MEMOIRES DELA S. M. F.

HARUZO HIDA

On the search of genuine p-adic modular L-functions
for GL(n). With a correction to : on p-adic L-functions
of GL(2) x GL(2) over totally real fields

Mémoires de la S. M. F. 2° série, tome 67 (1996)
<http://www.numdam.org/item?id=MSMF_1996_2_67__ R1_0>

© Mémoires de la S. M. F., 1996, tous droits réservés.

L’acces aux archives de la revue « Mémoires de la S. M. F. » (http://smf.
emath.fr/Publications/Memoires/Presentation.html) implique 1’accord avec les
conditions générales d’utilisation (http:/www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=MSMF_1996_2_67__R1_0
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://smf.emath.fr/Publications/Memoires/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Mémoire de la
Société Mathématique de France
Numéro 67, 1996

On the Search of Genuine p-adic Modular
L-Functions for GL(n)

Haruzo HIDA*

Abstract — The purpose of this monograph is to state several conjectures concerning the
existence and the meromorphy of many variable p-adic L-functions attached to many
variable Galois representations (for example having values in GLn(Zp[[X1,...,Xr]])) and
to present some supporting examples for the conjectures. Our discussion in the earlier
sections is therefore quite speculative, but towards the end, we gradually make things
more concrete.

Résumé — Le but de cette monographie est de formuler quelques conjectures concernant
lexistence et la méromorphie des fonctions L p-adiques de plusieurs variables attachées
a des représentations galoisiennes de plusieurs variables (par exemple, & valeurs dans
GLn(Zp[[X1,...,Xr]])) et de présenter quelques exemples motivant nos conjectures. Nous
commengons par une discussion assez spéculative, mais vers la fin, nous donnons des
résultat plus concrets.
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1. Introduction

The purpose of this monograph is to state several conjectures concerning the
existence, a precise interpolation property and the meromorphy of many variable p-
adic L-functions attached to many variable (irreducible) Galois representations (for
example having values in GL,(Zp[[X1,...,X,]])) and to present some supporting
examples for the conjectures. Often in the non-abelian case, p-adic L-function is
determined up to unit multiples. We would like to identify a precise interpolation
property necessary to determine the p-adic L uniquely. This is important to have
a non-abelian generalization of classical class number formulas and limit formulas
which gives a direct connection between the analytic p-adic L and arithmetic objects.
The theory of abelian p-adic L-functions is constructed out of a desire to better
understand the class number formulas. Contrary to this, in the non-abelian case, it
is ironic for us to be left in search of a p-adic L-function genuinely characterized by
the Galois representation by which the generalized class number formula should be
written down. Our discussion in the earlier sections is therefore quite speculative,
but towards the end, we gradually make things more concrete.

Let us describe our idea. Let p be a prime, and fix algebraic closures @ of Q
and @, of @,. Let F be a finite extension of Q. We write I for the set of all
embeddings of F' into @. We will later fix an embedding i, : @ — @, and take
a field K which is a finite extension of @, in @, containing the image under 4,0
for every o € I. Write O for the p-adic integer ring of K. We extend o to an
isomorphism: F = @ which we denote again by o. For each p-adic place  of F,
we write 9p, for the Galois group Gal(Fg/Fyg), and if B is induced from i,0, we
identify it with the decomposition group at % in 9p = Gal(F/F) via i,0. Let T,
be the standard diagonal torus of Res,/;z GL(n) for the integer ring v of F' which is
split over 0. Then we consider a normal integral domain [ finite (but not necessarily
flat) over the completed group algebra O[[T},(Z,)]]. We assume that O is integrally
closed in [. Each O-algebra homomorphism P : | — K restricted to O[[T,(Z,)]]
induces a continuous character k(P) of T,(Z,) — K*. We call P € Spec(l)(K)
arithmetic if it induces a weight (that is, an algebraic character) of the torus T,
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2 HARUZO HiDA

on an open neighborhood of the identity in T7,(Z,). We want to study a continuous
Galois representation ¢ : 4 — GL,(l) acting on V(=2 ") satisfying the following
condition:

(Al) There are arithmetic points P densely populated in Spec(l)(K) such that the
Galois representation ¢p = P o ¢ is the p-adic étale realization of a rank n
pure motive Mp defined over F with coefficients in a number field Ep in Q.

The number field Ep depends on P, and the composite E, of all Ep for P satisfying
(A1) is usually an infinite extension of Q. We call points P satisfying (A1) motivic.
Densely populated motivic points determine an isomorphism i, : E < @p such
that T'r(op(Froby)) for primes [ unramified for ¢p generates a subfield of i,(Ep).
We extend i, to Q. To get reasonable p-adic L-functions, we need to assume further

(A24) For a dense subset of motivic points P, we have

(i) The Tate twist Mp(1) is critical in the sense of Deligne [15], and for each
p-adic place B of F, the restriction of pp to Gp, is of Hodge-Tate type;

(i) Writing 5 for the middle terms of the Hodge filtration of Hpr(Mp)
as in [15], for each p-adic place B = iyo of F, there exists an I-
direct summand V{f C V (independent of P) stable under Gp, such that
the comparison isomorphism of Faltings [21] induces: Vf ®i,p Bur =
¥} Qrer,io0i, BHT,

where Byt is one of the Fontaine’s rings [22] given as follows: Writing Q for the
p-adic completion of @p, we have Byt = Qt,t~1] on which %q, acts via the natural
action on Q and via the cyclotomic character on the indeterminate ¢. Since V(¢p)
is of Hodge-Tate type, as a 4p,-module, writing Ep for the topological closure of
ip(Ep) in Q, V(pp) ®ep, ¥ = @;<ic, Um;) for integers m; depending on i,0,
where Q(m) = U™ as a graded co_m_ponent of Bgr. We call (mq,...,m,) the
Hodge-Tate twist of V(¢p) at 0. We will show that the condition (ii) is equivalent
to the admissibility condition of Panchishkin ([56] Section 5) for Mp if Mp is
crystalline at p. A similar condition is stated and studied in [28] p.217 in terms
of Selmer groups. In particular, the existence of V;g in (A2_) plays an important
role in defining the Selmer group. We require by (ii) an analytic coherence of 97’}%
with respect to analytically varying P. The density assumption included in (A24)
about motivic critical points is important to guarantee the uniqueness of the p-adic
L-function. We also assume

(unr) ¢ is unramified at almost all places of F.

The (conjectural) [-adic representations arising from cohomological modular forms
on GL(n),p further satisfies an additional condition besides (A1-24). Since T, =
G~ over F', X(T,) is isomorphic to the product of n copies of the free module Z[I]
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GENUINE p-ADIC MODULAR. L-FUNCTIONS 3

generated by the set I of all embeddings of F' into Q. Thus we can associate to each
arithmetic point P, an n-tuple (m(P),... ,mp(P)) of elements in Z[I]. Then the
condition is

(A3) The Hodge-Tate twist of pp restricted to Gr, for the p-adic place B induced
by ipo is given by (M1(P)co, M2(P)eos - - ,Mn(P)eo) for each o € 1,

where for m € Z[I], we have written m = >__m,0, and ¢ stands for the complex
conjugation which we specify below choosing an embedding is of @ into C. This
last condition (A3) might be always satisfied by representations satisfying (A1-2.)
after modifying the algebra structure over O[[T},(Z,)]] and is equivalent to

(A3") The Hodge types of Hp(**" Mp)®E ;.. C is given by {(mi(P)o, Mnt1-i(P)eo) }4
where Hp(*~°Mp) is the Betti realization of Mp at i,,0. Anyway, we call the
representation satisfying (A1-3) and (unr) an arithmetic Galois representation.

As conjectured by Deligne [15], for each motivic point P as in (A2_), we expect
to have a well defined special value

L(1,Mp)

— 7 . cEpCEp®gC
cr(Mp(1)) P -TREQ

for Deligne’s period c¢t(Mp(1)) in (E ®g C)*. We now choose an embedding

ioo : @ — C and write % for the ¢.-component of zfngﬂfﬁ% An element

L of the quotient field I of I®¢O0q can be regarded as a (p-adic) meromorphic
function on Spec(l)(Q2) assigning the value L(P) = P(L) to P € Spec(ll), where Og
is the p-adic integer ring of (2. We call such functions “meromorphic”, because it is
a ratio of elements in ﬂ@o@g and hence a ratio of p-adic analytic functions on a non-
empty Zariski open subset of Spec(l) (or more precisely, on the formal completion
of a non-empty open subscheme of Spec(l) along its fibre over p). Since [ is a normal
integral domain, if a meromorphic function in the above sense is everywhere defined,
it is actually an element in 1®¢0q (and hence is an Iwasawa function when [ is an
irreducible component of O[[T'(Z,)]] for a quotient torus 7' of T;,). We expect that
this is the case when ¢ modulo the maximal ideal of [ is absolutely irreducible. We
fix a choice of S = {Vif }y. If there exists an element Lg,; () € K satisfying the
following condition for all motivic points P as in (A1-2_):

(Int) i1 [ Lsiw(P0) Y _ oy [ Li (1, Mp)
P\ G M) ) L (Mp(D))

Prioco 00,%00

@y
*

for a constant ,wecall Lg; () a genuine p-adic L-function of ¢ of type S. The

exact form of the constant “x” is known by Coates, Perrin-Riou and Panchishkin,
when Mp is crystalline at p and ¢ contains all cyclotomic deformation of Mp (see,

[60], [56] Section 6, and Conjecture 4.2.1 in Chapter 4 in the text). Here ¢/, (Mp(1))

Pyico
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4 HARUZO HIDA

is the p-adic period defined in exactly the same way as c;“o’ioo (Mp(1)) replacing C
by the Fontaine’s graded ring Byr (cf. [60]). We note that the period c;iw (Mp(1))
actually depends on the choice of i, besides its apparent dependence on i, and on
S. From definition, the p-adic period depends on the choice of S, but we do not
know how its transcendency depends on S, because there might be some non-trivial
relation among periods indexed by p-adic places. On the other hand, the complex L-
value applied i3! at the right-hand side of (Int) is independent of i, because, if we
change i by pico for p € Aut(C), the L-value of the right-hand side is conjectured
by Deligne to be moved by p whose effect will be canceled by (pis,)~!. We will show
in Chapter 2 from the admissibility (A2,) (ii) that c;"iw (Mp(1)) lies in a single
graded component Qt? of By and hence can be identified with an element in the p-
adic completion Q of @, (by trivialization, i.e., just putting ¢ = 1). By construction,
c;"iw (Mp(1)) and cjo’ioo (Mp(1)) behave in exactly the same way under the change
of basis. That is, by abusing notation, c;',ioo (Mp(1))/cl, ;. (Mp(1)) is constant, and
the formula (Int) has an intrinsic meaning even if these periods depend on the choice
of the basis of various realization of motives. This type of definition of p-adic periods
has been given in various context (see [3] and [74]), but here emphasis is put on its
dependence on i, ip and S. This type of formulation of p-adic L-functions is first
found by Katz in his construction of p-adic Hecke L-functions [52] and in this general
form, it is due to Don Blasius as indicated in [56] Conjecture II' in Appendix. We
study this type of L-functions and list some general conjectures in Chapter 4.

So far, it looks that things are going well. However there is a subtle fact (pointed
out to me by Don Blasius) that we do not know whether c:;iw (Mp(1)) # 0 or not,
and André [1] has given fairly general examples of the vanishing for some special
choice of i (see 3.3 in the text). We expect to be able to go around this difficulty by
changing i.. In [1], the transcendence of the field spanned by p-adic periods moving
around ¢, is studied, and some estimate of its transcendental degree is given for
generic i,. The embedding i, is intrinsically determined by ¢ (at least on E), and
changing (ic,%p) t0 (100, 9p0) for o € Yg does not affect anything. Thus changing
ico is basically the same as changing i,. Here we study the dependence of the period
relative to L-values. As already remarked, the right-hand side of (Int) is independent
of i and therefore, it is all right to change i.,. We will show that if one can choose
an embedding iy, so that c;iw (Mp(1)) # 0 for one P, then c;;ioo (Mp(1)) # 0 for
densely populated P satisfying (A2_) for a fixed S (Proposition 4.1.1 in Chapter 4).
Moreover we show that if the genuine p-adic L-function exists for one i, it exists for
all i, with non-vanishing p-adic periods. Further, if p is odd and ¢ is self-dual up to
characters, there is a canonical way of normalizing Lg;_ () so that the normalized
Ls(yp) depends only on the isomorphism class of ¢ over [ but not on i (Section
4.3 in Chapter 4). Anyway, the period c;; i (Mp(1)) detects a “good” choice of

MEMOIRE 67



GENUINE p-ADIC MODULAR L-FUNCTIONS 5

ico making (Int) possible. Thus assuming the existence of io, with non-vanishing
c;"ioo (Mp(1)), it would be reasonable to conjecture the existence of Lg;_ () for
such choice of i, (Conjecture 4.2.1 in Chapter 4). Once we can specify the constant
“x”, the uniqueness of Lg;_(¢) follows from the density requirement in (A24) of
motivic points. A way of specifying “x” is known for crystalline Mp by Coates,
Perrin-Riou and Panchishkin if ¢ contains all cyclotomic deformation (see [60], [58],
[56] and Conjecture 4.2.1 in the text); in other words, pp ® N™ appears as ¢ for
some arithmetic point @ for all m with N = 1 mod p (p = 4 or p according as
p = 2 or not). Here we write N for the cyclotomic character of 6F with N'(¢;) = N(I)
for the geometric Frobenius element ¢y.

We will show the existence of “good” i, for every 2-dimensional absolutely
irreducible arithmetic representation ¢ and for tensor products obtained from such
2-dimensional Galois representations (Corollary 3.4.2, Theorems 5.2.1 and 5.3.1 in
Chapter 5). This process shows that the type S actually governs the form of complex
and p-adic periods as a product of periods indexed by archimedean places of F' as
conjectured by Shimura [66], [67] in the complex case (see Chapter 5). In general,
the existence of “good” i, follows from the Tate-type conjecture asserting that
the isomorphism class of a semi-simple regular motive is determined by its Galois
representation (Theorem 3.4.1 in Chapter 3).

In this monograph, we have focused our study on the automorphic aspect of p-adic
L-functions. However, they could have an arithmetic aspect, as typically represented
by the Iwasawa theory. A precise (but conjectural) construction of analytic and
arithmetic p-adic L-functions of the family of Tate twists of a given crystalline
motive is studied in details by B. Perrin-Riou in [58]. Her formulation is different
from ours using Beris (in place of Byr or  here). In a setting more close to
ours, Greenberg [28] and [29] describes a conjectural theory of (p-ordinary) Selmer
groups associated to arithmetic Galois deformations. In the automorphic theory, the
genuine p-adic L-function is associated to the isomorphism class of ¢ over the field
of fractions of [. On the other hand, as Greenberg pointed me out, in the arithmetic
theory, the Selmer group is more delicate and depends on the isomorphism class over
I. Although we expect the normalized L-function Lg(¢p) to play an important role in
the Iwasawa theory for the contragredient ¢ of ¢, to formulate a main conjecture in
our setting, some more work would be necessary to compare our p-adic L-functions
and the arithmetic ones discussed in [58] and [28] (see Sections 4.3-4.7 in Chapter 4).

We define the arithmetic dual ¢* of ¢ by the contragredient of ¢ tensored by N.
If the (normalized) p-adic L-function Lg(¢p) exists, a principle of locating singularity
(coming from the conjectures of Artin and Tate) would be

(AT,) For each prime divisor P of Spec(180gq), if the normalized Ls(y) has a pole
at P, then op ® ¢p contains the trivial representation as a subquotient.

SOCIETE MATHEMATIQUE DE FRANCE



6 HaRrvuzo Hipa

In some good cases including the case where the residual representation ¢ mod
my is absolutely irreducible, we expect (AT,) to hold, and we find some other
(residually reducible) cases where (AT,) might not hold, indicating necessity of
further modification of Lg(p) (see Section 4.7 in Chapter 4 and Section 8.5 in
Chapter 8). Thus the problem is quite subtle. In the first draft of this paper, the
above principle was stated in a rough form which did not involve ¢*. The importance
of counting also ¢* in addition to ¢ is suggested to the author by R. Greenberg. As
already indicated above, the arithmetic side of the theory of p-adic L-functions of
deformations of motives is discussed in [28] in terms of their Selmer groups. From
his point of view ([28] Conjecture 4.1),

(G) the order of the pole should be the exponent £p of P in the characteristic ideal
of the I-module Ho(9GF, p & ©*).

In [28], the conjecture is stated in terms of H%(%r, V(e @ ¢*)V ® [*), where I* is
the Pontryagin dual module of [. This cohomology group is the Pontryagin dual of
Hy(%F, ¢ @ ¢*). This is the reason why we have Galois homology group in place of
cohomology group. Because of this, in principle, the genuine p-adic L-function should
be closely related to the characteristic ideal of the Selmer group Sel(¢) (defined in
[28]) of the contragredient ¢ of ¢, although it might be a bit premature to make a
main conjecture in this context. Hence (AT)) is an assertion similar to (but weaker
than) Conjecture 4.1 in [28], which is verified in various examples in [28]. In Chapters
7 and 8, we study the Katz p-adic L-functions interpolating Hecke L-values of CM
fields, see that the L-function is close to be genuine and establish a stronger version
of (AT,). Actually Colmez made a precise conjecture in this case [13], and this type
of fact has been shown by him [12] and Schneps [14] for abelian p-adic L-functions
for either totally real F' or a number field F' containing an imaginary quadratic
field. I should mention that our proof in the CM case is just a reinterpretation of
the result of Colmez for totally real F.

When F is totally real, out of Hilbert modular forms on GL(2),r, we can
construct examples of arithmetic Galois representations for n = 2. Let h be the
universal ordinary or nearly ordinary p-adic Hecke algebra studied in [34], [35] and
[33] Chapter 7 (the theory is recalled in Chapter 2). Then we have a canonical
representation 7 of Gp taking values roughly in GLa(h) [38] (see Section 2.8 in
Chapter 2). Thus for each irreducible component Spec(l) of Spec(h), writing the
projection as A : h — [, we have an isomorphism class 7(\) = Ao 7w over K of a
Galois representation. We can describe the relation between w(A) and the Galois
representations of classical Hilbert modular forms ([9], [69], [6]) in the following
way. The Hecke algebra is naturally an algebra over the completed group algebra
O[[T2(Zp)]]. By (A3) the algebra structure factors through a quotient torus T'
of To. We call T the weight group and describe it in details in Section 2.1 in
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GENUINE p-ADIC MODULAR L-FUNCTIONS 7

Chapter 2. We call an arithmetic point P positive if it induces locally on T'(Z),)
a positive weight x(P) of T» with respect to the upper-triangular Borel subgroup
of GL(2). If P is positive arithmetic, the reduction 7(Ap) = P o w(\) modulo P
is the Galois representation of a classical Hilbert modular form of weight x(P).
As shown in [6], to such m(Ap), we have a rank two motive M(\p) such that
L(s,M(Ap)) = L(s,m(Ap)); thus, positive arithmetic points are motivic. Therefore,
¢ in the class 7(\) (over K) is arithmetic, and so are their tensor products. There
are several choices of Vg = Vi in the case of m(A1)®...®7(An) (n > 1) for a given
choice for each m();). Each choice S = {Vlg }jp should yield a p-adic L-function
satisfying (Int) for motivic points P compatible with the choice S. We make this
precise in Conjectures 5.4.1 and 5.5.1 in Chapter 5. In the abelian (or rather CM)
case, the choice of S gives rise to a p-adic CM type to which we attach a Katz
p-adic L-function ([52] and [47]) and, even in the non-abelian case, is very much
related to factorization of motivic periods into product of local periods indexed by
archimedean places as discussed in [66], [67], [3], [5], [30], [31], [74], [75] and [42].
Various p-adic L-functions supported on the spectrum Spec(h) or Spec(h&gh)
are studied in the works [47], [33], [37], [39], [40], [41], [53] and [32]. These p-adic
L-functions include the p-adic Rankin product Dp(m(\) ® 7(1)V) € K&eJ of m())
and m(p) for A : h — land g : h — J, where 7(u) is the contragredient of m(u). In
Chapter 6, we study D, through the conjectural theory described above. Although
we can easily identify the class S = {Vq;F }sg|p to which D, belongs, there are several
reasons to believe that D, is not a single genuine p-adic L-function but a ratio of
two genuine L-functions. To explain this, we pick two representations ¢ and p in
the class m(A) and m(u). The isomorphism class of ¢ over [ may not be uniquely
determined by w()). It is known by Carayol [10] that w()) determines uniquely ¢ if

(AI) = ¢ mod m for the mazimal ideal m of | is absolutely irreducible.

The most significant reason among them is that Dp(w(A) ® m(n)Y) has poles at
prime divisors in the support of the congruence module Cy(A;[) (see Section 2.9 in
Chapter 2). Since pp® pg) has the trivial representation as a subquotient if pp = pg,
it looks all right to have a pole at the intersection of the two irreducible components
A and p, since the support X of Co(A;1) is the locus of P such that Ap = u/p for
irreducible components ' other than A (including p). This is not correct because the
two variable L-function: (P, Q) — D,(P, Q; m(A\)®@7(x)") has a pole on X x Spec(J)
concentrated on the variable P, which is nothing to do with the locus W of (P, Q)
satisfying pp = pg. Moreover it is easy to show that W is contained in the union
of the diagonal A and the diagonal image W' of X in Spec(I&¢J). The latter W’ is
of codimension at least 2 by definition, and the diagonal A is at least codimension
2 in the nearly ordinary case. Therefore if Dy, (7(\) ® 7(1)V) were genuine, it would
. have to be holomorphic at W’ and X x Spec(l). In [47], when A and p are both of
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CM-type for the same CM field, we computed D, (7(\) ® 7(1)") in terms of p-adic
Hecke L-functions of Katz and found that it is basically equal to the ratio

Ls,i, (P ® Q590 ® p)
prioo (P’ Ad((p)) ’

where Lg;_ (¢ ®p) (resp. Lp;_(Ad(p))) is the “genuine” p-adic L-functions for the
Galois representations ¢ ® p for a specific S (resp. Ad(p)) of Gr into GL4(1&¢J)
(resp. GL3(l)) constructed out of p-adic Hecke L-functions of Katz [52] and [47].
Here Ad(p) is the 3-dimensional adjoint subrepresentation of ¢ ®; ¢, that is,
eQyp = Ad(p) @1 for the trivial representation 1. We wrote “genuine” for the above
L-functions because it is not yet completely proven that the L-functions are genuine,
strictly speaking (see Chapters 7 and 8). For the proof of genuineness, we need to
suppose the compatibility of two comparison maps: one is that of Tate-Raynaud
and the other is due to Faltings (see [50] 4.3.5). This fact is also pointed out to
me by Blasius. On the other hand, if it is genuine, it is automatically normalized.
Anyway this suggests us the same scenario in general. In fact, (i) the ratio (R) only
depends on 7(A\) ® ()Y but not on i (see (NP) in Section 4.3 and Theorem 5.2.1
in Chapter 4), (ii) the formula (R) is a consequence of the existence of two genuine _
p-adic L-functions Lg; (¢ ® p) and L, ;. (Ad(p)), and (iii) only assuming (AI),
p > 5 and the existence of the normalized L,(Ad()) in I®¢S2, we can show that the
normalized function Lg(p® f) defined by Ly, (Ad(¢))Dp(m(X)®m(p)Y) is everywhere
holomorphic if one admits the following

Conjecture 1.0.1 — Under (AI) and p > 5, we have

(R) Dp(P,Q;m(A) @ m(p)") =

Co(\; 1) ®¢ Og =2 18000/ (Lp(Ad(¢)))

as 1®¢O0q-modules.

