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R£SUM£: Nous etudions les congruences lisses (c.a.d. les surfaces de la

Grassmannienne Gr(l,3) de droites de P3) en montrant leur parallelisme avec les surfaces

de P . Apres la description de toutes les congruences lisses de degre au plus neuf et

1'etude de son schema de Hilbert nous developpons une theorie generale. Par exemple,

nous definissons la notion de liaison adequate aux congruences et classifions les

congruences lisses qui sont projetees de Gr(l,4). Nous trouvons aussi des majorations du

genre sectionnel que nous utilisons pour obtenir des conditions (telles que d'avoir une

caracteristique d'Euler-Poincare donnee) qui ne sont verifiees que par les congruences
lisses cTun nombre fini de families.

SUMMARY: We study smooth congruences (i.e., surfaces in the Grassmannian Gr(l,3) of

lines in P ) showing their parallelism with surfaces in P . Besides the description of

all smooth congruences up to degree nine and studying their Hilbert scheme, we develop a

general theory. For example, we define the adequate notion of liaison for congruences

and classify the smooth congruences which are projected from Gr(l,4). We also prove some

bounds of the sectional genus in order to give conditions (e.g. having a fixed

Euler-Poincare characteristic) such that there are finitely many families of smooth

congruences verifying those conditions.
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INTRODUCTION

The present paper contains with almost no change the thesis of the first author,
written under the advice of the second author.

The study of congruences of lines, i.e., surfaces in the Grassmann variety
G=Gr(l,3) of lines in IP , goes back to the middle of last century. From that time, most
of the classical algebraic geometers, such as Kummer, Reye, Schumacher, Bordiga, Corrado
Segre, Castelnuovo, Fano, Jesspp, Semple or Roth, have published papers devoted to this
topic, classifying, under certain conditions, congruences of fixed degree or fixed order
(see §0 for definitions) or just studying a particular congruence.

However, coinciding with the end of the classical algebraic geometry school, this
flurry of research on congruences stopped suddenly. Only in the decade of the 80's, and
parallel to the development of the theory of surfaces in P4, a new interest for
congruences started again. To our knowledge, the first paper of this second period
(although published later than some other ones) is that of Ziv Ran ([371) where, solving
a conjecture proposed by Sols. he generalizes a classical result of Kummer and
classifies all irreducible surfaces of order one in any Grassmannian. After this, many
authors have published several papers on congruences: Cossec, Goldstein, Gross,
Hernandez, Papantonopoulou, Verra, etc.

The reason why this resurgence of the theory of congruences coincides in time with
the development of the theory of surfaces in P4 is that both G and P4 have the same
dimension four (one less than the dimension of a natural ambient space for a smooth
surface), so that the same kind of results are expected. In fact, any statement for
surfaces in P has its analogous for congruences. The converse, however, is not true,
since the geometry of congruences is much richer in problems. For example a congruence
has a bidegree, instead of the degree of projective surfaces, and points of the
congruence have an interpretation as lines in P3.



4 E. ARRONDO, I. SOLS

The aim of this work is to prove some general statements on smooth congruences

(mainly in §3, §5 and §6), most of them analogues of theorems for smooth surfaces in P .

This does not mean that proofs are just a mere imitation of those for P . For example,

Theorem 5.1, which is analogous to the Severi theorem in P , is proved by looking at the

geometry of lines in P3, so that not even a single idea of the proof of Severi is used.

We also give in §4 a classification and description of the Hilbert scheme of smooth

congruences of degree at most nine. At the end of §2 and §4, we add an appendix with

partial results and conjectures, in order to show the numerous possibilities for future

research with congruences.

The distribution of this work is as follows:

-In §0 we just give some preliminary definitions, as well as some general result

that we will use frequently.

-We devote §1 to give general properties of vector bundles on G and we introduce

the most important ones, that will be used later, especially in §4 to give resolutions

of the ideal sheaves of congruences. We also give a new and shorter proof of the fact

that the only indecomposable vector bundles on G not having intermediate cohomology are

the line bundles and the twists of the universal bundles. This result, proved in

algebraic terms by Knorrer (see 129]) with great generality, was independently proved

for G by the second author by purely geometric means, but not published until he

obtained a proof for all smooth quadrics (see [2]).

-In §2, after proving some known general results on congruences and several

technical results that we will use to study the Hilbert scheme of congruences, we add an

appendix where we prove some partial results related to a conjecture of Dolgachev on the

semistability of the restriction to smooth congruences of the universal vector bundles.

-Section §3 consists of the development of a new theory of linkage for congruences.

It is not exactly analogous to the known theory for projective varieties, since in our

theory the role of complete intersections is played not only by them, but also by what

we call spinor congruences (that are zero locus of sections of twists of the universal

quotient bundle E^}. We show that our definition is the right one by proving analogous

results to those for linkage in projective spaces. We prove, for example, that even

liaison classes are in 1-1 correspondence with classes of vector bundles on G not having

first cohomology spaces after tensoring with any line bundle and twists of £^ (where two

bundles are in the same class when they differ by a twist after removing their
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components of the form OM) or E (m) ). As an easy corollary of this theory, we get

resolutions for the ideal sheaves of smooth congruences lying in a linear complex.

-In §4 we give a classification of smooth congruences of degree at most nine,

giving a resolution of their ideal sheaves in G (thus providing a complete information

on their cohomology, in particular we know the postulation of the congruences) and using

it to describe their Hilbert scheme.

Section §4.1 corresponds to congruences of degree less than or equal to eight,

whose classification is essentially due to Fano (see (111 ) under different conditions.

Also Papantonopoulou gives in (341 (with a slight mistake) a list of possible smooth

congruences of degree at most eight (some members of her list actually do not exist).

Our new contribution, besides giving the precise list of smooth congruences, is the

description of their Hilbert scheme. These results appeared in (ll. New information on

the restriction of the universal vector bundles to some of these congruences also

appears in this section.

In section §4.2, devoted -to smooth congruences of degree nine, something similar

happens, since their classification was obtained by Verra (with a numerical mistake in

the computation of the invariants of the one lying in a linear complex). We add as an

appendix two more sections. In section §4.3 we selected several examples of more

congruences (some of them in a quite incomplete way) and in section §4.4 we state some

known results on congruences that we will need later or just that are interesting to get

a global view of congruences).

-Section §5 contains a proof of what is the analogous for congruences of the Severi

theorem in P . More precisely, we prove that, excepting an explicit list of five types

of congruences, no other smooth congruence can be obtained as a projection of a surface

in Gr(l,4), the Grassmann variety of lines in P . We complete this section using this

result to classify those smooth congruences such that the restriction to them of the

universal quotient bundle decomposes as a direct sum of two line bundles.

-Finally, section §6 solves a conjecture of Robin Hartshorne made for both P and

G, stating that only a finite number of families of smooth surfaces in these spaces

correspond to rational surfaces. This problem was solved by Ellingsrud and Peskine for

P4 (see (10]), proving a stronger result which has as an easy corollary that all but a

finite number of families of smooth surfaces in P are of general type. Their result can

be stated in several different ways, as Christian Peskine pointed out to us. In

particular, we prove that there exists only a finite number of families of smooth
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congruences S having a fixed Euler-Poincare characteristic ^(0-).

Our proof is essentially a translation of theirs to G. The new and original part is

mostly in section §6.1, where we obtain bounds for the genus of curves in Q (hence for

the sectional genus of congruences) depending on their postulation. Such a bound for

curves in P was obtained by Gruson and Peskine by restricting to general plane sections

and defining for it a series of ordered numbers which are each proved to differ by at

most one with its neighbors. The solution for Q is not so easy, and the trick that one

has to use is to restrict not to smooth quadrics, but to quadratic cones, and define a

series of ordered numbers that each differ by at most two with its neighbors. We also

want to mention that the calculations in section §6.2 were made in collaboration with

Manuel Pedreira.

We want to thank Christian Peskine for his continuous encouragement and help in the

preparation of this work. We also shared useful conversations with G. Ellingsrud, K.

Ranestad, A. Aure and A. Verra. We thank also M. Gross, who had us always informed on

his progress in the topic, and also has helped a lot in correcting the grammar of the

paper. Both authors have been supported by CAICYT grant PB86-0036 during the preparation

of this work.



§0. PRELIMINARIES

We will denote with G the Grassmann variety Gr(l,3) of lines in the projective
space P^PdQ over C. Via the Plucker embedding, we can also view G as a smooth quadric
in P5= P(A2^). The Chow ring of G is very well-known, and we have

-A^G) = ZT) where T} is the class of the hyperplane section of G in P . If the
hyperplane is tangent at a point I of G, then its intersection with G is a cone with
vertex I that corresponds to the Schubert cycle of lines of P that meet the line L
represented by the point 1. This is called a special linear complex. A hypersurface of G
having class d-n in Al{G) is called a complex of degree d.

-A2{G} = IT] © IT] where T) is the Schubert cycle of lines of P3 passing
through a fixed point (also called an a-plane, since it is a plane inside P ) and T)
is the Schubert cycle of lines of P3 contained in a fixed plane (also called a p-plane).
Each plane of G is either an a-plane or a 3-plane.

-^(G) = If] where T] is the Schubert cycle of lines of P3 contained in a fixed
3 3 5

plane and passing through a fixed point of the plane. This represents a line in P and,
conversely, all lines of G admit such a geometric interpretation in P .

-A^(G) = IT] where T) is, of course, the class of a point of G.

The multiplicative structure is given by

Vs V \2

\\r ^3
V2.2- ^3

W ^
T)2 = 7)

2.1 4
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A cycle in A (G) can, therefore, be denoted by an integer number, except for the

case i=2, where we will use pairs of integers (a ,a ) to denote the class a T) +a 17

An element in the Chow ring of G will be written in polynomial form as

W^z^^f^
With this convention, since G is a quadric in P we can write its canonical line

bundle as u-OJ-4).
G G

Notations. Throughout this work, we will use the following conventions:

An element of G will be denoted with a small latin letter (e.g. I) and the line in
P it represents will be denoted by the corresponding capital letter (L in our example).

For any subvariety X of G, ^-y will denote the ideal sheaf of X in G.

If S be a smooth surface in G, we use the following notations for its invariants:

oThe order d of S is defined to be the number of lines of the congruence passing

through a fixed general point of P3.

oThe class d will be the number of lines of the congruence contained in a fixed

general plane.

oWe will denote with d the total degree d=d +d -H of S, that is its degree as a

surface in P5 [H denotes the hyperplane class of S, i.e. tlie class of its intersection

with a general linear complex).

oThe Euler-Poincare characteristic of 0- will be denoted by ^=l-q+p =l+p , where
i 2 8 a

q=h (0-) is the irregularity of S, p =h (0-) is the geometric genus and p is the
S g ^ a

arithmetic genus.

oWe use the symbol K to represent the canonical class of S

oWe denote by n the sectional genus of S, i.e., the genus of the intersection of S

with a general linear complex. By the adjunction formula, 27i-2=H +KH.

3 S 3V 3There is an isomorphism GO,P )——>GrO,P ) mapping each line in P intothe pencil

of planes containing the line. Hence, any congruence in G(1,P3) of bidegree (d ,d )
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produces a congruence in G(1,P ) of bidegree (d ,d ) with the same invariants. We will

refer to this fact as duality.

Finally, we state here some general results that we will use several times

throughout this work (in §4.4 we give a similar list of results concerning congruences,

once the necessary ingredients are introduced).

[46] Proposition 1.1 (2). Let X, Y, Z, S be smooth schemes appearing in a diagram

W———>Y

4 , [8x—J—^

1
where W = Xx—Y and f is a smooth map. Then, there is a dense open set U in S such that

for each s in U the fiber W of noh (that is X x Y) is either empty or smooth. (The

ground field here must have characteristic zero).

[23] Proposition 9.5. A vector bundle F on P^" is a direct sum of line bundles if

and only if ^(Fd))^ for all integers I and 0<i<r.

[31] Theorem 2. Let V a complete normal variety of dimension at least two (over an

algebraically closed field of characteristic zero) Let JS be an invertible sheaf on V

such that, for large n, £. is spanned by its sections. Let these sections define the

morphism V———y>W. Then, H^^) = 0 for all m^l if and only if dim(W)>l.

The easy corollary we will apply is the following: Let X be the normalization of a

projective surface X (in our case X will be a surface in a smooth quadric of P ). If we

denote with 0^(1) to the pull-back to X of 0 (1 ) , then H\0.,(-m)) = 0 for all m>.l. (Just

apply the above result making £ = ^y(l) and n=l).

We will also use a slight generalization of Mumford- Castelnuovo criterion (see

Prop. 1.1).



s



§1. VECTOR BUNDLES ON GR(1.3)

§1.1. Generalities.

We start with some general facts about vector bundles and coherent sheaves on G.

Let F be a coherent sheaf on G of rank r. According the convention given in §0, we

can write its Chern classes as integers c . c , c , c and c . Using the splitting

principle one can check, for example that the twist Ft I) has Chern classes

c^F(D) = c^rl

^^= ̂ .^-"^H12

•w""'= c^,2+(r-l)cll+(3t2

c^FU)) = c^tr-ZK^^c^^l.zMc^^yi3
^H'

•4)14c^F(D) = S.tr-Sl^.^jtc^c^)!2^^^^^!^'

(here M means ata"l)•.;(a"t'+l) even in case a is negative).

Also, we can deduce from the general Riemann-Roch theorem the characteristic ;((F)

of F. Following [191 page 432 the Chern character of F is given by

ch(F) = r+c^t+ g^-Zc^ ,,<^-2c^ ^)t2 + g(c^-3c^ ̂  ^)+3Cg)t3

^(^^(^^c^^^c^^^c^t4

(This expression is given in [19] only for vector bundles, but it also holds for any

coherent sheaf F since the Chern character is in fact defined on the Grothendieck group

K(G) of G).
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On the other hand, the Chern polynomial of the tangent bundle 9- of G can beG 5
calculated using the fact that G can be considered as a smooth hyperquadric in P , hence
there are exact sequences

0————>^————>y^————>^(2)————X)

that provide

c,(7j = i+wi^t^izt3^i Li

so that 7- has Todd classG

td(yj = i+z^^^^+^+t4
Lr LC, 1Z. J

and applying the general Riemann-Roch theorem we obtain

,-, ^ .̂l̂ .Z' SS <1 <2 S
;»:(F) ° 12 - ————6———— + -6- + -12- + -T2- - 6- +

I ̂ ^^.z' ̂  ̂ (^-'̂ l̂ '̂) + I ̂  r

Another useful fact concerning coherent sheaves on G is the following analogous to
the Mumford-Castelnuovo criterion.

Proposition 1.1. If F is a coherent sheaf on G such that hl'(F(-i))=0 for 1=1,2,3,4,

then F is 0-regular, i.e., F is generated by its global sections and ht(F(-i•^•J'))=0 for

i=l,2,3,4, and J>.0.

Proof. We just consider F as a coherent sheaf on P5 and apply to it the
Mumford-Castelnuovo criterion for P5. The only new vanishing we have to check is
h^Ft-S))^, that is trivial since F is supported on a scheme of dimension at most
four. •

This proof shows that Mumford-Castelnuovo criterion is valid for coherent sheaves
on any projective variety X, just by considering them as coherent sheaves on the
projective space in which X lies. This fact will be used in §6.
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§1.2. The universal vector bundles.

Let 3C be the subvariety of GxP corresponding to those pairs (l,x) such that the

point x belongs to the line L defined by I. We denote with p and q the natural

projections to G and P . If we consider the Euler sequence of P

p3(l)————>H°«9p3(l))®(9p3————^p3(l)————>0

and then pull it back to X by q and take its direct image under q we obtain the

universal exact sequence in G=Gr(l,3)

0————>^————>H°(Op3(l))®^————>£^————>0

where E and E are vector bundles of rank two and Chern classes c (E ) = c (£ ) = -1,

c (E ) == (1,0), c (£ ) = (0,1). In particular, E^^E (1) and E^^E (1). Also, the

cotangent bundle ft- of G is known to be the tensor product E ®E of these bundles.
G 1 2

The reason for our notation E and E for the universal bundles is that. if we

dualize the above sequence, we obtain the universal sequence for the Grassmann variety
3Vof lines in P and E and E permute their roles.

Taking cohomology in the universal sequence, we obtain

H°(E^) = H°(0 3(1)) = V

and get that sections of E corresponds bijectively with P-planes. More precisely, each

section s of E^ vanishes exactly on a /3-plane X and we have a Koszul exact sequence

\^
Dually, sections of E correspond to a-planes.

From this Koszul sequence, we easily obtain

h\E ) = h^y)= 0
2 "2

h^E (-1)) = h2^-!)) = h\0-2(-D) = 02 ^ y
h3(E (-2)) = h3^.^)) = h^CL^-Z)) = 02 X F
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h^(E (-3)) = h^yM)) = h^O^-S)) = 0
2 "2 X2

Thus, applying Prop. 1.1 one gets that h^d-i+j) = 0 for all Js:0 and i=l,2.3,4.

Using Serre's duality and the fact that E^^E (1) we conclude that H^E (l))=0 for

1=1,2,3 and lei. We will refer to this by saying that E has not intermediate

cohomology.

By duality, we also obtain that E has no intermediate cohomology. Clearly, the

trivial bundle 0^ also has no intermediate cohomology. We will prove next that this

property characterizes (up to a twist) these three (indecomposable) bundles.

Proposition 1.2 (Ottaviani [32]). Let F be a vector bundle on G. Then, the

following are equivalent:

( i ) F has no intermediate cohomology and ^(F^E .(l))=0 for ^1,2 and lei.

( i i ) F has no intermediate cohomology and H^CFsE (l))=0 for i=l,2 and lei

(Hi) F is a direct sum of line bundles.

