a sum of quotients
with denominators Ajc-iA^ and with numerators products of elements in the original ring times
elements in e^-i and ffe. If the minor of M defining A[-i happens to included the ^h row,
this is easy to show by expanding A^ along the ^ row. If not, one must first expand A^
along the ^ row and then, for each element a of the ^ row of the minor defining Af, add
the corresponding row and column of this entry to the minor defining A^-i, and, using the fact
that this r + 1 by r+1 determinant must be zero, expand it along the column of a to
express it as a sum of other entries in that column multiplied by the corresponding cofactors.
When this is all worked out, all terms drop out except those for minors including the first k
rows, which are of the desired form.

We assume next that there are m-primary ideals Qk and Qk-i such that, with notation as
above, we have

0(Ek-i - Ek) -^ 0(Fk.i - Fk) ̂  0(Ek.i - Ek)<8> (0-> 0(Gk - Gk-i)).
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In many cases these ideals can be calculated explicitly — we give some examples below to
show how this works out in practice. We now let Pk be the mixed multiplicity polynomial
associated to g^, gjc-i; e^, cjc-i (we note that the first two of these are m—primary but the last
two might not be). Then our formula is :

r

mW=W I Pi:(l,-l,l,-l).
k=l

Actual computation of this number is fairly complicated, but we give some examples later
to show that it can be done. We note also that using the last form of the mixed multiplicity
polynomial this becomes

((Gk - Gk-i + Ek.i - Ek)^ - {Ek-i - EkW.

2. Relationships with other invariants.
First, to justify the term multiplicity given to this number, we must show that it agrees

with the definition of multiplicity of an ideal. We first do a more general case where the formula
simplifies considerably; this is the case of a homomorphism of maximal rank. Recall that
(|): E —> F is a homomorphism of free A—modules of ranks e and / respectively. We now
assume that r, the rank of (j), is equal to /, the rank of F. In this case the matrix defining ())
has r rows, and the ideals f^ defined in the last section are all principal (generated by the
same element, the first r by r minor) and this term cancels out in the formulas. Hence we can
omit this in the discussion and we left with 0(Ek-i — Ek) —> 0. In this case we can clearly let
Qk = ^k; these ideals are all m-primary in this case. We note that the formulas give
(Gk — Gk-i + Ek-i — Ek^— (Ek-i — Ek)^^ and in this case the first term is zero so that we are
left with — (Ek-i — Ek)4, thus if Qk represents the mixed multiplicity polynomial of e^, e^-i
then m((j)) = (3i(l,-l) +...+ Qr(l,-l).

Now we return to the multiplicity of an m—primary ideal in the sense of Samuel. In this
case we are in the above situation with r== / = 1; that is, we have a map from A6 to A
defined by a 1 by e matrix whose entries are a set of generators for the ideal. Thus the only
determinantal ideal which occurs is ei, which is simply the ideal we started with. Hence there
we are left with <9i(l,—l), and since the first ideal is trivial (this is just eo) this is just the
usual multiplicity of the ideal.

The other connection is with the local Chern character as defined by Fulton. We let now
F^ denote a bounded complex of free modules with support the maximal ideal of A (i.e. for

every prime ideal other than m, the localization is (split) exact). In this case one has a number
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associated to the complex, and if we let [A] denote the fundamental class of Spec(A) in the
part of the Chow group of Spec(A) of dimension d, this is c/i(Fj([A]). We refer to Fulton

([2]) Chapter 18) for a description of what this is well as the properties this invariant satisfies. It
is mostly these properties which we need in the proof we give below.

We first note that the condition on the support of F^ implies that the individual

homomorphisms of the complex, which we denote 61, (61 will be the map from Fj to Fj-i)
satisfy the hypotheses to make m(6i) defined. The formula we wish to prove is :

^(Fj([A])=£(-l)i(m(^)).

There are three main steps in this proof. Let n be the generic rank of 61. The first step is
to blow up the ideals of r-i by r-i minors of the matrices defining & to split the complex up
into maps of rank r, locally free sheaves on the blown up scheme X. Next, we show that, by
blowing up further, each of these pieces can be filtered with quotients maps of invertible sheaves
defined locally by determinants in the ideals e^ and fk. Finally, we put this together and
derive the formula given in the first section. This is similar to the process used by Fulton ([2],
Example 18.3.12) to prove his local Riemann-Roch theorem; he shows there that this can be
done, at least in theory, and we show here how to carry it out.