This is a generalization of a conjecture made in [47]. We know that the conjecture
holds for CM components when F' = Q by the works [55], [71] and [47] combined,
and we have everything we want when F = Q and X is of CM-type (but u can
be non-abelian; see Chapter 7). Since the result of [41] supplies an evidence of the
conjectures, I added at the end of this paper a list of corrections of misstatements
in [41] to avoid confusion. Some other evidences supporting the conjecture are also
discussed in [19]. We will use throughout the paper the notation introduced in the
introduction. I would like to thank Don Blasius and R. Greenberg for their pointing
me out many subtle points in the theory of motives and Selmer groups as indicated
above.

The first draft of this monograph was prepared while the author was visiting
the Mathematical Science Research Institute at Berkeley in 1995. The visit was
supported by the grant from NSF: DMS 9022140. The author also likes to
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acknowledge the partial support he obtained from NSF (DMS 9401026) while
preparing the final version.
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2. p-Adic Hecke algebras

We shall give a summary of the theory of p-adic Hecke algebras developed in [34],
[35], [36], [41] and [47]. The formulation is a bit different from earlier treatment
reflecting evolution. We assume F' to be totally real in this chapter.

2.1 The weight group

First we like to specify the notion of weight for Hilbert modular forms for F'. Let
Ty = Resy/z G, where 1t is the integer ring of F. Then Tj is an algebraic torus
over Z such that T1(A) = (r ®z A)*. We identify the character group X (71) of Ty
with Z[I] so that n = Y __;n,0 sends z € T1(Q) = F* to 2™ = [[, ;2™ in
Q. Weights are well described by identifying 77 xz 17 with the standard maximal
F-split torus of the algebraic group G = Res;/z GL(2), that is, the subgroup of
diagonal matrices. Here we specify the identification of T3 with Ty x T, reversing
the order of diagonal entries, by T> 3 (& 9) <+ (d,a) € Ty x Ty. The character group
X(Ty x T1) is given by Z[I] x Z[I]. We specify this isomorphism in a standard way
so that (z,y)(™™ = =™y~ ™. We take the connected component Tp of the Zariski-
closure of the diagonal image of t* in T = T3 X T}, which is again a torus. For
T = (Ty x T1)/To, we have

X(T) = {(m,n) € X(Ty x Ty)|m +n € Zt}

for t =" _ 0. We now enlarge a bit the group T'(Z,). Fix an open compact subgroup
U of G(A™)) with U D GLx(r,), and write Ey for UG+ (R)NF* for the connected
component of the identity G (R) of G(R), where A(®) is the ring of finite adeles.
Then we put

G = GU = (Tl X Tl)(Z,,)/FU,
where Ey is the closure of Eyy under the p-adic topology. A typical example of U is
given by

ﬁ(N):{(gg)eG(chsd—lzo modzv?} @ =T]ze, T=]]w)
l [
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for an ideal N prime to p. We use the p-adic character group & = Homconti (G, %)
of G as the parameter space of p-adic nearly ordinary families of Hilbert modular
forms. Although the full nearly ordinary family is parameterized by the space %,
the smaller ordinary family is parameterized by the closed subspace of ¥°7¢ in ¥
which is made of characters factoring through

G = GY? = G/({1} x T1(Z,)) = T1(Z,)/Ev.

The subgroup X (T} x T1) made of characters trivial on Ey is a subgroup of finite
index in X(T). We fix an embedding i, : @ < Q. Then each m € X(T) =
Hom gyg-gr (T/Q, G Q) induces mo i, in Homg,(T'(2), 2*). A continuous character
k in & is called an arlthmetlc weight (or character) if on a p-adic neighborhood of
the identity, x coincides with an algebraic character in X (7") via 4,. This notion of
being arithmetic is independent of the choice of i,. We write & for the subgroup
of arithmetic weights in ¥. We write additively the group &, and thus “0” is the
identity character of &f. We put #°¢ = o N ¥°m4. We write (m(k),n(k)) € X(T)
for the algebraic character induced by an arithmetic weight k. An arithmetic weight
k is called positive if m(k) — n(k) > 0 (that is, m(k)s > n(k)s for all ). Then

ex(a,d) = k(a,d)(d, a)~ (=) (=)

is a finite order character of G, and by definition, x € H°™® & k € A, €, is trivial
on the variable a and n(x) = 0.

In our previous works [34], [35], [38], [41] (resp. [42]), we have used weight
written as (k,w) (resp. (n,v)) directly related to the automorphic factors (resp.
the cohomological weight) of modular forms, while the weight (m,n) comes from
the Hodge type of motives attached to modular forms. The following formulas clarify
the relation among the three formulations:

(k,w) <> (m—n+t,t—n) (t=Za) and (n,v) & (m—n—t,n).
oel

A motivic and deformation theoretic description of the parameter spaces and
conjectures predicting its general form can be found in Panchishkin [56] Appendix
and in Tilouine [72].

2.2 Automorphic forms of weight «

We choose an embedding ¢ : @ < C. Then we may regard m € X(T) =
HomAlg_g,.(T/@, Gm/ﬁ) as an element m¢ in Homg, (T(C),C*). Then we consider
the following automorphic factor for each k € H:

Jm(g,z) — det(g)n(n)t—u(cz + d)m(m)L—n(n)H—tt — det(g)_““(cz +d)kb’
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where z € T1(C) = (F ®g C)* and g = (24) € G(R). We assume that ¢, factors
through (71 x T1)(Z/p*Z) and put

Uo(p*) ={u€Ulu,=(2%) and c€p®r,} and
Ur(p®) = {u € Up(p*)|up = (¢Y) and d=1 mod p°rp},
Ul (*) ={u e Uri(p*)|up = (2¢}) and a=1 mod p°1,},

c

where 1, = t ®z Z,. Let G (R) be the identity connected component of the
Lie group G(R). We write Cy for the standard maximal compact subgroup of
G(R), and we put 3 = G(R)/CxZ(R) = G4+(R)/Cx+Z(R) for the center Z of
G and Coot = Co N G4 (R). Then we may identify 3 with §! for the upper half
complex plane § so that GL(R) 3 (§7) — z + iy € H’, where we write the i for
(vV-1,...,v/~1) in 3. We write e,,, for Loi,' 0e.. A modular form f: G(A) — C
of weight x with respect to an open subgroup V of Uy(p®) satisfies the following
automorphic condition:

(S1) f(azu) = ek, (a,d) f(@) e (Uoo, 1) ™F for u € VCoiZ(R) and a € G(Q),

where we have written u, = (29%). By the above formula, for z € Z(R)(2 T1(R)),
we see f(zx) = 27™ "t f(z) (m = m(x) and n = n(x)). Thus if f has the central
character (that is, f(zz) = x(2)f(z) for z € Z(A)), its infinity type is given by
—w(k) + t for w(x) = m(k) + n(x). Anyway, we define f|(z)(z) = |z|5" f(z2) for
z € Z(A(®), In particular, for a prime ideal [ such that GLo(r;) C V, we write
(Iy for the operator (w), where w is a prime element of ;. The operator (I) is well
defined independent of the choice of w. If a = [[,[*(" is a product of primes [, we
define (a) = [T ([)¢®.

Now we interpret the condition (S1) in terms of the classical automorphy
condition. Define a function f, on 3 for each z € G(A®)) by f.(2) =
[ (@Uoo) Ji(Uoo, 1) fOr us € G4(R) with ueo(i) = 2. This function is determined
independently of the choice of us by (S1), and it is straightforward to check that

F(¥(2) = fal2)Tx(,2) for 7 €Ty = aVG4 (R~} N G(Q).

Then we further impose
(S2) f(2) is a holomorphic function on 3 for all x € G(A®) and is rapidly
decreasing at all cusps of G.
When we consider non-cuspidal modular forms, we instead impose

(M2) fo(2) is a holomorphic function on 3 for all x € G(A™)) and is slowly
increasing at all cusps of G.

It is well known that the condition (M2) and (S2) are equivalent if n ¢ Zt for

t=> 0.
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2.3 Fourier-expansion and rationality

We choose a finite idele d such that dr is the different of F'/Q. Write Fa = FQgA
and Fje) = F ®q Al®). Each modular form f satisfying (S1-2) has the following
type of Fourier expansion on G(A) = GL2(Fa) (see [34] Section 4 and [41] Section
2 for details):

FIED)) = lyla D aléyd, £)(€yoo) "er(V—T1¢yo Jer (£2),

£>0

where ep : Fa/F — C* is the additive character such that

ep(z) = exp(27r\/—_12 Zo)

for z = (z5)oer € C! = F ®¢ C, ¢ runs over all totally positive elements in F, and
y — a(y, f) is a function on F., invariant under {q € Fg(w)l(g %) € V}. When U
contains T'1 (V) and V D U}(p®), the function y — a(y, f) is supported on integral
ideles. Here an integral idele means an element in FAf(m) NT for T = [I; . When
we consider non-cuspidal holomorphic modular form, we need to add the “constant
term” to the above Fourier expansion. Namely modular form satisfying (M2) and
(S1) for n = [n]t with [n] € Z has the following Fourier expansion:

F(4D)) = lyla{aoyd, Hlyla™ + 3 aléyd, £)(Eyso) "er(vV—1€y)er(€x)},

£>0

where the constant term ag is a function on F g(oo) factoring through the strict ray

class group Clp(N) modulo N for sufficiently small integral ideal N.

For any Q-subalgebra A of @, we define Sy, (V;1(A)) to be the space of functions
satisfying (S1-2) and whose Fourier coefficients a(y, f) are in ¢(A) for all y € (..
If we change ¢ to to for o € Gg, then by a result of Shimura (see [65] Section 1 and
[34] Theorem 4.4), the natural action induced by a(y,:o(f)) = o= (a(y,(f)))
(for all y) takes Sy, (V;¢(A)) isomorphically to Ske.(V;to(A)). Thus we have an
intrinsically defined A-module S.(V; A) (independent of the choice of ¢) and an
intrinsic function a(y, f) having values in A such that ¢ induces an isomorphism
L1 Se(V; A) 2 S, (V;1(A)) with i(a(y, ) = al(y, 1(f)). When U is given by T'; (N)
for an r-ideal N prime to p and V = Uy(p®), we write S,(Np*; A) for S, (V;A). Ina
similar manner as above, we can define the space M, (V; A) of holomorphic modular
forms (given by (S1) and (M2)) requiring further ao(y, f) to have values in ¢(A).

2.4 g-Expansion, integrality and Hecke operators
Let K be a p-adically complete subfield inside the p-adic completion Q of @p

and O be the p-adic integer ring of K. Then we may consider Ko = i, Y(ip(@) N K)
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and S.(V; K) = Sk(V; Ko) ®k,,i, K. We may regard via i, Fourier coefficients of
a modular form in S.(V; Kp) as a function on FAf(oo) into K. In particular, we can
extend the function f — a(y, f) to Sx(V; K) by linearlity. Then for f € S.(V;),
we define the g-expansion coefficients by

a,(y, f) =y, "a(y, f) and ag,(y, f) = N(yd H)Mao(y, f),

where N : Fy(, — Z) is the cyclotomic character such that N(y) = y, t|y|,§1 for

€ Fy(w) (cf. ([41] Sections 1-3)). Let F. be the additive monoid of totally positive
elements of F. We now identify f with a function on Fg(m) having values in the
completed monoid algebra Q[[¢%]lecr, = Q[[F}]] by

fly) =N"(y) Z a,(yd, f)¢* for cusp forms, and
§EF,

f) =N {aop(yd, f) + Z a,(¢yd, f)qé} for non-cuspidal forms.

Ry
We call this expansion the g-expansion of f. For any closed subring A of 2, we
write S, (V; A) (resp. M (V; A)) for the subspace made of cusp forms (resp. general
modular forms) f with a,(y, f) € A (resp. ap(y, f) € A and ag,(y, f) € A) for
all y. This definition is compatible with the one previously given when A is a Q-
subalgebra. For each prime ideal [ of t, we pick a prime element wy in F}. Then we
can define the Hecke operator T(wy) by

ap(ywy, f) + ap(yw[‘l,fl(ﬂ) if [ is prime to Np,

a s T(w =
(T1)  ap(y, f[T(wr)) {ap(ywl,f) if [|Np.

Then this operator T(zor) is well defined on S.(V;A) as long as U D T'1(N) and
Uo(p) D V D Ui (p®). The operator T(w) for [ outside Np only depends on the
ideal [; so, we also write T(I) for that. Here we have stated the definition of T(y)
when y = wy for a prime [. However, as is well known (e.g. [41] Section 3, where
T(y) is written as T(y)), we can define T(y) for all integral finite ideles y, and we
have

(T2) ap(y, f) = ap(L, fIT(y))-

The group G naturally acts on S,(V;C) by f(z) — f (a:(";1 d91 )) We define an
action of G on S.(V;Q) by

fl(a,d)(@) = s(a,d)f (2(7;" )

if V O Ui(p®). This action can be written as f|(a,d) = f|T(a=*d)(d™!) and hence
preserves S, (V; A) for any closed subalgebra A in Q.
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2.5 p-adic Hecke algebras

The Hecke algebra h.(V; A) is the A-subalgebra of the A-linear endomorphism
algebra of S, (V;A) generated by T(y) for all y as above and the action of Gy .
The nearly ordinary part of these algebras is the maximal quotient (and also the
maximal algebra direct summand) in which the image of T(wp) is a unit for all
p dividing pr. We write h?-°"¢ for the nearly ordinary part, which is the maximal
algebra direct factor of h,, on which T(p) is a unit. We write e for the idempotent of
the nearly ordinary part. By definition, we have an algebra structure of these Hecke
algebras over the completed group algebra O[[G]] induced by the action of G. To
make explicit the structure of O[[G]] and O[[G°"]], we write W (resp. W°"9) for
the torsion-free part of G (resp. G°™%). Thus

G =W x m and Gord — Word % uord
for finite groups p and u°"¢. Then we have that
W & Zl+[F:@]+d and Word o 71+d
P p

where d is the defect of the Leopoldt conjecture for F' and p, that is, d =
rankz Ey — rankz, Ey. The completed group algebra A = O[[W]] (resp. A" =
O[[W°r9]]) with respect to the adic topology under the augmentation ideal is non-
canonically isomorphic to the power series ring of r variable with coefficients in
Oforr =1+[F : Q] +d (resp. r = 1+ d). We have O[[G]] = A[u] and
O[[G°4]] =2 A°rd[uemd]. If V C V”, there is a surjective O[[G]]-algebra homomorphism
of the Hecke algebra for V' onto the Hecke algebra for V, which takes T(y) to T(y).
We then put

(5) b = he(6) = lim v h(V;0),

(N.Ord) Bor = hygr4(0) = lim v (V5 0),

where the limit is taken with respect to open subgroups V of Up(p) satisfying
V O Ui (p>®) = N, UL(p*). When £ € d°7, we write h?™® in place of A7

Restricting the Vs to those containing U (p>°) = (1, U1(p®), we define for x € "¢
the ordinary p-adic Hecke algebra as

(Ord) Wy = hYH(0) = lim v Ay (V; 0).

Then we have natural projections: h, — h?°"¢ — ho¢ taking T(y) to T(y) and
compatible with the projection: G — G°™¢. When U = T, (N), we use the symbol
like h.(Np>;0) for these algebras. Then writing h,, for any one of h,, h7°"% and
hord, we have

(Univ) h,~h, aslongask>0andx’ >0.
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These isomorphisms are O[[G]]-algebra isomorphisms and take T(y) to T(y) and (a)
to (a). The assertions (Univ) is proven in [35] Theorem 2.3 and [34] Theorems 3.2
and 3.3. Because of (Univ), we omit the subscript “s” from the notation. Now we
state the control theorem:

(ct) By Gy K = K2 Up(p?); K) (0 <k € ),
h?}‘d ®@[[Gord”’n K= hzrd(Uo(pa); K) (0 <KE &qord)‘

Here we regard K as an O[[G]]-algebra via the algebra homomorphism « : O[[G]] —
K induced by the arithmetic character k, and we implicitly supposed that ¢, factors
through T'(Z/p“Z). This has been proven in [35] Theorem 2.4 (resp. [34] Theorem
3.4) for h™°"? (resp. h°™?). The control theorem holds over O in place of K if F = Q,
and we conjecture that this stronger version should hold for general base field F.
Under a certain circumstance, the stronger version of (Ctl) for general F' follows
from a recent result of Fujiwara [25].

2.6 Duality between Hecke algebras and p-adic modular forms

The projection maps h.(W;A) — he(V;A) (V DO W) is induced by restricting
the operator h in h,(W;A) to the subspace Sc(V;A) C Sc(W;A). Thus by
definition, h naturally acts on | J,, S.(V'; A). Here the union is taken, via g-expansion,
inside the space of functions on Fg(oo) with values in the completed monoid ring
Al[¢°])(=2 A[[F4]]). We even consider the sum Y, (Uy M« (V;A)) over all positive
arithmetic weights k in the space of g-expansions. We then define a p-adic Banach
norm on . (Uy M«(V;9Q)) by

(Norm) Iflp = SuquaO,p(y, Doy 12y, Flp)-

By (T1-2) in Section 2.4, each element h of the Hecke algebras gives a bounded
operator under the above norm. Thus the action of Hecke algebras extends to the
completions under the norm. Let V., = Ui (p*>) or U;(p™), and for each closed
0O-algebra A in 2, we write S, (Vio; A) for the completion of Jy, 4y, Sk(V; A) under
the above Banach norm. Similarly we write M(V; A) (resp. M (Veo; A)) for the
completion of Y- (Uy oy, Mx(V;A)) (resp. Uy, Mx(V;A)). By definition, the
Hecke algebra, of each space acts faithfully on the space. Write simply S for S, (V; A).
Here we allow V to be V.. Then we write h(S) for the corresponding Hecke algebra
embedded in End 4(S). Using this notation, we define a pairing

(,):h(S)yxS—A by (hf)=ay,flh).
Then it is known (e.g. [41] Section 3) that
h(S) 2 Homy4(S,A) and S = Homy(h(S),A).
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Then the dual version of (Univ) is as follows: for k > 0 and &’ > 0,
(Univ¥)  Spgrd=SEg?, ST =50y, Se(UL(0™);0) = Sw (U (p™); 0),

where S2 7% = €S, (U} (p™); 0) and 827§ = eS.(Ur(p™);0), etc. The equality in
(Univ*) means that the left-hand side and the right-hand side coincide in the space
of functions on Fy.,, with values in 0[[¢*]]. For these spaces independent of weight,
we omit the subscript “<” from the notation. For each G-module M, we write M[x]
for the subspace of M on which G acts via its character x. Then the dual version
of (Ctl) is given by

(Ctl*) Sg_.o'rd[nl — Sz.ord(UO(pa);O) (0 <ke &Q),
S[‘}Td[li] — Sgrd(Uo(pa);@) (0 <K€ .Sﬁord).

Since (S2) is equivalent to (M2) when n(x) € Zt, My (Voo; 0) = Sk(Veo; 0) for such
k. Contrary to this, M,(Ve;0) is really bigger than S.(V;0) if n(k) € Zt. We
conjecture that M, (V;0) is independent of k as long as n(k) € Zt and coincides
with M (V;0). This fact probably follows from a detailed analysis of Eisenstein
series combined with (Univ*). Anyway, we do not need the independence of weight
for M, (Veo; 0). Since the Hecke operator T(p) continuously acts on M(V.;0), we
can think of M™°"¢(V,;0) and M°"¢(V,;0).

2.7 Modular parametrization by ¥

For each linear map ¢ : h(Np*>;0) — O, we have by the duality f, € S(Np>;0)
such that (h, fg) = ¢(h). By (T2) in Section 2.4, we see a,(y, fg) = ¢(T(y)) for
integral ideles y. Since a,, is supported on integral ideles (see Section 2.3), the value
of a,, is completely determined by ¢. It is easy to see that f4 is a common eigenform
of all Hecke operators T(y) if and only if ¢ is an O-algebra homomorphism. Thus
we get a parametrization of all O-integral common eigenforms in S(Np>;0) by the
0-valued points of Spec(h) for h = h(Np>;0). In particular, the closed subschemes
X = Spec(h™°™) and Y = Spec(h°"?) parameterize eigenforms in S™-°"¢(Np>;0)
and S°"¢(Np™;0), respectively. The structure of the schemes X and Y are fairly
simple, since we know from [34] Theorem 3.3 and [35] Theorem 2.4 that

(F)  h™°rd(Np>®;0) (resp. h°"4(Np>;0)) is finite and torsion-free over A =
O[[W]] (resp. A = O[[W°9])).

The space %(@p) of @p—valued points of Spec(A) is isomorphic to the product of

some copies of the open unit disk in @y, and the scheme X is a finite covering of %.

There is another way to describe the parametrization of common eigenforms by
each irreducible component of the Hecke algebra. To simplify the notation, we just
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write h (resp. A) for one of h™°"¢(Np*>;0) and h°"¢(Np>;0) (resp. A and A°"9).
Let L be the quotient field of A. We take a finite extension K of L and a A-algebra
homomorphism A : h — K. Since h is finite over A, A has values in the integral
closure [ in K of A, which is finite over A. Then enlarging O if necessary, we may
assume that @ = Q,Nl. We write ¥, for Spec(l) /0. Take P € &;(0) = Homg-q4(1, 0),
and compose it with A getting Ap = P o A which is a point of X(0). Then we get
a common eigenform f(P) € S such that a,(y, f(P)) = Ap(T(y)) for integral y,
where we have written S for one of $™°"¢(Np>;0) and S°"¢(Np>°;0) according to
our choice of h. We write for each closed 0-subalgebra A of Q

Ay(0) = {P : 1 — 0 € %(0)|P induces on A an arithmetic weight .} .