Proof, (i) and (ii) are clearly equivalent since H2(F®E (0)= H^F^E (l+l)) after

tensoring the universal exact sequence with F(l) and taking cohomology. It is also

immediate that a direct sum of line bundles verifies both (i) and (ii).

Therefore, we assume that (ii) holds for F and will prove it is a sum of line

bundles. We consider a general a-plane X and its associated Koszul exact sequence

that, after tensoring with F, tells us that F®0 has no intermediate cohomology in

X =p . Applying Horrocks' theorem to it (see [23] Prop. 9.5, or [41 Lemma 1 page 334 for

a proof closer to ours), we conclude that F®0y is a direct sum of line bundles

.® 0 (a.). Denote by P the corresponding sum in G, i.e. P=.® 0 -(a.). Tensoring the above
\^

Koszul sequence with P ®F and taking cohomology we obtain an epimorphism (since its

cokernel is zero from our assumptions on the cohomology vanishing)

Hom(P.F)————»Hom(P®0 ,F®0 )
x! x!

that provides a morphism P——^—^F whose restriction to X is an isomorphism. We conclude
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that y itself is an isomorphism. Indeed, since <p fails to be isomorphic in the zero

locus of its determinant, that is a homogeneous form in P . If its degree is positive,

then this locus should meet X , that is absurd. Therefore, <p has a non-zero constant as

determinant and thus is an isomorphism, as wanted. •

Proposition 1.3. Let F be an indecomposable vector bundle not having intermediate

cohomology. Then F is a twist with a line bundle of either 0. or E or E .G l 2

Proof. By considering all non-zero spaces ^(F^E .(I)) we get an extension

<P__.p 0 ^ ̂-^^P-A_^^^,)^J^(O,))-

where P is a bundle verifying (i) in Prop. 1.2. Therefore, P is a sum of line bundles.

We consider the following commutative diagram of exact sequences

0 0

0————>F——————> P ———> (® E^a ))®I® E\b ))————>0
j i 1=1 1 I \\l'•=i 2 K

0————>X——————>P®P>('A>P) )(£ E^a.))®!® ^(b,))————>0
, , 1=1 1 L K=l 2 k

\, ^

\ [
0 0

where P' is the sum of line bundles (® 0^{a.})®i% O^b )) and the morphism p is the

natural one defined from the universal exact sequence and its dual after twisting with

the a.'s and the b , s . The kernel K of (0,p) appears in another diagram

0 0

0——>(S E (a.))®ll E (b, ))——> P' —p—> (£ E^a.))®!^ E^b, ))——>0
1=1 2 L , K=l 1 k , 1=1 1 l ,,K=1 2 k

^ ^ f i A o l r v l l ^ v
0———————> K ——————> P®?'^'^ )(® E {a.))@iS E (b,))——>0

i i 1=1 1 L AC=1 2 K,

4> 4<
P ================ p

l l
0 0

that proves, since the universal bundles have no intermediate cohomology, that K =
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P®(© £ (a ))©{§ E (b.)). On the other hand. from the first diagram and the fact that FIs! Z I X=l 1 X
has no intermediate cohomology we also conclude that K=P'®F. Since the decomposition
must be unique, we conclude our result. •

This result was already known for any smooth quadric (see [291, [6] or [5]) but we
have given here a simpler proof. For a similar argument for all smooth quadrics see [21.

§1.3. The vector bundles E.

We will now introduce another important rank two vector bundle on G (a family of
bundles, to be more precise). Our construction is not the usual one (requiring the
techniques in §2.3). The main reason for us to use this new construction is that it
allows us to relate the bundles E with the bundles V introduced in [211.

v vFirst, we pick two sections s and s of E and E respectively such that they
define disjoint a and /3-planes (i.e., the point defining the a-plane is not in the plane
defining the 3-plane). Thus, the induced section of £" <s>E does not vanish at any point
of G, defining a rank three vector bundle appearing as a quotient in an exact sequence

(we write the bundle 1/(1) with a twist to preserve the notation in [21]). Applying the
results in §1.1 we see that V has Chern classes c =-1, c =(1,1) and c =0. If we dualize
this sequence and tensor with 0-(1) we get(j

v v v
1 2 G

(showing in particular that the sequence is not split and h [V (-1)) = 1, since E ®E
has not sections).

Taking global sections, the map H°(E^®E^)————>H°«9 (1)) is given by
(t ,t )i———>s At+s At (that is surjective), so that we conclude that the pencil of

o v v vsections of H {E ®E ) that come from sections of V are of the form (\s ,<LLS- ), with
A,H€C. Hence, no section of V vanishes at any point of G and again we obtain an exact
sequence
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where E is now a rank two vector bundle of Chern classes c =-1 and c =(1,1). We see that
h°(£:(D) = h0^)-! = 1 and h°(£:) = h0^-!)) = 0. Hence, the only section of Ed)
should vanish on a surface X providing a Koszul exact sequence

so that we deduce that h^y) = h^E) = h^V^-D) = 1 and thus X has two connected
components. Therefore, X (that is a (1,1) congruence) is the disjoint union of an
a-plane and a 3-plane. Moreover, these planes are those defined by s and s . Indeed, we
have a commutative diagram

0 0

1 1
°G————°G

1 1
0 ——————————————> 02 ——————————————> ^v ——————————————> ^y(l) ——————————————> 0

Cj A

1 1 1
0 ————> 0^ ————>£•( 1)————> ^y(l) ————> 0

<j A

1 1
0 0

• 2 Vshowing that X is the locus where the morphism 0-————^V is not an inclusion of
v v vbundles. As remarked above, if we compose this morphism with the inclusion V ———>£ ®E

we obtain the morphism 02————^©f^ given by the sections (s ,0) and (0,s ) of E ®E ,
which fails to be an inclusion of bundles exactly where either s or s vanishes.

Conversely, any rank two bundle E such that a section of £(1) vanishes on the
disjoint union X of an a-plane and a P-plane can be constructed as above. Indeed, from
the above Koszul sequence we can compute the cohomology of E and in particular one sees

that
h\E) = h^y) = 1

A

h^EO)) = h^yd)) = 0 for any 1^0
A

h^EU)) = h^yd)) = h^Cydn+h^Oyd)) = 0 for any IX X^ A^

h^Ed)) = 0 for 1^-3 and h^H-S)) = 1 (by Serre duality)

Therefore there is an extension in Ext {E(\},0 ) = H (£) that provides an exactre-
sequence
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where F is a rank three bundle whose only intermediate cohomology is h^FC-l))^! (since
H^H-S))————^(CU-D) is the dual of the isomorphism H°{0 )———^(E) corresponding
to the non-trivial extension). This yields an extension in Ext^{F(1),<9-)

G

and now F* is a rank four bundle not having intermediate cohomology, so that applying
Prop. 1.2 and looking at the cohomology and Chern classes of F', one concludes that F'=
E^eE^ and then F=V^.

Therefore we conclude that the moduli space of these bundles £' is isomorphic to the
open subset U of P xP obtained by removing the incidence variety. In particular, this
moduli space is smooth, rational, irreducible and has dimension six.

There is also a universal vector bundle S on this moduli space constructed as
follows. Consider the subvariety V of GxGxU consisting of those (m,l,^-,TI) such that

xeM or M£IT
Lr\M*0
X€<L,M>
LnMsn

and consider its projection u on GxU. We study the possible different fibers of n on
elements (l.x.TT) depending on the position of x and IT with respect to L.

If the line L neither passes through the point x and nor is contained in the plane
IT, then there are two elements in the fiber, namely the line joining the points x and
TTnL, and the line obtained by the intersection of the planes IT and the span of x and L.

If the point x is in L, then the fiber consists of the pencil of those lines
contained in IT and passing through LnTT.

If the plane IT contains L, then the fiber is the pencil of lines passing through x
and contained in the plane spanned by x and L.

This proves in particular that V is connected. If p is the projection from GxU onto
G then we define Q to be •n.^O^sp 0 (-1). This is a rank two vector bundle on GxU since
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the fiber of n^O^p 0-(1) in each point (l.x'.IT) is a two-dimensional vector space in any

of the three possible cases (namely the direct sum of the base fields of the two points

of G in the first case above, and H (Opi(l)) in the other two cases, where P1 denotes

the corresponding pencil of lines).

There is a canonical section (unique since V is connected) 0 ^•°yGxU
€9p 0-(1) that vanishes on the subscheme 3C of V consisting of the disjoint union of XG i
and X where 3C is the subvariety of V of those (l.^-.n) such that the point x lies in

the line L and 3C corresponds to those (l,x.II) such that the line L is contained in the

plane IT.

§1.4 Some cohomology tables.

Once we know that the universal bundles have no intermediate cohomology, we can

easily calculate their cohomology by just applying Riemann-Roch theorem. Thus, one gets

the following table

h^E (in^E (D)

i
4
3
2
1
0

1 -5

20
0
0
0
0

-4

4
0
0
0
0

-3

0
0
0
0
0

-2

0
0
0
0
0

-1

0
0
0
0
0

0

0
0
0
0
0

1

0
0
0
0
4

2

0
0
0
0

20

Recalling from §1.3 that the only intermediate cohomology of £: is h^E) = h^H-S))

; 1, we can apply Riemann-Roch to obtain the following table

i l

4
3
2
1
0

-5

14
0
0
0
0

-4

1
0
0
0
0

-3

0
1
0
0
0

-2

0
0
0
0
0

-1

0
0
0
0
0

0

0
0
0
1
0

1

0
0
0
0
1

2

0
0
0
0

1 4

h\E(D)

Using the exact sequences

,5®0^(-D- ^V<8>0^ M)-

<,(-2). r,5®0,, W^z-

one obtains
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t l
4
3
2
1
0

-5

64
0
0
0
0

-4

15
0
0
0
0

-3

0
0
0
0
0

-2

0
1
0
0
0

-1

0
0
0
0
0

0

0
0
0
1
0

1

0
0
0
0
0

2

0
0
0
0

15

h\E9E^l))

Finally, using the above table and the universal sequence tensored with E

:®£- •^V®E- ->E ®E (1)-

and recalling that E ®E = CU-DeS E we can write down the following table

i
4
3
2
1
0

l -5

45
0
0
0
0

-4

10
0
0
0
0

-3

0
0
0
0
0

-2

0
0
0
0
0

-1

0
0
1
0
0

0

0
0
0
0
0

1

0
0
0
0
0

2

0
0
0
0

10

h^S2^ (in^S2^ (D)



§2. GENERALITIES ON CONGRUENCES

§2.1. General properties of congruences.

Let X be a smooth variety. To give a morphism / from X to G is equivalent to giving
a rank two vector bundle £ on X together with an epimorphism Oy——'—>£. This epimorphism

o v<p turns out to be the pull-back by / of the canonical morphism H (0_3(1))®0-————>£ .Ir C» 2
The condition for / to be an immersion is that any subscheme of length two of X imposes
at least three conditions to the subspace of sections of H (£) defined by <p (i.e..
different points of X, are mapped by f to different lines, since their span in P3 is at
least a plane, and analogously, infinitely near points map to infinitely near lines).

In the case when we have an embedding of a smooth surface S in G, then we have that
the class d of the congruence is the second Chern class of E ®(9- and its order d is
analogously the second Chern class of E ®0 .

Definition. If there are more than d lines of a congruence passing through a
point, then an infinity of them pass through that point. Such a point is called a
singular point of the congruence. Dually, a plane of P3 that contains infinitely many
lines of the congruence is called a singular plane. If it exists (cf. Prop. 4.4), a
curve of P3 consisting of singular points of the congruence is called a fundamental
curve.

As it happens for smooth surfaces in P (cf. [191 page 434), the invariants of a
smooth congruence satisfy a numerical relation, which is very well known (cf. [33]. [22]
or [47]). We prove it below.

Proposition 2.1. Let S be a smooth congruence. Then its invariants verify the
following relation

d^+d2^ 3d•^4(2n-2)•^•2K2-12^
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Proof. The first term of the equality is the self intersection of S, so that it is

the second Chern class of the normal bundle N of S in G. We compute this Chern class now

using the exact sequence

The Chern polynomials of the first two vector bundles appearing in the sequence are

c^) = 1-Kt+c^)

c^O^Cy = l+4Ht+(7d +7d )£2

(the last one obtained by restricting to S the Chern polynomial of 7- obtained in Ch.
G

1), so that N has Chern polynomial

c AN) = l+(K+4H)t+(7d +7d +4KH-C (3' J+K2^2

The result follows now from the adjunction formula, as well as from Mother's formula ^ =

c (3- )+K2

———2—'

We now calculate the relation between the invariants of a smooth congruence S and

the Chern classes of its ideal sheaf ^- , which will be very useful throughout this

work.

Clearly we have c (^-)=0. Also, since S is locally Cohen-Macaulay, }. has
1 0 ^

homological dimension one, so that it has a resolution of the form

where F and F are locally free. The morphism (T fails to be an inclusion of bundles

exactly at the scheme S, that has the expected codimension two. Hence, from Porteous

formula, c (^-)=(d ,d ). Let us denote with c and c the numbers representing the third

and fourth Chern classes of ^-. Using the results of §1.1 we have for all integers I

that

c^(D) = I

c^(U) = (d^)
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c^(D) = c^-dl

c (^ (0) = c -2c l+dl2

and, hence, applying Riemann-Roch for coherent sheaves in G we get

^S"» -& + ̂  +^ - ̂ ^S- + ̂  -3- dM - ̂ - ̂  -

and, on the other hand,

.(^(D) » ;^"))-^»» = (THf)-^- l^KH =

I4 2l3 ,23 d,,2 ,7 d ,„ ,
12 + -T ̂  - 2" "3 - 2 +It-m +1-^

Therefore, identifying the coefficients of terms of same degree, we get

c = 3d+2Tr-2
- d\d2

c == î  + ——2 + 6(271-2) + 6-x. = 8d + 8(27r-2) +K2
4 <c. &

where the last equality comes from Prop. 2.1.

Lemma 2.2. Let S be a smooth congruence. Then, the general intersection of S with a
special linear complex is a smooth curve.

Proof. Let I be the incidence correspondence in GxG (where the dual G of G means
the space of special linear complexes of G) and let p and q be the natural projections
to G and G^. Consider the subscheme V of J consisting of couples ( l , H ) where H is the
special linear complex defined by the line I and let n:J————>J be the blow-up of I
along V. We define p and q to be the composition of p and q with n.

Fibers of q are just blow-ups of the special linear complexes along their singular
point, hence smooth. We are thus in the hypothesis of [46] Prop. 1.1 (2), so that we
conclude that the fiber product over G of S and the general fiber of q is smooth. This
fiber product is isomorphic to the intersection of S with the corresponding special
linear complex H, since the singular point of a general H is not in S. •



24 E. ARRONDO, I. SOLS

§2.2. A few words on the Hilbert scheme of congruences.

The expected dimension for the component of the Hilbert scheme where a smooth

congruence S lies in, -will be given by the Euler-Poincar6 characteristic of its normal

bundle N. For calculating this expected dimension, we just apply the Riemann-Roch

theorem for a vector bundle F on S, which says

^(F) = rank(F)A;+^(F)2- ^(F)/C-C^(F)

that gives in our case (recalling the Chern polynomial from of N from the proof of above
Prop. 2.1)

;f(AO = 6d^+6d -d2-d2+2(27^-2)+2^

We have the following criteria for the vanishing of H^iN) and H2^).

Lemma 2.3. Let S be a locally complete intersection surface in G. Then, ^(N) =

Ext^C^ ,^) for i=2,2,3 and we have

a)If p =0 then H^N^O
b)If q=p =0 then H\N)=0

In particular, each component of the Hilbert scheme consisting of smooth rational

congruences is smooth and has the expected dimension 6d +6d -d2-d2+2( 271-2 )+2x.

Proof. For the first part we just repeat the argument for curves in P3 made in the

proof of Prop. 4.2 in [20]. We consider the spectral sequence for local and global Ext

given by E^^H f̂f̂ ,̂.̂ )) ^ E^= Ext^^,^). We observe that this spectral sequence

is degenerate, and more precisely

E^°= H°«y = C

E^ ^(0 ) = 0 for p>0

E^^ H^^ct1^,^))

E^s 0 for q>l

the last vanishing coming from the fact that ^- has homological dimension one.

To conclude the first part of our assertion we just have to show that €o^{j- *<?c.)=
N.

Applying the functor Hom(^. ,-) to the exact sequence
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and recalling that ^- has homological dimension one, we obtain a long exact sequence

0————^Gm^,^)--01—>Kci/n(^,<^J————>Kd/n(^ ,0 )-

-^t1^,^)———-^^(^(^J-J3——^xt^^O^)————>o

What we need to show is that a and 3 are isomorphisms, since then Sa^^^j. -) =

Kom(^-,0-) = y.Qm{}jaO^,0-} = Ham^ ,0 ) = N. This is a local question and, since S is
0 0 0 0 0 0

locally a complete intersection we can assume, by restricting to a suitable open

subscheme of G, that we have an exact sequence

o——.o^Uo^o^X^——^

so that we reduce our problem to a problem of commutative algebra.

Suppose first that we have a morphism y:^————>0- and denote F=y(/), G=y>(g). Then,

gF-fG = 0 in j. , so that there exists an H in 0 such that F=/H and G=gH (from the

above exact sequence). This proves that the image of (p is in the ideal ^ (since it is

generated by / and g). Therefore, a is epimorphism and hence isomorphism.

On the other hand, assume we have an extension ^ in Soct (<^C?J that goes to zero

in Sa^^^O.). In other words, there is a diagram

0 0

1 1
^ s — — ^ s
1 ^
1° vl Is

' ° 1 s 1
0 0

where the extension ^* is split. Let (T:^————>M' be such that qo<r=£d. Set m'=<r(,f) and
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n*=<r(^). Since <p is surjective, there exist elements m,n in M such that m*=y(m) and
n'=y(n). Since <p(gm-fn) = gm'-fn* = 0, there exists an element h=a/+b^ in ̂  such that
€(h) = gm-fn.