We first introduce some notation. We wish to construct a rank n locally free quotient Qi
of Fi and a rank n locally free subsheaf Ri of Fi-i (such that the inclusion of Ri into Fi-i
is locally split) such that the map 6i factors through a map pi from Qi to R'i. The first
step, as mentioned above, is to blow up the ideal of r'i by ri minors of the matrices defining
each of the maps 61. Call the resulting scheme X and denote the proper map from X to
Spec(A) by TT. If the quotients Qi and the subsheaves R-i as above exist, we have a short
exact sequence for each i:

0 --*• Ri^i —» Fi -^ Qi -+ 0.

Thus the complex can be broken up over X into the maps Qi ̂  Ri and it follows from the
additivity of local Chern characters on short exact sequences and the compatibility with proper
maps that we have

cA(F,)([A]) = 7r,(c/i(7r*(F,))([^)) = S ̂ (ch{Qi ̂  Ri)(W)).

To show that this decomposition does exist it suffices to do it for each i separately, and
we now return to our previous notation, replacing Fj, Fj-i, Qi, R^ pi and 6i by E, F, <3, R, p
and (|). Let M, as above, be the matrix defining (() and let / denote a set of r rows and J a
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set of r columns of M. For any choice of a set of rows K and a set of columns L we let
M,, denote the submatrix with entries from those rows and columns. We recall that we have

A,L

blown up the ideal of r by r minors of M. For each set of columns J we take the map
AQ—¥ AT defined by M~1 M (where e denotes all e columns; similarly for / below).

1,J 1,C

LEMMA. This matrix does not depend on the row I chosen.

Proof: We note that the matrix M"1 M has an identity matrix in the J columns, no matteri ,j 1)c

which I is chosen. Since the entire matrix M had rank r, if P is another set of rows, there is
a matrix N at least with entries in the quotient field of A such that

W^^Ae)-

But these are the same in the J columns, so N is the identity matrix and these two
matrices are the same.

It follows from this lemma that we can take I to be the first r rows of M Recall that
Cr is the ideal of r by r minors of the first r rows of M. It then follows from Cramer's rule
that the matrix M~1 M has entries in the part of the blow up of Cr corresponding to thei,j i,e
determinant in the J columns. Also, since the matrix M'^.M, contains an identity matrix in

1,J 1,C

the J columns this map is surjective. Thus we have a quotient onto a rank r locally free sheaf
over the blow up of Cr; this locally free sheaf has transition matrices from J to J ' given by
M.1 M (as above, this does not depend on 7).i,j i,j

We remark here that for this part it was only necessary to blow up Or, and not the entire
ideal of r by r minors of M. On the other hand, the ideal of all r by r minors is isomorphic
to the product Crfo, so it would have amounted to the same thing to blow up Cr and fo (which
we need to do in the next step) instead.

We next define a rank r vector bundle over the blow up of fo and a map which is locally
split into Af = F. The maps are indexed by sets / of r rows and the maps are given by
Mr M.1 . The transition matrices are M,, ,M"1 As before, it does not depend on whichj » " ^ i }j i,«i
column J is chosen. Furthermore, for each I and J, we can take these maps and put them
into a commutative diagram

Ac J^—4 At

W,e ^ T M^

AT —^ Ar.
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Denote the rank r quotient of E by Q and the rank r locally free subsheaf of F by R.
This diagram says that we have a map from Q to R defined locally by M . The support ofi,j
this map is a closed subscheme of X lying over the maximal ideal of A.

This construction shows that we can split up the complex F^ as claimed above, so we have

the formula

ch(F,)([A]) = ^(ch(^(F,)){W)) == S ̂ (ch(Qi ̂  R,)(W).

We note here that this would also give a definition of the multiplicity of a homomorphism
of free modules in terms of MacPherson's graph construction for morphisms of locally free
sheaves on a blown up scheme; we refer to Fulton ([2], Example 18.1.6) for this construction. In
addition, it follows from this part of the proof that the number we define does not depend on
choice of basis, since up to now we have blown up only the ideal of all r by r minors of M,
and this does not depend on the bases chosen.

We now come to the main part of this section, the fact that the formula we gave in
section 1 is the right one. To accomplish this we examine in detail a filtration of the map
p : Q —+ R with quotients maps of invertible sheaves.

We define a sequence of quotients Qk and Rk of Q and R respectively of rank k for
each k= l,...,r-l together with compatible maps from Qk to Rk induced by the map /?.
There will also be maps from Qk to Qk-i and from Rk to Rk'r, their kernels will be
invertible sheaves which we denote ^ and v^i. We then express 7r^(ch(Qi ̂  Ri)([X\)) in

terms of the induced maps from J$ to ^ and this will give the formula.
We first define the Qk's and the maps between them. This will be done by specifying the

transition maps between the local pieces of each locally free sheaf and the local expressions for
the maps between the different ones. First, these are defined on the scheme obtained by blowing
up certain determinantal ideals, and a' local affine piece is defined by choosing one of these, say
A , and taking the ring generated by all A7/A, where A' is also one of the generators of the
ideal. The matrices we define below will have entries which are quotients of determinants of this
form (this usually follows directly from Cramer's rule) and we will not go over this point again
at each point in the construction.