We write k(P) for the arithmetic weight induced by P € #;(0). Then for positive
P € 4(0) (that is, k(P) > 0), f(P) is classical by (Ctl*) (see [34] Corollary 3.5 and
[35] Corollary 2.5). Here we say a modular form f € S[x| “classical” if there exists
a modular form f° € S,(Np*; Q) for some o such that in (ap(y, fyp) = aly, f°)
for all integral y. Then we can think of a formal g-expansion f € [[[¢%]] given by
ap(y, f) = A(T(y)) €1 for integral y (otherwise a,(y, f) = 0). Thus we have

F(P)y) = P(f(y)) = Y_ P(ay(yd, f))a"-
:

We call any function f : FJ(., NT — [[[¢*]] an [l-adic cusp form if it satisfies the
following properties:

(1) f(P) is a p-adic modular form in S(Np™;0)[x(P)];

(it)  For Zariski densely populated points of () in &y, f(P) is a classical cusp
form.

We call an [-adic form is nearly ordinary (resp. ordinary) if h = A™°"¢ and
f(P) € S™°r (resp. h = h°"® and f(P) € S°™?) for all P. It is easy to check (e.g.
[33] Section 7.3) that

Homy (R™°"4(Np™; 0),1) = {I-adic nearly ordinary forms of level Np} and
Hom ora (R"4(Np™; 0),1) = {l-adic ordinary forms of level Np™},

where the isomorphisms are given by ¢ — (y — >_¢ &(T(Eyd))gd).
2.8 Galois representations attached to \
Fix an algebraic closure F' of F. For a finite dimensional vector space V over K,

an [l-lattice L is an [-submodule of finite type in V such that L ® K = V. For each
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A :h — [, we have a Galois representation
(Gal) m(A) : 9r = Gal(F/F) - GL(V()\))

for a two dimensional vector space V() over K satisfying the following properties:

(i)  There is an [-lattice L in V(X) stable under m()), and w()\) is a continuous
map into Auty(L) equipped with the adic topology of the mazimal ideal of I;

(if) m(X) is @rreducible and is unramified outside Np;

(iii)  For each prime | outside Np and for the geometric Frobenius ¢y
det(1 —m(\)(¢)X) =1 - NT)X + (1) X?;

(iv) For the place B in F induced by ipo, writing Gr, = Gal(Fy/Fyg) for the
decomposition group at B, there is a one dimensional subspace V%_ = V‘B— N
of V(X) stable under m(‘6g,) such that Gp, acts on Vi via the character
6:Fy C (Q’};’; — 1% given by §(y) = M(T(y)),

where ‘Q‘F“I; is the maximal abelian (continuous) quotient of 9, and F‘f; is viewed
as a subgroup of ‘8‘;}; via local class field theory. This fact is proven in [38] using
Wiles’ technique of pseudo representations. Actually we have taken the dual of the
representation constructed in [38]. Thus in [38], the character ¢ as above appeared on
a one-dimensional quotient of the representation space, but the character § itself is
unchanged because the identification Fg;; C ‘Q‘}}q’g is given by assigning to each prime
element the geometric Frobenius element instead of arithmetic Frobenius in [38]. In
particular, the assertion (iv) tells us that m(\)(%r,;) is contained in a split Borel
subgroup of GL(K), and X factors through h™°"¢®gj gy O[[G°™?]] if and only if 4 is
unramified. We have a natural projection p : h™°"? ®¢g) 0[[G°™¢]] — h°"* and can
show that the localization of Ker(p) at positive P € &4°" vanishes. Thus Ker(p) is
a torsion A°"%-module. In particular, ) is ordinary (that is, factoring through h°"¢)
if and only if ¢ is unramified. When F = Q, it is known [38] (iv) p.119 that p is an
isomorphism.

For each P € ¥;(K), a Galois representation m(Ap) : 95 — GLy(K) is called a
residual representation of w(\) modulo P if w(Ap) is semi-simple and T'r(w(Ap)(o))
is equal to P(Tr(m(A)(0))) for all o € 4. If a residual representation exists, then
it is unique up to K-isomorphisms. Again by Wiles’ technique, one can show the
existence of w(Ap) ([38] Theorem I). If once we know the existence of w(Ap), it is
easy to show that the assertions (ii) (iii) and (iv) hold replacing K by K and A by
Ap = Po ), because the semi-simplification of the restriction of m(Ap) to an inertia
group Iy is the reduction modulo P of the semi-simplification of the restriction of
m(A) to Ig. Thus we get a parametrization of 2-dimensional Galois representations
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by %;(£2). In particular, if P is positive and arithmetic, 7(Ap) is modular and hence
is known to be motivic for almost all cases [6] (the exceptional cases only occur when
m(k) = n(k) +t). Here the phrase “a modular Galois representation” means that it
is associated to a classical common eigenform of all Hecke operators in the manner
described in (iii) above. Modular Galois representations are constructed by Taylor
[69] and by Blasius and Rogawski [6] independently. The weight « of a modular
Galois representation ¢ gives the Hodge type of the attached motive (cf. (A3")),
that is, (my,ns) and (ny,my) for each o € I, and the motivic weight of ¢ is given
by {k} = [m + n] if ¢ is modular of weight .

2.9 Congruence modules and differential modules

To describe congruence among cusp forms in terms of Hecke algebras and
deformation rings of Galois representations, we here introduce a general notion of
congruence modules and differential modules: Let R be an algebra over a normal
integral domain A. We assume that R is an A-torsion-free module of finite type. Let
¢ : R — Abe an A-algebra homomorphism. We define C1(¢; A) = Qg 4 ®r,4Im(9),
which we call the differential module of ¢. We suppose that the total quotient ring
Frac(R) can be decomposed uniquely into Frac(R) = Frac(Im(¢))xX as an algebra
direct product. Let a = Ker(R — X). Then we put Co(¢; A) = (R/a) ® g, Im(¢) =
Im(¢)/(Im(4) N R) ([39] Lemma 6.3), which is called the congruence module of ¢
but is actually a ring. Here the intersection Im(¢$) N R is taken in Frac(R). Suppose
now that A is a subring of a number field in Q. Since Spec(Co(¢; A)) is the scheme
theoretic intersection of Spec(Im(¢)) and Spec(R/a) in Spec(R), a prime p is in
the support of Cy(¢; A) if and only if there exists an A-algebra homomorphism
¢’ : R — Q factoring through R/a such that ¢(a) = ¢'(a) mod p for all a € R. In
other words, ¢ mod p factors through R/a and can be lifted to ¢'. We see easily that
Suppa(Co(g; A)) = Suppa(Ci(¢; A)). By definition, we see that Co(¢; A) = A/n(¢)
for an ideal 1(¢) if Im(¢) = A. When Homy (R, A) is R-free of rank 1 (if R and
A are both Gorenstein rings), n(¢) is principal. By abusing notation, we also write
n(¢) for the generator of the principla ideal.

We continue to write h for one of A™°"¢(Np>;0) and h°"¢(Np>;0). We first
apply the above construction in the case where A = [ and R is given by the Hecke
algebra h. Let A : h — [ be a A-algebra homomorphism. We call A primitive (of
conductor N) if A has minimal prime-to-p level N among )\ : h™°"¢(Dp>;0) or
herd(Dp™;0) — 1 with X' (T(q)) = A(T(q)) for almost all prime ideals g. Since the
theory of new forms is readily transmitted to [-adic nearly ordinary and ordinary
forms, if X\ is primitive, the irreducible component of Spec(h), through which A
factors, is reduced ([34] Theorem 3.6). Note that h is not only a A-algebra but also
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an O[[G']]-algebra, where G’ = G or G°"¢ according as h = A™°"¢ or h°"?. Note
that G’ = T1(Z,) x G if h = h™°"¢. Moreover the action of G°™* C G’ is just
the action of the center of G(Z,). Thus we can extend the action of G°™® to the
action of the center Z(A) of G(A). It is known that the action of Z(A) = F, factors
through

Z =Z(N) = E /FXUp(Np>)FX,

where Up(Np®) = U1(Np*) N Z(A(>)) and Up(Np™®) = Naso Ur(Np®). Then we
can decompose Z = W°'? x Z,,, for a torsion free subgroup W ¢(> W as an
open subgroup) and a finite group Z;,,. Thus we get a group G a bit bigger than
G’ such that G = T1(Z,) x Z D G' if h = h™°"® and G = Z if h = h°"?. Take the
torsion-free part W of G and write G = W x A and A for O[[W]]. Then h is naturally
an O[[G]]-algebra and hence is a A-algebra. Then A induces a character ¢ : A — 0%,
and we can think of the maximal quotient h(y)) of h on which A acts via 9. By
definition, A factors through h(¢) and gives a reduced irreducible component of
Spec(h(t)). Then taking R to be h(¢)) ®a [, we have torsion [-modules C;(A;[)
(j = 0,1). Note that replacing [ by its finite extension J does not alter Co(A;1)
much: Co(A\;J) = CO(X; 1) ®; J. In particular, just to study the support of Co(A;1),
we may take [ as large as we want. Then by definition, for large enough [, the support
Supp(Co(A; 1)) in & is the locus of P such that there exists u : h — [ € X ([) different
from A with Ap = pup. Form this, as already remarked, we have

Supp(Co(A;1)) = Suppi(C1(A;1)).

Let P be an arithmetic point in &;(0). Then we have Ap : hp — O, where
hp is the maximal O-flat quotient of (h(¢) ®a [) ®; p 0. By the control theorem
(Ctl), this algebra is isomorphic to the maximal O-flat quotient of hgt‘j;')d (Np~;0) or
hZﬁD)(NpO‘;@) on which A acts via 1. Thus taking R to be hp for A = O, we can
think of finite p-torsion modules: C;(Ap; 0). By construction, it is natural to expect
that n(A)(P) = n(Ap) up to O-units for all arithmetic P. This is proven to be true

if the local component of h through which A factors is a Gorenstein ring [39)].

2.10 Non-abelian class number formulas

In this section, we assume that N is prime to p. The module: Cy ();[) introduced
in the previous section is sometimes called the analytic Mazur module of A and is
studied in depth by Mazur-Tilouine [55], Taylor-Wiles ([73], [70]) and Fujiwara [25]
in its relation to the Selmer group attached to the [-adic representation Ad(m(X))
(see also [49], [19] and [45]). Here we briefly describe the relation, assuming that
F=Q, h=h°"? p > 5 and that the conductor C(z) of ¢ is divisible by N.
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Since classical notation is used in the papers quoted above; so, we first try to
translate them into our language. We consider the classical space Si,(T'o(Np), pw!—*)
of holomorphic elliptic cusp forms of weight k¥ and of “Neben”-type ¢w!~* for the
Teichmiiller character w. This space is isomorphic to S, (Np; C)[¢] for m(k) = k—1,
n(k) = 0 and e, (a,d) = Yw'~*(d), where “[)]” indicates the ¥-eigenspace under the
action of A. Since n(k) = 0, T((n)) coincides with the classical Hecke operator T'(n)
for the ideal (n) generated by a positive integer n. Let Z[y)w~™(®)] be the subalgebra
of @ generated by Yw!™*(n) for all Yw'~*(n) regarding Yw ™) as a Dirichlet
character. Then for each Z[¢w~™(%)]-subalgebra A C Q, we write h,(Np,; A) for
the A-subalgebra of the linear endmorphism algebra Endq(S,(Np; Q)[¢)]) generated
by Hecke operators T'(n) = T((n)) for all n. Then it is known [44] that

R () @pora . O = WY (Np, 1;0)

by an isomorphism taking T'(n) = T((n)) to T'(n) = T((n)). Thus for each positive
arithmetic point P € Spec(l)(0) with x(P) = k, we have its specialization Ap :
h(Np,1;0) — 0. Let fp be a normalized Hecke eigenform in Si(To(Np), ww'm("))
associated to Ap as described in Section 2.6. Thus fp = > " a(n, fp)q™ is a
common eigenform of Hecke operators T'(n) for all n normalized so that fp|T'(n) =
a(n, fp)fp and a(n, fp) = Ap(T(n)). Since the conductor and the level match, the
Hecke algebra h,(Np,1; A) is reduced. We now write Q(Ap) for the field generated
by Ap(T'(n)) over Q and write A for the valuation ring Q(Ap) N O of Q(Ap)
with residual characteristic p. Thus we have well defined C;(Ap; A) = C;(Ap;0)
(j = 0,1) which is a finite module. As seen in Section 2.8, we have a Galois
representation p = w(Ap) : Gal(@Q/Q) — GLo(0) unramified outside Np and
Tr(p(Frobg)) = Ap(T'(q)) for all primes g outside Np. Then we have the identity of
the L-functions

oo

L(s,Ap) = Y _ Ap(T(n))n~* = L(s, m(\p)).

n=1

Let mp be the automorphic representation of GLy(A) spanned by fp and its
right translations. We write L(s, Ad(Ap) ® x) for the L-function of the adjoint lift
Ad(mp) to GL(3) [26] twisted by a Dirichlet character x. Then this L-function has
a meromorphic continuation to the whole complex s-plane and satisfies a functional
equation of the form 1 < 1 — s whose I'-factor is given by

(s, Ad(A\) ® x) =T¢c(s+ £ — )I'r(s+ Z(ﬁ__;)-l__l)’

where I'c(s) = (2r)~°I'(s) and I'r(s) = 7~*/2T(£). Thus I'(s, Ad(\) ® x) is finite
at s =0,11if x(—1) =1, and hence L(1, Ad(\) ® x) is a critical value in the sense of
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Deligne and Shimura for even characters x. We shall relate the size of the module
C1(A; A) and the p-primary part of the critical value Fg(’fi\(i“’ Bls%ﬁi%f)))'

To define the periods (£, Ap; A), we consider modular cohomology groups. We
write simply ¥p for 1w ™" P, Let L(n,tp;A) be the space of homogeneous
polynomial in (X,Y") of degree n = k — 2 = m(k) — 1 with coefficients in A. We let
v =(2%) €To(Np) act on P(X,Y) € L(n,%; A) by

(VP)(X,Y) = p(d)P((X,Y)" 7).

Then we can define the parabolic cohomology group H},.,(Co(Np), L(n,¥p; A)) as
in [64] Chapter 8 and [33] Chapter 6. We have an isomorphism

6: Sk(FO(Np)v"/)P) €B§k(PO(NP)a¢P) = Hclusp(FO(Np)’L(nv ¥p; C))’

where k = n + 2, Sk (To(Np),v¥p) is the space of anti-holomorphic cusp forms of
weight k of “Neben” type character ¥ p, and ¢ is specified in {33] and [64] as follows:
We put

o) = {f(Z)(X —2Y)"dz if f € Snt2(To(Np), ¥p),
f@)(X ~2Y)"dz if f € Snya(To(Np), ¥p).

Then we associate to fp the cohomology class of the 1-cocycle v — f;(z) w(fp)
of To(Np) for a fixed point z on the upper half complex plane. The map §
does not depend on the choice of z. There are two actions: one is a natural
action of Hecke operators T'(n) on H_,.,(To(Np), L(n,vp; A)), and the other is
an action of complex conjugation ¢ given by cw(z) = ew(—%) for e = ('9)
and a differential form w. In particular, § and ¢ commute with T'(n). We write
H},.,(To(Np), L(n,p; A))[£] for the +-eigenspace of c. Then it is well known ([64]
or [33]) that H.,,,(To(Np), L(n,¥p; K))[+] is he(Np,p; K)-free of rank 1 if K is

a subfield of @. Recall that A is a valuation ring of @(A\p). Thus
Hgygp(To(Np), L(n, p; A))Ap, £] = Abx

for a generator {1, where we indicate the Ap-eigenspace by adding [Ap, £] to the
notation. Then for the normalized eigenform fp € Si(T'o(Np),¥p) with fp|T'(n) =
Ap(T(n))f, we define Q(+, Ap; A) € C* by

5(fp) £c(6(fp)) = Qx, Ap; A)x.

The story on the non-abelian class number formula is a bit long; so, let us give an
outline first. Via the deformation theory of Galois representations (due to Mazur,
Wiles and Taylor: [54], [73] and [70]), we can identify the local ring h of h°T%(¢))
(through which X factors) and hp = h ®; p O with universal deformation rings
classifying Galois representations (with appropriate properties) deforming p in good
circumstances (see below for details). In this process, we know that
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1.  h and hp are local complete intersections, yielding the identities:
charCo(X; 1) = chariCi (A1) and  #Co(Ap; 0) = #C1(Ap;0),

2. 1pH},.,(To(Np),L(n,p;0))[+] = hp as hp-modules,

where char) (M) is the characteristic ideal of a torsion L-module M of finite type, and
1p is the idempotent of hp in the Hecke algebra. By (2), we can compute the number
#Co(A; A) cohomologically, and the outcome is that it is given by the inverse of the
p-adic absolute value of the L-value Fg(’fi\(ﬁp X;é((ﬂﬁ‘ﬁif))) [43]. By a work of Fujiwara
[25], the part (1) is generalized to Hilbert modular forms under certain assumptions,
although we restrict ourselves to the case where F' = Q. Moreover, again by the
deformation theory [55], C1(Ap;0) is the Pontryagin dual of the (p-adic) Selmer
group Sel(Ad(m(Ap))). In this way, we obtain the order formula of Sel(Ad(m(Ap)))
in terms of L(1, Ad(Ap)). This is compatible with the conjecture of Bloch-Kato as
explained in [73] Chapter 1 Section 2. A similar formula for L(1, Ad(Ap) ® x) is
conjectured for a general Dirichlet character x in [19] and [46], and some evidences
for the conjecture are discussed there. As already remarked, we have a generator
7(A) of the annihilator of Cy(A;[). By the above order formula, n(X)(P) = n(Ap) is
equal to FS(’_’?dgf’ A;é&f;‘ﬁi‘f’))) up to O-units for all arithmetic P. Thus n(\) gives a
p-adic interpo,la,ti’on of ’adj,oint L-values up to units in . Our desire in this paper is
to eliminate this ambiguity of units in this p-adic interpolation.

To give some details to the above description, let us recall the deformation theory
of Galois representations introduced by Mazur [54]. Let p = 7(A\w,) be the Galois
representation w(\) mod my for the maximal ideal 1y of I. Thus p has values in
GLy(F) for the residue field [ of 0. The isomorphism class of the semi-simplification
of p is uniquely determined by p. We consider the following condition for a number
field E C Q:

(aig) The restriction pg of p to Gg is absolutely irreducible.

Let 9VP) = Gal(@QVP)/Q) for the maximal extension @QVP)/Q unramified
outside {£|Np,oo0}. Then m(\) factors through 9(VP). For any representation p of
4, we write pgp for the restriction of p to Yg. We consider deformations of p over
the category CNLg of complete local noetherian O-algebras with residue field F.
For each object B of CNLg, we write mp for the maximal ideal of B. A Galois
representation p : 4NP) — GLy(B) for B € CNLg is a deformation of pg if p
mod mp is identical to pg as matrix representations. We look into the deformation
functor &% : CNLg — SET'S given by

F(B) = {p:94"P) - GLy(B)|p mod mp =7}/ ~,

where “a” is the conjugation by elements in 1+ Mz (mp). We impose more conditions
on deformations. A deformation p is called p-ordinary over a number field F if
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pla, = (66’ E*v) with an unramified character §, on every decomposition subgroup

Dy of G at p|p. We like to impose some of the following two conditions depending
on the situation:
(reg) p is p-ordinary over Q with two distinct characters 6, and ep;

By class field theory, we regard 1 as a character of §(VP) with values in 0%. For
primes [|N outside p, we impose the following condition:

10
(¥) p (0 1/)) on the inertia subgroup I, € 9VP) for each prime ¢|N.

Let N be the p-adic cyclotomic character. Then det(m(Ap)) = N™F)ep. Hereafter
we suppose that p is prime to the order of 1. We consider the following subfunctors
of F:

Fp(B) = {p € F(B)| p satisfies (reg), (1) and det(p) = N™ Py},
F°rd(B) = {p € F(B)| p satisfies (reg) and (¢)}.

Under the condition that p is prime to the order of v, (aig) and (reg) for p,
the functor Fp (resp. F°"¢) is representable by a universal couple (Rp, op) (resp.
(R°™4, 0°m9)) (see [54], [72] and [45] Appendix).

As we have seen, under (aig), there is a unique Galois representation pp : §(VP) —
GLy(hp) € Fp(hp) (resp, p°¢ : 4VP) — GLy(h) € F°4(h)) up to isomorphisms,
such that Tr(pp(Frobs)) = Tp(£) (resp. Tr(p° ¢(Frob)) = Th(¢)) for all primes ¢
outside Np (for uniqueness, see [10]), where Frob, is the Frobenius element in % at
the prime ¢, and Tp(£) (resp. Tx(£)) is the projection of T'(¢) to hp (resp. h). It has
been proven by Taylor and Wiles [73] that, under (ai ( W)) and (reg) for
P, Fp (resp. F°'%) is representable by the pair (hp,pp) (resp. (h, p°"?)). Thus in
this case, the natural morphism vp : Rp — hp (resp. ¢ : R°"¢ — h) with tpop =~ pp
(resp. 1°"® ~ p°"?) is a surjective isomorphism. When E is totally real, this result
is generalized by Fujiwara [25] under certain assumptions.

In the course of the proof of the above result: Rp = hp, it is shown that Rp is a
local complete intersection. This fact is basically equivalent to

(C1) |C1(Ap; 0)] = |Co(Ap; O)].

By the control theorem (Ctl), this implies

(C2) chary(C1(As1)) = (n(A)),

where for each torsion [-module M, its characteristic ideal charj(M) is given by

[1p P*®™7) for the length £(Mp) of the localization Mp of M at prime divisors P
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in Spec(l). The above fact implies that
(mlt) lpH,fusp(l"o(Np), L(n,vyp;0))[£] 2 hp =< Rp as hp-modules.

By virtue of (mlt), we can compute Cy(Ap;0) using cohomology groups. To explain
this, we write L(B) = H_,.,(Co(Np), L(n,¢p; B))[e] for ¢ = +. Then L(0) =
L(A) ®4 0. Decomposing Frac(h.(Np,; A)) = Frac(Im(Ap)) x X, we define
LP(A) be the image of L(A) in L(A)®4,(np,y;4) Frac(Im(Ap)) and a cohomological
congruence module by

C'(Ap; 4) = LT (A)/(L(A) N L (A)).

Then (mlt) shows that
Co(Ap;0) = CE(\p; A).

It is shown in [43] and [39] that the p-adic absolute value of Fg(fdgf’ g%éﬂ(ij‘:\‘ﬁ;{’f) is

the inverse of the order of the right-hand-side module of the above equation. That
is, under (aig) and (reg) for p, if p is outside 6N,

co(P)T'(1, Ad(Ap))L(1, Ad(Ap)) |~
_ c(P)I(1, Ad(A\p))L(1, Ad(Ap))
L e ) o

(C3) =|C§ (\p; A)| = [C1(Ap; A)),

where ¢(P) =1if k(P) >t < k>2,¢(P)=1-Ap(T(p) 2 ifw(P)=t k=2,
r = r(0) = rankz, 0, and | |, is the p-adic absolute value of A normalized so that
|pl, = p~!. Even if p|N, there is a similar formula (see [39] for details).