We define T:^————>M by T(.f)=m-^(b) and T(^)=n+^(a). It is well defined since
g{m-^(b)) = /(n+^(a)). It is also clear that poT=id because p(m-$(b)) = goy>(m-^(b)) =
gCm*^ =/ and analogously p(n+^(a)) = ^. Therefore, the extension ^ is also split. This
proves that the map f3 is injective, hence an isomorphism.

This completes the proof of the isomorphism N&Sxt1^ ,^ ) and the first part of our
statement.

The assertion a) in the statement is now a consequence of the following diagram of
exact sequences

Fxt3^ ,0 )=H3{0 )=0

4'

Ext2^^ ^———^Ext3^ ,^)———>Ext\0^ ,^)

^(OJ [ n v
„ " Ext^(0^ ,^)=H°(^(-4))=0

0

and assertion b) comes in turn from the diagram

Ext'2^^ ^^(O^O

Ext2^^ ^)———^Jct2^ ^)———^Ext3(0^ ^)

^^^ 3 i v„ b Ext^O^ ,0^)=H1(^(-4))=0

§2.3. Correspondence between vector bundles and congruences.

We state here some results that come from an idea of Serre, used first by
Hartshorne and that can be found with whole generality in the thesis of Vogelaar.
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A natural way to construct smooth congruences is the following. Assume we have a

vector bundle F of rank r on G that is generated by its global sections. Then ([491

Theor. 2.2) the dependency locus S of r-l general sections of F has codimension two and

its singular locus has codimension six in G, so that S is a smooth congruence. We have

the following exact sequence

Dualizing this exact sequence we get an epimorphism

0^~1————^^tl(^(c^F)),^)=gxt2(0^^)(4^(F))=D^(4-c^F))

showing that U(,(4-c (F)) is generated by r-1 global sections.

This process has an inverse in the following way. Let S be a locally complete

intersection surface in G and a an integer such that (^(a) is generated by s global

sections. Thus, we have

Hom^^a)) = ^(^(a))^ H°{ect\O^J.a}f=
G S S 5 G

Ext\0 ^(a-4))^ Ext\^-a),0^)

so that the morphism 0s————>x<Ua) showing that o (a) is generated by s sections
G ^5 ^

provides an extension

Using again a result of Vogelaar ([49] Theor. 2.2) we conclude that F is locally

free (and in general it fails to be locally free exactly where the s sections do not

generate (<)-(a)).

Remark. If we dualize the above exact sequence we obtain

and taking global sections we obtain that, if the s sections are chosen to be

independent. H°(F^) = H°(0 (a-4)). if a^3. In particular, h4^-^))^. If. in addition.

we take a basis for t<>-(a), the vector bundle F that we obtain has h (F(-4))=0.
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APPENDIX TO §2

§2.4. Stability of the restriction of the universal bundles.

Definition. Let S be a surface and H an ample line bundle on it. A vector bundle F
on S is said to be H-semistable if for each sub-bundle F ' of F one has

c ( F ' ) ' H c ( F ) - H
r a n k ( F ' ) rank(F)

If the inequality is always strict, F is said to be H-stable.

Conjecture (Dolgachev-Reider [9]). If S is a smooth congruence that is not
contained in a linear complex, then the restriction to S of the universal bundles of G
is H-semistable (where H again signifies the hyperplane section).

This is equivalent to the following: For. any line bundle L on S contained in E^®0-
or E ®0- one has 2HL^d, where d is, as usual, the degree of the congruence.

One should impose the condition of not being in a linear complex, since the
conjecture is false for congruences of odd degree that are contained in a linear complex
(see Prop. 3.9).

If this conjecture is true, then, applying Bogomolov's theorem (stating that c^^c
V V 1 to

for semistable vector bundles) to both E ®0- and E ®0- we would obtain that d ^ 3d and
d =s 3d for all smooth congruences.

We can prove the following

Proposition 2.4. Let S be a smooth congruence of bidegree (d ,d ). Then
a) If d ̂ d then E ®0 is H-semistable.
b) If d >.d then E ®0 is H-semistable.

In particular, the conjecture is true for congruences having d =d .

Proof. Clearly both statements are dual to each other, so that we only need to
prove one of them.

Let L be a sub-line bundle of E <s0 such that HL is maximum. Thus, the section of
E ®L vanishes only in a zero-dimensional scheme Z and, therefore, there is an exact
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sequence

The surjection H0^)®^———^———^E\0-———»L"1®^- .,(1) defines a morphism
' 2 w Z Z o &<f0

from the blowing-up of S along Z to P3 whose degree (that must be a non-negative number)

is {H-L}2•-deg{Z}.

Since Z is the zero locus of a section of E^9L~1 one has that deg(Z) = c (£ ®L~ ) =

c (E^)-c (E^-L+L2^ d -HL+L2. Thus, we obtain that the degree of that morphism is d -HL.

Therefore, 2HL^2d ^d if we assume d ^d . This completes the proof of b). •

(This result, as well as some other contributions to the conjecture can be found in

the thesis of Gross [16]).

We can, therefore re-state the conjecture as follows: Let S be a smooth congruence.
Then, the restriction to S of the universal bundles is H-semistable if and only if there
is no line of the congruence that meets all the other lines of the congruence. (As
noticed in the proof of Prop. 3.8, this second condition characterizes smooth
congruences of odd degree lying in a linear complex).

Proposition 2.5. Let S be a smooth congruence and C a general intersection of S

with a special linear complex (we recall from lemma 2.2 that C is smooth). Then there

are exact sequences

0————.0^)————>£^————>0^;————^

0————>0^)————>2^————^D;————^

where D and D are divisors on C of degrees d and d (corresponding, respectively to
1 2 1 2

the intersection of S with an a-plane and a f^-plane). In particular

a) If d >d then E^^O^ is not semistable.

b) If d >d then E^sO is not semistable.

c) If d =d then E^^O^ and E^®0^ are semistable, but not stable.
1 2 1 C/ 2 L>

d) If d =d -1 or d -2, then E^eO is stable (and hence also E^O^) if and only

if the first sequence is not split.

e) If d =d -1 or d -2, then E^^O- is stable (and hence also E Q>0.) if and only

if the second sequence is not split.

v
Proof. We consider a general a-plane in the linear complex. The section of E

defining this a-plane only vanishes on d points—of S, and thus it vanishes exactly on a
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divisor D of degree d of C. This yields an exact sequence

c i i c c i

where H represents the hyperplane section. Clearly, if D is the intersection of C with

a 3-plane contained in the given linear complex, then D +D =H. This proves the existence

of the first exact sequence in the statement, the second being dual. •



§3. LIAISON OF CONGRUENCES

§3.1. Spinor liaison of congruences.

We treat in this section §3 the analogous in G to the theory of linkage of
codimension two subvarieties in projective spaces (cf. [36], [39], [40]). The main
difference in Grassmannians is that line bundles are not the only indecomposable vector
bundles without intermediate cohomology (cf. Prop. 1.3). But this Prop. 1.3 has also the
following immediate corollary

Lemma 3.1. Let F be an, indecomposable vector bundle on G not having intermediate

cohomology and such that ^(F^E (l))=0 for all integers I. Then F is either a line

bundle or the twist of E with a line bundle.

This result suggests that the role played by line bundles in the liaison theory in
projective spaces should be played in G by both line bundles and twists of E . (Of
course, one could use E instead of E along this section). For example, in addition to
complete intersections, we have the following

Definition. A spinor congruence S is a surface in G that is the zero locus of a
section of a twist E (n) of the universal quotient bundle (that is a spinor bundle of
the quadric. This is the reason for our notation). Thus, there is a Koszul exact
sequence

n

and S has bidegree (n^n.n^n+l). We recall that E (n) has sections if and only if nsl

and that in this case E (n) is generated by its global sections since E (1) is.

Therefore, the generic S is smooth. We also recall from §2.3 that t«)-(5-2n) is generated
n

by one global section, so that we conclude that y- = 0-(2n-5).
n n
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We will say that two congruences S and S' are geometrically linked in G if their

union is either a complete intersection or a spinor congruence (we will also say that S

is linked to S' by the complete intersection or by the spinor congruence). Two

congruences S and S* are said to be spinorially linked if there exist a chain of

congruences starting with S and finishing with S' such that any two consecutive

congruences in the chain are geometrically linked in G.

Since the difference with the classical liaison theory is in the part envolving E^

throughout the proofs in this section we will just restrict ourselves to this new part.

the other being identical to the classical proofs.

Lemma 3.2. Let S be a congruence such that there is an exact sequence

0____^F ____>f ————>S ————)0 where F and F are vector bundles. Suppose S is linked
i 2 S 1 2

to S' by a spinor congruence S induced from a section of F <sE (n). Then, there is an

exact sequence

0————^(l-2n)————^(l-2n)®E (1-n)————>^ ,————>0
2 1 2 '3

where the morphisms are the following

oF^(l-2n)———^(l-2n) is the dual, after a twist of the given F————>F .
2 1 * ~

oF^d^n)———>£ (1-n) is the morphism corresponding to the section of

F^(n).

oF^(l-2n)————>^, is the composition of E (1-n)———>^ ————>0^ with the

dual of E (n)———>F (2n-l), obtained from the morphism E (n)——^F^(2n-l) (that is zero

after composing with F (2n-l)———^(2n-l) ).

oE (1-n)———>^ , is induced by the dual of the section of E^n).

Proof. We have the following commutative diagram

— ^ — ^.-^-^—
0 { 1 -2n)————>^( 1 -n)————>0^————X^ ————>0

whose dualization tensored with 0^(l-2n) is
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where we have used the identifications Sact1^ ,0 ) = Scct^O ,0 ) = u (4) =

^/^ (0^5 )(4) = ̂ . ̂  (2n-l).
S n ' n,n
We conclude by applying the mapping cone construction to this diagram and

simplifying. ,

Remark. A similar proof, or a literal translation of [36] Prop. 2.5 shows that in

the same conditions as lemma 3.2, if S is geometrically linked to another congruence S'

by a complete intersection of two complexes of degree m and n, then there is an exact
sequence

0————>F (-m-n)————>F^(-m-n)<sO-{-m)QO^{-n)————>.?-,————>0
2 l G G S

whose morphisms are defined in a similar way.

Lemma 3.3. Let S be a congruence such that there exists an epimorphism

(®0^(-a^))e(<a£^(-b ))———»^ . Let n be the largest integer among the a/s and b *s and

n and m be the first and second largest integers among the a.'s and b /s+J. Let S' and

S" be general congruences geometrically linked to S by a spinor congruence S and by

the complete intersection of two complexes of degrees m and n. Then

a) If n^n +1 and m^m +3 then S'* is irreducible.

b) If S is smooth and n>.n then S' is smooth.o

c) If S is smooth and n^n , m^m then S" is smooth.

A/
Proof. From the definition of n we obtain an epimorphism 0^———»^ (n-1) that

produces an embedding of 5 (the blowing up of G along S) in GxP . that is in turn

embedded in a projective space via the Segre embedding. The line bundle producing this

projective embedding is clearly 0~(n) (the pull-back to 2 of O^n)), so that its generic

section, that corresponds to a complex V of degree n containing S, vanishes on an

irreducible divisor.

We again have that ^ y(m-l) is generated by global sections, and therefore we

conclude now that O..(m) is very ample on the blowing-up V of V along S, and thus, since
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its sections correspond to congruences S", the general S" is irreducible. This

completes the proof of a).

NFor b), we observe that we have a surjection E (-n) ———»^ meaning that S is cut
~ w iout by all spinor congruences S containing it and defining a map G————>Gr(l,P ). In

this situation, S* is biregular to the inverse image of the cycle of Gr(l,P ) of lines

contained in a general P ~2. Since 5 is irreducible. S' is. Further, if S is smooth, so

is 5» and applying [46] Prop. 1.1 (2) we conclude that S* is also smooth.

The statement c) is analogous to the one for varieties in projective spaces (cf.

[361) and its proof is a combination of the proofs of a) and b). From the choice of m

and n we have a surjection O.,(-n-l)®0-(-m-l) ———»^-. If V is the complex of degree n+1

containing S induced from this surjection, we obtain another epimorphism

0 (-m-1) ———»^ . This in turn induces a map V————>P -1 (where V is the blowing-up

of V along S) such that S" is the inverse image of a general hyperplane. We conclude

with the same argument as above. •

§3.2. Liaison equivalence classes.

We define an equivalence relation among locally Cohen-Macaulay congruences in the

following way: Two congruences are equivalent if they are spinorially linked in an even

number of steps (i.e.. by means of an even number of geometrical linkages). We call the

resulting equivalence classes even spinor liaison classes.

We also say that two vector bundles F and F on G are stably equivalent if

F^®(<^(a^))®(<ajE^(b .)) s F^(e)®(®0^(c^))®(®£:^)) for some integers a^.b ,c^.d^,e.

Finally, a vector bundle F on G such that h^Fd)) = h\F®E (D) = 0 for all

integers I will be said not to have H .

With this definitions we can prove a result analogous to the main theorem in [40],

giving a completely parallel proof. First, we need some preliminary results.

Lemma 3.4. Let S be an irreducible congruence such that there exists an exact

sequence

where F and F are vector bundles not having H1. Then, if the zero locus of the section
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of E^l-a) defined by dualizing E^(a)———>^————>C^ is not a spinor congruence (i.e.,

has not pure dimension two), the bundle F decomposes as F a F eE (a) and we have an

exact sequence

Proof. If the morphism E (a)———>^————^0 is identically zero. then the result

is clear. We assume therefore that the zero locus of the section of £ (1-a) consists of

a complex V of positive degree, say b, and a spinor congruence S ..i-a-b

Since our congruence S is irreducible we conclude that it is contained in one of

them, that we assume to be S „ the other case being analogous. Since

h^F ®£ (l-a-b))=0, the section of E ®^ (1-a-b) comes from a section s of F 9E (1-a-b).

The product of this section s with the section of OAb) defining V has the same image in

<^- as E (a). Therefore, after changing bases, we can find a new splitting of F ®E (a)
o Z 2 2

such that the morphism £" (a)————>^- is zero, and then we conclude. •

Given a locally Cohen-Macaulay congruence S we can construct what we will call a

minimal resolution of ^ in the following way. We look consecutively at the ordered set

of morphisms from 0-, E , O.,(-l), E (-l),...to ^- and we consider each time those that

are not obtained as a composition with the ones considered before. This produces an

epimorphism

(®0,,(-a.))e(Q£ (-b.))———»^
I \j I J 2 j S

whose kernel must be a vector bundle F not having H1.

It is clear from this construction that each exact sequence

0————>F————>(®OJc. ))©(©£. (d,))————>^————>0
K. M K, I Z I ^

where F is a vector bundle not having H1, contains as a direct factor the exact sequence

corresponding to the minimal resolution.

Lemma 3.5. Given any locally Cohen-Macaulay congruence S, there is another

congruence T in its even liaison class such that the vector bundle appearing as the

kernel in the minimal resolution of ^— has no direct summands of the form 0^(1) or

E,(t>.

Proof. We start with a resolution of ̂  of the form
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0————,F————^O^)W^(dp)————^————X)

where F has not H1. We use lemma 3.3 (a) to link S to an irreducible congruence S* by
the complete intersection of two complexes of high enough degrees m and n. We get thus
an exact sequence of the form

0———^c^s^^z^t^———^^0^-m)®0^-n)———>^,———>0

and applying now lemma 3.4 we can assume that F has no direct factors of the form E (I).

We can assume finally that F has no line bundles as direct factors in the same way
as in [39] Prop. (1.11). •

Theorem 3.6. The even. spinor liaison, classes of locally Cohen-Macaulay congruences

are in 3-2 correspondence with the stable equivalence classes of vector bundles F on G

not having H .

Proof. We define the correspondence by associating to any congruence S the class of
the vector bundle appearing for example in the minimal resolution of j. . This is well
defined, since from Lemma 3.2 congruences in the same even liaison classes define vector
bundles F in the same stable equivalence classes.

This correspondence is clearly surjective, since given a vector bundle F, for a

sufficiently large integer n, F (n) is generated by its global sections, and the

construction in §2.3 provides then a (smooth) congruence S and an exact sequence

0^————^(n)————>^(a)————>0

Hence, a general linkage produces a congruence S' whose corresponding stable equivalence
class of vector bundles is the one of F.

We are left with the task of proving the correspondence is injective. Consider two
congruences defining the same stable class of vector bundles. By lemma 3.5 we can assume
these congruences define, up to a twist, the same vector bundle. Linking them once, we
obtain two congruences S and S' together with exact sequences

^(®^(-a?)®(<a£^(-b ))————>F'(c)————>^-

^®0^(-ap)®((^(-b.))————>FV(d)————>^.-
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where F is a vector bundle not having H1 and only two line bundles as direct factors
(observe also that the number of line bundles and twists of E in the kernel of both
sequences must be the same by computing second Chern classes).