We first give the local expression for the map from Q to Qk. Choose a set L of k
columns of the matrix M. We denote the k by k matrix with entries the first k rows and the
columns in L by Mi . Choose also an r by r submatrix M of M. The local expression

KyLl 1,J

for the projection of Q onto Qk is then M.1 M. . The transition matrix on Qk from • L to

L' is ^~k\^kT The transition matrix from I,J to P , J ' is the identity map. We verify

this last statement: it must be shown that for 7,J and P ^ f as above, the diagram



154 P. ROBERTS

M;i M
Ar- —^J——I^ Ar

^L^J ^ ^ ^L^J-

A^ ———I-———> A^

commutes. Since the map in the top row does not depend on which set of rows I is chosen, we
can choose the first r rows, where the commutativity is clear.

It must also be verified that the projections are (locally) surjective; if J contains L, the
projection matrix contains a. k \)y k identity matrix, so this is obvious, and the general case
can be deduced by using the compatibility in the above diagram to change J.

To define the map from Qk to Qk-i^ we choose sets Lk of k columns and Ljc-i of
A;- 1 columns of M respectively and define the map locally to be given by (Mr -. )"W* .A—i.Lfc-l "»,L^

The fact that the required diagrams commute and the maps are locally surjective follows as
above.

We next define the rank k quotients Rk of R and the corresponding maps in this case.
It is more convenient here to construct the rank r — k locally free subsheaves which are the
kernels of the projections from R to Rk instead, so we do this. We denote this kernel Tr-k-

Blow up the ideal f^. The r by r determinants generating this ideal have their entries in
the first r columns and a set of rows containing the first k, we index this by the set N of r
rows. Choose one of these, and an r by r submatrix M , and define the imbedding of Tr-ki,j
into R locally by letting it be given by the matrix M M..1 \ r), where the last factor is an ri,j " ^ { ^ )
by r — k matrix with an identity matrix in the last r— k rows. This is, of course, the same as
taking the last r — k columns of M ,M.-1

1,J M,J

We next define the transition matrices for Tr-k- Take N and N' choices of r rows
containing the first k rows, and choose r by r submatrices M, , and M,, .,. We must theni,j i ,j
find a matrix P such that the following diagram commutes :

Ar-k ———p—————» Ar-k

^/^p) i i v%(°j
M M;i

AT ——Li-L-^———» Ar.

We define P to be the r — k by r — k submatrix of M M..} defined by choosing the

last r-k rows and the last r-k columns. Since the first k rows of M.,, and M.,, are
N,J N ,J

the same M, ,M~,1 , is of the formri,*i r< ,j
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I I Q\
\* P\

Hence one has

w^- wM = \wv^A^= v^pl-
Hence the diagram commutes.

We note also from this that the determinant of P is A../A.,,.
N' N

The maps from Tr-k to are (locally) split injections - this can be seen by comparing with
the case in which the rows of N other than the first k are contained in / using the above
compatibility.

The maps from Tr-k to Tr-k+i are defined locally by matrices defined analogously to the
transition matrices just described : fixing Nk and Nk-i, the map from Tr-k to Tr-k+i is
given by the lower right r — k + 1 by r—k submatrix of the matrix M M^1 . The

commutativity of the required diagrams is proven as above. Thus we have locally free sheaves
Rk together with compatible maps from Rk to Rk-i for ^== l,...,r, and we denote the
invertible kernels of these maps by ^i- We note that ^ can also be described as the cokernel
of the map from Tr-k to Tr-t+i.

We must next show that the original map defined by M defines compatible maps from Qk
to Rk^ and hence also from o^ to ^. We use the following lemma, which simplifies the
situation :

LEMMA. Consider the Rees ring of fo, fk, and let X denote the corresponding blow up. Then X
is covered by distinguished open sets corresponding to (I^N) where the rows of N other than
1,... ,A? are in I.

Proof: Fix /. This part of the blow up is covered by all (/,^V) if we put no condition on N
other than that it contain the first k rows. Thus it suffices to show that if a bigraded prime
ideal of the Rees ring which does not contain Ar (the Ay in degree (1,0)) contains A for

those N satisfying the condition of the hypothesis it contains all of them. If N has at least one
row which is neither one of the first k nor in J, we can use the Plucker identities to write
A Ay as a sum of products A Ap where each N' has one more row in common with /

than N does. Thus, using induction, one has that A Ay is in the prime ideal, and since Ay is

not, A must be in the ideal. This proves the lemma.