We now recall the definition of the Selmer group of Ad(p : ¥V?) — GLa(B))
over Q related to our modules C;. Let V be the B-free module of rank 2 on which
9(NP) acts via p. For each decomposition subgroup D, C G(NP) at p, we write Vo
for the d,, eigenspace in V. For primes £|N prime to p, we write V; for the subspace
fixed by the inertia at £. We identify Ad(p) with trace 0 subspace W of Endg(V).
We put for ¢|Np

We = {¢ € W|g(V2) = 0}.

Define, for £|Np, writing $, for the inertia subgroup at £ in 4(VP)
L= Ker(H (D, W*) — H'($,, (W/We)*)),

where X* = X ®p B* for the Pontryagin dual B* = Hom(B,Q,/Z,) of B. Then
we put
Sel(Ad(p)) = (] Ker(H'(4N?),W*) — H (D, W*)/Ly).
£|Np
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It is a general fact [55] (see also [45] 3.2) that

Ci(Apowp: Rp —)@;@)* ifp=7r()\p),

(Cq) Sel(Ad(p)) = {Cl(/\ ov: Romd — [;1)* if p=7(A).

Thus combining what all we said, we get the following order formula of the Selmer
group under (aig, ( \/(j—m)) and (p) + (6Ng) = Z for the order g of ¥,

(CN1) QTP AR N A n(Ap) up to A-units, and

(CN2) chary(Sel(Ad(m(N\)))) = n(A).

This is a non-abelian generalization of a classical analytic class number formula
(see [73] Chapter 4 and [49]). The definition of the Selmer group can be interpreted
by Fontaine’s theory, and the above formula can be viewed as an example of the
Tamagawa number formula of Bloch and Kato for the motive M (Ad(Ap)) yielding
Ad(w(Ap)) (see [73] p.466 and [7] Section 5).
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3. Periods of motives

We study p-adic periods of motives under the reducibility conditions (Red.) of its
local Galois representation at p-adic places. After an example of vanishing of p-adic
periods in Section 3.3, we will prove a general non-vanishing result in Section 3.4.
At the end of this chapter, we shall show that our reducibility condition (Red,) is
equivalent to Panchishkin’s admissibility condition when the motive is crystalline
(Section 3.5).

3.1 Periods of motives

Let M be a pure motive of rank n defined over F' with coefficients in £. Morphisms
in the category of motives we treat are induced from absolute Hodge cycles. We
always assume that E is a subfield of @ and that 9p acts on its etale p-adic
realization Hy(M) through a compatible system ¢ of Galois representations. We
choose an embedding ¢ : @ < C. Then E can be considered to be a subfield of C
via t. Then the L-function of M or ¢ is defined by

“ Lils, ) = Lls, M) = ] ] det (1 - ‘P(¢I)lHU(M)1<r)N(¢I)_S)_1 ;
0

where [ runs over all prime ideals of F' (and p is chosen so that [ is outside N (p)), I(I)
denotes an inertia group at each prime [ and ¢; denotes the geometric Frobenius class
modulo I([). This L-function is absolutely convergent for s with Re(s) sufficiently
large and is conjectured to be continued analytically to the whole s-plane with a
functional equation:

L'(s,)L(s, ) = &‘(S,(p)F(l —s,¢)L(1 - 8, )

for a suitable exponential function ¢ and a gamma factor I'(s, ). When I'(0, ¢)
and I'(1,¢) are both finite, we call ¢ and M critical. If M is critical, there is a
conjecture of Deligne [15] describing the transcendental factor ¢} (¢) of L,(0, ) as
follows: Write the Hodge realization as Hg (M) ® g C = @, jH»I (? M), where * M
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is the base change of M to C under to for o : F =2 @ and ¢ : Q < C. Then the
criticality of M implies

(Cr) At each real place o, complex conjugation ¢ acts on H*I(° M) via —1 (resp.
+1)ifk =35>0 (resp. k= j < 0), and H**(° M) = 0 for all complez place o.

We now take a Tannakian full subcategory € x of the category of pure absolute
Hodge motives defined over F' with coefficients in E. We always assume E to be a
subfield of @. Suppose that there exist a @-algebra X with a natural transformation
Ix inducing an equivalence of two fiber functors on €x over X: for each o € I,

{M— Hp(°M)®g,; Xg = Hp("M) ®q X}
~{M — Hpr(M) ®rgE,c0i XE = Hpr(M) ®F,s X},

where i : E — Xg = X®qF is the natural embedding. This transformation induces
the comparison isomorphism:

Ixo:Hp(°M)®q X = Hg(°M) ®E,: XE

(Cx) N
~ Hpr(M) ®rgE,c9i XE = Hpr(M) QFp0 X.

Here Ix , may depends on o itself not just its restriction to F'. Writing 1 : E — Q
for the inclusion of E, we write dx ,(M) for the tg-component of det(Ix,,) with
respect to the basis of Hpr(M) over E® F and Hg(? M) over E. Here we identify
FE ®g Q with a product of copies of Q and, the word “.z-component” implies the
component of E ®¢ Q inducing ¢z on E. We write

ox (M) = H 5X,U(M)7
oel
which is an element in X and coincides with dx ,(Resg/qM) up to an algebraic
factor independent of X. Let w € Z be the weight of M, that is, i+j for H»I (M) # 0

which is independent of (i,5) and o. Then we write %*(M) for a member of the
Hodge filtration {#/Hpr(M)}; such that for all o,

FE(M)®p, C = @Hi’j("M) if ¢ acts on H**(M) by F1 and
i>j
FE(M) ®F,, C= GBHM(“M) if ¢ acts on H“*(M) by +1.
i27
We put HE (M) = Hpr(M)/FF(M). When F+(M) = F~(M), we simply write
F(M) for F=(M). Let Hz (M) be the “+” eigenspace of Hg(° M) @ Hg(°“ M) or
Hp(° M), according as o is complex or real, under the action of complex conjugation
¢ = ¢, induced by ¢. Then under (Cr), we know from (3| or [74] (see Lemma 5.1.1 of
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Chapter 5 in the text) that if F does not contain a CM field, HE (M) is E ® F-
free, and if H g r(M) is not E ® F-free, F contains a CM-field, and there exists an
automorphism p of F' inducing complex conjugation on every CM-subfield of F' such
that HE (M) @ HE,(M)? is E ® F-free, where HS ,(M)? is the E ® F-module
isomorphic to HﬁR(M ) as an E-vector space on which e® f € E® F acts via
e ® p(f). Now we define the Deligne period cﬁam(g)), following [3] and [74], by the
tg-component of the determinant of the following linear maps Iia with respect to
basis of HE (M) or HE (M) ® Hp(M)? over E® F and of Hz (° M) over E: if
Lo is real

I o
I, : H5("M) C Hg(°M) —=% Hpr(M) ®Fo X = Hpp(M) ®F, X,
and if «o is complex,

I):,é,a . H:é:(O’M) c HB(O'M) EBHB(CUM) Ix,c®Ix,co HDR(M) ®F,a®ca (X @X)

- (HgR(M) ®F,0 X) @ (HgR(M) ®F,co X)

We regard, once and for all, I as a complete representative set for Hom,,g (F, @) /%r
and choose a complete representative set £ for (c)\ Homg,(F,Q@)/9F such that
¥ C I. When F' = Q), there is a canonical choice of I made of the identity. We will
make this choice always for F' = Q. We put

c§,b((p) = H c‘:)t(,o',l,((p)‘
oc€EX

Then c}t(,b(go) is equal to c)i{’L(Indg;{ ®) = cf,t(’L(Res F/@ M) up to an algebraic factor
independent of X (see [74] Proposition 2.2 and [42] (1.2a,b)). By definition, we have

(BC) Base-change of the E ® F-basis of H5p(M) or HEp(M) @ Hyp(M)? by a
linear transformation @ € GL4+(F ® E) and base change of the E-basis of
HE(°M) by By € GLy4+(E) transform cia,L(cp) into Lg ® a(’y)ciw(cp) for
v € (EQ® F)* depending only on a and § but independent of X.

There are various choices of X with particular properties. We can take X = C. In
this case, the comparison isomorphism I¢ , is derived from a theorem of de Rham.
The complex period ¢, (p) = cé,m(cp) does not vanish, because ¢ interchanges
H*%3(° M) and H3*(? M). We write ¢ (y) for c%’b(go). Supposing that ¢ is critical,
we here give a conjecture of Deligne ([15]; see also [42] Section 1) in the following
form:

(D) LLJEO’LP) € 4(Q) and

-1 LL(OaQD) = (o)t M or o
L (cT(Indz‘iw))—() (C??r(lndzw)) oo ste
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3.2 p-Adic periods of motives

We fix an embedding 3, : Q — Q. In the p-adic case, various rings X with
the property discussed in the previous section has been studied by Fontaine. Among
these, the biggest is the Fontaine’s field Bpg. The field Bpr is an algebraically closed
and p-adically complete field extension of @, (and hence ) with other interesting
properties (see [22] for details). Here we take as €x (X = Bpgr) the category of
de Rham motives defined in [2]. We fix an embedding of @, into Bpg so that the
composite isomorphism @, < B}, 2 Q is the identity on Q,, where the subring
BB g of Bpr defined in [22] is a discrete valuation ring with residue field 2 and
0 is just taking residue modulo the maximal ideal of BE r- We write the p-adic
etale realization of M by H,(M). Then we assume the existence of a functorial
comparison isomorphism conjectured by Fontaine, proven by Fontaine and Messing
[24] under a certain condition, studied by Faltings [20] for general smooth projective
varieties and further generalized to motives in €x in [2] Theorem 0.3:

(Cpr) Ii,o.pr : Hy(M) ®q Bpr = Hpr(M) ®F,i,o BDR-

Here we take the morphism defined in [20] and [2] because there seems a problem
of comparison of comparison isomorphisms [50] 4.3.5. The morphism I; ,, pr is an
isomorphism of Y r,-modules if we put the following Galois module structure: If the
p-adic place ¥ is induced by i,0, Y, acts on H,(M) ®g Bpr via the diagonal
action 7(m ® b) = 7(m) ® 7(b) and on Hpr(M) ®F,i,o Bpr through Bpg, that is,
7(f ®b) = f ®7(b). Note that we have another functorial isomorphism coming from
the identification of the Betti cohomology with the etale cohomology:

(Cet) LIt : HB(UM) o) @p = HB(UM) QF (@p ®F) Hp(M)~

The etale cohomology H,(M) is defined by extending scalar from F to F. The
motive M over C is the scalar extension of M to C via to. Thus I,; . depends
onw : F = Q c C. We can thus have Ixs = Ii,0,pR © L5t for X = Bpg.
For X = Bpg, we write C%Ria,b(cp), C%R,L(SD)’ 0pr,c(M) and épr(M) for c)i{’o,L(cp),
ci,b(go), 0x,0(M) and dx (M), respectively. Note here that these periods are the iptz-
component of the determinant of the various comparison morphisms. We further
note that the above period c3, R, () may vanish depending on ¢ (and i,). We
study in detail such vanishing and non-vanishing of p-adic periods in the following
Sections 3.3 and 3.4.

To define periods in Q not in Bpg, we introduce now the local reducibility
conditions. For that, we look into Bgr. We start recalling Z,(1) which is the p-adic
Tate module of G,,. By identifying pny with Z/NZ via i,(:™! (exp(2mi/N))) + 1,
we have a trivialization: Z,(1) & Z,. We write Z,(—1) to be the Z,-dual of Z,(1)

MEMOIRE 67



GENUINE p-ADIC MODULAR L-FUNCTIONS 33

and define as a 9g,-module, Z,(+n) = Z,(+1)®" for each positive integer n. We
put Z,(0) = Z,. Then we consider Q(n) = Z,(n) ®z 2 on which 9q,, acts diagonally
(and semi-linearly). There is a trivialization Q 2 Q(n) as specified above. Since B},
is a valuation ring with residue field 2, we construct the associated graded algebra
Byt of Bpg. That is canonically isomorphic to &,Q(n) = Q[t,t~1]. We assume the
existence of the Hodge-Tate version of I;,, pr:

(CuT) Lio.5T : Hy(M) ®q, Bar = Hpr(M) ®F,i,c BHT.

The existence of I; ,, g7 is shown for smooth projective varieties over Z, by Faltings
[21]. Thus (Cgr) is valid at least for crystalline motives [2]. We anyway assume the
existence of Iyr. We can define all periods as in Section 3.1 for X = Byt and
Ix,o = ILi,o,uT © I,5,et- We express these periods replacing the subscript X by HT
in the notation introduced in Section 3.1. Let Sr be the set of all p-adic places of
F. We suppose (Cyr) at every B € Sp; thus, the tg-component Hy (M) of H,(M)
is of Hodge-Tate type, where p is the p-adic place of E induced by i,. We suppose
the existence of 9, -subrepresentation Vf in Hy(M) for each B = {ip0} € Sp such
that I, gr induces

(Redy) I 65T : ngf ®E,,i, Bur = F*(M) ®FeF,00i, BuT.

As we will see later, the condition (Red_) is always satisfied by admissible crystalline
motives in the sense of Panchishkin [56]. However this formulation is more useful,
because it does not require M to be crystalline. A similar condition asserting the
existence of Viét without reference to F*(M) is also stated in [28] as Panchishkin’s
condition.

We now study how the condition (Red,) behaves under base change. Let F’ be
a subfield of F. Since the condition (Red4) is insensitive to changing the field of
definition of M, we may assume F to be a Galois extension of F’ replacing F by the
Galois closure of F over F’. Pick a prime p € Sgr and decompose p = HSB!D Be®),
Extending P to a prime of F corresponding to i,0, let D(%R) (resp. D(p)) be
the decomposition group of B = iy0 in H = Yp (resp. 4 = Yp/). We embed
Dy Indggg) VgBi into Ind§ V as follows. We have a natural bijection between
the double coset #\%/D(®¥) and primes of F dividing p. By fixing a complete
representative set R for #\9, we identify Ind;"’} V with the space of functions on R
with values in V. Then g € Gactsonv: R — V by gv(o) = h,v(7), where 0g = hoT
for 7 € R and h, € #. We identify Indgg% Viét with the space of functions in Ind(gf \%
supported on #\HoD(B) with values in Voj(:‘l%)' It is plain from construction that
this embedding is an embedding of D(p)-modules, and I; o, g for Resg/p M, which
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is given by @le:a I, g, induces an isomorphism

@Indgg& VjE ) ®E,i, BT = gi(ResF/F’ M) ®F'gE,i,oci, BT

Blp
Thus if M satisfies the condition (Redt) over F', Resp/p M satisfies (Red4) over
F'.

As observed in [2], if ¢, () is supported by a single graded component, we
can naturally identify the period with a p-adic number in Q. We now show that
this is the case when (Red.) is satisfied. Since the multiplication by dg7 () is the
comparison isomorphism of the rank 1 motive A" M and hence is supported by a
single graded component. If M satisfies (Red.) and ¢o is a real place of F, cflT o (@)
is the determinant of the composition of o

Lo : H5(°M) ®g,, By — Hy(M)/Vif  and
Lo : (Hy(M)/V{) ®E,i, Bur = {Hpr(M)/F* (M)} ®reE,cei, Bur-

Since I,, is well defined over Ejy, up to numbers in Ey, C}*LIT 7 () is equal to the
determinant of the isomorphism I; -, and the representation V and Hy(M)/ V are
of Hodge-Tate type. Thus we have the p-adic periods in 2 when M satisfies (Redi)
because the periods ciT’a,L(go) € Bpyr is, up to the degree 0 number det(l,,) in
Ey, the determinant of the comparison map between /\di H g r(M) and the Hodge-
Tate representation /\ ( o(M)/ V:F) and hence is supported by a single graded
component. We can similarly check that et HT,o, () is supported by a single graded
component also for complex place o. Hereafter, we write ¢, () and ¢, (p) for
clj}TJ,L(go) and CHT,L(SO) regarded as being in 2. The above argument shows the
principal transcendental factor comes from non-vanishing det(I;,,). The vanishing
may occur due to the first factor I,,.

3.3 An example of vanishing p-adic periods

Y. André [1] found an example of vanishing period, and his argument generalizes
in the following case. We keep the notation in Section 3.2. Let € be an elliptic
curve defined over QQ without complex multiplication. We consider the p-adic Tate
module Tp,(€) of €. Choosing a base of the dual (T(€))Y — H,(€), we have a
representation ¢ : 9q — GLy(Z,). We suppose
(Fu) The image of ¢ is full, that is, Im(p) D SLa(Zp);

(Ord) € has ordinary good reduction at p.

There is a plenty of examples of € satisfying the above conditions. We pick two
embeddings ¢ : @ < C and i, : @ <> Q. Then by (Ord), H, »(€) has a one dimensional
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subspace V; = V_ stable under the decomposition group at p relative to i,. Since
¢ has two eigenvalues +1 on H, (%), we can choose a matrix A € SL;(Z,) so that
A~Yp(c)A leaves V. stable and acts on it through multiplication by +1. We choose
T € %q such that (1) = A. Then the complex conjugation with respect to ¢7
leaves V stable and acts on it through multiplication by +1, and it is clear that
c;,k’w(go) = 0. This argument shows that on a non-empty open subset of the space
of {(ip,¢)}, the motive H'(€) has non-vanishing periods but also on a non-empty
closed subset, the elliptic curve € has p-adic periods ¢, (¢)c, . () = 0.

3.4 Non-vanishing of p-adic periods

Suppose (Red) for M and that M/ is pure of rank n with coefficients in E and
H, (M) is of Hodge-Tate type at every T € Sp. We write the representation of 4p
on Hy(M) as p. We identify 4z with §p- by 0. Then we put ¢, (g9) = p(ogo~!) as
a representation of Yr-. Then we assume

(SSr) Yo s semi-simple for all o € I.

As we have already remarked, (Redy) does not depends on F. We also know that
I, c;f,a,” () is equal to c;t,id,”(lndig ) up to a non-zero algebraic constant. Thus
we only need to prove the non-vanishing of c;:’i a,.-(®) for some 7 for & = Indiﬁff; .
We write ci” for c;iid’w. Note that ® = _.; ¢, over the Galois closure of F' over
Q, and @ is semi-simple. Write V for the representation space of ®, and consider
the algebraic group GLy defined over E, such that GLy(A) is made of A-linear
automorphisms of V ®g, A. Let G be the Zariski closure in GLy (E}) of the image
of ® (for an algebraic closure Ey, of Ey). Then G is an algebraic subgroup of GLy
defined over Ey, and let G° be its connected component. Since the unipotent radical
R,(G°) acts on V by an unipotent action, the semi-simplicity of V' tells us that

R, (G") is trivial, that is, G° and G are reductive.

Now we consider the Tannakian subcategory M (M) of motives generated by the
motive Resp/gM. We write Galys for the motivic Galois group of (M) with respect
to the fiber functor Hg. Since M(M) is semi-simple, Galys is reductive. Thus Galy
is an algebraic group acting on V defined over E. We have a natural morphism of
algebraic groups of G to Galys defined over Ej, induced by the functor associating to
each object of M(M) its Galois representation. The functor taking objects of M(M)
to their Hodge structures induces a one parameter subgroup oo : G /c — Galyyc
(cf. [16] Section 3), and similarly the p-adic Hodge-Tate structure gives another
tp : Gm o — Galpr/q [62]. We fix an embedding of Ey into C which coincides with
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t on E. Then we suppose

(MT) Moo has values in G°(C);
(Reg) Resp/qM is regular over F,

that is, the image of po, is a regular l-parameter subgroup of Galys, which is
equivalent to asserting that all non-trivial Hodge component of Hpr(M)®FrgE,-0.C
for each o is of dimension 1. Note that the one parameter subgroup p, has values
in G°(Q) by a result of Sen and Serre [62] Théoréme 2. By (Reg), the centralizer
of p, (resp. fieo) in G is a maximal torus T}, split over 2 (resp. Too split over C) of
G°, and p, (resp. fio) determines a Weyl chamber of Y (T},) = Homqig-gr (Gm, Tp)
(resp. Y(T)) and hence a Borel subgroup B, (resp. Bo,) containing T, (resp. Too)
in G. The Borel subgroups are stabilizer of the filtration coming from the Hodge
filtration of Hpgr(M) through the comparison isomorphisms. Thus taking a big
algebraically closed field U over Ey containing 2 and C as two extensions of Ey, we
find g € G°(U) such that gTeg™! = T}, and gBsg™* = By. Since ®(c) reverses the
Hodge filtration on Hpgr(M), ®(c) brings B, to its opposite. In particular, ®(c)
(resp. g®(c)g™!) is not contained in any proper parabolic subgroup containig T,
(resp. Tp). Let Par(T,) be the set of proper parabolic subgroups of G containing
Tp, and define a subset X of G by

z € G|z®(c)z™" is in an element of U P
PePar(Tp)

Each P € Par(T,) contains a unique Borel subgroup with torus T},. There is finitely
many such Borel subgroups. For a given Borel subgroup, there is a finitely many
parabolic subgroups containing the Borel subgroup. Thus the set Par(T,) is a
finite set. For each P € Par(T,), {z € G|z®(c)z=* € P} is obviously Zariski-
closed. Then X is a union of finitely many such sets and is Zariski-closed in G, and
codimgo (X (JG°) > 0 because g ¢ X, g € G° and G° is connected. Since Im(®) is
Zariski-dense in G, we can find 7 € 9q such that ®(771) ¢ X, and ®(71er) is not

contained in any member of Par(T},). This shows the non-vanishing of ¢, (®).

Theorem 3.4.1 — Suppose (Redy. ), (SSr), (MT) and (Reg) for the motive M over
a number field F. Then there exists T € Gr such that cE, ., (p) #0 for all o € I.

P,0,LT
If we assume the Tate-style conjecture asserting that M (M) is equivalent to the
Tannakian category of Galois representations generated by @, then G & Galys over
Ey, and hence the condition (MT) follows. If M is of rank 1, there is nothing to
prove (see (7.2.1)). We assume that M is of rank 2 and M satisfies in addition to
(Red+):

(Irrr) ¢ is absolutely irreducible over any finite extension F'/F.
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Let V be the representation space of ¢. We consider the Zariski closure H of
the image of ¢, in GLy (Ey) for 0. Note that H is independent of o. The Hodge
structure of M at 1o (resp. the p-adic Hodge-Tate structure at i,o) induces a one
parameter subgroup peo,s : Gm — Galpys (resp. pipo : G — H). By (Irrp), for real
o, H is isomorphic to either SL(2) or GL(2) according as the weight of the Hodge
structure at o of M A M is zero or not. By making some Tate twist if necessary, we
may assume that H, = GL(2). Then fioo » has values in H(C) (this is an F-version
of the condition (MT)). We now assume a version of the condition (Reg):

(Regs) Hp(°M) has two distinct Hodge types at each real o € I and Lo g, and
Hp(°M)®Hp(°° M) has four distinct Hodge types at complez o € I and toig.