We denote by s the maps E (-b )————^(c) in the first exact sequence and by s .
the ones in the second. We assume that we know that s - s * , s -s' ,..., s.=s^ and will
try to prove that also s, =s. for some other two congruences in the same classes as S

and S\

Let I be large enough so that there exists a section s in H°[F ®£ (D) whose images
in H°(E 93- (l-c)) and H°(E ®^-,(l-c0) define spinor congruences containing S and S',

2 S 2 .&
linking them to congruences T and T*. There, are exact sequences

0—>F(l-2l+c)—>£ (l-l+c)®(®0^(-a^+l-2(+2c))®(£^(2--b.2l+2c))—>^—>0

0—>F(l-2l+d)—>£ (l-l+d)©(®OJ-a>+l-2l+2d))®(JE:(2-b-2^+2d))—><?,—>0
2 I u I Z J I

Since £: (2-b, -2l+2c) (resp. E (2-b, -2l+2d)) is not a direct factor of F(l-2l+c)
2 JC+1 2 K+l

(resp. F(l-2l+d)), then from lemma 3.4 we conclude that it defines a spinor congruence
containing T (resp. T) and linking it to W (resp. W) and providing

0——>£ (5+2b +5l-3c)®(®0^(a^+4+6l-4c+2b^))®( ®^(2-b -2l+2c))

—^^^-Cl-Sc^b^)—>^—>0

0—>£: (5+2b, +5l-3d)®(®^(a^-4+6l-4d+2b^)®( ®^(2-b.-2l+2d))

——>FV(4+6^-3d+2b^^)——>^,——>0

Now W and W are in the same even liaison class as S and S* respectively, and in the
resolutions of j-^ and ̂ , there is one more coincident morphism. namely the morphisms

E (5+2b +5l-3c)—>FV(4+6l-3c+2b^)

E (5+2b: +5l-3d)—^F^+Cl̂ ^b. )
2 K+l ^4!

are both defined by the above section s.

Analogously, and in the same way as in 140) one can find in the same liaison class
congruences with the same morphisms in the resolutions of their ideal sheaves, and hence
the same congruence. This completes the proof. •
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As a consequence of this theorem we obtain the following

Proposition 3.7. Let S be a locally Cohen-Macaulay congruence. The following are
equivalent

(i) ^(^(l))^) for all integers I and 1=2,2.

(ii) S is spinorially linked to a complete intersection.

(Hi) There exists an exact sequence

w^y^—w^yw—^s-
for some integers a.,b .,c.,d..

Proof. Clearly (iii) implies (i), and also (ii) implies (iii) from lemma 3.2. Now.
assume (i) holds for a locally Cohen-Macaulay congruence S. Let

0————>F———>(^(<^))®(^(^))———>^———>0

be a minimal resolution of .̂ Hence, F is a vector bundle verifying
hl(F(l))=hl(F®£: (l))=0 for all integers I . Our assumption (i) provides the vanishing of
all h^Fd)) and h^Fd)). Applying Lemma 3.1, F has the form (®0 (a. ))©(©£ (b )), so we
get (iii). Furthermore, using Theor. 3.5, S is in the same even liaison class as a
complete intersection, just proving (ii). •

Definition. Because of its similarity with the projective case, a congruence
satisfying the conditions in Prop. 3.5 will be called an arithmetically Cohen-Macaulay
congruence.

§3.3. Smooth congruences lying in a linear complex.

As an easy application of liaison theory we obtain a resolution of the ideal sheaf
of any smooth congruence that is contained in a linear complex.

Proposition 3.8. Let S be a smooth congruence that is contained in a linear complex
of G. Then S is arithmetically Cohen-Macaulay in G and ^- has one of the following
resolutions

a) 0———>0 (-n-1)———>0 (-l)<s>0(-n)———^———^0 and S has invariants

(d ,d )=(n,n). K^(n-3)H. r^3"^2^.1 2 6
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b-) 0———^/"^————^O^-n)2®^)^-!)————>^————>0 and the invariant o/ S are

Cd^d^=(n,n-l;, 7c=(n-JXn-Z) KH^-Sn^ /(2=2n3-15n2+30n-8, ^-n "^ ^nn"3.

c; 0———^O^-n)2———>E^-n+l)®0^(-l)————>^———>o and the invariant of S are

(d^d^(n-l,n), n^n-lXn-2) KH^-Sn^ K^n^n^JOn-S, x-" "6n ̂ nn"3.

Proof. Our assumption on S means that it can be considered as a surface in P4 that

is contained in a hyperquadric X -namely the intersection of G with the hyperplane P4

defined by the linear complex. This hyperquadric is either smooth or, in case that P4 is
tangent to G at a point x, is a cone with vertex x over a smooth quadric of P3.

In case X is smooth or x is not in S, it is well known that S is the complete

intersection of X with a hypersurface of P4 of degree, say n (see [42] §3 or [31 for a

proof). Thus. S is the complete intersection in G of the linear complex and another

complex of degree n, which is case a).

If X is a cone whose vertex x is in S, then S is known (see again [421) to be

geometrically linked to a plane by the complete intersection of X with a hypersurface of

P of certain degree n. Therefore S is geometrically linked in G to a plane Y by a

complete intersection of the linear complex and a complex of degree n.

If y is a P-plane, then there is an exact sequence

so that after making a linkage of Y by a complete intersection of complexes of degrees 1

and n we obtain the resolution b) for ^-.

In case Y is an a-plane, we obtain an exact sequence -using n=l in case b)

and a linkage by a complete intersection of complexes of degrees 1 and n yields the

resolution c) for ^- after canceling a redundant term OJ-n).

We compute now the invariants of each possible type.

In case a) clearly (d ,d )=(n.n) and K=(n-3)H. since S is the complete intersection

in P of a quadric and a hypersurface of degree n. From this we derive K2=2n(n-3)2,
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KH=2n(n-3) and, from the adjunction formula, n=(n-l)2. Applying now the relation given

by Prop. 2.1. we get ̂  ̂ -̂ ISn
b

In case b), we first compute the Chern classes of the vector bundles presenting j-
and obtain

c^(-n)) = l+C-Zn-Dt+tn^n.n^n+Dt2

c^t-n)2®^-!)) = M-Zn-m+^+Zn.n^ZnU2-̂ 3

so that we get

c^) = l+Cn.n-Dt^t^-Dt^t^+n2-^)!4

so that, from the relations in §2.1 we obtain the announced invariants for S.

Since case c) is dual of case b), we obtain the same invariants except the order

and class, which are permuted. •

From this result we derive the following information about the restriction of the

universal bundles.

Proposition 3.9. Let S be a smooth congruence of odd degree that is contained in a

linear complex. Then one of the following holds

( i ) The congruence is in case b) above and there is an exact sequence

0————>0^((n-2)H-K)———>E^O^————>0^(K-(n-4)H)————>0

that shows that £ ®0- is not H-semistable.

( i i ) The congruence is in case c) and there exists an exact sequence

0————>0^ (n-3)H-K)————>^®0^————^)^(K-(n-4)H)————>0

showing that E^^O. is not H-semistable.

(We will see in Prop. 5.7 that these sequences are not split with the exception of

n=l and n^2).

Proof. If we are in case b) then one easily obtains h^E^CUX-tn-SlH)) =

h2^ ®0 (n-3)H) = h3^ ®^(n-3)) = h^(E ®E (-3)) = 1, so that there exists a non-zero
2 b 2 b ^ 2 2

morphism 0-((n-3)H-K)————>£ ®0— We have to prove it is an inclusion of vector bundles.

Let C be a general intersection of S with a special linear complex. From Prop. 2.5

there exists an exact sequence
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0————>^)————>£^————>^(D)————X)

with de^(D )=n, which shows that E ® 0 is not semistable. Hence. 0 ((n-3)H-K)90 =
CUD ) since it also has degree n.

This proves that the restriction of the above morphism to a general C is an

inclusion of vector bundles, and hence, the morphism itself only fails to be an

inclusion of vector bundles in a group of points. The degree of this group of points is
then given by the Porteous formula and is

c (E^O (K-{n'3W =

c (E^QOJ^K-tn^m'c (E^OJ+ac-Cn-aiH)2 =
Z 2 o 1 2 ^

d +(K-(^-3)H)H+K2-2(^-3)KH+(^-3)2d =

(n-l)+(2n2-8^+3)-(^-3)(2^-l)+(2^3-15n2+38^-8)-

^(n-O^^-S/^+tn^)^-!) = 0

This shows the existence of the announced exact sequence (the cokernel is

calculated by just computing first Chern classes).

The non H-semistability of E ®<9- comes from the invariants of S computed in the

above Prop. 3.8. Indeed, ((n-3)H-K)H = (^-3)(2^-l)-(2n2-8n+3) = n. > 2!-^-.

This completes the proof of (i), the one for (ii) being completely analogous just

permuting subindices 1 and 2. •
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§4. SMOOTH CONGRUENCES OF LOW DEGREE

§4.1. Smooth congruences of degree at most eight.

The results of this section correspond to those published in [1]. The proofs we
offer here are slightly different and simpler since we make use of Prop. 1.3. As new
information, we add here as much information as we know on the restriction of the
universal bundles to our congruences.

The method we use to give a classification is just to look at lists of smooth
irreducible surfaces of degree d at most eight in P5 (cf. [251,126], [27]) and check
which ones of them verify the numerical relation given by Prop. 2.1 (for all possible d
and d such that d +d =d).

We eliminate the Segre embedding S of the product of P1 with a smooth plane
quartic. Indeed, since the Segre embedding X of P^P2 is not in any smooth quadric of
P5, this surface S cannot be in G, since otherwise it should be contained in the
complete intersection of X with the quadric G, that is a (3,3) congruence and S must be

a (4,4) congruence.

Taking this case away, we find the possibilities that we resume next in a table (we
only write congruences with d ^d since subindices 1 and 2 are permuted by duality)
where we use the following notations

-P2^ ,x ,...,x ) will denote the blowing-up of P2 in the points x , x , . . . , x ^ ;
E ,E ,....£' will be the corresponding exceptional divisors and L will represent the

pull-back of the line in P .

-Using the notations of [19] Chapter V.2, X will be a ruled surface over a curve C
of genus g=q, the integer -e being the minimum self-intersection number for a section C
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of p:X^——>C. The fiber of the projection to C will be denoted with F. The expression

aC^-£F will represent the line bundle 0^(aC^9p*£ where Jg is a line bundle on C. When C

is P1 we just write an integer n to represent the line bundle J£=0 i(n).

-Complete intersection (a,b,c) means the complete intersection in P5 of three
hypersurfaces of degrees a, b and c.

( d . d ) " q p Description Embedding
-—-————————————°_______________________

1) (0.1) 0 0 0 P2 |L|

2) (1,1) 0 0 0 X =PS<P1 \C +F|

3) (1,2) 0 0 0 P2^) [2L-£|

4) (1,3) 0 0 0 P2 |2L|

5) (2,2) 0 0 0 rational normal scroll in P5

6) (2.2) 1 0 0 P2^,^,...,^) 3L-E^-E^-...-E

7) (2,3) 1 0 0 P^x^x^x^x^ 3L-E -E -E -E

8) (2,3) 2 0 0 P^x ,x ,...,jc ) 4L-2£-£: -E -...-£

9) (3,3) 1 1 0 X^ \C +£F\ (deg£-3)
10) (3.3) 1 0 0 P2^,^,^) 3L-E^-E^-E^

11) (3.3) 2 0 0 P2^ ,x ,...,x ) 4L-2£:-£: -£ -...-£

12) (3,3) 4 0 1 K3 surface, complete intersection (1,2,3) in P5

13) (3,4) 3 0 0 P^x ,x ,...,x ) 4L-£-£:-...-£

14) (3,4) 6 0 2 'l^h5——> p l minimal elliptic fibration

15) (2,6) 3 1 0 X_^ |2C+J£F| (de^=l)

16) (3,5) 4 0 0 ^{x ,x ,...,x ) 6L-2E-...-2E-E-...-E
1 2 10 1 6 7 10

17) (4,4) 3 0 0 P-{x ,x ,...,x ) 6L-2£-2jE: -...-2£

18) (4.4) 4 0 0 P^x.x,...,^ ) 5L-2E-2E-E-E ...-E

19) (4,4) 5 0 1 K3 surface, complete intersection (2,2,2) in P5

20) (4,4) 9 0 5 General type, complete intersection (1,2,4) in P5

Now we study in detail each one of these congruences, showing their existence, in

all cases except type 9), by describing them as the dependency locus of r-1 sections of

a bundle of rank r that is generated by global sections, finding a resolution of their

ideal sheaf J-- and giving information about their Hilbert scheme (dimension,

unirationality, and in some cases rationality).

For example, if congruences of a family are described as dependency locus of r-1

sections of a fixed rank r vector bundle F that is generated by its global sections,

then the Hilbert scheme is given by an open subscheme of the quotient of
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Grir-Z^H0^)^}) by PdTncKF^) and hence it is rational if F has no automorphisms.

We will just enumerate the results whose proofs either can be found in [1] or are
derived immediately from Prop. 1.3 or lemma 2.3 (which make the work in (11 much
easier).

Congruences of type 1).

These are clearly the P-planes X , so that they form a smooth family of dimension 3
3Vwhose Hilbert scheme is naturally identified with P .

Tensoring with E the Koszul sequence of the section of E that gives X we obtain

0————>£• ————>£ ®£ (1)—————>E (1)————>£ ®<9y(l)————>0
1 1 2 1 1 A

\ /
£^(1)

so that h^EoOyd)) = h^Ee^yd)) = h\E ®E (D) = 0 for all integers 1. Hence.F^Oy
1 A 1 A 1 2 1 A

has no intermediate cohomology, and applying Horrocks* theorem for vector bundles in P2

it is a direct sum of two line bundles. Since h (E iit is a direct sum of two line bundles. Since h°(£: ® 0 ) = h^E ®^ ) = h^E ®£ ) = 1 then
1 A 1 A 1 2

it should be E^^O = Op2®0p2(l).

Therefore, E ®0y is the kernel of the Euler sequence of P2. i.e., E ®0y =(1->2(1).
2 ^2 2 "2 "

Congruences of type 2).

They are quadrics in a P inside P , i.e., complete intersections of two linear
5Vcomplexes of G. Since special linear complexes form a hyperquadric inside the P

parametrizing all linear complexes, we can consider our congruence S as the intersection
of two special complexes (those appearing as intersection of the hyperquadric and our
pencil of linear complexes). Hence, the congruence consists of those lines meeting two
given lines of P3 (namely the two lines defining the special linear complexes).

This geometrical description clearly corresponds to the embedding of S=P xP in G
by the rank two bundle 0 (1,0)®CL(0,1). Indeed, the line bundle 0-(1,0) maps S to a line

^ 0 0

L in P and CUO.l) to another disjoint line L . Then, S is naturally identified with
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L xL and the congruence consists of the lines joining a point of L with a point of JL .

Therefore, the restriction to S of E^ is CU1,0)®0-(0.1) and. since the

construction is self-dual, the same holds for E .

Since S is a complete intersection of two linear complexes we have an exact

sequence

and the Hilbert scheme is the open subset of Hilb G consisting of two skew lines. This

is smooth, rational and has dimension 8.

Congruences of type 3).

We know from Propositions 3.8 and 3.9 that there are exact sequences

^
The second one shows that E 90^ is an element of

Extho (L-E).O^U) = H\O^E)) = 0

so that E^^O-O^D^O^L-E) proving that its dual (2,1) can be interpreted geometricallyi ^ ^ ^
as follows: The line bundle CUL-E') maps S onto a line M of P and 0-(L) defines the

2blowing -up of P at x and hence maps S onto a plane IT and contracts the exceptional

divisor £ in a point p of IT. Our congruence S consists of a given isomorphism cr between

the line M and the pencil of lines in IT passing through p, and lines of the congruence

are those in the pencils formed by a point q of M and the plane determined by this point

and the line <r(g) in IT.

Therefore, the congruence has the following geometrical interpretation: We fix an

isomorphism y between a line M of P3 and the pencil of lines defined by a point p in a

plane IT; the lines of the congruence are those L that are in a pencil defined by a plane

A containing M and the point AnoW.

In the plane IT, the union, as N varies in the pencil of lines passing through TTnM,

of the intersections of N with <r(AO describes a conic Q (meeting the line M in one

point), and from the above description we conclude that the congruence consists of those
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lines joining a point of Q and a point of M (or more precisely, it is the closure of

this, when the two points are taken to be different each other).

Since it is a rational congruence, it describes a smooth Hilbert scheme of

dimension 11 (Lemma 2.3), which is irreducible and rational because it is parametrized

by the generic choice of a line M and a conic Q meeting in one point.

Congruences of type 4).

There is an exact sequence

0————^———>^(l)e^(l)————>^(2)————X)

From this we get that for all integers I we have h^E^O (I)) = h2^®^ (1)) =
2 V V 1 2 1

h [E ®F(l-2)) = 0. This proves that £: ®0 is a vector bundle on P that has no first

cohomology when tensoring with line bundles of even degree. By duality, we obtain that

first cohomology groups also vanish when tensoring with line bundles of odd degree.

Applying Horrocks* theorem it should split into a direct sum of two line bundles, which

can be easily checked to be E^^Og = Op2(l)®0 2(1).

Hence, we derive the following description for the dual congruence (3,1): It

consists of lines joining two homologous points of two fixed planes IT and IT in P3

under a given isomorphism between them.

We see from this that through a general point p of P3 there pass three lines of

this (3,1) spanning the whole space (these three lines correspond to the three points of

IT that have the same image in 17 under the given isomorphism and the one defined by

projecting from p). These three lines determine three planes that contain two lines of

the congruence (3,1), and therefore an infinity of them (since the class is one).

Therefore, the singular planes of the congruence describe a twisted cubic in P^ and

each line of the congruence lies in two singular planes.

Coming back to our original congruence (1,3), we conclude that it consists of the

bisecants to a twisted cubic. The Hilbert scheme of these congruences is isomorphic to

the Hilbert scheme of twisted cubics, hence smooth, rational, irreducible and of

dimension 12.
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Congruences of type 5).