By this, we have the maximal torus T'x » centralizing px , and a Borel subgroup
Bx,, of H fixing the Hodge filtration. We take a universal domain U as in the
proof of Theorem 3.4.1. We fix a Borel subgroup B of H defined over U. For
each real place o of F, we can choose g, € H°(U) so that goTe,09; " = Tp,- and
9o Boo,095 ' = Bp,s, where H° is the connected component of H. Then g, (¢,)(c)g,*
is not contained in Bp,. Thus X, = {z € Hlz(ps)(c)z™" € Upcparr,.) P}
is a proper Zariski-closed subset of H, where Par(T,.) is the set of all proper
parabolic subgroups of H containing T, ,. In particular, codimpge(X, () H®) is
positive. We now assume o to be a complex embedding of F'. If one of Vf and ngfc
is trivial (i.e. just {0}) for the p-adic place 8 attached to i,o, the period c}i('a’L(M )
does not vanish for any choice of ¢ by the definition of H}:;(“’M ). Thus we may
assume that dirn(Vgét) = dim(Vaétc) = 1. In this case, if one of cim(M ) vanishes,
the complex conjugation ¢ : Hp(**M) = Hp(*°M) induces an isomorphism:
ViE o ti. This implies the p-adic Hodge types of the two 9p,-modules are the
same, which contradicts to (Reg,). Thus under (Reg,), the period does not vanish
for complex ¢. Thus we can forget complex places. Regard naturally G° in the proof
of Theorem 3.4.1 as a subgroup of the product H = 1, Ho of I-copies of H, = H.
Since codimpo (X, (VH°) > 0, we have 7 € G such that ¢, (1) € X, but ®(7) € G°.
Thus (1) = @, o (1) & X, x H'~17}; hence the codimension of G° ) X, x HI~{}
in G° is positive, and G° (U, .,eq; Xo X H'~{}) is a proper Zariski-closed subset of
G°. Thus we can find 7 € 9Gp such that (1) & (U, .,eq; Xo X H717}). By changing
¢ by vr, we have a non-vanishing p-adic period for every o € I. We just record the
above fact:

Corollary 3.4.2 — Suppose that M is of rank 2 over E and (Redy ), (Regs) for all
o and (Irrp). Then there exists T € Gp such that ¢, . (@)cy 5. (0) # O for all
o€l
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3.5 Admissibility condition

Our condition (Redx) is closely related to Panchishkin’s admissibility condition
for the (conjectural) existence of bounded p-adic measures for motivic L-functions
(Panchishkin [56] Section 5). Here we explain the relation in some detail. For
simplicity, we assume F' to be totally real. To define the admissibility, we need
to introduce the following extra hypotheses on M:

(Cris) He(M) (resp. Hy(M)) is unramified for £ # p (resp. crystalline at each B|p).

Let us recall the definition that M is crystalline at ¥ [22]: Let B..;s C Bpr be
the Fontaine’s ring B.r;s introduced in [22] Section 4, and B..;s is an algebra over
the field Ko C Q of fractions of the ring of Witt vectors with coefficients in F,. The
Frobenius automorphism ¢ of Ky extends to Beris, and Beris has a ¢-linear map
®.,;s (called crystalline Frobenius map) and a decreasing filtration F%B,,;s. Then
By is defined by gr(Bcris) = gr(Bpr), where the filtration of Bpp, is given by the
power of the maximal ideal of B}', r> and that of Beris is induced by the filtration
of Bpgr. Let K/Q, be a finite extension, K be the algebraic closure of K in {2 and
Ky = Ko\ K. Then 4 = Gal(K/K) acts on Bpg and B.;s extending its action
on K so that H°(4,Bpr) = K, H°(4,Bur) = K and H°(%, Beris) = Kur. For
each continuous representation of % on a finite dimensional vector space V over Q,,
we define

D(V) = Ho(cg, vV ®Qp Bcris), DDR(V) = HO((Q, Vv ®@p BDR) and
Dur(V) = H(%,V ®q, Bur),
where 0 € G acts on V ® Bx (X = cris, DR or HT) by v® b+ o(v) ® o(b). Then

D(V) ®k,, K is isomorphic to H(9,V ®q, (Beris ®k,, K)) and is a subspace of
Dpgr(V). It has been shown in [23] Section 3 and [22] Section 5 that

(Fol) D(V) is a vector space over K.,

(Fo2) dimg,, D(V) < dimg Dpr(V) < dimg Dgr(V) < dimg, V;

(Fo3) D(V)®k,, K has decreasing filtration D? induced from that of Bepis ®k,, K,
(Fod) D(V) has ¢-linear automorphism ® induced by ®¢pis.

When the equality: dimg,, D(V) = dimg, V' holds, V is called crystalline. A
filtered Dieudonné module D is a finite dimensional K, ,.-vector space D with a ¢-
linear map ® and a decreasing filtration D® of D ®k,, K satisfying the condition
(Fo3-4) for D in place of D(V). We call M crystalline at p if the p-adic étale
realization H,(M) is crystalline for the closure K = Fy of i,(o(F)) in Q for all
o € I. Thus we have the above functor D depending on p-adic place 8 induced by
ipo of F which gives the identification of the decomposition group at 8 and 6. Under
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this setting, M has its crystalline realization H..;s (M) at B given by D(H,(M)),
which is a K,,-vector space with a ¢-linear automorphism ®. We suppose to have
a canonical identification: H,;s 3(M) ®k,, K = Hpr(M) ®F, K and to have a
canonical isomorphism:

(Ccr’is) Iipo,c'r'is . Hp(M) ®Qp Bcris = cris, B (M) ®Km. Bcris-

If M is the motive attached to a smooth projective variety V over F' with good
reduction at 3, by a theorem of Faltings [20] (see also [50]), M is crystalline at
p, and H.;s (M) is the scalar extension to Ky, of the crystalline cohomology
group of the reduction of V modulo %, and (Cris) and (C..;s) are satisfied. We
can take €x to be the category of crystalline motives defined in [2]. We define the
period ccim.s’a(@) taking X = Beris and Ix,c = I;,0,cris © Lis,et- We assume here the
compatibility of I;,5 cris and I; o, pr (see [50] 4.3.5 and [2] 5.1). Then for crystalline
M, we get cfm-s,a(cp) = C%R,a(‘P) in Bpg. The local Euler factor at 8 of L(s, M):
Lg(X) = det (1 - 90(¢f)|H[(M)X)’ where f = [K,, : Qp], can be recovered as the
characteristic polynomial of ®/ acting on Hp;s 3(M). For each filtered Dieudonné
module D with Frobenius ®, we can attach two polygons. One is the Newton polygon
Py (D) of det (1 — ®f| ,X), and the other is the Hodge polygon coming from the
filtration. That is, the polygon Py (D)(t) passing through points

(0,0),...,(>_dim(D*/D**), Y i dim(D*/D*)), ... .

i<y i<y

If V is crystalline, it is known that Py (D) is located above Py (D), and they match at
the two extremes [23] Section 4.4. A filtered Dieudonné module with this property is
called weakly admissible. The functor V +— D(V') gives an equivalence of categories
from the category of crystalline representations to the category of admissible filtered
Dieudonné modules ([23] Section 3). Fontaine proved that admissible Dieudonné
module is weakly admissible.

Let us now describe the $-admissibility condition of M due to Panchishkin: Let
Py 5(t) (resp. Py s(t)) be the Newton (resp. Hodge) polygon for H,,;s 5 (M). We
write d* for dimg H;(°M) = dimp ¥~ (M). The motive M is called admissible in
[56] if

(Adm) Py g(dT) = Py g(d™) for all 5.

Since the Newton polygon Pp s is defined solely using the crystalline realization, if
M is admissible, we can find a filtered Dieudonné submodule Dy of Hepis (M)
such that Dy ®k,, Bpr = ¥ (M) ®F,i,0 Bpr. Thus if M is admissible, Dy
is weakly admissible and is contained in the admissible module H..;s (M). In
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this situation, Dg itself is admissible [23] 4.5.1. Thus we can find a crystalline
subrepresentation Vg C Hy(M) of 4p, such that D(Vgg ) = Dy, and I g.cris
induces V§B_ ®a, Bur 2% (M) QF,ipo Byr.

In order to define Euler p-factor of the genuine p-adic L-function, we recall here
some of definition given in [56] Section 6. Since the Euler p-factor is the same for
M and Resp/qoM, we assume here that F' = Q. Let Qo be the unique cyclotomic
Zy-extension of Q, and pick a finite order character x of Gal(Q/Q). We now write

L,(X) = [[1 - ;)

so that ord, a; < ord, az < --- < ord, a,. Then we define

(E)
E(M ® x;s)
_ it cjenl = ap™*) [Licjcar (1 — aj_lps_l) if x is trivial,
Iicj<a+ (aj_lps)” : if C(x) =p” with v > 0,

where C(x) is the conductor of x. We further put

_ra,m)

(F) 7(M) - (271'?:)T

for r = Zjhj”c for the Hodge number h%* of M,
j<0

where I'(s, M) is the Gamma factor of the L-function of M as in [15].
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4. Periods of arithmetic Galois representations

We study general [-adic arithmetic Galois representations ¢ and its periods. We
shall state conjectures on the existence of genuine p-adic L-functions and their
normalization.

4.1 Variation of p-adic periods over Spec(ll)

We study a bit more general representation ¢ : 9r — GL,(K) than in the
introduction. We assume

(Cont) There is an I-module of finite type V in K™ such that
(1) Ve K=K";
(it) V is stable under ¢;

(i) ¢ :%r — Auty(V) is continuous under the adic topology of the mazimal
ideal of I.

Replacing V' by its reflexive closure (that is, the intersection of localizations of
V at all height 1 primes of [ in V' ®; ), we may (and will) assume that V itself is
reflexive. See [8] Chapter 7 for general theory of reflexive modules. By extending the
scalar field K if necessary, we assume that in Spec(l)(K), there are densely populated
arithmetic points. We also assume unramifiedness (unr) as in the introduction. For
an arithmetic point P, we consider the following condition

(Frp) The localization Vp of V at P is free of rank n over lp.

This condition is open, i.e., it is satisfied by all P’s in a non-empty Zariski-open
subset of Spec(l). Under (Frp), we have the residual representation V(pp) given
by the image of V in Vp/PVp, which is a continuous Galois representation into
GL,(0). We call P motivic if pp is associated to a rank n pure motive Mp defined
over F' with coefficients in a number field Ep via the inclusion i, : Q > Q. We
suppose arithmeticity:

(A1) Motivic points are densely populated in Spec(l)(K).
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We then consider the following condition milder than (A2, ):

(A’21) For a dense subset of motivic points P, we have

(i) The Tate twist Mp(1) is critical in the sense of Deligne [15], and Hy,(Mp)
is of Hodge-Tate type at every B € Sr;

(ii) For each p-adic place B induced by ipo of F, there exists an [-submodule
Vg C V stable under (QF‘B such that the comparison isomorphism I, gt
induces: nggt ®1,p Brr = @i(Mp) QFQE,ipo®ip Bpr.

We may assume that Viét KNV = ngst and V{st is reflexive. Suppose (A’24)
and

(NV.) There exists an embedding io : Q — C such that sz,ioo (¢p) # 0 for at least
one motwic P as in (A'24).

We want to prove c;',iw (pp) # 0 for densely populated P satisfying (A’2). By
replacing ¢ by Indgg ¢ (and M by Resp/q M), we may assume that F' = Q, because
the condition (A’24) is insensitive to induction process as shown in Section 3.2 of
Chapter 3. Writing V[c + 1] for the F-eigenspace of ¢ of the complex conjugation
induced by i, we have

VerQ= V-1 Q) @Vic+1] ez Q).

Thus we have a natural linear map I; : V[c - 1] ®z Q@ — (V/V,) ®z Q. We
now localize at P. The condition (NV_.) implies that, after reducing modulo P,
I induces an isomorphism. Thus the cokernel Coker(I;) is a torsion | ®z Q-
module, and Vic — 1]V, = {0}. Let X = X(ix) be the support of Coker(I)
in Spec(l ®7 Q), which is a proper Zariski-closed subset of Spec(l ®z Q). Thus for
critical motivic points P outside X, c;r’ioo (pp) # 0. Although we only discussed here
about c;;ioo (¢p), the same argument works well for c,; (pp) under (A'2_). Thus
we find

Proposition 4.1.1 — Suppose (NVy). Then ciioo (¢p) # O for densely populated
motwic points P satisfying (A'24) for a given {ngg|E YpPesp-

Now suppose that ciiooT(ch) # 0 for 7 € %Yg with another motivic point Q as
in (A’24). We localize [ into I’ so that we have an open immersion Spec(l’) —
Spec(l) — Y for Y = X(iso) X (ico7). We write V* for V/Vyf. Then we have a
diagram:

V[c F 1] & I’ = ij QI
o)™ | |@(n)
Virter sl l =2 VPel,
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where ®4(7) is defined so that the diagram becomes commutative. Then the
following diagram for each motivic point P outside Y satisfying (A’24) is
commutative:

Iico
Hp(Mp) ®E,i, Bur —=— Hp(Mp)[cF1] —— Vf ®1,p BrT
idl «:(r)‘l(P)l ld&(r)(z’)
Hp(Mp) ®p,i, Bur ——— Ho(Mp)ler F1] —— V. @1,p Bur,

ioo T

where ¢, = 7 1er. Note that V:t ®1,p Bur = HDR(MP) QFQE,ip®ip Bpr. Then
we have ciimT(cpp) pﬂw (pp)B+(P) for Bi(r) = det(®4(7)) € I — {0}. Here we
regard § as a function on ¥; = Spec(l) by 8(P) = P(8). Writing the characteristic
ideal of an l-module M as char;(M), B+(7) € chary(Coker(I;_))~1 for all 7. Thus
we have

Proposition 4.1.2 — Suppose (A'2+). Then if ciim(go}a)ciimT(ch) # 0 for two
motivic points P and Q satisfying (A'2i ), then there exists an element By =
B+(1) € K* such that sz Llop) = cp’ (¢p)Bx(P) for densely populated motivic
P satisfying (A'2+ ). Moreover the [-module generated by Bi(7) for all T € Gq is a
fractional [-ideal of K.

4.2 Genuine p-adic L-functions

Let ¢ be an arithmetic [-adic Galois representation satisfying (Cont), (A1,3),
(A’2_), (NV_) and (unr). We also write & for Spec(l). Thus for an O-algebra A,
%1(A) = Homg-q14(l, A). We state here a refined version of a conjecture in [56]
Conjecture II':

Conjecture 4.2.1 — Under (Cont), (A1), (A'2_), (A3), (NV_) and (unr), there
exists a genuine p-adic L-function for ¢ and S = {Vg YpPesy, which is a
meromorphic function Lg ;__ (P v) defined on () such that for all motivic points
P satisfying (A'2_) for S, if cp i PP ® N1 #0,

. Ls, i (P, o)
(l) pzs(wpf@ﬁ)g € lP(@
() i (RumBs ) e (hmlers

:oi ‘/’P®‘N 1)
where N is the cyclotomic character such that N(¢y) =

(i) If Mp = M ® x for a finite order character x factoring through the
cyclotomic Zp-extension of F' for a motive M crystalline at p in the sense
of [2], we have the following description of “%” and €(P): Replacing M and
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Mp by their restriction of scalar to Q, we may assume that F = Q. Then
é(P) =¢(M ® x,1) for € in (E) in Section 3.5 in Chapter 3; and
* =y(M)e(M ®x)™' for~ in (T) in Section 8.5 of Chapter 3,
where (M) 1is the constant term of the functional equation of L;__ (s, M).
Here are several remarks:

(a) In Conjecture 4.2.1 (iii), the formula of the constant “#” looks a bit different
from [56] Section 6 because our evaluation point is “1” in place of “0”. By the
functional equation, the value L(1, M ® x) corresponds to L(0, M ® x~1). If
one applies the formula of Coates and Perrin-Riou to this dual M ®x ™!, we get
the same value as in [56] Section 6. This shift of evaluation point comes from
the fact that these authors use homological formulation (and the arithmetic
Frobenius) instead of the cohomological one (and the geometric Frobenius)
used here. Thus the Selmer group corresponding to our p-adic L is actually
the one associated to ¢ defined in [28]. If crystalline motivic points P of a given
type is dense in Spec(l), the condition (iii) uniquely determines the p-adic L-
function, and the restriction of our p-adic L to the cyclotomic deformation of
Mp should be closely related to the p-adic L-functions of Mp conjectured in
[66] and [58] (see Section 4.3). The density of crystalline motivic points seems
to hold in many examples of modular Galois representations ¢ (see Chapters
6, 7 and 8). In the examples of p-adic L-functions in the modular case, the
constant “x” is determined completely for all motivic critical points of given
type, and the expression of “x” confirms the formula (iii) in the conjecture for
crystalline P.

(b) In the conjecture, we mean by a meromorphic function an element in the field
of fractions of 1&¢0q.

(c) The identity (ii) is independent of the choice of basis of Hf,5(Mp(1)) and
H ("7 Mp(1)) because ¢ and cf, behave exactly in the same way under the
change of basis (see (BC) in Section 3.1 of Chapter 3). If we change i by
10oT With non-vanishing periods, we know the existence of 5_ € IK* such that
¢Firlpp @ N7 = B_(P)c}, (pp ® N71). Thus if the genuine p-adic L-
function Lg; (p) exists for i, then it is easy to deduce from the conjecture
of Deligne (D) (in Section 3.1 of Chapter 3) that S_(7)Lg._ (¢) satisfies the
properties (i) and (ii) for ico7 in place of io,. Thus the existence of Lg ;. (¢)
is independent of the choice of 7.

4.3 Normalized p-adic L-functions

We assume p > 2 and the following conditions for an arithmetic ¢:
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(Fry) ¢ has values in GL,(l);
(FR4) Vf is an [-direct summand of the space V.=V (p) 2" for all B;
(SD) There is a Galois character x : Gr — 1% such that p ® x = ¢ over K.

By self-duality (SD), the character x is arithmetic, and the isomorphism takes
Vgék (¢ ® x) ® K into ngi (¢) ® K. Since each pure motive has a polarization, the
condition (SD) should not be too restrictive. Any 2-dimensional representations
and their tensor products satisfy (SD). We thus have an inner product (, ) on V()
such that

(p(o)z, p(o)y) = x(0)(z, y).

We define the normalizing factor a4 () € [. Let V be the dual of V in V ® I under
the pairing. Then V is Galois stable and belongs to isomorphism class of ¢ ® x over
I. Although it is more legitimate to write V((¢ ® x)p) for V/PV, we write it as
V(@p). If the place P is induced by ipo, we write V= for Vf The [-freeness of
Wi =VEPVE+ (VP V)[c, £ 1] for complex iooo and Wy = VE + Vic, + 1]
for real io,0 follows from (NV.), and we find an [-linear endomorphism A% such
that AZV = Wy or AX(VE@V) = W4 according as ix0 is real or complex. We
put ay = ax(p) = [[,ex o for af = det(AL) computed with respect to a basis of
V or V@ V. By definition, a4 (), up to [-units, only depends on the isomorphism
class of ¢ and hence depends only on the isomorphism class of ¢, but not on the
choice of the pairing. We define

(NL) Ls(p) = 04(9) "' Ls,ine () = 04 () 7' L i (¢ ® X),

where the last equality follows from the fact that ¢ = ¢ ® x over K. Since
Vi (p ® N71) = Vit (p) and V/Wy = (V/Vi)/Vies + 1], it is clear from the
argument proving Proposition 4.1.2 that the ideal (Ls(p)) of I8¢0q depends only
on isomorphism class of ¢ but not on the choice of i,,. We will give another proof
of this fact later.

We want to relate now the values of the normalized L-function Lg(p) with the
complex L-values. For notational simplicity, we assume that F' = Q for this, and we
leave the reader the task of working out the formula for general F'. For an arithmetic
point P, classically the complex period cfo’iw (Mp) is normalized choosing a suitable
lattice L of various realizations H7(Mp). Since the L-function would describe the
Selmer group of ¢ (see [28]), it would be natural to take V /PV as Ly of Hy(Mp).
As for Lp, writing V" for the valuation ring of the place i, of E, we would choose
an V-free lattice Lp of Hg(Mp) so that I;  induces an isomorphism:

I, :Hp(M)®p E, = Hp(M)

(c0) U U
L ®y 0 Ly.

IR
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Since Faltings’ comparison map preserves well the integral structure on H,(M) and
Hpgr(M) when M is associated to a smooth projective variety over Q with a smooth
model over Z,, ([20] Theorem 5.3 and [21] (c) in the introduction), it seems possible
to impose a condition similar to (co) to normalize Lpg under certain assumption
on M. However we do not specify here how to normalize the ¥V'-free lattice Lpg in
Hpgr(M), because of the following reasons:

(i) the choice of Lpr does not really affect the final expression (see Proposi-
tion 4.3.1),

(ii) the normalization of Lpg could be delicate depending on M especially if M
is not the total cohomology of a smooth variety over Z,,, and ‘

(iif) it would add further complication to the text. Instead we will give later an
example, in the case where M is associated to an elliptic curve, to clarify the
point.

Since the Tate motive @(1) has canonical integral structure Z(1) whose p-adic
period is 1 and complex period is 2mi. By tensoring Z(1)®™, we can shift L- to the
integral structure L (m) in H7(M (m)). We then define the complex period QZ (pp®
N~=™) (resp. the p-adic period 2 (o p®N ™)) by the is-component of det(I¢) (resp.
the i,-component of det(I;,)) computed with respect to the basis of Lg(m)[c F 1]
(resp. Ly(m)/(V;T (op ® N™™))) and Lpr(m)/(Lpr(m) N FF (Mp(m))). Now we
have
Proposition 4.3.1 — Let the notation be as above. We assume (SD), (Fn), (FR4)
and (NV, ). Then we have

Ls(P,o) ___1( Li..(1,¢p) )

= X7yl
A (ep@N-1) P \Qd(pp ® ND)

up to p-adic units.

Proof. Note that V(¢ ® N71) = V,;F(p) and V(e @ N7 Y)[c — 1] = V(p)[c + 1].
Thus a_(p ® N71) = a4 (p). Then, by (), as(P) = det(l;, : Lglc+ 1] —
Ly/(V;t /PV})) up to p-adic units. Then we know that ¢, (¢p ® N™1), computed
with respect to Lpr(1) and Lp(1), is equal to oy (P)Q2;} (pp @ N71)) up to a p-adic
unit. This combined with the interpolation formula (Int) in Chapter 1 for Lg;__(¢)
yields the result. 0

Since the periods Q;,t does not depends on i, Proposition 4.3.1 shows the
independence of the ideal (Lg(y)) from io. Further, if Lpg is chosen so that

4 (pp ® N™™)) is a p-adic unit, then Lg(P, ¢) is equal to the normalized complex
Li(1,0pP)
QL (pp@N-Y)
that oo = ¢p ® ¢ for a character ¢. Then 1)(—1) = 1. Since we have a natural

L-value * up to units. Suppose that @ is another motivic point such
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integral structure on the motive M (1) of 1, similarly to the case where 1) is the
cyclotomic character, we can shift the integral structure given by L; or even a
basis of L» on Mp to Mg, which again satisfies (0c0). Thus, we have well defined
period Q% (pp @ YN ~1) of Mg for arithmetic points Q (with g = pp ® 1)) on the
cyclotomic deformation locus in Spec(ll). On this locus,

Ls(p) _1< Li,(1,0p ®%)
Qf (pp ® N71) Q& (pp @ PN-)

interpolates  *ipi ) for variable .