There is an exact sequence

0————X^————>^(1)®^(1)————>^(2)————X)

We have that h^E^CU-l.O)) = h^E ®OJ-1.-2)) = h^E ®^-(-D)
3 3 2 5 2 5 2 5

h (£" ®E (-2))+h (£" ®£ (-2)) = 1. Hence we obtain a non-zero morphism

y:0-(l,0)————>E ®0-. Restricting to a general special linear complex we obtain a smooth

curve C (from lemma 2.2) and <p restricts to £.————^eO,, where £ is a line bundle on C

of degree two. Since E^eO- is semistable (Prop. 2.5) then y restricted to C is an

inclusion of bundles.

Hence, <p fails to be an inclusion of bundles just on a subscheme of finite length

of S. This length is given by c^(£^®0^(-l,0)) = c^E^O^+c^E^O^'c 0^(-1,0)+

(c 0-(-1,0))2 = 2-c CU2,2)-c 0-(-1,0)+0 == 0. Thus, we obtain a presentation for Ey®0^
1 S l o l o 2 S>

as an extension of two line bundles

0————^p'(l.O)————^Og————^p'xpl(0.2)————^)

the same being true for f^®^ by duality. This extension is not split as we will see in

Prop. 5.7.

The geometric description for this congruence is proved in [22] to be given by an

automorphism of a plane conic Q and a point p outside the span of Q, the congruence

consisting of the lines in the pencils determined by a point q of the conic and the

plane spanned by p,q and the image of q under the given automorphism. One also checks

that the Hilbert scheme of these congruences is smooth, irreducible and rational and has

dimension 14.

Congruences of type 6).

This is a complete intersection of two complexes of degrees one and two, so there

is an exact sequence

Its geometric description is given in 128) page 303 as the lines that meet

corresponding lines (by given isomorphisms) of three pencils having three corresponding

lines concurrent and coplanar.
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The Hilbert scheme is smooth of dimension 18 after Lemma 2.3. If I is the incidence
variety in GxP . then this Hilbert scheme is an open subset of p ^p 0 (2), so that it
is rational and irreducible.

Congruences of type 7).

We have an exact sequence

G 2 "S

The geometric description, given in [28] page 289 and also obtained in [22] from
the fact that S is a Del Pezzo surface, is as follows: it consists of lines which meet
corresponding lines of three pencils having three corresponding lines concurrent.

The Hilbert scheme is smooth of dimension 19 and it is rational, since it is
canonically isomorphic to an open subscheme of P(H°(£' (2)^).

Congruences of type 8).

Since it is contained in a linear complex, we obtain from Propositions 3.8 and 3.9
exact sequences

0————>^(3L-^-£^-...-Eg)————^°s————^s^"^————>0

0————^————>£^(1)®C^(2)————>^(3)————>0

The first one is not split, since CU3L-E' -E -...-£) has one base point, whilev b i 2 s
E ®0- is generated by its global sections.

The second exact sequence tells us that the Hilbert scheme is parametrized by an
open subset of Gr{l,P{H°(E (1)®0 ̂ (2)))^, so it is uni
know from Lemma 2.3 that it is smooth of dimension 23.
open subset of Gr(l,P(H°(£' (DeO-^)))^, so it is unirational and irreducible, and we

Congruences of type 9).

It is always linked to the disjoint union of an a-plane and a p-plane and hence we
have for ^- a resolution
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0————>E(-3)————>(^(-3)®(^(-2)®^(-2)————>^————>0

(We observe that we have an epimorphism CU-2)14———»£———»^y and hence the

generic linkage of the disjoint union X of an a-plane and a 3-plane produces a smooth

(3,3) congruence, after Lemma 3.3. This proves the existence of such smooth

congruences).

The Hilbert scheme of these congruences is smooth of dimension 18, and it is also

unirational because of the above construction.

Finally, a few words about a possible presentation of these congruences as the

dependency locus of r-1 sections of a vector bundle of rank r. It is certainly possible,

since <<>^(2) is generated by two global sections -because (K+2H) =0 -to find a rank three

vector bundle F appearing in an exact sequence

but it is not useful to our purposes since it is not generated by its global sections

and we cannot conclude from this the irreducibility of the Hilbert scheme.

Congruences of type 10).

There is an exact sequence

The Hilbert scheme of these congruences is rational and irreducible since it is
• 4t \^

defined by an open subscheme of P{n^€®p 0^(2)) (using the notations of §2.3). From

lemma 2.3 we also obtain this Hilbert scheme is smooth and has dimension 20.

Congruences of type 11) .

There is a presentation for the ideal sheaf

0————^————^(l)3————^(3)————>0

From this we obtain as always that these congruences describe a Hilbert scheme that

is smooth, irreducible and unirational of dimension 24.
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Their geometric description is given in [11] as those lines that meet corresponding
lines of three pencils.

Congruences of type 12).

They are complete intersection of a linear and a cubic complexes, thus providing an
exact sequence

0————^————^(1)®^(3)————>^(4)————X)

The Hilbert scheme of these congruences is smooth of dimension 34. On the other

hand, this Hilbert scheme is also unirational and irreducible since it is dominated by
an open subscheme of PC/AojDeCUS)^).

ur (f

Congruences of type 13).

We have a presentation for ^

0 ———>0^(-3)3————>£^(-2)©C^(-2)————>^————>0

Therefore we conclude that these congruences form a smooth Hilbert scheme of
dimension 27 that is irreducible and unirational.

Congruences of type 14).

Propositions 3.8 and 3.9 tell us that there are exact sequences

0————>0^————>£^(l)e0^(3)————^s^————>0

The Hilbert scheme formed by these congruences is smooth of dimension 34, and we

obtain as usual that it is also unirational and irreducible.

Congruences of type 15).

This congruence is described in [15] page 747 as those lines that are in one

quadric of a fixed generic pencil of quadrics, or, equivalently, if C is the elliptic

quartic that is the base locus of the pencil, is the congruence of bisecants to C. If

Op3————>0p3(2) is the morphism that defines such a pencil, pulling it back to the
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incidence variety X in GxP3 and taking its direct image in G we obtain a morphism
2 2 V

OQ————>S E that fails to be an inclusion of bundles exactly in our congruence S. Thus,
there is an exact sequence

The Hilbert scheme of this congruences is given by an open subscheme of

Gra.PtH^S2^)) = Grd.PtH^OpStZ)^)) = Gr(l,9), so that it is smooth, rational and
irreducible of dimension 16.

Congruences of type 16).

There exists an exact sequence

0————>0^————>^(l)eJ^(l)e<^(l)———>^(3)————>0

The. Hilbert scheme described by these congruences is smooth of dimension 28, and it

is also unirational and irreducible because it is dominated by an open subset of
Gr(3,P(H°(£ (1)®£ (DeCUl))^).

Z Z L»

Congruences of type 17).

The congruence S is a double covering of the Veronese surface in P4 and therefore

there is an exact sequence

where p is the composed morphism GcP -.•-.--..-—>? . The cohomology of } is now easily
« °

calculated from the projection formula since p^p 0,, = 0 4©0 4(-1).

The Hilbert scheme of these congruences is smooth of dimension 26, and it is

unirational and irreducible.

Congruences of type 18).

There is an exact sequence

0————^————>J^(1)®£^(1)®<^(1)————^c^-
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We also get that these congruences describe a smooth, unirational and irreducible

Hilbert scheme of dimension 30.

Congruences of type 19).

Since these congruences are complete intersections of two quadratic complexes,

there is an exact sequence

0————^————X^(2)®(^(2)————>^(4)————X)

The Hilbert scheme of these congruences is smooth of dimension 36, and again it is

also rational and irreducible, since it is parametrized by an open subset of

Gr(2.H°(^(2)2)).

Congruences of type 20).

They are complete intersections of linear and quartic complexes, thus providing an

exact sequence

0————^————>^(1)®^(4)————>^(5)————>0

The Hilbert scheme of these congruences is smooth of dimension 59, one less than

the expected dimension. As in type 6), this Hilbert scheme is rational and irreducible.

§4.2. Smooth congruences of degree nine.

This section handles essentially the same techniques as §4.1, but we make a
(*)distinction since the work of classification was already done by Verra in [48]^ so that

our task here is just to find resolutions for the ideal sheaves of the congruences to

describe their Hilbert scheme. The list found by Verra, keeping the notations in §4.1.

is the following:

The congruence of type 25) is missing in Verra's list. This was communicated to us

by Mark Gross, who has also now a complete classification up to degree 10.
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(d^,d^) n q p Description Embedding

21) (3.6) 5 0 0 P2^ ,x ,...,;c ) \1L-2E -2E -...-2£ |
22) (4.5) 5 0 0 P2^.^,...,^) |6L-2£^-...-2£:-E:-..10E |
23) (4,5) 6 0 1 X(x) X=X3 of deg 10 in P6 \H -2E\
24) (4.5) 12 0 8 Surface of general type with K^l?
25) (3,6) 4 1 0 Conic bundle over a smooth plane cubic

(Note that p and K2 for type 24 are not correct in [48]).

We study now in more detail each of these types of congruences.

Congruences of type 21).

We see that y (1)=0 (4L-£ -E-...-E ) is generated by its five global sections,
producing (as described in section §2.3) an exact sequence

where F is a rank six bundle with h3{F(-^)) = h^F^)) = 0.

We first observe that S is not contained in any quadratic complex. Indeed, if it
is, we can link it to a (3,0) congruence S' by the complete intersection of this
quadratic and another cubic complexes. There would be an exact sequence

0————^{-2}————^0^-2)^0^-3)————>^,————>0

showing that S* is not in a linear complex (since h°[j. ,(!)) = h^F^-D) = h^FM)) =
3 °

h (^g) = p = 0). Hence, by [17] Theor. 6.5., S' is just a triple structure on an

a-plane X given by <^.=<?Y • Hence* s would contain a fundamental curve (a plane conic

and a plane cubic, in fact), contradicting the proof of Theorem 4.1 quoted below.

Therefore, we have

h\F[-\}} = ^(^(2)) = 0 by Riemann-Roch

h^F^)) = h2^!)) = h\0^{\}} = 0 also by Riemann-Roch

hVM)) = h3^) = p = 0

hV^)) == 0
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h1^) = hVt^)) = 0

h2^-!)) = h^H-S)) = h2^) = q = 0

h^F^-Z)) = h^H-Z)) = h^d)) = 0

h^M)) = h°(F(-D) = h°(^(2)) = 0

that shows as usual that F has no intermediate cohomology. Applying Prop. 1.3 we deduce
that the only possibility is

F = £^(1)®£^(1)®^(1)

Lemma 2.3 tells us that the Hilbert scheme of these congruences is smooth of
dimension 27. Since it is dominated by an open subscheme of
Gr(4.P(H°(£: (!)©£ (1)®£ (1)^)), we also conclude that this Hilbert scheme is
unirational and hence irreducible.

Congruences of type 22).

We see that < < > ( ! ) = OJ.3L-E -£:-...-£) is clearly generated by its five global
sections. This yields a rank six vector bundle F fitting in an exact sequence

One can also check as in type 21) above that F has no intermediate cohomology. The
only point to check is that S is not in a quadratic complex. If it is, we can link S to
a locally Cohen-Macaulay (2,1) congruence not lying in a linear complex. There is no
such a congruence (see again [171), so that we conclude that F has no intermediate
cohomology and deduce that it is

F = E (1)®£ (!)©£: (1)

These congruences, being rational, form a smooth Hilbert scheme of dimension 31,
that is, as usual, unirational and irreducible.

Congruences of type 23).

Taking cohomology in the exact sequence defining a general hyperplane section

S S C

we get h°(0 (2))^19 and thus h°(^ (2))sl. Twisting with 0 (1) that sequence and taking
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again cohomology we obtain that h°(CU3))^41 and h°(^-(3))2£9. so that S is linked by the

complete intersection of a quadratic and a cubic complexes to (2,1) congruence S* that

is in a linear complex (we do not know a priori whether S' is smooth and so dual of type

3)). Hence, S* is linked to a 3-plane by the complete intersection of this linear

complex and the above quadratic complex, just providing

E^(-2)————>^(-1)®0^(-2)®<^(-2)————>^.-

which in turn yields

0————>^(-4)®0^(-3)————>£^(-2)®^(-2)————>^————>0

The Hilbert scheme of these congruences is, after lemma 2.3 -checking from this

exact sequence that both Ext2^-,^,) and Ext3^-,^) vanish -smooth of dimension 37, and
0 0 0 0

it is also unirational and irreducible since it is dominated by an open subscheme of

P(Hom(CU-4)©<'U-3),JE: {-2}®0^2}^}.G G 2 G

Congruences of type 24).

As usual for congruences that are in a linear complex, we obtain from Propositions

3.8 and 3.9 two exact sequences

0————>0-(2H-K)————^®0-———>0-(X-H)————>0
o l o o

0————>02————>£ (1)©CU4)————>^(5)————>0
G '2 (j o

and the second one provides us the vanishing of Ext2^ ,} ) and Ext3^- ,̂ J so that we

conclude from lemma 2.3 that the Hilbert scheme of these congruences is smooth of

dimension 75. It is again unirational and irreducible.

Congruences of type 25)

The study of this family of congruences is not as standard as in the former cases.

Such a study together with a bundle construction for presenting the ideal sheaf of these

congruences will appear in a forthcoming paper by Mark Gross and the first author.
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APPENDIX TO §4

§4.3. Examples of other congruences.

We include here some examples of congruences of degree at least ten that deserve to

be at least mentioned, since they have some interest for various reasons.

Reye congruence.

This is a very well known congruence. It was the first known Enriques surface (and

in fact, Fano thought that all Enriques surfaces had a model that was a Reye

congruence). A modern reference for these congruences is [7]. What we intend to do here

is to study the Hilbert scheme of Reye congruences by means of the techniques used in

this §4.

Reye congruence is a (7,3) smooth congruence S that is an Enriques surface and has

the following geometrical interpretation (cf. for example [15] pages 746-749): Fix a web

of quadrics in P3; then the congruence consists of those lines which are in a pencil of

quadrics of the web.

This clearly implies that this congruence is linked to a smooth congruence of

bidegree (2,6) by the complete intersection of two cubic complexes; indeed, one can take

these complexes to be defined by those lines contained in some pencil of quadrics inside

a fixed net of the web (Such a complex is the degeneracy-locus of a morphism

O3————>S2JE'V so that it has degree c S2E>/^3). This (recalling from case 15 the
G 2 3 2

resolution for the ideal sheaf of the (2,6) congruence) yields an exact sequence

If we denote with F^ to the kernel of O10————»S2£V then we obtain a commutative
G 2

diagram of exact sequences
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0 0l°;o6———o6

l
^—<°—> ^l I

-^————^————^ ,(3)-,c112 a " s , G

1 1
0 0

1
showing that S is the dependency locus of six sections of the rank seven vector bundle F
(which is generated by its ten sections).

The Hilbert scheme of Reye congruences is, from lemma 2.2 and after checking some

cohomology vanishing, smooth of dimension 24. and it is rational, since it is
canonically isomorphic to an open subscheme of Gr(5^(H°{F}^)).

Special rational congruences.

The results here are not complete at all. They are inspired in a talk of K.

Ranestad in the Mittag-Leffler Institute and in several conversations with him. What we

intend to show is that the same kind of things as in P4 occur in G. but without checking

the large amounts of details that would be needed to give conclusive results.

Unfortunately, we do not know of any reference for these techniques.

A surface S in a projective space is said to be special if h\0 (1))^0. For a

rational surface S=P2(x,^.....^) (hence h^O^O) this means that \he space of

sections embedding the surface in the projective space has not the expected dimension

;t(^(l)) = ̂  j-Ep^j. where 0^(1) = O^nL-^ m^) (keeping the notations of §4.1).

For example, consider a disjoint union X of an a-plane and a 3-plane. The exact
sequence

0 > 0 ^ ( - 1 ) > £ : > ^ — — — — ^ )

shows us that a general linkage of X by the complete intersection of a quadratic and a

cubic complexes provides a smooth congruence S (apply lemma 3.3 using that £(2) is
generated by its global sections) together with an exact sequence
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0————>£(-4)————>0^(-2)®0^(-3)®0^(-4)————>^————X)

From this exact sequence and Prop. 2.1 we compute the following invariants for S:
d =d -5, n=7, X =-8 and p =q=0. The adjunction map (defined by X+H) defines a surface S
in P of degree six, which must be a Del Pezzo surface, i.e., S= P^JC ,x ,x ) and H =
3L-E^-E^-E^ so that S is P2^.;^,...^) and its embedding in P5 is given by H =
6L-2E-2E-2E -E-E-...-E (whose space of sections has expected dimension 5. but we
see from the above sequence that h (0-(1 ))=!).

Let us examine how the points x ,x ,...,x are special. We consider a smooth plane
quartic C passing through x ,x ,...,̂  (It is likely this happens, but we did not check
that this is the case, for a general S, just as in [38]. If C does not exist, this is
something special for the points).

Assume x , x and x are not in C. Therefore C has degree deg{C}^CH^1 as a curve
15 16 17

in P and genus ^(0=3. Hence, OJ.H} is not special, and from Riemann-Roch theorem we
get h°{0 (H))=5, which proves that h°{0 (H-O)sl. Hence, there is a conic passing
through x ,x ,x ,x ,x ,x . Changing these last three points by any other choice of
three points among x ,x ,...,x we would obtain that all x ,x ,...,>: are in the same
conic. This is absurd.

If we assume that one of. the above three points, say x , is in C, then analogously
we obtain h°(0-(H-C))^2, and again there is a conic passing through
x ,x ,x ,x ,x ,x . And the same happens if we assume that two of the points are in C.

1 2 2 15 16 17
Therefore, the 17 points are in C.

Hence we have that 0-{H} is special (to avoid the above contradiction) and since itu
has degree 4 in a curve of genus 3, then necessarily O.,(//)=Q>- that in turn is equal to

G C/
OJ,U because C is a plane quartic. Therefore, CU5L-2JS: -2E -2E -E -E -...-£ )=0- which

C/ L* 1 2 3 4 5 17 L/
implies that there exists a plane quintic passing through x ,x ,...,x and tangent to C
at the points x ,x and x .

We still know another example which is not complete. Consider again a disjoint
union X of an a-plane and a P-plane and now link it to a congruence S by a spinor
congruence S . From lemma 3.3, the general S will be smooth and we have

0————>F(-4)®£^(-3)————^(^©O^M)————^————>0

showing that S has d =6, d -5, 7i=8, X^-8, q=p =0 and ^(0(1))=!. The adjunction map
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provides a surface of degree nine in P7 and having sectional genus three. Another
adjunction map will be likely (there are some cases to rule out, which is why this
example is not complete) a blowing up of P2. Thus, we would obtain that S is
P2^.^.....^) embedded by '7^2E^2E^...-2E^E^-...-E^ and, as in the above
example, in the generic case there would exist a quartic and a sextic in P2 intersecting
in 2x ,2^....,2x ,x ,x ,...,^ .

1 2 7 8 9 17

Possible abelian congruences.

If a smooth minimal abelian surface S is in G, checking the relations among its
invariants given by Prop. 2.1 one sees that

Ad^d^)

Since 7 (that is not congruent with 1 modulo 4) is a divisor of d^d2, then it
should divide both d and d . Then one checks immediately that the only possibility is
d^^=7. In this case S would have a polarization of type (1,7) and h°(0 (1))=7, so that
it would be not linearly normal.

What is more interesting about the possible existence of such an abelian surface is
that. according the construction of §2.3, there would exist a rank two vector bundle F
on G appearing in an exact sequence

This would provide a new rank two vector bundle on G. The only ones known are the
universal bundles, the bundles £. the direct sum of line bundles, the pull-back by a
general projection to P4 of the Horrocks-Mumford bundle (see [241) and all their twists.
However, the possibility of existence of such an abelian surface is quite remote^.

§4.4. Some known classification theorems for congruences.

In order to give a complete view of smooth congruences, we quote here (now that
enough examples have been explained) some known results about congruences that has been
obtained by various mathematicians. The two first are originally due to Kummer, and the
third to Fano (assuming the congruences not to have fundamental curve, but allowing them

0 It has been proved recently by Marco Miele that indeed it does not exist.
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to be singular). We give references for modern proofs.

Theorem 4.1 ([37]). Let S be an irreducible congruence of bidegree (l,n). Then S is

given by one of the following

a) The (1,3) congruence of bisecants of a twisted cubic.

b) The closure of the scheme defined by those lines that Join different points p

and q of L and C where L is a line of P and C is a rational curve of degree n

intersecting L in n-J points.

Theorem 4.2 ([47]). The only possible smooth congruences of bidegree (2,n) are

those of types 5,6,7,8,15 and the dual of type 3 in the list of §4.1.

Theorem 4.3 ([47] or [8]). Any smooth congruence of bidegree (3,n) is one of the

following: types 9,10,11,12,13,14,16 of §4.1; 21.25 of §4.2; the dual of types 4,7,8 of

the list in §4.1; or the dual of the Reye congruence introduced in section §4.3.

Proposition 4.4 ([8] or [16]). Let S be a smooth congruence having an irreducible

fundamental curve C. Then, one of the following holds.

a) C is a line (Hence S is contained in a linear complex and Prop. 3.8 gives all

the possibilities).

b) C is a plane curve of degree at least two. In this case, if d =d then S is a

scroll.

c) C is a twisted cubic and S is the (1,3) congruence of bisecants to C.

d) C is an elliptic quartic and S is the (2,6) congruence of bisecants to C.

(**)In case b) it is a conjecture that the only possibility is that S is a scroll

And, on the other hand, we have the following

Proposition 4.5 ((141, [31]). Let S be a smooth scroll in G. Then S is of type

2,3,5 or 9 in the list of §4.1.

(*) As observed before, the congruence of type 25) is missing in the given references. A

revised proof will appear in a forthcoming paper by Mark Gross.

(••) It has been recently proved by the first author and Mark Gross that this

conjecture is true if we add to the scrolls some special congruences in the family of

congruences of type 25).
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§5. A PROJECTION THEOREM FOR SMOOTH CONGRUENCES

Recall the following well-known theorem of Severi ((44]): Let S be a smooth surface

of P that can be obtained as a projection of another surface of P . Then S is the

Veronese surface.

We take care in this section of the analogous problem for G, namely, which are the

smooth congruences of G that can be obtained as a projection from another smooth surface

of Gr(l,4)? (The projections from Gr(l,4) to G that we consider .are those induced by

linear projections from IP to P ).

Since this is equivalent to classifying smooth congruences S for which h^E^O-^S

or, equivallently, h (E ®^-)^0, we can give a first partial answer by checking which

congruences in our list of §4 verify that condition. We find the following examples:

(1) The (2,1) dual of a congruence of type 3) in the list of §4.1.

(2) The (2,2) of type 5).

(3) The Veronese surface (3,1), dual of the congruence of type 4), that is in fact

projection from a surface of Gr(l,5).

(4) The (3,2) congruence defined as the dual of type 7).

(5) The (3,3) congruence of type 10) in the mentioned list.

The main result we will prove in this section is the following

Theorem 5.1. A smooth congruence is a projection of a smooth surface of Gr(l,4) if

and only if it is of one of the five types listed above.

More in the flavor of Severi *s theorem, we deduce immediately from this the

following
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Corollary 5.2. The only smooth surface of Gr(l,5) that projects smoothly to G from

a generic line of P is the Veronese (3,1) congruence.

§5.1. Some lemmas.

Let § be a smooth surface in Gr(l,4). It has a bidegree (d ,d ) defined in an

analogous way as for congruences in G. Namely, d is the number of lines of S meeting a

general fixed line and d is the number of lines contained in a general hyperplane of

P . This bidegree is clearly invariant under projection. We will say § is degenerate if

the three-fold it defines in P4 is, i.e.. is contained in a hyperplane.

We define 2 to be the subscheme of Gr(2,4) parametrizing those planes IT of P such

that the induced plane if of Gr(l,4) -defined by the lines contained in IT -meets § in a

scheme of length bigger than one (maybe infinite). Clearly, a projection from a point x

of P produces singular points in the corresponding S in G if and only if A: is in a

plane n of S. We now prove some lemmas.

Lemma 5.3. If d ^3 then, for any i in S, the corresponding line L of P is contained

in some plane of S.

Proof. Let G, be the cubic cone in Cr(l,4) with vertex I given by the intersection

of Gr(l,4) with its embedded tangent space in P9 (via the PlUcker embedding) at I and

parametrizing the lines of P that meet I. We distinguish two cases.

If S and G, meet transversely at I, then they meet with multiplicity three, and

since the length of the scheme SnG. is either d or infinity, then there is another line

L' of § meeting L. The span of L and L* is a plane of S.

If § and G. do not meet transversely at Z, then there is a generator g of the cone

that is tangent to § at I. The line g will be given by lines contained in a plane IT and

passing through a point of IT. Therefore the corresponding plane TT of Gr(l,4), that

contains g, is tangent to S at I, and hence TI is in S. •

Lemma 5.4. A projective irreducible three-dimensional variety X that contains a two

dimensional family of planes is a P3.

Proof. Take any two points x and y in X. The family of planes in X passing through
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x has at least dimension one, and therefore they cover X. Hence, one of these planes

also contains y. In particular, the line joining x and y (which are arbitrary) is

contained in X. We deduce from this that X is a P3. •

Lemma 5.5. Let C be a curve of G that represents a developable ruled surface S in

P3 (by this we mean that the embedded tangent line to C in P at each point is contained

in G). Then, the ruled surface S is either a cone or the tangential developable to a

curve C' in P3.

Proof. For each point x in C, since its embedded tangent line is in G, in

particular it is in an a-plane, which is defined by a point p of P3. If all points p

coincide, then the ruled surface is a cone. If they describe a curve C* in P3. we will

show now by using local coordinates that S is the tangential developable to C*.

Indeed, choosing a local parameter t around a point of C, and suitable projective

and PlUcker coordinates, we can parameterize C as

PoF1

p^ .= f^ .(t) for other i,J

(the /, . being analytic functions related by the identity /^= fy^^f^^- Hence the

line in P3 represented by each x is the line passing through the points

(1,0,-f (t),-/ (t)) and (O.I,/ (t),/ (t)), which has equations

x^- ̂ "'Y^^o
^ /o^^-^^o

The condition for the embedded tangent line at each x of C, which has equations

PoF !

Pif V^tJ"'

(where a prime means derivative with respect to t and \ is a complex parameter) is

contained in G is give by

02 13" 03 12

just identifying coefficients of \2 after substituting the above expressions in the

Plucker relation p p -p p +p p = 0 (the identification of independent terms and

coefficients in \ provides the above relation / - fQ-f ̂ f^f^ and the one obtained by
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taking derivatives).

Hence, we can assume, swapping if necessary coordinates x and x , that there

exists an analytic function g such that

f'^ ^02

r^ ^03

The point defining the a-plane where x. is in is the intersection point

of the lines (when \ varies)

^^^^^^"Y^i^^^z^"^
^ (^(t).A^(t))^(^(t).V^(t))^

This is easily seen to be the point P^ of P3 of coordinates

(^gU).gWf (()-/ W.gWf^W-f^t)). For points where g'(t}^0. the tangent line

in P3 at P to the curve C' defined by these points has parametric equations

V 1

x = gW+Xg'U)

x^ gW^W-f^Xg-Wf^t)

^ gW^-f^gW^

and one checks immediately that this line coincides with the one defined by x^

Therefore, the curve C and the one in G defined by the tangents to C" coincide in

an open (and dense, since g is constant if and only if the ruled surface is a cone)

subset, and hence everywhere, just completing the proof. •

Lemma 5.6. The only non degenerate integral curve C of P that has no stationary

bisecant is the twisted cubic. (A stationary bisecant is a line meeting C in two points

such that the tangent lines of C at them are coplanar).

Proof. At a general point p of C -that we assume to be the point (1,0,0,0) after

choosing suitable coordinates x ,x ,x ,x - the curve can be parameterized as
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x =1 + 0(t)
x =t + 0(t2)
x^t2^ 0(t3)
^t^ 0(t4)

1,

(where 0(t ) represents any expression in t of order at least k). Hence the curve of G

defined by its tangents is parametrized locally at the point I representing the tangent

at p by

p^= l+0(t)
p^= 2t+0(t2)

p^= St^OO3)

p^ t^OO3)

p = Zt^Od4)

P^= t'+Ott5)

where the p. . are the PlUcker coordinates associated to x ,x ,x ,x .

The Schubert variety of those lines that meet the tangent line of C at p (that is

x ^x =0) has equation p =0, so that has intersection multiplicity 4 at I. Since by
2 3 23

assumption the set-theoretic intersection of this Schubert variety with the curve of

tangents is only I, we conclude that the degree of the tangential developable is four.

Then, checking all possible irreducible surfaces in P3, one easily obtains that the only

possibility is that C is a twisted cubic. •

§5.2. Proof of the theorem.

Let S be a smooth surface of Gr(l,4) of bidegree (d ,d ). Let X denote the union in

P of the lines of S and V the union of planes of Z. We assume S can be projected

smoothly to S in G, or equivalently, that V is not the whole P . We also assume that

d ^3 since smooth congruences of order three in G are classified (see Theor. 4.3), and

the only ones of them coming from Gr(l,4) are examples (3), (4) and (5) in the above

list. Consider the following incidence diagrams.

where I = -j(l.n) € §x2 [ Len}- . J'= -j(^,n) 6 P^S [ x € TT^ and p, g. p' and q' are the

obvious projections.
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By lemma 5.3. p is surjective and V contains X as a component. Let 2 be a

component of S such that g'̂ S ) dominates S, and therefore such that q^^S ) dominates

X. Since S is nondegenerate. we deduce from lemma 5.4 that 2 has dimension one. As a

consequence, we conclude that each plane of S contains a one-dimensional family of
lines of §.

Projecting from a general point x outside X we obtain a smooth congruence S in G

having a curve of singular planes -namely the projection of the planes of 2 . Applying

Prop. 4.4 to the dual congruence of S (which has a fundamental curve) we obtain that.

with the exceptions of the Veronese (3,1). -that is our case (3) -and a congruence (6,2)

-which is easily seen not to be projected from Gr(l,4) since we know from §4.1 a

resolution for ^- -all these planes should meet in one point.

Therefore, there is a line M in P4 containing x such that all planes of 2 meet M.

Since x is not in X, M and X meet in a finite number of points, and from the

irreducibility of 2 we deduce that there is one of them -that we call p -which is

contained in all planes of 2 . Hence X -the union of the planes in 2 -is a cone with

vertex p over a ruled surface X' of P3. Let us distinguish two cases.

Case a) The general plane IT of 2 meets another plane II' of 2 along a line M.

Then, through a general point x of M we can find at least one pair of lines of S, one of

them in IT and the other in II', whose span is a plane of 2 meeting M m x and contained

in the span A==P of TT and IT. The union of all these planes as we move x m M will cover

A, so that V contains A. Since V is not P4, the spaces A cannot move in a

one-dimensional family as we vary IT in 2 . Hence X, which is covered by these spaces A,
3 ^

is a P . which is a contradiction.

Case b) Any two planes of 2 meet only in p , or equivalently, any two lines of the

ruled surface X1 are disjoint. We imitate now the argument in lemma 5.3 for the curve C*

in Cr(l,3) defining X'. For a generic line I of X* we consider the quadratic cone C. in

Gr(l,3) of lines in P3 meeting I, that is. the intersection of Gr(1.3) with its embedded

tangent space in P5 at I. We distinguish two subcases.

Case bl) If X* is not developable, then C* and C. meet transversely at I with

multiplicity two. Since our assumption b) implies that they do not meet outside I, then

X' has degree two and necessarily X'=P(0 i(l)e0 i(D), X=P(0 i®0 i(l)©0 i(l)) and § is

in the three-fold y=P(<5pi®Opi(-l)®Opi(-D). embedded in Cr(l,3) by the rank two vector

bundle 7y i®0 (-1), the relative tangent bundle twisted with the tautological line
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bundle -we recall that P is embedded as a P-plane in a Grassmannian by the vector
bundle 3p2(-l).

The Chow ring of Y is I[t's)/^2 ̂ ^2. where t is the pull-back of the
hyperplane section in P1 and s = c Oy(l). The class of a point is ts2. If the class of S
in Y is at+bs we can calculate all the invariants of S in terms of a and b as follows.

From the exact sequence

0————>0 (-s)————X9 ©0 (-s)®0y(-s)————>y \90 y(-s)————>0

we obtain a Chern polynomial for 3y.pi®0y(-s)

c^(yy^pi®0y(-s)) = l+^+Zt^+cAzts)^2

so that

and hence
d^ C^Y^IQO^-S)) = (s^ZtsKat+bs) = a

d = HJ-d = (s+2t)2(at+bs) = 2b
1 o 2

Using the exact sequence

(where the first term is the lift to Y of the canonical bundle of P1) and the value of
the Chern polynomial of ^y^pi

c (fty^pi) = l-(2t+3s)X+(4ts+3s2)^2

(obtained easily from c.(3y—i®0y(-s)) by dualizing and twisting) then one gets

c (0^) = l^t+Ss^+dOts+Ss2)^2-^^3

The exact sequence

and Riemann-Roch theorem for three-folds provide

(at+bs)-c^fty) (a t+bs)-( (a t+bs)+/C ) • (2(at+bs)+/C )
^)S 12 12
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which, using the above computation of the Chern polynomial of (l̂  and after some
calculations, yields

, Q . ^ 6ab2-4b3-18ab^•6b2•H2a•»•10b
x S1 [2————————

Finally, from the adjunction formula one gets that the canonical divisor K~ of § is
given by

^ = («y&0g(at+b^) = <9g((a-4)t+(b-3)s)

which in turn yields

/(j = ((a^Mb^^at+b^) = 3ab2-2b3-12ab+4b2+9a+6b
and

^S'^S = ^-^•^-^•^t+sMat+bs) = 2ab-3a-4b

Since S can be smoothly projected to S in G, they have the same invariants, and
these are related by the formula of Prop. 2.1. which in our case is

a2-2ab+2b2-a = 0

The discriminant of this polynomial (as a polynomial in a) is -^b^b+l, which must

be a perfect square, so that the only possible values for b are 0 and 1.

We deduce immediately that the only solutions are (a,b) = (1,0), which is an

a-plane, hence degenerate, or (a,b) = (1,1), which is our example (1), or (a,b) = (2,1),
which is example (2).

Case b2) If X' is developable, since any two lines are disjoint, it should be (by
applying lemma 5.5) the tangential developable of a space curve without stationary
bisecants. Such a curve can only be a twisted cubic (lemma 5.6), and therefore X'=
P(0pi(2)®0pi(2)). X = P(0pi®0pi(2)®0pi(2)) and S is a divisor of
y=P(Opi©Opi(-2)©Opi(-2)). In the same way as in case bl). the variety Y is embedded in

Gr(1.4) by y^pi®0y(-l) and has Chow ring zltls}/^2 s^Ats2)' And again' if s has class

at+bs, then we deduce as above

d = 4b
d^a

y{0~) = o^-Sb^lSab-HSb^lZa^b

XJ = 3ab2-4b3-12ab+12b2+9a
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K-^g = 2ab-3a-6b

which yields the relation

a^Zab+lOb^a-Zb = 0

which has no solution in positive integers except (a,b) = (0,0) or (1,0), since we

obtain a discriminant -36b +12b+l. This completes the proof of Theor. 5.1. •

§5.3. Smooth congruences with decomposable quotient bundle

As a sample of .application of Theorem 5.1, we prove the following corollary

proposition 5.7. Let S be a smooth congruence such that E^e>0- is decomposable.