This argument combined with (iii) of Conjecture 4.2.1 shows that the restriction
of T(iigi)f_—l) to the cyclotomic line passing through P is equal to the cyclotomic
p-adic L-function interpolating the complex L-values normalized with respect to V.
We extend the definition of the normalized period Q;,t for a general base field
F. We put L, = V/PV and for each o, we choose an rg-free lattice Lp , of
Hg(°M) so that the comparison isomorphism induces Lp, ® O = L,. We also
choose an Tp Q7 rg-free lattice Lpgr of Hpr(M). Then we define Qia(gop ®
N~™) by the determinant of I;, from Ly(m)/(Ly(m)\VF(pp ® N™™))) into
LDR(m)/(LDR(m) n G T (Mp(m))) Then we have
(NP) X . (pp®N ™) =tV (P)E, (pp @ N™™)  if icoo is real,

C:,a,ioo (pp@N™™) = a;l:(—l)m+1 (P)Q;’t’c,(@p ® N_m)Q;,t,w(goP ®N™™) otherwise,

where the left-hand side is also computed with respect to Lg(m) and Lpgr(m).

In formulating a main conjecture in the Iwasawa theory relating the characteristic
ideal of the Selmer group of ¢ with an analytic p-adic L-function, I expect the L-
function Ls(ip) to play an important role, although we might have to further modify
the p-adic L-function in residually reducible cases (that is, the case where ¢ mod my
is not absolutely irreducible). When V[c+1] = V/ f/;,+ (that is, oy is a unit), the ideal
(Ls,i.. (¢)) and (Ls(yp)) coincide, we do not need to modify Lg ;_ () and have the
precise interpolation property (Int). Thus it is natural to ask when Vie£1] = V/ V;,i
holds. Here we list an obviously sufficient condition in the simplest case where F' = Q
and n = 2: Write @ for the representation on V(%) = V(¢)/mV(p) induced by ¢
for the maximal ideal n; of I. We assume that

(Sp) V=V, @V’ for a complement V' #0, and V =V([c—1]P V[c+ 1].
We leave the proof of the following fact to the reader.

Proposition 4.3.2 — Supposen =2, F = Q and (Sp). If ¢ is irreducible, then there
exists a complex embedding i such that Vic+1]=V/ V;,i.

We now assume that M = Mp is associated with a motive given by H' of an
elliptic curve € defined over @ with ordinary good reduction at p. We use the same
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symbol €,z for the Néron model of €. Thus £ = Q and p = p. We assume the
lattices L-(m) of H-»(M(m)) to be equal to H%($,Z,), H5(%,Z) and H}x(%,Z).
Then these lattices satisfy (00), and we assume L, = V/PV, which is actually self
dual. Then we have the following five related exact sequences:

(E1) 0 = ppoo — E[p™] = p~*Z/Z — 0;
(E2) 0—Z, - HAY(€,2Z,) — Z,(—1) — 0;
(E3) 0— HO(%,Q%/ZP) — H%)R(%,Zp) — Hl(%,@g/zp) — 0,
(E4) 00— Zp(1) Ly(1) Zy 0
] I
0 —— Tp(ppe=) T,(%) Tp(p~>°Z/Z) — 0,

where €[p™] is the p-divisible group of €, T,(?) indicate the p-adic Tate module
of the object ? and the last diagram is commutative. Note that T,(€) = L, for
the dual L, of L,. This implies the complex period and p-adic period ¢t (M (1))
can be computed by taking the generator w of F*(M(1)V) = F*(M) over Q@ and
choosing a generator b* of HE(M) = HE(M(1)), and cF(M(1)) = (b*,w) for
the duality pairing (, ) between M (1)V and M (1). We can normalize w taking the
Néron differential on the Néron model €7 of € over Z, that is, H°(€ ,7,,7) = Zw,
because ¥+ (M) D H(€,Q5,q). We normalize b* taking a generator of Lg(1)[cF1].
Under this choice, ¢ (M (1)) is the canonical period Q. (%) of €. Then Q4 (€) =
det(I;,) = (e,w) for a generator e of Z, = L,(1)/Z,(1) in (E4). By [20] Theorem 5.3,
if p > 2, QF(€) is a unit in Oq. Writing I;, (b~) = u(¥)e, we have u(€) = a(P),
and we see from (Int) that

o () e ()

We now show that we can always choose in the isogeny class of €,z an elliptic
curve which satisfies L,(1)[c — 1] & L,(1)/Z,(1) for some in (that is, u(€) is a
unit). We may assume that we have chosen i, such that the p-adic valuation of
u(€) is minimal. If (%) is a unit, there is nothing to prove. Suppose not, and write
IL_,(b") = uge. Thus u, =0 mod p for all o, and ¢(c)V(P)[c — 1] coincides with
V, /myV, for all 0. Thus V()[c — 1] is stable under the global Galois group. We
take maximal subgroup C of €[p>][c—1] stable under the global Galois action. Since
the Galois action on the Tate module is irreducible, C is a finite group. Then for
€' =¢/C, €[p*][c — 1] does not contain subgroup stable under the global Galois
action. This implies that €’ is what we wanted. Thus u(%’) is a unit, and . (¢') is
also a unit as already seen.
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4.4 Singularity

We try to locate singularity of the normalized Lg(y). We continue to assume
(Fr1), (FR4) and p > 2. A principle related to the conjectures of Artin and Tate is

(AT) the complex L-function T'(s,¢p)L(s,pp) = I'(s,pop)L(0,0p ® N°) has a
pole of order r at s implies that s € Z and op @ N* P(pp @ N®)* contains the
trivial Galois character with multiplicity r.

Thus we ask

Question 4.4.1 — If there exists a p-adic L-function Lg ;_ () satisfying the require-
ments of Conjecture 4.2.1, can one expect the following principle for the normalized
Ls(p)? For each prime divisor P of Spec(l) and ¢o* = p @ N,

(AT,) Ls(p) has a pole at P = ¢p @ ¢p has the trivial representation as a
subquotient.

One might be tempted to expect, after the analysis of the Selmer group of ¢ done
by Greenberg [28] Section 4, a more stronger assertion

(G) the order of the pole at each prime divisor P is equal to

te(p) = te(Ho($r, o D #"))-

Here ¢p(X) is the length of the localization at P of a torsion l-module X. We
say that Ls(yp) satisfies (AT,) in strict sense if (G) holds for all prime divisors P of
Z1. When ¢ is residually irreducible (i.e. ¢ mod my is absolutely irreducible) with
dense critical crystalline points of type S, and ¢ contains all cyclotomic deformation
of its specialization, we conjecture that Lg(¢) satisfies (G) (or equivalently, Ls(p) €
I]@)g@g). However, either in the residually reducible case or in the case where ¢ does
not contain all cyclotomic deformation, this seems more subtle on the automorphic
side: The occurrence of the trivial representation in pp (or ¢p) does not suffice to
ensure the existence of a pole at P. For example, if we take a locus X in &;(2) on
which V(pp)!® # {0}, the L-function Lx interpolating the L-values on X has
generally more Euler factors at p than the one Lg interpolating L-values all over
Z1(Q). Thus Lx may have a pole at a prime divisor P on X but Lg restricted to
X may not have a pole at P, that is, the pole of Lx at P can be canceled by the
extra-Euler factor removed from Lx. If we restrict Ly to another closed subscheme
Y containing P as a prime divisor, but generically on Y, we have V (py )I¥) = {0},
then it would be reasonable to take Lg restricted to Y to be the L-function of
@y. Then the L-function does not have pole at P and has too less singularity at
P. Contrary to this, a4 (p) can be non-unit if ¢p is not semi-simple for some P
(see Section 4.7 and Section 8.5 of Chapter 8). Since ay(¢)(P) = a4 (p)(Q) if
vp = pg ® Y for a character 1, the divisor of a4 (¢) contains cyclotomic variation.
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This implies that, for a prime divisor P in div(oy (¢)), ¢p and ¢p cannot contain
the trivial representation. Thus in this case, if Lg; _(¢) does not have zero at P,
which is likely in some cases (see Section 8.5 of Chapter 8), Ls(¢) has too much
singularity. Thus what we hope in general is:

(G) orde(Ls(p)) < Lr(p) = tp(Ho(%r, D ¢"))
if V(pp)!® = V(p)I® @ Ip/P and ay(p) is an lp-unit,

where ordp indicates the order of pole at P. If Lg(¢p) is holomorphic at P, we just

put ordp(Ls(p)) = 0. We note that ordp(Ls i (¢)) = ordp(Ls(¢)) if a4 () is an
lp-unit.

4.5 p-invariant of cyclotomic restrictions of Ls(p)

We continue to keep the assumptions of Section 4.3 and write v for the universal
cyclotomic character, (that is, the universal deformation of the trivial character of
Gal(Q(pp-)/Q) into Z,[[I']]* for I' = 1 + pZ,). Suppose that ¢ contains all the
cyclotomic variation, that is, for each point P of &, there exists a closed irreducible
subscheme Spec(I¥) of Spec(l) such that I is a finite flat Z,[[[]]-algebra and
Tpp = pp @ v for the projection 7p : I — 1¥. To support the idea that Lg(y)
is related to the Selmer group of ¢ (and ¢ ® N 1) defined in [28], we compute the
variation of p-invariant of mp(Ls(p)) over the isogeny class of ¢ for a fixed point
P satisfying (A24). We let ¢ act on V(p) = ", and take a sublattice V(¢') of
V() stable under ¢. We compare the p-invariants of 7p(Lg(y)) and wp(Ls(¢’)).
We suppose (Frj) and (FR) also for V(¢’). Since for any character £ : §5 — 0%,
P ®&(ar(p)) = P(at(p)) up to unit in 0, we have, for the p-adic valuation v with
v(p) =1,

u(mp(Ls(e))) — w(rp(Ls(#))) = v(oy (') (P)) — v(et(9)(P))-

For % induced by i o, we write

W(o) — :ﬁt (¢) 000 is real,
SO = V() @Vt (9)  imeo i compl
g \P Reo \P ) plex,
() = V(p) ico0 is real,
V()@ V(p) ixo is complex.

Define [-linear maps B, C%:, Dy » and D% so that, for ¥ induced by ipo

BW(¢) =W(p), CxWg(e)+W(p)les £1]) = Wi (o) + W(p)les £1],
Dio(W(@)ew £1]) = W(p)[e, £1],  Dg(Wig(¢)) = Wi ().
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Put g = det(B) '723 det(C’i) 0+, = det(D+,) and (‘)}/13 det(D%). Then
B=0450-0, 'V‘B = (53‘3(& - up to units, and we have

aF (P)a(9) ™ = B/vs = 5.0/0%,
ax(p)ax(@) ™ =[] 650 x 1_[(6i ~Fyi@y]

ceX

Then we get

(u1)  p(rp(Ls(¢)) — wlrp(Ls(p)) = D v(6-o(P)) = > _[Fy : QpJu(d5(P)).

ocED R

Writing C for V(¢')/V (p) and @%C = V;g' (¢")/ Vgg (), this is equivalent to, when
0 =17,,

(12)
w(rp(Ls(@) — wlrp(Ls(p)) = D v(#(C(Fy) = > _[Fy : Qu#(F5C)),

oEXD B

where F), is the completion of F' at the archimedean place io and
C(F,) = Ho(Gal(C/F,),C).

This matches well with the formula of Perrin-Riou [59] of the variation of the y-
invariant of the cyclotomic Selmer group of mp.

4.6 Nearly ordinary [-adic representations

Here we show that the [-adic representation mw(\) attached to a A-algebra
homomorphism X : A™°"4(Np>=;0) — [ satisfies (A1) and (A’21). We assume
that [ is finite and torsion-free over A (resp. A°"%) in the nearly ordinary case
(resp. the ordinary case where A factors through h°"¢). Since the condition (Gal) in
Section 2.8 of Chapter 2 determines the representation 7(\) only over K, we take
a representation ¢ of 9r into GL2(l) such that Tr(p) = Tr(w(X)). If there is no
confusion is likely, we sometimes write m(A) for ¢. For example, if 3 is absolutely
irreducible, there is no ambiguity of ¢ [10]. By local class field theory, there is a
canonical inclusion of groups of F = T1(Qy) into [[g, (!é‘#;s with dense image.
Thus n € Z[I] = X(T1) gives rise to a character of §p,. We write Vig(n) for the
rank one space over O on which 9p, acts by a character which coincides locally
with n on Iy, where Iy is the inertia subgroup of % in Gp,. Let P be a positive
arithmetic point of &;(2) of weight . By Blasius and Rogawski [6], it is known that
V(ep) ® K is the étale realization Hp(Mp) of a rank two motive Mp defined over
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F with coefficients in a number field EFp unless P falls in an exceptional case which
is very limited (in the exceptional case, m(x) = n(x) +t fort = 3 ., o). Here Ep
is a finite extension of the field Q(Ap) generated by P(A(T(l))) for primes [ outside
Np. Then as explained in Section 2.8 of Chapter 2, we have an exact sequence of
9py-modules: 0 — Vig(n) = V(pp) = Vg(m) — 0, where m = m(x) and n = n(x).
Since m > n, a theorem of Tate tells us that V(¢p) ® K is of Hodge-Tate type ([68]
3.3). This fact also follows from [21] and [6] combined. Anyway we conclude from
[61] Chapter III, Appendix that the Hodge-Tate type of V(¢p) is (m,n) and (n,m),
and Vg (n) plays the role of Vg = Vg in (Redy) for V(pp). By (iv) of (Gal) in
Section 2.8 of Chapter 2, Vi (n) is lifted to the 4, -submodule Vgé" (¢) of V() which
is written as Vg in (Gal). Thus ¢ satisfies (A1) and (A’24 ), and any subquotient of
tensor products of w(\;) over O and [ satisfies (A1) and (A’24) for a suitable choice
of S.

Let dg : 9Yp, — 1 be the character given in (iv) of (Gal) in Section 2.8 of
Chapter 2 for ¢ = m(\), and define ey by epdyy = det(y). Suppose that A is nearly
ordinary. By (iv) in (Gal), the maximal closed subscheme X of Spec(l) on which one
of dy and ey is trivial on Iy for every ¥ is of codimension [F' : Q] and is the union
of the locus of P for which @p is ordinary or co-ordinary (that is, contragredient
to an ordinary representation). Thus, if [F : @] > 1, pp cannot contain trivial
representation as a subquotient for any prime divisor P in Spec(l). Actually the
Eisenstein component of the nearly ordinary Hecke algebra is of dimension 3 + 2d
for the defect d of the Leopoldt conjecture for F' and p. Thus the dimension of the
locus of P for which ¢p or ¢% is reducible (over K) is less than 2 + 2d. This gives
a stronger fact that the reducible locus is of codimension at least [F' : Q] —d. When
F = Q, the ordinary locus is of codimension 1, which contains positive arithmetic
point P such that op is irreducible. Note that ¢’ = det(¢)~! ® ¢ is again modular,
and by this operation, the co-ordinary locus of ¢ is sent to the ordinary locus
of ¢'. This shows the locus in X on which ¢ has the trivial representation as a
subquotient is of codimension > 2 in X. Thus even if F = @Q, ¢p cannot contain
trivial representation as a subquotient for any prime divisor P in Spec(l). Similarly,
we can show that ¢} cannot contain trivial representation as a subquotient for any
prime divisor P in Spec(l). Thus Lg ;__(¢) and Lg(y) should be both holomorphic
everywhere in the nearly ordinary case of F' # Q.

The ordinary case is more subtle. In this case, if ¢} contains the trivial
representation, then (eg)p = N for all B, because unramified (dg)p cannot be
equal to N. Thus @p is of weight k = 2 (& « = (t,0)), which is arithmetic and
irreducible. Thus ¢}, never contains the trivial representation for prime divisors P.
On the other hand, pp may contain the trivial character. We can make the following
conjecture:
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Conjecture 4.6.1 — Let A\ be as above and ¢ : 9Yp — GL2(l) be a Galois
representation such that Tr(p) = Tr(m(\)). Suppose (FRy) for ¢.

(i) (Nearly ordinary case) If | gives an irreducible component of the normaliza-
tion of the reduced part of Spec(h™°"¢(Np*>;0)), then Ls(¢) and Lg ;__ () for
S = {Vq‘;" (M)} are holomorphic outside prime divisors P with non-semi-simple
PP-

(ii) (Ordinary case) Suppose that A factors through the ordinary part, giving an
irreducible component of Spec(h°"?(Np>;0)). Then Ls(p) and Ls () are
holomorphic outside prime divisors P with reducible pp.

The statement (i) above tells us that the two L-functions are holomorphic
everywhere if F # () because we always expect pp to be irreducible in this case.
We will prove (G) in Chapter 8 if ¢ in (ii) is given by an induced representation of
an [-adic Galois character, assuming the compatibility of comparison isomorphisms
in [50].

4.7 Residually reducible case

Here by an example, we explain what happens when ¢ has non-semi-simple pp.
Suppose that F = Q, 7()\) is p-ordinary and unramified outside p, | = A°"¢ and for
a prime divisor P = (1) of A°"%¢, we have an exact sequence of §p-modules:

(Eis) 0—x—9p—1%—0,

where x and 9 are global Galois characters acting on the rank one space V (x), and
V(¢). By ordinarity, on Vpi, the inertia group I, acts trivially. Since det(p(c)) = —1,
x(c) # ¥(c). Since x and v are unramified outside p, one of them has to ramify at
p, and the other is trivial by ordinarity of w()). Thus in w()\), there are at least
two isomorphism classes over [, one ¢ having non-semi-simple (Eis) with x trivial,
the other ¢’ having non-semi-simple (Eis) with trivial ¢. First suppose that x is
trivial, then V(x) = V(¢p)[c — 1] = V;¥(pp) and hence ay in (NL) of Section 4.3
is prime to P, and «_ is divisible by 7. Now we suppose that x is ramified and 1 is
trivial. Since x ramifies in this case, V(¢}p) = V(x) @ ViE(¢p) as %g,-modules,
and V(¢p)[c + 1] = V(x) is isomorphic to V(¢p)/VE(¢p). Thus again ay is
prime to P. In this case, if (Eis) is not split, @~ can be a unit for a suitable
10o- Thus ordp(Ls(p)) = ordp(Ls(¢’)) = ordp(Ls, . (¢)). Note that £p(p) = 0
and £p(¢’) = 1. Thus for ¢, Ls(yp) satisfies (G) but Lg(¢’) does not. Thus the
association ¢ — Lg(¢) does not distinguish the difference of ¢ and ¢’; in other
words, the normalized p-adic L-functions are invariants of classes more rough than
isomorphism classes (it is more strict than isogeny classes as we will give one more
example of the reducible case in Section 8.5 of Chapter 8).
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S. Periods of tensor products of motives

We express the periods of tensor products of rank 2 motives as monomials of periods
of the components. We then study tensor products of rank 2 arithmetic Galois
representations and specialize Conjecture 4.2.1 in Chapter 4 to this case. There
are several choices of § = {Vg }, and we give a classification of p-adic L-functions
according to S. We fix an embedding i, and often drop the subscript i, from the
notation.

5.1 Tensor products of motives

Let E be a number field in Q. We assume
(CME) E is either a CM field or a totally real field.

Let M be a pure regular motive of rank n defined over F' with coefficients in
E. Since every pure motive with coefficients in Q has a polarization [18] 6.7, the
coefficient field F compatible with the polarization satisfies (CMpg). We suppose
(&) FT(M)=F (M) =FM) (& HPP(°M) =0 for all p and o € I).

This implies n = 2m. The field F' contains the largest totally real subfield F .
If F contains a CM field, then F' contains the largest CM subfield Fops. For any
E ®q F-module V and p € Aut(F/Q), we write V* for the E® F-module V ®F , F'.
We quote the following lemma from (3| and [74] Lemma 2.1 (see [42] Lemma 1.1 for
a simple proof):

Lemma 5.1.1 — (o) Hpr(M) is E ® F-free of rank n;
(i) If F does not contain a CM field, then F(M) is E ® F-free of rank m;
(ii) Suppose that F' contains a CM field. If the generator of Gal(Foum/Fy) can
be extended to p € Aut(F), then F(M) & F(M)? is E ® F-free.

We assume that rank(M) = 2. We write A (resp. T') for the subset of o € I such
that F(M)®F,; Q = {0} (resp. rank po5(F(M)®F,o Q) = 1). Then I = T| |A| |cA
for complex conjugation ¢, and A # () implies that F contains a CM field.
For a number field L, we write Iy for the set of all embeddings of L into Q.
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Then A (resp. T') is an inflated image of a subset of Ir.,, (resp. Ir, ). We write

cx. (M) = ocs/ ¢x.o(M) and 6x,5(M) = [1,c; 0x,0(M) for a subset J of I.
We have for M with rankg M = 2

(5.5.1) £ (M) =bx,4(M), cE(M)=ckr(M)ox,a(M) mod Q.

5.2 Periods of M; ® M,

Now we consider two rank 2 motives M; and My satisfying (Red+) in Section 3.2
of Chapter 3 in addition to (Reg) in Section 3.4 of Chapter 3 and (+). We write
(mi(0),ni(co)) and (n;(o), m;(co)) for the Hodge type of M; at o. In this section,
we study the periods for M; ® M5 and Ad(M). For each p-adic place ¥ associated to
ip0, we write Vg (M) for the subspace Vi = Vg in Hp(M). We describe all possible
cases of Vg (M1 ® M3), up to interchange of M; and M, in the following table as
long as My ® M satisfies (Red) and Vig(M; ® M3) can be described as a sum of
tensor products of Hy(M;) and Vi (M;).