Then, S is one of the following

a) S=P2 and E^®0 -0 2@0 2(1) (an QL-plane (1,0)).

b) S^xP1 and E^^O -0 (1,0)®0 (0.1) ((1.1) of type 2) in §4.1).

c) S^x) and E^eO^O^L-E)®^)^!) ((2,1) dual of type 3) ).

d ) S=P2 and E^®0^0^2(l)<30y2(l) ((3,1) dual of type 4) ).

Proof. We write E^^O^L ®L with h°(L )^h°(L ). Since E^^O- is generated by its

global sections, so are L and L . Using Theor. 5.1, there are four possibilities for

their number of sections, that will correspond with the four cases in the statement.

a) h°(JL )=1. Therefore, L =0- and hence all lines of the congruence pass through

the point defined by H°(L ). Thus, clearly the congruence is an a-plane.

b) h°(L )=h°(L )=2. In this case, all lines of the congruence meet the two lines of

P3 defined by H°{L} and H°{L ). Then, S is the complete intersection of the two special

linear complexes defined by these lines, and hence is the announced (1,1) congruence.

c) h (L )=2 and h (L )=3. As above, the congruence is contained in the special

linear complex defined by the line corresponding to H (L ). On the other hand, since

h^E^O-)^, we see from Theor. 5.1 that there are only four possibilities for S. One

checks immediately that the (2,1) congruence is the only one lying in a linear complex.

d) ^(E^eO )=6 and from corollary 5.2 we obtain that S is the Veronese (3,1).



s



§6. FINITENESS THEOREMS FOR FAMILIES OF CONGRUENCES
(Done in collaboration with M. Pedreira)

From Theor. 5.1, one should expect that it is very special for a smooth surface t

be embeddedable in G, in the same sense that it is also very special to have an

immersion into P . In this section we ill prove some results in this direction, showing

that under certain conditions (fixed ^, or K^a^, for a fixed a<6, or not being of

general type) the number of families of congruences verifying those conditions is
finite.

The proof we give here is a literal translation of the one in [10] to our case,

once we have the necessary ingredients. With this purpose, section §6.1 is devoted to

provide bounds for the sectional genus of smooth congruences.

§6.1. Bounds for the genus of curves in Q .

Definition. Let X be a variety contained in an irreducible hypersurface H of P^ We

define the postulation of X in H to be the minimum integer s such that X is contained in

the complete intersection of H with a hypersurface of Pr of degree s.

We recall that a hypersurfac of Q (the smooth hyperquadric of P7^1) is always the

complete intersection of Q with a hypersurface of P"^ (thus havi~g even degree 2s). If

n=4, we identify Q with G and such a hypersurface is a complex of degree s.

Lemma 6.1. If a congruence S of degree d is such that its general hyper plane

section is contained in a surface Y of degree 2s of Q and d>2s2 then S itself is

contained in a complex of degree s.

Proof. We can assume s to be the postulation, so that the general Y is irreducible.

We fix a general Q^ in Q^. Consider the pencil L of those Q containing Q and define X
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as the incidence variety consisting of those pairs {x,Q ) such that x is in 0 . There

are natural projections p:X————>L and q:X————><? . We define X-q'^S) and X sq'^Q ).

Our hypothesis d>2s2 implies the uniqueness of the surface Y -since the restriction

of y to a general Q is the only irreducible (s,s) curve containing the d points of

SnQ . This means that p.f«?y y®^*0^ (s)] is a une bundle that maps onto
\ "C* ^A )

P,Py ,Y Y^^n^L which is the trivial bundle. Therefore l^f^y „ y®q0,(s)1=:
^ "S^V ^ ^ >- "S^Q^ ^4 J

h0!^ (s)| as wanted. •
I "'̂  J

IIGI en a curve of Q , throughout this section, we will intersect onSy w th tangent
^

hyperplanes to Q -i.e. elements of Q -so that we obtain groups of points in the quadric

cone C . For a general hyperplane, none of these points is the vertex of the cone, so

that they can be regarded as points in the desingularization C =P(0-i®0^i(2)) of C . If

TC'-C————>P is the natural projection, the Picard group of C is generated by the

section C of n having self-intersection -2 and a fiber F. With this notation, the map

\——^p3

is defined by |C +2F\. We prove now the following

Lemma 6.2. Let C be an, integral curve in Q of degree d that is not contained in a

surface of degree 2s and such that the set of points in C corresponding to a generic

intersection with a cone C is contained in a curve of \sC +2sF\. Then2 ' o '

d ^ 2s(s+l).

Proof. Let X be the incidence variety in Q xQ and p and q the natural projections

to Q and Q^ We define 'Q to be the inverse image by p of C, and V to be the vertex
3 3

subvariety in X -i.e., the couples consisting of a point of Q and the tangent

hyperplane to Q at this point. Let b:X————>X be the blowing up of X along V. We will

denote with a ~ the liftings from X to X via b (e.g. q:X————>Q is the map whose fibers

are the blowing up C of the corresponding fibers C of q).

We can as ee s to be the smallest integer satisfying our hypothesis. Since
~ ~»
^P ^r'n ^s^ ^ 0> tnere exlsts an integer a. which we assume again to be minimal, such

that H°^s. y®?^ (s)®q*0v(a)) = H°(q»p*(^ (s))®0v(a)) ^ 0. Therefore, there exists
^ 3 ^ 3 3 3

a hypersurface S in X coming from S in X of minimal bidegree (s,a) -and hence integral
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-that c ~tains & and does not meet V. If we assume d>2s2, then for each Cy in Q^ the

curve in \sC •*-2sF\ containing b" (CrC ) is unique and corresponds to the intersection of

S with the corresponding fiber of q.

We claim now that p maps § onto Q . Indeed, as p has two-dimensional fibers, the

image W of S has dimension at least two. Assume, for contradiction, that it is exactly

two. Then, p'^W) coincides with S since both schemes are integral of dimension four.

Hence, a=0. that in turn implies H°(^ „ (s))^0, which is absurd.
CIQ3

Therefore, p,^ is surjective and its generic fiber is one-dimensional. On the other

hand, it has two-dimensional fibers on C because of our assumption about its

intersection with the cones C . Thus, S is contained in the subscheme S* of S where p.-

is not a smooth morphism. This subscheme is the locus where
~» ~»
p 0,.(-s)®q 0^v(-a)®0~————^y/n ^al^s ^° De inj'GCtive, so that we have a map

3 3 3

P:n^®0§—————>>^§®p^(s)®g*^v(a)

\^
We fix now a generic element C of Q and denote with Z the intersection of C with

C and with A and F the intersection of § and S with the fiber C of q corresponding to2 ^ 2 ^
C . Since we can consider Z naturally contained in A, it is enough to show that A has

length 5^2s(s+l). Let N be the kernel appearing in the exact sequence

0————>N————>^/Q®°5 ————^yO^sC^ZsF}————X)

the last morphism being the restric ion f (3 to S .

We have exact s quences

"L?fc,——^/ofc,——^^°c^\-

-^^——^<°x——»P\("^(i)-

the last one restricting to

*^.J90- ————X^ ————>0~(C +2F)-X/Q^ ^ ^ ^ o

We deduce from them that both N{-C +F) and N have no global sections. On the other
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hand, if H°(N{C +2F))=0. then we obtain

H°(^. -®Og((s+l)C' +(2s+2)F)) ^ 0

concluding that

6:s(sC +2F)'((s+l)C^+(2s+2)F)) = 2A2s

Therefore we can assume H°(N(C +2F))^0, so that we have c^(N((l-a)C^+(2-b)F))sO for

(a,b) = (0,0), (0,1), (1,0) or (1,1). Using the above exact sequences together with

0——>0-{C +2F)——>0~((s+l)C +(2s+2)F)——>0~((s+l)C +(2s+2)F)——>0
G O C/ 0 1 0

2 2

0——^, -((s+DC +(2s+2)F)——>Og((s+l)C^+(2s+2)F)——>C^-

we get c (N(C +2F))=2s2+2-5. Hence, for the above four values of (a,b) we obtain

inequalities

8 :£ 2^+2

8 ^ 2s2-2

5 ^ 252+s+2

5 :£ 2s2+s

just completing the proof.

A first bound for the genus of curves in Q can be obtained by considering a

general projection to P3 and observing that if a curve of Q^ is not in a surface of

degree 2s, then its projection in P3 is not in a surface of degree s. Therefore,

applying the bgund given in [18] (with its slight improvement in [101), we obtain

immediately the to to ing:

Proposition 6.3. Let C be a smooth curve in Q of degree d and genus g that is not

co.tained in a surface of degree strictly less than 2s. Then

s(2g-2) -s. d(d^s(s-4))

This bound, f course, is not sharp and it is not enough for our purposes, so that

we will spend the rest of the section in proving the following result.

Proposition 6.4. If a curve C of Q of degree d and genus g is contained in an

irreducible surface of degree 2s, and d>2s(s-l), then

s(2g-2) ^ drj +s(s-3))
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The proof we are going to give here is completely analogous to the one given in

[18] for curves in P . However, we found numerical obstructions to imitate it for

proving the same bound for curves not contained in a surface of degree 2s. Nevertheless

when such a bound is needed to prove the theorem, Proposition 6.3 is enough.

Let t be the postulation of C in Q^. Then, clearly t^s and Z<?(s-l)s2t(t-l). Assume
t<s and that we know the result is true for t. Then 2g-2 ^ ̂ | +t(t-3)) and, since C is

contained in the intersection of two irreducible surfaces of Q of degrees t and s. then

d^2st, which implies ̂  +t(t-3)) ^ -(y +s(s-3)). Therefore we can assume s to be the
postulation.

The key point to bound the genus of such a curve C is to define the numerical

character for its generic intersection with a C . Thus, we give the following:

Definition. Let Z be a finite length scheme in C that is disjoint from C . Let

Xe\sC+2sF\ be a curve containing Z with s minimum. Then, if n^ ^o^O i(-n.) the

ordered set of integers n ^n .̂..sn is called the numerical character of Z.

Lemma 6.5. The numerical character defined above verifies

a) n.^2s-l for all i=0, 1,..., s-1

b) If X is irreducible, m.-m. ^1 for all i=l, 2, ..., s-1i 1+1
n^l

(where m. is the integral part of —--).

Proof. Since 5 is the postulation we get the vanishing of

h°{j. ®0~((s-l)C +20?-1)F)) = h°(^ ®0~((2s-2)F)) =h°(^_ y®7t'^(0_i(2s-2)))
<C^A L> 0 Z,,A U ^,A IT

lA^O i(2s-2-n )). This proves a).

For b) we denote by V the image of H (j- y(m)) in the s-dimensional vector space

H (0 ), (where Z is the intersection of X with a general generator F of C ). The

multiplication by an element of H (C?-(k)) (which we can take vanishing in the vertex)
^

defines an inclusion of V m V , . From the definition of character we obtain for eachm m+k
1=0,1,...,s-1, an element a. in H (^ y(/n.)) such that if a. is its image in V thenz- ^>A i i. m.

a.,a. ,,...,a is a basis for V . If m.-m. ^2 then, taking the equation x of a generali i+l s m. i 1+1 0 1 &

hyperplane of P not passing through the vertex of C , we obtain that xa . is in V for2 j m,

J>i. Therefore we get i relations vanishing on Z
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^J = ̂ /J^

where we can take a.. vanishing in the vertex. Since the homogeneous ring of X is an
integral domain, this yields a relation in Z

det(xl-{a ..))=0
J " -

which defines a curve in \(s-i-l)C +2(s-i-J)F| containing Z and with s-i-Ks, which is a
contradiction. •

Let C be a curve in Q with postulation s and assume d>2s(s-l). From the above
lemma, for the generic intersection Z with a C we obtain a numerical character
n sn ^...s/i verifying a) and b) of lemma 6.5. We clearly have (a subindex + denoting
positive part):

g =h2^ ) -s. ^ h\^ ^ (r)) = ^ h\j. g(rC +2rF))= ^ ((n -2r-l) -(2i-2r-l) )
3 rsl ' 2 rs:l ' 2 i ,r + +

This last sum is clearly less than the one corresponding to

n*= t-2i+2s-3 for i = 0, 1...., r-1

/^= t-2i+2s-2 for i = r, r+1...., s-\

where d = st-r with 0^r<s. A straightforward calculation shows that the sum
^ ((n'-2r-l) -(2i-2r-l) ) is:
i.r 1 +

|4.s(s-3)d
1+ -——^——— - (s-r)(^ - ̂  + ^) if t is odd

, J2^5-3^ r2 r(s-r)
1+ ———^——— " 4s ~ ~~2—— ls even

This completes the proof of Prop. 6.4. •

We want to mention that Mark Gross has obtained this very bound for curves not in a
surface of degree strictly less than 2s when s^3.
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§6.2. Some technical lemmas

As said above, we imitate the proof given in [10]. Since our computations turn out

to be certainly different (at certain parts due to the fact that the results in section

§6.1 are not sharp enough), some of the proofs (the calculations, not the arguments)

should be repeated here. For completeness, we decided to reproduce all of them, although

most of them are a mere repetition of the corresponding ones in (10]. At the beginning

of each proof we indicate its analogue in the paper by Ellingsrud and Peskine.

Lemma 6.6. I f S i s a smooth congruence of degree d=d +d larger than an integer

depending only on ̂  then S is contained in a complex of degree ^8.

Proof. (Prop. 1 in HOD. If S is not in a complex of degree <9 and d>128, then

from lemma 6.1 and Prop. 6.3 we obtain 9{2n-2) ^ d(d+45). Combining this with Prop. 2.1

and the inequalities K2^ 9^ (if ^0) and d^d2^ - (which we will use continuously) we

get an inequality d^Wd ^ 108^, which proves the lemma in case ^0. If ^<0 we use

X2^. •

The key result to be proved is the following:

Proposition 6.7. For each positive integer cr there exists a polynomial P of degree

six with positive leading coefficient such that any smooth congruence S of postulation <r

and degree d>2o2 verifies P (}/ d )^(0 )

All the followings lemmas will be used to prove this, which is the result

corresponding to Proposition 3 in [10].

Let S be a smooth congruence having postulation <r and let V be a complex of degree

(T containing S. Set N^N-^ and define

H = c (^(-<rH)) = di^d^^{(^-'3}d-<^{2n-^}

where H is, as usual, the hyperplane section. We have the following bound for u:

Lemma 6.8. In the above situation, 0 ^ u ^ <r d

Proof. (Lemma 1 in [10]). The first inequality is just Prop. 6.4. applied to the

general hyperplane section of S.
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For the second one, we observe that the inclusion of S in V induces a morphism
\^

0-(-<rH)————>N whose zero locus is the scheme of those points of S which are in the

singular locus of V. Since <r is the postulation. this scheme is not all S, and we can

write it as DuZ where D is an effective divisor and Z has finite length r. Therefore we

obtain a section of Jv^o-H-D) vanishing exactly at Z. Thus,

r = c (Jv(D-<rH)) = VL^-WHD^-^-KD

On the other hand, from the universal sequence of G=Q we obtain an epimorphism

H°(Op3(l)))®H°(Op3(l)))%^——»£:^®£:^®^=nv<8>^——^v——»^^((TH-D)

so that, ^— -(<rH-D) being generated by global sections, we get

r ^ ((rH-D)2^ a^d-Za-HD+D2

which together with the above equality completes the proof, since clearly (K+4H) • D^O

(for JC+4H is very ample). •

Lemma 6.9. With the above notations, we have 'x.(j-^ y ( t ) ) =

<rt3 ,2(^-4) 8} (^^-n-Wa-4) ^-6^23)\ ^-^^23^-28
~3 +t [~2~ ' 2J+t[—————2————— + ———6————]- ————12————— -x

where 8 = crt-d (1=1,2) and 5 = 5 + 5 = 2o-£-d. Furthermore, if X is a general hyperplane

section of V, and C is the corresponding hyperplane section of S, then

82•|•82-^l-8(^((^-3) r \ r ^w^--^—-a-ra
Proof. (Lemmas 2 and 4 in [10]). This is just substituting KH by ^ and d. by 5. in

the Riemann-Roch theorem. Indeed, for the first equality we use that

^yt)) = ;^(t))-^(£))

The first summand is obtained from the exact sequence

G G V

which yields, using the fact that G can be consider as a smooth quadric in P5,
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^ - ̂ .D)-;,̂ -.)) - (fHTH^KT3))
and. by Riemann-Roch theorem on S

^(0^(t)) = x + ^(d^MXH]

Making the substitutions

dW-o^-SKd +d )-H
KH = 27i-2-d -d = ——-——————-—-——

1 2 (T

d = (rt-5i i

d,= rt-S^

and simplifying we obtain the wanted result.

For the second equality we write

^C X^ = ^(ox(t))~^(OC(t))

and these two terms are calculated as follows.

Since C is a smooth curve of genus TT and degree d +d we obtain from the
Riemann-Roch theorem for curves

^OM)) = t(d +d )-7t+l
L> 1 2

and on the other hand, from the exact sequence

we get
^ ,^ ft+41 ft+2) fft-<r+4) ft-(r+2l1

^ ( O X ( t ) ) = ^ 4 j - [ 4 j - ^ ^ 4 ]-[ 4 j j

Making again the above substitutions we complete the proof after a straightforward
calculation. •

Lemma 6.10. Jn the above situation, if 8X) and 8 -ii-8y((r-3)>o, then H°(^ ..(t)M.
d, \^,A

Proof. (Lemma 5 in [101). From our hypothesis and lemma 6.9 we get ;t(<^, y(t))>0, so
that we only need to prove the vanishing of h (^ „(()) = h^i^ „(()), which is a

C/^A L>,X
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consequence of the fact that c^ ^(t)) = 2<r((r-3)-5 is negative, since 5(2<r((r-3)-6) <

2^ ^ 0 from our hypothesis and lemma 6.8. ,

Lemma 6.11. If n:X————>X is the normalization of a surface of degree 2<r in Q ,

then for T s —————^————— the sheaf u = Hom(u,0.,) (where u is the dualizing sheaf of
X ) is T-regular.

Proof. (Lemma C in [10]). Let Y be a general hyperplane section of X and consider

the exact sequence
V, -»_____ ^ n v

(recall from the adjunction formula that J^eO^. = o^(l) )

Since ? is the desingularization of a curve Y of type ((T,(T) in the quadric, then (</

= 0 y((r-2) is (2<r-2)-regular, since ^(^(2(7-3)) = h0^2^-^)) = h°(0..(-l)) = 0. Hence.
v i r y

(<)y is also (2(r-2)-regular. For each integer n we look at the following long exact

sequence obtained by taking cohomology in the exact sequence above

^(^(n-D)—>H°(^(n))—^{^(n-Z))—^(^(n-D)—^((^(n))

For n^2<r-3 the last term is zero, so that ^((^(n^)) = h^^tn-l)) if and only if

the first map is surjective. If this is the case, we have a commutative square

^((^(n-l))®^0^!))————>>H%^(n))<8>H°(0~(l))1 I4, 4,

H°(t/(n)) ————> ^((^(n+l))

the second column being surjective for n^2<r-2 since u)~ is (2<r-2)-regular. Hence, the

second row is also an epimorphism, so that h^^tn-l)) = h^^tn)) and iterating this we

get h (u (n-2)) = h1^ (n-D) = h^u (n)) = ... and hence equal to zero.

Therefore, for ns2<r-4 we have that either h^o^n)) = 0 or h^G/tn)) > h^^Cn+D).

On the other hand, H°(0^(-l)) = 0 and H^O^C^)) = 0 (the latter from [31] Theor.

2, used in the form mentioned in §0). Serre duality provides thus the vanishing of

H (t*>(D) and /^(d^)). Applying the Mumford-Castelnuovo criterion we conclude that (i>(3)

is generated by its global sections. This implies that a general section of it vanishes

on an integral curve Z and there is an exact sequence
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</(-3)-

Hence. ^(^(-4)) = 0 since trivially h°(0-(-l)) = 0 and, applying again the

mentioned result in [311, we have that h^Oyt-D) = 0.

Therefore, one gets inequalities (the one in the middle by taking cohomology in the

first exact sequence and using the natural inclusion Oy<———x*>y((r-2) coming from

UY————^^ Oy((r-2) )

20*-2 2(T-2 3 2
h^y^-S)) ^ E ^((^(Zo^-i)) ^ £ ^(0^(0-2-0) = 14<r -9q> ̂

1=0 1 = 0

(the last equality comes from taking cohomology in the exact sequence

0———X9 (-2-i)———X3 ((T-2-i)———X9 (<r-2-i)———>0 )
'2 ' 2

Because of the strict decreasing of ^((^(n)) we obtain that ^((^(T-I)) = 0 for T

^ l+2<r-4+ 14<^3-90>2•H^ = 14c^3-9c^^l3o>-18 ^^^ ^ ^ ̂  ̂  ̂  ̂  h^^Cn)) ^
n

h (Oy(n-(r+3)) = h (Oy(2<r-6-n)) = 0 for n^2<r-5, completes the proof by applying the

Mumford-Castelnuovo criterion. •

Lemma 6.12. Let £ be a rank one reflexive Oy-module with X as in the above lemma.

Denote by e the degree of the restriction of £ to the general hyperplane section of X.

Let t be an integer such that (</ is (t-2)-regular and t̂ 2<r. Assume H°(£)^0. Then

1)0„ is t-regular

2)1 f e>0, £ is (te)-regular.

Proof. (Lemma D in (101). Since t*/ is (t-2)-regular, we have in particular that
v vu (t-2) is generated by its global sections. Hence, a general section of u (t-2)

vanishes on a reduced curve C and provides an exact sequence

>(2-t)- X " C

Therefore, h^d-t)) = 0, since both h°((9,,(-D) and h^O-t-D) vanish (the second
^vanishing comes from (311 Theor. 2). By Serre duality, we obtain h (Oy(t-D) = 0.

^
On the other hand, since u (t-2) Is generated by its global sections, either

h^W-^t-Z}} = h°((j(t-2)) = 0 or ^(t-Z)^.,. In the first case. from the

Mumford-Castelnuovo criterion, we conclude that Oy is t-regular. In the second case.
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since <*» is (t-2)-regular, we obtain that Oj, is 0-regular and hence t-regular. This
proves 1).

For 2) we write JE=(fla ̂  where a is the ideal sheaf in X of an integral curve (not

necessarily different from each other) and proceed by induction on r.

Thus. first we assume that J2 has a section vanishing on an integral curve C.

Therefore, there exists an exact sequence

and applying to it the functor Ham{-,u(2)} we get

0————w(2)————)Hom{^ ^{2}}————x<U2)————>0(/

By Serre duality, h^d)) = h^O-C-D) = 0 as observed above. Clearly, h1^ (1))=0
i v °so that h Wom(£. ,(<)(D))=O. On the other hand, the connecting homomorphism

^((tU————^(i*)) is the dual of H°(0..)————>H°(0 ), which is an isomorphism (since C is

connected). We conclude from this that I^Wam^ ,^}}=Q and hence, from the

Mumford-Castelnuovo criterion, that Ham{£, ,(*)(2)) is generated by its global sections.

Therefore, one can find a morphism £ ————w(2) whose zero locus does not contain

C. This provides a map (p:Oy(S>u (-2)————>J£ whose cokernel R has finite length. Let us

denote by M the kernel of <p and by A its image. We have an exact sequence

0————>M————^-©(/(-^)
A

Since Oy®a> (-2) is t-regular (because of the hypothesis and the first part already

proved) and e>0, it is also (te)-regular, so that h^Oytte-De^de-S)) = 0 and

h^O^ae^et^te^)) = 0. Hence, h^Oe^) = h^Oe^)) = 0 (recall that R has finite

support) and we are only left to prove h^tte-D) = 0. For this, it suffices to show

that h^UUe-D) = 0, so that it is enough to prove h^A^te-l^O.

Considering the restriction to a general hyperplane section ? of X and looking at
the exact sequence
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we see that it is enough to show h^MoOytteD^O. To prove this we will see that

de^(M®Oy(te)) > 2^(?)-2. Indeed, this degree can be obtained by restricting y to Y and

computing in the induced exact sequence

0——————————————>M®Oy——————————————>0y®yy(-l)——————————————>JS®Oy——————————————>0

so that we are left to prove 4^(y)-4 < 2o*te-2<r-e, which comes from our assumption t^2cr

and the fact 2^(?)-2 ^ 2g(Y)-2 = 2<r(<r-2). This completes the proof in case r=l.

For the general case, when £ = (fia.)^ (fia^^^ we write J6'= (r^lav)vv and call e

the degree of the curve whose ideal sheaf is a.. One has e==^ e. and from our induction

hypothesis can assume £' is t{e-e )-regular and c^ is (te )-regular. What we have to

prove is h^je^a^te-i)) = 0 for i=l,2.

If b is the cokernel of the natural morphism 0'y——>J£———>a then it is ax r
torsion-free module supported on the curve whose ideal sheaf is a and it is

(te )-regular (since it is a quotient of a ).

Since J£*(t(e-e )) is generated by its global sections, then there exists an

epimorphism 0~————»j£'(t(e-e )). Tensoring with b(te -1) we get
A /" f

b(te -1)———»je'®b(te-l), which implies the vanishing of H^jeWte-D). This last

remark allows us to conclude by taking cohomology in the exact sequence

Indeed, h^je'oa^te-l)) = 0 from the above vanishing and the (te)-regularity of J£'

(in fact, (t(e-e ))-regularity), and also h^J^a^te^)) ^ h^rtte-^)) = 0 again from

the t(e-e ^regularity of J£'. •

Lemma 6.13. If V is the normalization of a complex V of degree (T, there exists an

integer t depending only on <r such that ^,(0..(t)) ^ ^(0 y(t)) if t&t and therefore

X(^y(t)) ^ X(^y(t)).

Proof. (Lemmas A and 3 in [10]). We consider the following commutative diagram of

exact sequences (defining Q and Q as cokernels)
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0 0 0

°v ——> °v ——> ^

9y(l)————><9^(1)————X?(D-
A X

0 0 0

Take n to be the maximum of ————°——————— and 2<r-2. We will prove that we can
v °

take t =2n+3. From lemma 6.11, G) is n-regular, and from lemma 6.12, Oy is
(n+2)-regular. In particular, for any m^n+1 we have that h (Oy.(m+l))=0. From the exact
sequence

0————>0^ (m+l-<r)————>CL. (m+1)————>0 y(m+l)————>0
^3 ^ x

one also obtains h^OyCm+l))^. Therefore, h^QCm+l))^ and hence ^(Q(m+l))s0 which in
A

turn implies from the last column in the diagram that ^(0(/n))^(Q(m+l)).

Let x be the minimum of the function P(x) (where P is the quadratic polynomial
such that P(i)=^(Q(i)) ). The above inequality says that x is at most n+1. Since the
parabola y = P(x) is symmetric with respect to the line y = x it will be enough to
prove that ^(Q(-l))s0.

Applying [311 Theor. 2, we have that h\0y(-m))=0 for m^l and hence h^O.^-l)) ss
^(Oyi-Z)) ^ h^O^M)) ^ .... which implies, since h^O^-m))^ for m »0 , that
hl(0..{-].))•=0. Since 0.. has no intermediate cohomology, we obtain h^Qt-l))^, that
provides the wanted inequality ^(0(-1))^0 •

We now fix t' to be the smallest integer verifying the hypothesis of lemma 6.10,
a'2i.e., such that 5'= 2<rt'-d > 0 and •- -j.i-5'(r((r-3) > 0. Hence, one of the following

holds.

-Either 5'-2<r = 2<7(t'-l)-d ^ 0 and thus S'-s 2<r

-Or (5'-2<^)2-2/,l -2(5'-2<r)(r(o—3) =£ 0 and in this case we obtain 5 -2<r ^ (r((r-3) +

/ (^2(<^-3)2+2^
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In any case, we have S'^Zo^+v 2p.

Lemma 6.14. With the above notations, we have an inequality

X(^ ̂ tf)) ̂  S ̂ ^r Y^^E hl(^ Y^sfv n^t' ^ n>t' 'A

Proof. (Lemma 6 in [10]). For each n we have an exact sequence

0————>^ j^(n-l)————^s.V^————^C.X^————>0

which provides
h°(^ p(n)) ^ ho(^(n))+ho(^(^-•l))

h^^^Cn-D) ^ hl(^^(^))+h2(^(^))

so that, applying the first inequality consecutively for n = t ,t -1,... and the second

for n = t-l,t,..., and using the fact that h°(^ p(-n)) = h2^ y^ = ° for ^S^ ".

we conclude that

h°(̂  p(t^) ^ E ̂ c^
' n^t i

h2^^^)) ^ E ^^cx^51

n>^

The proof follows now from these two inequalities together with the trivial

^S V^ " ^^S^^^S^^ "

Lemma 6.15. In the situation of lemma 6.12, there exist positive constants

A,B,A',B' depending only on (T such that

E h°(£(-n)) =£ Ae3^
n>.0

E i
ns0

E h\£(n)) ^ Be3+Bf

Proof. (Lemma B in [10]). For the first inequality, by restricting to a general

hyperplane section Y of X, and considering the exact sequence

0————^(-n-1)———^£(-n)———>j£®0^( -n)————>0
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we see that h°(^(-n))=0 for ">"o=f^| and that h°W-n +m))^ ^ h°(je<8>0~(-n+()):s
m m f ^ i=l

E (e+2(r(-n +i)+l)^ ^ 2on=2<r m+ and therefore
.=1 i=o v /

m m
E (e+2(r(-n +i)+l)^ ^

i=i 0 i=o

^ h°(Je(-n)) :s Zo- fY2] :s ^e^Zo*
12:0 ^ 3 ^

^°rv/-«n < o^t^-'-2! < ^^3.
n2:o

As for the second inequality, we define T to be the minimum between 2<r-2 and

—————g—————, so that lemmas 6.11 and 6.12 imply that Oy is (T+2)-regular and f. is

e(T+2)-regular. Thus. if we define £ as the cokernel appearing in the exact sequence

T e(T+2)-2
Sh^Cn)) :£ £hl(0„(n))+ ^ ^Wn))

n^i n=i n=i

The first summand is bounded by

T n T
£ £ h^Oyd)) ^ £ (£+1)^(0 (T-O)

n=i i=o i=o

which is a bound B' depending only on o\

For the second summand, observing that h (^(e(T-2)-l))=0 and from the exact

sequences 0————>^(n-l)————>J£(n)————^————>0 we obtain a bound

e(T+2)-2 e(T^2)-2 ^^+9) n fT+?12^3

£ h\^e{x-2}-\-i}} ^ ;:eL= e e(T+^ 1 ^ (T+2^ e

This completes the proof of this last technical lemma.

Finally, we prove Proposition 6.7. We distinguish two cases.

Case a) t'^t . We apply the inequality of Prop. 6.3 for s=l, together with the

equality of Prop. 2.1 and, adding d3-Sa3t3•sO (since t'^t ), obtain:

d3- —d^ Jd-So-3^ ^ if ^0 (using K2^)

d3- ^d^^-d-S^t3^ ^ if ^<0 (using K2^)
0 T 0

(we recall that t only depends on o-).
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Case b) t'>t . We apply Prop. 6.15 to £ = ^~ y(t'). and together with lemmas 6.10,
0 U,A

6.13, 6.14, we get

^ [ ̂ D - |1 )^ [ ̂  - '̂̂ -4) . < -̂̂ 23) j,.

^-ar2^^) ̂  ^ (̂ .3,(̂ ,)

Recalling 5's 2<^2+/2^i =s P^+oV 2d (the last inequality from lemma 6.8) and since

Zt'o* = 5'+d we obtain

d „ d / 2d
2<r ̂  20" -2- +<r

Therefore we get, for example,

d3 f d /2d 12 f2°•2 /m 2f d /2d
^- [̂  -2- - j [<r +^2d j- [2. +-^ +<r

^t^-^2^^) _ (̂ B)(<^7+2<r̂ .̂ ,̂ ,, ^ ^

Clearly we can find a polynomial that takes smaller values than the two polynomials

appearing in cases a) and b). This completes the proof. •

§6.3. Finiteness theorems

Theorem 6.16. Let ^ be a fixed integer. Then. there exists only a finite number of

irreducible components of the Hilbert scheme of smooth congruences S verifying ^,(0-) =

Proof. For fix ^(0 ) = ^ , lemma 6.6 and Prop. 6.7 tell us that the degree is

bounded. Therefore, the sectional genus n is also bounded (apply Prop. 6.3 for s=l), as

well as K2, because of the relation in Prop 2.1. This proves the theorem. •

This is implicitly proved in [101 for surfaces in P4. The idea for this new

statement of the theorem was given to us by C. Peskine. As a corollary we obtain the

analogous to the main results in [101.

Theorem 6.17. For any real number a<6, there is a finite number of irreducible
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components of the Hilbert scheme of smooth congruences verifying K as a^.

Proof. If we fix a<6 and assume K ^ a^, then Prop. 2.1 and the inequality of Prop.

6.3 in case s=l provide an inequality ^ ^ ~ZTA—V~* wnlc^ together with lemma 6.6 (that

allows us to assume S to be contained in a complex of degree ^8) and Prop.6.7 shows that

there are only a finite possible values for ^ or d.

If the degree is bounded, then Prop. 6.3 for s^l tells us that n is also bounded.

Thus, from Prop. 2.1, there is only a finite number of values for ^-6K2. Using the bound

K2^ 8^ if ^<0, we get that in any case, there are finitely many possible values for .̂

Finally we conclude by applying Theor. 6.16. •

Theorem 6.18. Except for a finite number of components, each component of the

Hilbert scheme of smooth congruences consists of surfaces of general type.

Proof. Let S be a smooth congruence that is not of general type. If it is not

birationally ruled, then ^sO and K asO, and thus, from the above theorem, there are only

a finite number of families of such surfaces. If S is birationally ruled with K. ^5, we

conclude again from Theorem 6.17. Then. we are left with the case of birationally ruled

congruences with K ^6.

From the Riemann-Roch theorem for such a surface we have that h°(-K) s ^(-K) =

1+K^O and therefore HK<0, or equivalently d>27t+2. The equality of Prop 2.1 together

with this inequality and K2^ yields ^ -7d+10 ^ 0, and thus d l̂2. The argument in the

above theorem completes the proof. •

Remark. Also using this argument in Theorem 6.17 to conclude that if d is bounded,

then there are finitely many possibilities for ^, would allow us to improve the

statement of Prop. 6.7 and remove the hypothesis d>2<r , thus getting exactly the

analogous statement to Prop. 3 in [10].

We also remark that, as in P4, complete intersections are a counterexample to

Theorem 6.17 in case a=6. Indeed, if S is a complete intersection in G of two complexes

of degrees a and b, we have that

K2^ ((a+b-4)^)^ 2ab(a+b-4)2

Also from the exact sequence
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Og(-a-b)————^(-a)®0^(-b)————^————X3g-

we get after a straightforward calculation

^ . __ 2a3b + SaV-t- Zab^^-lZa^ -12ab2•^•23ab
^v S' " 6

Thus,

K2 - 2a2+3ab •i-Zb^lZa -12b -«-23

^S7 = (a.b-4)2

that takes values arbitrarily close to 6, for example fixing a value for a and taking b

arbitrarily large.



s
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