Vi (M1 @ M3) Conditions

(cA) Hy(My) ® Hp(Ms) (i) o€ A NA,

(ii) o € A1 NTe, ny(0) — mi(co) > ma(co) —na(o)
(iii) o € A1NcAz, n1(0) —m1(co) > ma(co) —na(o)
(T) V(M) ® Hy(Ma) (i) 0 € Ao NT1, na(o) — ma(co) > my(co) — ni(o)
(ii) 0 € A2 NT1, ma(0) — na(co) < my(co) —ni(o)

(i) o € Ty NT5, ma(o) —n2(co) < mi(co) —ni(o)
na(o) — ma(co) > ni(co) — my(o)

(iv) 0 € cAaNTy, na(o) —ma(co) > ni(co) —mq (o)

(C) V(M) ® Hy(Ma) o € Ti NTy, mi(o) — ny(co) > ma(co) — na(o)

+Hp (M) ® Vg(Ma) ni(o) —my(co) > na(co) — ma(o)

(cC) V(M) ® Vg (M2) o € TiNTy, my(o) —ni(eo) < ma(co) — na(o)
ni(o) — mi(co) < nz(co) — ma(o)

(A) {0} (i) 0 € A1 NcAz, my(0) —ni(co) < na(co) —ma(o)

(ii) o € cA1 NTy, my(o) —n1(co) < na(co) —ma(o)
(iii) o € cA1 NcAz

In each of the above cases, one can express the periods of M; ® M5, as monomials
of periods of M; and M>. Such computation is done by Blasius and Yoshida (see [5],
[74] and [42] Section 1) assuming that X = C. Since the definition of the period is
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formal as explained in Section 3.1 of Chapter 3, the result in the papers quoted above
is valid for any choice of X satisfying the requirement in Section 3.1 of Chapter 3.
Here is a summary of the result obtained:

Theorem 5.2.1 — Suppose (Redy), () and (Reg,) for My and Mz, and write .,
(resp. cE) for 8x,, (resp. cia ). These invariants only depend on o modulo the
subgroup generated by c. Then we have the following result for M = My @ Ms:

(i) When o # co, we have ct(M;) = c;(M;) and

Type ce A ceT ceC
c;f’_(M) Ja(Ml)zdo(M2)2 JG(MZ)C:(MI)Z et (My)ct (M2)dco (M1)dco (Ma)
¢; (M) | §5(M1)%85(M2)? | 65(Ma)c, (M1)? | ¢, (Mi)c; (M2)deq(Mi)deo(Ma)

(ii) When o = co, only Case T' occurs, and we have
c5 (My ® My) = cf (Ma)c; (M1)d5(Mz).

Proof. We start with a general motive M. First suppose that co # o for the complex
conjugation ¢ induced by ¢.. Then we have the following commutative diagram:

HECM) < Hp(CM)® Hp("M) — 222D @rop o (X © X)

agp |l a |k ldeax |
HL—?_(UM) — HB(GM)@HB(CUM) — PIQ;LEZ]\%];/I-)'®F®E,(U®00)®LE (XEBX),

where a(vv') = v@(—v') for vdr' € Hg(° M)®Hp(°*° M), ap is just induced by «,
and ax(z®z') = z®(—2') for zd2’ € X ®X. This shows that c}’U(M) = cx o(M).
Then we get Case T in (i) and (ii) from [74] Proposition 3.1. Case C' is studied in
[42] Proposition 1.4. Case A is immediate. O

We now look at the rank 3 motive Ad(M) for a rank 2 motive M = M.
We have a splitting: M ® M = Ad(M) & 1, where 1 is the identity motive
with trivial Galois representation. Then the Hodge type of Ad(M) is given by
+(m(o) —n(o),n(co) —m(co)) and (0,0). Thus in this case, F~ (M) (resp. F+(M))
is E ® F-free of rank 1 (resp. 2). This shows that Vg (Ad(M)) is the image of the
projection of Vig(M) ® Hy(M) + Hp(M) ® V(M) in Ad(M), and Vg (Ad(M)) =
Vg (M) ® Vg (M). If Ad(M) is critical at some integer, F' has to be totally real. We
have the following result similarly to Theorem 5.2.1:

Theorem 5.2.2 — Suppose (Red; ), () and (Reg) for rank 2 pure motive M. If
Ad(M)(1) is critical, then F is totally real, and we have

ko (Ad(M)(1)) = ek ,(M)cx ,(M)dx,o(M(1)).
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5.3 Periodsof M ® - --® M,

We assume rank(M;) = 2 and the following conditions
(Reg) M; is regular for all i,

(Cr) M) is critical for M =M, ® --- Q@ M,.;
(Frar) (M) is E @ F-free.

The assumption (Frps) is automatic under (£) for M; if F does not contain a
CM field. When F' contains a CM field, we can always bring M' = M| ® --- ® M/
satisfying (Reg) and (Cr) into M satisfying the above three conditions by tensoring it
with a rank 1 CM motive; thus, periods of M’ can be written down as a monomial
of ¢k ,(M;), ¢x ,(M;) and CM periods 6x,,(M;). If M has a non-trivial Hodge
component (g, q) at some place o € I, then for a Hodge type (z;,y;) with z; # y;
of Mj at o, >, @i = > ,yi = g and H®(°M) D Vi @ V; for Vi = @ H*Vi(°M;)
and V, = ®;HY%(° M;). Since complex conjugation c interchanges V; and Va, ¢
does not act on H%7(M) by scalar. Then the criticality of M (1) prohibits this to
happen, and thus M satisfies (). We write a;(o,+) = m;(0) and a;(0, —) = n;(0).
Following [5] and [74] Section 3, we consider the set & = {{1,...,r} — {£}} of
functions and put

£t - { e 2 Y ailo; ) > zaxw,—s(i»}
= {s€Z| Z ki(o) > Z ki(a)},

JE€J(s) igJ(s)
where J(s) = {j|s(j) = +} and k;(0)—1 = a;(0, +)—ai(co, —). From m;(c) > n;(0),
we have that k;(0) > 1. Then (M) ®ggF,i. oo C is equal to
Z ®iH(1i(O',S(i)),ai(co',—s(’i)) (C’Mi)
sexd

for all o € I. For M to satisfy (Red; ), V(M) has to be a sum of tensor products
of Hy(M;) and Vi (M;). This is equivalent to assuming

(Redy) X} only depends on the p-adic place B induced by iyo for all o.
Under (Red.), we write E{E for ©F, and we have

Va(M) =V =Vig = > (®ica(s) V(M) ® (®jgr(sy Hp (M)

sexf
We define for each o € T the two integers v;(o) and p;(o) by

vi(o) = #{s € J|s(i) = +} and pi(0) = #{s € T7[s(i) = —}.
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Then p;(0) + vi(0) = 2", and as shown in [5] and [74] Section 3, we have

Theorem 5.3.1 — Under the above assumption, we have

& (Mi@M®---0M,) =] {(C§,0(Mi)c§,o(Mi))("i (“)_“i(U’))/25X,a(Mi)M(a)} ‘

1

Although in [74] Section 3 p.156, it is assumed that a;(co,£) = a;(0, %) for all
o to deduce Theorem 5.3.1, his proof works well in the general case as long as we
assume (Frp).

5.4 Conjectureson p; @ --- Q @,

We suppose that [ is an integral domain finite over O[[T2(Z,)]] for T> given by
Resp/@ Gm X G- We consider arithmetic [-adic representations ¢; : 95 — G Ly (K)
for i =1,2,...,r. For each arithmetic point P, we write (m(P),n(P)) in Z[I)? for
its weight. Since M; p is pure, mq(P)+ nc,(P) is independent of o and thus m+cn
factors through the torus 7' defined in Section 2.1 of Chapter 2. We write Vi (¢;)
f(/)\r the space Vg specified in (A2,) for ;. Writing L for the field of fractions of
I®¢...Q¢l, we have

P=p1® Q¢ :9r > GLN(L) for N=2".

We write J for the integral closure of I&g . . . ®gl in L. Then J is an integral domain
finite over O[[T'(Z,)]] for T = Ty = T, and ¢ is arithmetic in the sense of Section 4.1
in Chapter 4. We have natural projection of &; to &]. We have several different
choices of Vg = MBi(cp). To describe this choice, we pick a ‘s‘ubset‘Z% of ¥ for each
B such that '

(5.5.2) ﬂ z € RY| Zs(j)a:j >04 is non-empty, and ¥ = % U —5-
SGE;; J

We write S = {Z%l‘B € Sr}. For each B, there are 2"~ !-choices of Z%. Thus the
set of S is made of 2("~VISF| elements. For each such choice S, we expect to have a
p-adic L-function. These p-adic L-functions might be related in a yet unknown way.
Let V' (;) be the reflexive l-module given for ¢; in (Cont) in Section 4.1 of Chapter 4
and put V(i) for the J-reflexive closure of the image of ®;V (;) in (&;V (p;)) & L.
Then we define

V(i) = Vae) = VO] T (@0, 1 60) 3 (@), Vo)) oL -

+
SEE‘B
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We write an element a = (m,n) € X(Tz)asm =Y _a(o,+)candn =3 a(o, —)o.
Then under this convention, the subset of X (Tv) = @;X (1) given by

As = {(aj) € EBjX(Tg)) Zai(a,s(i)) > Zai(ca, —-s(i)) Vse E% and VU}

gives a spanning cone in X (T') ®z R by (5.5.2). Here note that B is induced by i,0.
Thus the set of motivic point P = ®;P; € & such that Y .(m(F;),n(F;)) € Ag is
dense in &[], and such points are dense in ;. We call such points motivic points of
type S. This shows ¢ satisfies (A’2.) and (A3) for the above J-submodule Vi (¢; S).
The periods of Mp = ®; M; p, for all motivic points P of type S have the same shape:

(Pd)
¢k o (Mp) = [T {(c,o (Mip)ex o (M ) SIS 2 (0 p, )45 |

where v;(S,0) = #{s € §|s(d) = +} and pi(S,0) = #{s € TF|s(¢) = —} for the
place ¥ induced by iyo.

Conjecture 5.4.1 — For each choice S, we can find a unique p-adic L-function
Ls;. (¢) in the field of fractions of J®¢0q such that for all motivic points P of
type S critical at 1, if the p-adic period does not vanish,

1 Ls,i.. (P p) S | Li (1,¢pP)
ip - =] =% | 7 — |
Cpico (SOP ®N- ) Coo,i00 ((PP QN )

where the period in the denominator is given by the formula (Pd).

This conjecture covers all critical values when F' does not contain a CM field.
When F contains a CM field, #(Mp) may not be free, and we have more cases
to cover. To illustrate this, we describe the situation in a non-trivial case in the
following paragraph.

5.5 The case of p; @ py

First assume (Frps) in Section 5.3 for r = 2. There are only 2 choices of E% at
each %B. Writing s € Z% as (s(1) s(2)), these two choices are {(++),(+—)} and
{(++),(=+)}. Let Sr be the set of p-adic places of F. For an S, we define a subset
Tof S,by B €T & (+-) € I and If € S. For B € T, we are in Case T in
Theorem 5.2.1 and for B € T', we are in Case T for which the role of M; and M, is
interchanged. The choice S is determined by T'. Writing J(T') for the set of o € I
such that i,0 induces the p-adic places 8 in T, we call a motivic point P ® Q of
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type T if

(5.5.3) ko(P) > keo(Q) and  keo(P) > ko(Q) <= o € J(T), and
ko (Q) > keo(P) and  keo(Q) > ko (P) < o & J(T),

where ks (P) — 1 = my(P) — neo(P) > 1. We now treat the general case without
assuming (Fras). Thus we may assume that F' contains a CM field. We choose a
partition Sg.,, = A||cA||B|]C|]cC, where c is the generator of Gal(Fopr/Fy).
We further choose a subset T' of B. Then the above partition induces a partition of
I by associating to o € I a p-adic place of Fgps induced by z,,a| . We use the
same symbols to write this partition of I; thus, I = A| |cA||T |_|(B T) Lcl]eC.

We call a motivic point P ® Q “of type (A, T,C)” if

0€A <= keo(P) < —keo(Q) and o €cA <= k,(P) < —ky(Q)
0€C < ko(P) > keo(Q) and keo(P) < ko (Q)
0 €T < ko(P) > keo(Q) and koo (P) > ko(Q)
0€B-T <= k;(Q) > keo(P) and keo(Q) > ko(P).

(5.5.4)

This implies that

BeT <= Valp1@p2) ®L = Vy(p1) @ V(p2) ®L
BPeB-T = Va(p1®@p2) @L=V(p1) @ Vg(p2) ®L
PeA = Vp(p1@p2) L =V(p1)®@V(p2)®L
P ecA < Vy(p1®p2) QL ={0}
PeC = Va(p1®@p2) @L={V(p1) ® Vig(p2) + Vs (1) ® V(p2)} ® L
BecC <= V(b1 ®p2) @L = Vy(p1) ® Vi(p2) ®L.

When F does not contain any CM field, we just pretend A = C' = ), and we call a
motivic point P “of type (0, T,0)” if it is of type T
Conjecture 5.5.1 — For each choice of S = (A, T,C), we find a p-adic L-function

Ls,i. (1 ® p2) in the field of fractions of J®e0q such that for all motivic points P
of type S critical at 1, if the p-adic period does not vanish,

1 L8in(POQe1®w2) | _ . L, (1, 1,p ® 92,9)
: p,zoo(901 P®p2®N) P \eh i (o1p®@pa@N1) )’
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where we have

i (PP ® P20 @ N1 = ] x,0(01,7)0x,0 (02,0 ® N71)?
o€EA

x JI ckolorp)ex,q(#1,p)0x,0(p2,0 @ N7
oc€T/{c)

x ] cko(02.0)ck 0 (92.0)0x,0(01,p @ N7Y)
oc€B-T/{c)

X H c},a(8017P)c)_(,a'(902yQ)5X700(901; Q)JX,CU(<p2,Q ® N_1)~
oceC

5.6 The case of Ad(p)

We write ¢ = ¢1 and consider the tensor product ¢ ®; ¢. In V(p ®; ¢) =
End;(V(p)), there is a unique 3 dimensional subspace V(Ad(y)) with trace 0
endomorphisms, giving the following decomposition over IK: ¢ ®; ¢ = Ad(p) & 1.
As seen in Theorem 5.2.2, for Ad(y) being arithmetic, we need to assume that F is
totally real. In this case, there is only one choice of S = {Vg}" (Ad()), Vi (Ad(9))}
for a given choice of {Vi(¢)}s5. Thus we expects only one genuine p-adic L-function
Ly (Ad(p)) for each i. Thus for S = (§,1,0), by Theorems 5.2.1 and 5.2.2, the
ratio %, which is equal to % by (NP) in Section 4.3 of ?hapter 4
if the normalized L-functions exist, is expected to belong to L in Frac(J®s0q).

We now assume that p > 2 and (Frj), (FRy) for ¢ in Section 4.3. Then
Ad(p) automatically satisfies these conditions. We further suppose the absolute
irreducibility (AI) for 3. By [54] Lemma 2 in Section 1.2, Ad(¢)p for any P €
%1 never has the trivial subquotient. If Ad(v)% = Ad(¢)p ® N contains the
trivial subquotient, then ¥ =2 ¥ ® N, which implies that p = 3 and ¥ is an
induced representation of a character of ‘QF( v=3)- Thus if p > 5 or p is not an
induced representation of a character of ‘5, /=3, Ad(p)p never contains the trivial
representation. Here is a refinement of Conjecture 1.0.1:

Conjecture 5.6.1 — Suppose (Al) for ¢ € w(A\) for a primitive algebra homomor-
phism X : h — 1. If either p > 5 or © is not an induced representation of a character
of bg(,/=3), then over 1800q, Co(X\;1)®¢0q is isomorphic to 18¢0q/(Ly(Ad(p))),
where Ly(Ad(p)) is the normalized genuine p-adic L-function of Ad(yp).

5.7 The case of v; ® Y2 ® 3

We now specialize Conjecture 5.4.1 to F' = Q and r = 3. We write k; for k;(o)
with the unique embedding o of @ into Q. We write Q x (M;) for c},a(Mi)c}ya(Mi).
There are 4 different types S, and three out of the four types are transformed each
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other by permuting My, M, and Ms as follows [5]:

Type Period
(i) k1 > k2 + ks Qx (M1)?0x,0(M2)?bx, o (Ms)?
(ii) k1 + k2 > ks, k1 + k3 > k2, H?=1 Qx (M;)éx,0(M;)
and ky + k3 > k;

Thus there should be 3-variable p-adic L-functions of 4 different types. When
@; € m(\;) for algebra homomorphisms ); : A™°"¢(N;p>; 0) — [, p-adic L-functions
related to 1 ® 2 ® 3 has been constructed in [32] and [57]. Assuming N; = 1,
Panchishkin [57] deals with the case (ii). His p-adic L-function is a function sending
characters x of Z) to the L-value L(1, ppgqer ® X) divided by a suitable period
for a fixed a motivic point P ® Q@ ® R of type (ii). Thus our conjecture asserts
that Panchishkin’s L-functions can be glued together to yield a 3-variable type (ii)
L-function. I should also mention that the result in [57] is valid without assuming
(Redy). On the other hand, Harris and Tilouine treat the case (i) interpolating
along Spec(h™°"4(N,p>;0)) square roots of type (i) values. They get a p-adic L-

function which sends P to \/ L(ﬂPH—z"(PE,goP@Q@ r) divided basically by the
Petersson self inner product of the modular form corresponding to P for a fixed

Q@ ® R. Their evaluation point is the center of symmetry of the functional equation
of L(s, ppeoer)- Thus our conjecture asserts the extensibility of the square of the L-
function to a 3 variable L-function L(*) (p; ® 2 ® 3). Similarly to Conjecture 5.6.1,

s LD (01®@p28¢3) :
we expect that the ratio I, (Adle)T falls in L.
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6. p-Adic Rankin products

We assume that F' is totally real. We study the p-adic L-functions constructed in
[41] in terms of the genuine p-adic L-functions of ¢ ® § for two modular Galois
representations.

6.1 Complex Rankin products

We write h(N) (resp. A) for h»°"¢(Np>;0) or h°"¢(Np>;0) (resp. A or A°"%)
as in Section 2.9 of Chapter 2. Let A : h(N) — [ and p : h(J) — [ be primitive
A-algebra homomorphisms giving irreducible components of the Hecke algebras.
Take ¢ (resp. p) in the isogeny class m(A) (resp. m(u)). For two positive arithmetic
points P and @ of &, we look at the complex L-function L(s, pp ® pg). This L-
function is convergent if Re(s) is sufficiently large, is continued to the whole s-plane
as a meromorphic function and satisfies the functional equation as in Section 3.1 of
Chapter 3 (see [51]).

The principle (AT ) in Section 4.4 of Chapter 4 is known to hold for L(s, op ®
po). This is equivalent to saying that L(s,op ® pg) has a pole at s = 1 if and
only if pp = pg because the two representations are absolutely irreducible (see [65]
Proposition 4.13). When pp ® po ® N1 is critical, as conjectured by Shimura and
proven by Shimura, Harris and Yoshida ([65], [66], [67], [30], [31] and [74], [75]),
the transcendental factor of L(1, ® p) has a natural factorization described in
Section 5.2 of Chapter 5 depending on the two weights x(P) and x(Q) of P and Q,
respectively. We look into the following special case of type (0, I,0):

(Ad) m(P) —m(Q) >0 = n(P) — n(Q),

where the transcendental factor ¢k (pp®po®N 1) is very close to ¢k (Ad(pp)ON 1)
as shown in Theorems 5.2.1 and 5.2.2 of Chapter 5. The algebraicity theorem in this
case is studied in [65] (see also [41]), and the transcendental factor is given, up to
a power of 7, by the self Petersson inner product (fp, fp) of a Hilbert cusp form
fp, where fp is the primitive element in the automorphic representation generated
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by the value f(P) at P of the l-adic form f giving rise to . On the other hand, as
shown in [47] Theorem 7.1,

(AV) Li (1, Ad(pp)) = +n™ ) B¥2 (g 1),

where 7™ = [[,.; 7™ and * is a simple constant depending only on x(P) and the
conductor of fp. This combined with Theorem 4.2 of [65] (see also p.320 of [41])
shows that under the assumption of (Ad)

G(det(pq))Li., (1,0p ® pQ) =
(R i) H@1- (P G(det()) e, (1, Ad(pp)) ©

where G(det(pg)) is the Gauss sum of the complex avatar of the character det(pg)
specified in [65] (3.9). By definition, 6,(M(pg ® N71)) = G(det(pg)) a2+ {x(@}
for £ = 2mi or 1 according as * = oo or p. This follows from the fact that

(i) the Tate motive T = Q(1) is given by H,(T) = Q,(1), Hpg(T) = 2m)Q c C
and Hpg(T) = Q, and

(i) we have identified Q,(1) with Q,.

The fact (R1) is well explained by the following result deduced from Theorems 5.2.1
and 5.2.2 in Chapter 5:

Proposition 6.1.1 — Suppose (Ad) for P® Q. Then we have
(2mi) =D} G(det(pg)) e (wp © po @ N7
— (2mi) (PG (det(pp))ct (Ad(p) © N7);
(i) G(detlpq))ct(pr ® pg ® N7) = Gldet(pr))c; (Ad(pp) @ N7Y).

Q)

This shows that LLS—:(% actually falls in the field of fractions of I&¢l. If
there exist the normalized genuine p-adic L-functions Ls(p ® p) of type (0, I, #) and
L,(Ad(p)), by (NP) in Section 4.3 of Chapter 4, L—i‘fﬁ%% is equal to LL—;’E%
and is independent of i, and the choice of ¢ € w(A) and p € 7(u).

6.2 The p-adic Rankin product in [41]

When h = h™°" we constructed in [41] a p-adic (meromorphic) L-function
Dy(r(N) @ 7(w)) : X1 x % — Q in L satisfying the following interpolation property:
up to a p-Euler factor and a simple algebraic constant

(Int1)

, N i G(det(m(pq))) iy (1, 0P ® pQ)
DP(PanTr(’\) ® 7'-(/-“)) = *ly, <G(det(ﬂ'(cpp)))(ﬁ;?ri){”(Q)}_szp)-’_zp:EfP, fP))
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for motivic (P,Q) € o) x o satisfying (Ad) for x = k(P) and k' = k(Q). The
constant * can be checked to be the value (P ® Q) of a unit u € (A®A)*
independent of P ® @ after factoring out the canonical p-Euler factors which should
appear in two genuine p-adic L-functions (see Conjecture 4.2.1 in Chapter 4),
although the computation is a bit involved. For this fact, see [47] (8.14a). Although
in [47], we have only dealt with the CM case, the computation in general is essentially
the same (except possibly at places dividing 2) because at each (odd finite) place,
the local automorphic representation is of CM type (that is, it is induced from a
character of a quadratic extension). This combined with (AV) simply shows that
Dy(m(X) ® 7t(p)) gives, up to unit factors, the ratio % for S = (0,1,0) if
two genuine p-adic L-functions exist.

To support this idea, we look into the singularity of Dp(w()) ® 7(u)). As we
will see in the following paragraph, admitting (AT,), Ls(y ® p) is supposed to
be everywhere holomorphic in the nearly ordinary case, and in the ordinary case,
Ls(p®p) can have singularity only at the diagonal divisor A of &; x %; when ¢ = p.
The singularity of Dy(m(A) ® #(x)) is not as above. Via the theory of congruence
modules (cf. see Section 2.9 of Chapter 2), the locus of points P for which there
exists v : h»°"® — [ such that vp = Ap is the support X of the congruence module
C(A) = Co(A; 1) of A In particular, we know from its construction in [41] that the
singular locus of Dy(m(\) ® #(u)) is contained in X x &¥;. In the CM case, we have
an exact information of X, and X x & is really different from A. As explained in
Section 2.10 of Chapter 2 and Conjecture 5.6.1 in Chapter 5, the characteristic ideal
of the congruence module Cy(A;[) is closely related to L,(Ad(y)). Moreover one can
check in this modular case (see Theorem I and Lemma 5.3 of [41]), the removed
p-Euler factor is identical to the ratio of those Euler p-factors of Lg(p ® p) and
L,(Ad(y)) as predicted by Coates and Perrin-Riou (see (iii) of Conjecture 4.2.1) for
cyclotomic twists P ® @ of crystalline motivic points. Thus we expect that D, is
the ratio L—Tﬁ’% of two genuine p-adic L-functions. Here the numerator Ls(¢ ® )
should be legitimately called the p-adic Rankin product of type (0, I, ).

6.3 Ordinary versus nearly ordinary

Take a prime divisor P of ¥; x ¥, and write k(P) for its residue field. It is
easy to see that V((¢ ® p)p) ® k(P) and V((¢ ® p)p ® k(P) never have the trivial
subquotient for prime divisors P of the form P x &; or ) x Q. Thus if they have
the trivial subquotient, the projection of P to each component is dominant, and we
find densely populated prime divisors P and @ on & such that P x @ lies on P
and one of pp and pg is irreducible. Then V(pp ® pg) = Hom(V (pg), V(pp)) has
the trivial subquotient if and only if pp = pg. Thus, in this case, P has to be the
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diagonal divisor A and dimg(¥;) = 1. By a similar argument, if V((¢®g)*)p @ k(P)
has the trivial subquotient for a prime divisor P, P(2) = {(P,P ® N™1)|P € ¥}
and dimg &; = 1. As in Section 2.5 of Chapter 2, writing d for the defect of the
Leopoldt conjecture for (p,F), we know that dimg(h™°™®) = [F : Q]+ 1+d
and dimg(h°"?) = 1 + d. By (Gal) (iv) in Section 2.8 of Chapter 2, the inertia
group Iy at Plp acts on a one dimensional subspace of Ve A\ = Ve () by
a character § such that §(y) = A(T(y)), where we identified Iy with rg (resp.
I, = [Ig, Iy with 1) by class field theory. This shows us that § coincides with
the character: I, — O[[G]]* given by y — (y,1) € G. On the other hand, on I,
we have det(p)(z) = (z) € O[[G]]*. Therefore pp = pg implies k(P) = £(Q).
Similarly, op = pg ® N implies k(P) = k(Q) ® (¢,t). The locus of (P,Q) with
k(P) = k(Q) ® (t,t) is of codimension > 1. The diagonal locus of x(P) = x(Q) is a
divisor of &; x ¥ if and only if we are in the ordinary case and § is trivial on I,.
Thus we may make the following conjectures for [ finite and torsion-free over A°"%:

Conjecture 6.3.1 — (Ordinary case) Take primitive A°"¢-algebra homomorphisms
A hom(Np>=;0) — | and p : h°"4(Jp>;0) — [. Let S = (0,1,0). Suppose that the
ezistence of genuine p-adic L-functions Ls; (¢ ® p) of type S and Ly ;_(Ad(p))
for the Galois representations ¢ € w(\) and p € w(p). Then

(1) Ls,i. (¢ ® p) is finite outside the diagonal A in ¥y x ¥;;
(it) Ls,;.. (¢ ® p) has singularity at A in ¥ x &, which is actually a simple
pole, if and only if A = p and the Leopoldt conjecture holds for p and F';
(i) Dgré(m(A) @ #(u)) = % up to finite Fuler factors outside p and
[-units,
where D2 (m(\) ® #(n)) is the ordinary version of D,(w()\) ® #(u)) which is
P P
constructed in [87] when F = Q and will be constructed in the following sections for
general F'.

The complex L-values as in (Intl) may not always be the one of primitive L-
functions. Because of this defect, we cannot really claim that the identity in (iii) is
only up to units. By (NP) in Chapter 4 and Theorems 5.2.1 and 5.2.2 of Chapter 5,
at(p®p) = ay(p)a_(p) = ay(Ad(p)) for S = (0,1,0), and hence we have

orda Lg,i_ (¢ ®p) =orda Ls(p®p) and orda Ly, (Ad(p)) = orda Ly(Ad(y)).

We have proven in [37] when F' = Q that the ordinary version Dg"(m()\) ® #(w))
has a simple pole at the diagonal if and only if A = u. The technique of [37] can be
generalized for general totally real F' as we shall give a proof later in this chapter
(see Sections 6.4-6.10). Putting the proof off to these sections, here we state only
the outcome. For that, we prepare some notation. Since we are in the ordinary case,
we have well defined Hecke operator T(8) € h°™® for each prime factor B of p and
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A(T(®B)) and p(T(W)) are units in . Since Spec(h°"?(N)) is a closed subscheme of
Spec(h™°T4), we can take the irreducible component Spec(J’) of Spec(h™°"¢(N))
through which A factors. Similarly we take the irreducible component Spec(J”) of
Spec(h™°r4(J)) through which y factors. Thus we can take a common normal finite
extension J of J’ and J” so that Spec(l) is a closed subscheme of Spec(J). Then we
take the A-algebra homomorphisms X : A*°"¢(N) — J and p : h™°"¢(J) — J which
induces A and p on the ordinary quotient. By [41] Theorem I, we have the nearly
ordinary p-adic Rankin product D, (7(\) ® #(u)) in the quotient field of J&J. Then
we can think of the restriction of Dy(m(A) ® 7(p)) to &; x &, for which we write
Dgré(m(A) @ #t(p)). We know that A°m® = O[[Werd]]. If Werd = 7, (& d = 0), we
pick a generator w of W°T%; otherwise, we just pick one of generators w of W°r¢
such that N'(w) generates N(W°™?). Then, if d = 0, t, = w™' @w — 1 in A°T¢R@A°"?
is a local parameter of A. For every function f on %; x &; with at worst a simple
pole at A, Resa f = (twf/log, N (w))[ £=0 is a function on A independent of the
choice of w.

Theorem 6.3.2 — Let )\ : ho"¢(Np>®;0) — [ and p : h°r¢(Jp™>;0) — 1 be primitive
A°m-algebra homomorphisms. Then there exists D™(w(X) ® #(w)) in the field of
fractions of IQ1 satisfying the following properties:

) D) @ #(w) = [T = ATER))/k(T(H)) 7' Dy (r(A) ® #(w)),

Blp
(if) Dz"d('fr()\) ® 7(p)) has at most a simple pole at A and
Resa DY) ©7(0) = b T (1 705 ).
\/_ qalNp
1 ifdA=u . . . L
where 6, = R, is the p-adic regulator of F', D is the discriminant

0 otherwise,
of F, h is the class number of F and w = 2 is the number of roots of unity in F. As
for the parity of R,/ VD, it is determined so that the p-adic Dedekind zeta function

Crp(s) of F satisfies

Reso_i Crp(s) ]thH( W) (see [12]).

When d > 0 (& R, = 0), we prove that Dg"%(m(\) ® #(p)) is entire, and
therefore, the above assertion still remains true independent of the choice of w.
To have a legitimate L-values at specialization at P ® @}, we need to add to

Dp(P, Q;m(A) ® #t(p)) Euler factors []g,(1 — Ap(T(X))/uo(T(R)))~, which does
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not show up in DP™4(m(A) ® #(p)) because V(m(X) ® (1))™ is one dimensional but
V(m(X) ® #t(p))™® = {0}. Thus the residue formula (i) actually tell us the value of
the (r — 1)-th derivative Dg"(w(A) ® #(u)) at P ® P, where 7 is the order of zero
at A of [[g, (1 = A(T())/u(T())). If Ry # 0, the value is non-zero. We now deal
with the nearly ordinary case:

Conjecture 6.3.3 — Let \ : h™°"4(Np>;0) — 1 and pu : h™°"¢(Jp>;0) — | be
two primitive A-algebra homomorphisms. Let S = (0,1,0). Suppose that there exist
genuine p-adic L-functions Ls;_ (¢ ® p) of type S and L, ;_ (Ad(p)). Then
(i) Ls,.. (¢ ® p) is holomorphic on ¥y x Xy; in other words, Lg,; (¢ ® p) €
ﬂ@@ﬂ@)oﬁ;

(ii) Dp(r(N) ® 7(p)) = Iiszji“(—m up to units in | and finite Euler factors
outside p.

In the following paragraphs, we shall give an outline of a proof of Theorem 6.3.2.
Since a full detail of construction of such L-function is given in [41] in the nearly
ordinary case, we just satisfy ourselves with a brief description of difference in the
proof of the p-ordinary case from the nearly p-ordinary case.

6.4 Auxiliary L-functions

We start preparing for the proof of Theorem 6.3.2. We need to introduce several
notation to describe a crude form of the p-adic L-function which we later construct.
We fix two ideals NV and J prime to p in ¥, and let L be the least common multiple of
N and J, that is, L = NNJ. We consider two primitive A°"¢-algebra homomorphisms
X hord(Np>®;0) — [ and p : ho™4(Jp™;0) — [, where [ is a normal finite extension
of O[[G°™]] for G°™¢ with respect to T'1(N). By extending scalar if necessary, we
may assume that ﬂﬂ@p = 0. Let f (resp. g) be the [-adic forms corresponding to A
(resp. p) as explained in Section 2.7 of Chapter 2, and put ¢ € w(A\) and p € 7(p).
We first define certain Dirichlet series related to L(s, pp®pg) for positive arithmetic
points P and Q. Since det(m(ug)) = xoN for the central character xq of g(Q), as
is well known, we have

(k) = (xN) Tt ®@ m(ug) 2 NP @ r(ug),

where ¢ is complex conjugation and m(P) = [m(P)]t for an integer [m(P)] (because
n(P) = 0). We define jiq(T(n)) = pg(T(n) Npq(n)~m(@! and

L(s, \p ® jiQ) = L1p(25,x5'¥p) > Ap(T(W))iig(T(1))Nrsa(n)~*
0#nCr

= Lr,(2s,x0"¥p) Y. a(n, f(P))a(n,g(Q)°))Np/a(n) m@I-s
0#nCr

(L)
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where “c” denotes complex conjugation and x¢ (resp. ¥p) is the central character
of g(Q) (resp. f(P)). Here the subscript “Lp” of the first factor Lr,(2s, Xél’d)P)
implies that this L-function has trivial Euler factor “1” at primes dividing Lp. Since
the last expression is given without referring to A or u, the definition works well for
any classical modular forms h and h’ of weight x(P) and «'(Q). We thus define a
similar L-function D(s, h,h’) by

(Dl) D(S, h7 h'l) = Z a’(na h)a(na h,)NF/@ (n)—s—([m(P)]+[m(Q)])/2‘
0#nCr

This zeta function looks a bit different from the one introduced in [41] (4.6), and
these two zeta functions are related in the following manner:

(D2) D(s,h,h') = D(s,h, },id),
where the right-hand side is the zeta function defined in [41] for the identity character
0 =id.

We now recall the Euler factorization of L(s, Ap ® fig) in terms of automorphic
representations spanned by f(P) and g(Q). The following formula also holds in the

nearly ordinary case. For each automorphic representation 7 = ®m of G(A), we
define ay(), B(w) € C as follows: choosing a prime element w of F,

n(w) if m = 7w(n,n') with n unramified,
ar(m) = { n(w) if 7 = o(n,n’) with 1 unramified and 7y’ ™' = | It

0 if 7 is super cuspidal or 7 & w(n,n’) or o(n,n') with n ramified,
7' (w) if 7 2 w(n,n') with n’ unramified,

Bi(m) =<0 if m = o(n,n’) with  unramified and m ' = It
0 if 7( is super cuspidal or m & 7(n,n’) or o(n,n’) with n’ ramified.

Write 7 (resp. 7’) for the automorphic representation of G(A) = GL2(Fa) generated
by right translation of f(P) (resp. g(Q)). We decompose m = ®(m and the
contragredient 7' = ®7;. We put

Li(X) = (1—ag(m)ag(7") X ) (1 — ay (m) By (") X ) (1 = Be(m) g (7) X ) (1 = By () B (77) X ).
Then we know

(E1) Ls p®fig)= [[ LN~

[:prime

Then it is easy to check (see Lemma 6.6.1 below)

(2)  Lis, p @ fig) = Lup(2s,pxg')D(s ~ 1+ BN sp) ()
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In some cases, in particular if P = @ and A = u, the above L-function may not
be primitive (that is, L(s,A\p ® fiq) possibly differ from L(s,7(Ap) ® #(ug)) by
finitely many Euler factors). It is easy to determine the missing Euler factors of
L(s, A\p ® fig) comparing the definition of L(s, \p ® fig) with that of L(s, pp ® gg)
(see (L) in Section 3.1 of Chapter 3).

For a complex modular form h of weight x with n(x) = 0, its unitarization h* is
defined by

(U) h*(z) = | Dp| =D 2h(g)| det () /2,

The right translations of A* under G(A) span a unitary automorphic representation.
To describe the level of f(P) and g(Q) exactly, we write Sg for the set of all prime
factors % of p in t. For each Sp-tuple o = (a(*B))pes, of integers a(P), we write
B = Tpes, PR, Let &’ (resp. ) be the weight of u (resp. ), that is, the
restriction of y (resp. A) to G°?. For each arithmetic point P of ¥, we write «(P)
for the (arithmetic) weight of P. Then for sufficiently large o,

F(P) € SIE(NB*Q) and  g(Q) € Sé (JB: Q).

We can easily relate g(Q) with the modular form g(Q)° whose Fourier coefficients
are given by a(y, g(Q))°. For that purpose, let wy be the prime element in ry for
B € Sr and let n (resp. j) be a finite idele such that nr = N (resp. jr = J) and
ng =1 (resp. jo = 1) outside N (resp. J). Define an idele nw® so that (nw®), =1
for q outside Np, (nw®)q = ng for prime q dividing N and (nw®)g = w%(%) for
B € Sp. We then define 7(nw®) by

T7(nw®) = 0 -1 (00)
(no?) (nwa O)ecu\ ).

For each modular form ¢ in M, (NB*;C), if ¢ has a central character £, we define
the unitarization £ by &% = £/|€| which is of finite order. Then, we define
d|T(nw®)(z) = £*(det(z))p(zT(nw®)) € M (NE*; C),

where k€ is the complex conjugation of k. We define the complex conjugate h¢ of
h by a(y,h¢) = a(y,h)¢ for all y. Then g(Q)° is a non-zero constant multiple of
9(Q)|T(jw®) if g(Q) is primitive of conductor JB< (that is, of exact level JL*).

6.5 Ordinary p-adic Rankin products
Let 1®¢l be the profinite completion of | Q¢ | (that is, the m-adic completion of

I ®1 for the unique maximal ideal m of | ® ). Under ﬂﬂ@p =0, IQ¢l is an integral
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domain. For each pair of points (P, Q) in ¥ = ¥ x ¥, regarding P and Q as O-algebra
homomorphisms of [ into 2, we have an 0-algebra homomorphism P®Q : I®¢l — Q.
Thus for any ® € I®], we can regard ® as a p-adic analytic function on ¥ with values
in Q by (P,Q) = PQ®Q(®). Even if ® = ¥/¥’ is an element in the quotient field
of I®1, we can think of ® as a p-adic meromorphic function on ¥ whose value is
given by ®(P, Q) = ¥(P,Q)/¥'(P, Q) whenever we can choose a denominator ¥’ so
that ¥'(P, Q) # 0. We first state our result in a crude form and later deduce out of
it the desired p-adic L-function Dg’"d = Dl‘;’"d(w()\) ® 7 (1))-

Theorem 6.5.1 — There exists a unique element D°™® in the quotient field of 1&®¢l
satisfying the following interpolation property: Let (P,Q) € (1) x A(l) satisfying
(Ad) in Section 6.1 (< m(P) > m(Q) > 0 in the ordinary case). Then D¢ is
finite at (P, Q), and we have, for sufficiently large

(XQ)oo (—1) D™ (P, Q) N (NR*) [MPN=D/2 N g (JB*)

@ L1y(2, ¥pxg!) D(TLFEL, 1(P), ga)
= X@¥P)e (G Q= Py (o), F(P))

where (, )o denotes the Petersson inner product of level NB* (defined in [41]
Section 4), ga = 9(Q)|7(jw®) and

Co(P, Q) = [ DM@ =m(P)) (g7ri)m(P)=m(Q)g=m(P) (97) =m(P) =24 [ (@Q)] + 1)),

Let © be an ideal prime to pL and (t) be the projection of the class [r] of £ to Wor4,
Then, for any H € | which kills the congruence module Co(\;1) for h°m¢(Np™;0),
(1—8x . (X)®(@) "1 (H®1)D"? is integral (i.e. (18, (£)®(x) 1) (H®1)D"? € I1&1)
and we have

(v
—1\ por h(F Sty &
(1= @) © @)D} (PP) = —log, (N(@N "2 TT (1= s ) e

q|Np

where 4y, =1 or 0 according as A = p or not.

In Theorem 5.1 of [41] which is the nearly p-ordinary counterpart of the above
theorem, we formulated the result in terms of the constant C(P,Q) given by
(xQ¥P)oo(—1)Co(P, Q). This theorem is essentially the specialization of Theorem
5.1 in [41] to the p-ordinary line. However, the construction of D°"? is a bit different
from that of & in [41], because we use the ordinary Eisenstein measure instead
of the nearly ordinary Eisenstein measure employed in [41]. Since the proof of
Theorem 6.5.1 is exactly parallel to that of Theorem 5.1 in [41] in this sense, we
recall in details the construction of the ordinary Eisenstein measure in Section 6.7
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and its convolution along A in Sections 6.8 and 6.9, but the description of the proof
of Theorem 6.5.1 is brief (Section 6.10).

We now try to relate D(s, f(P), ga) with L,(s, \p ® fig). Let us introduce further
notation: Let hg be a common eigenform of all Hecke operators corresponding
to an O-algebra homomorphism ¢ : h,(Np?;0) — O with n(p) = 0. Let h be
the primitive form of conductor NB* (0 < a < ) associated with ho (and ¢).
Write A|[T(l) = ¢°(T(I))h. Then ¢°(T(l)) = ¢(T(l)) for almost all primes [. Let
L(s,¢) = >, ¢°(n)N(n)~* be the standard L-function for ¢. Then we know that
h¥|T(nw®) = W(¢$)(h*)¢ for a constant W (¢) with absolute value 1. In fact, it is well
known that (e.g. [41] (4.10)) with a suitable I'-factor I'(s, ¢), we have a functional
equation:

(FE1)
T(s,$)L(s,¢) = i *W(@)|d*nw? [ B/IT(1 ~ 5, )L~ 5,4) (k= m(p) +1),

where ¢ corresponds to the contragredient 7(¢) of 7(¢), d € F (oo 18 a finite idele
giving the absolute different dr and

$(T() = N(O)~g(T(D)°.

Thus the root number of the functional equation is given by i *W(¢). Let 7 = ®47q
be the automorphic representation generated by the right translations of hg. As
is well known, the constant term of the functional equation i~*W (¢) can be
decomposed into the product of local factors (e.g. [41] (4.10c)). To describe this,
we assume that 7y for prime factors ¥ of p is either principal or special. For each
quasi-character ¢ : F{; — CX%, we define

e(6) = £(dwNG(O)/IEwNGE)] (GE) = D M wer(u/w"d)),

v mod w”
where er, (z) = exp(—27i[Trp, /q,()]p) for the p-fractional part [y], of y € Qp, @
is a prime element of Fig, " is the conductor of ¢ and dry is the different of Fy for
d € Fy. The appearance of { ! instead of £ in the definition of the Gauss sum G(&) is
to adjust with the classical definition. In [41], the symbol G(£~!) is used for the above
G(§). Actually for a € Fﬂr% and a Hecke character 7, 1 = n(a) = ny(a)n™®(a) and
hence 7®)(a) = ny(a) ™. It is common to use a — 7™ (a) to define the global Gauss
sum. We simply put (&) = £(d)/|€(d)| if € is unramified. Then we can decompose
(W1) W(@) = W'(9) [[ Wa (@),
Blp

where
Wg(¢) = e(€)e(€’)  if either my = o(&,¢’) with ramified € or 7(£, &),
Wg(¢) = —({(w)/§(@)]) if mp = a(&,¢') with unramified £.
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Let P and @ be two positive arithmetic points of ¥;. To state our result, write
my (resp. 7r§’3) for the PB-component of the automorphic representation generated
by f(P) (resp. g(Q)). Since f(P) and g(Q) are ordinary, for B € Sp, mp and 75
are either special or principal. Thus we write mg = o(np,n5) or m(nw,7n5) and
W{B = a(&;,é{B) or 7r(§;3,§%). Here we may assume that {g and 7y are unramified
and |£x(p)|p = |73 (P)|p = 1. Then we introduce a Gauss sum factor:

N(J)I@I+D2W (1) H &€/ (dss) |’ (dsp)|G (&)
NN (p) (L 7 () 66 () [G )

where d is the idele fixed in Section 2.3 of Chapter 2 such that dr is the different
of F/Q. In [41] Section 5, instead of Wy(P,Q), we used the constant W(P,Q) =
(XQY¥P)oo(—1)Wo(P, Q). We now deduce from Theorem 6.5.1 the following result,
which is the ordinary version of Theorem 5.2 in [41]:

Theorem 6.5.2 — We have

or _ L,(1,\p ® [i
D74(P,Q) = Wo(P,Q)Co(P.Q)S(P)B'(P, @) 2l A 2 Fa)

(fP7 fP)6
for all pairs of arithmetic points (P, Q) satisfying (Ad), where f3 is the primitive
form of conductor NR? associated with f(P)*, and S(P) and E'(P,Q) are Euler
factors at p which will be described in Lemma 6.6.1 below.

6.6 Deduction of Theorem 6.5.2 from Theorem 6.5.1

We can deduce Theorem 6.5.2 from Theorem 6.5.1 in exactly the same manner as
the deduction of [41] Theorem 5.2 from [41] Theorem 5.1. The only difference from
the argument in [41] is that the Fourier p-coefficients of g, in Theorem 6.5.1 does not
vanish, while we removed those p-coeflicients in [41] via the twist by the character
6. Thus in our ordinary case, 6 is the identity (and ¥ and xg in [41] Section 5 are
also trivial by the ordinarity of f(P) and g(Q)). Anyway the computation in [41]
p.349-351 is valid without any modification making all the values of 8 and X’Q to be
trivial, and as in (5.6¢) of [41], we may assume

9(Q) is of exact level JB*.

We now want to compute go|7(jw®). This part is a bit different from the
computation in [41] p.351 because ¢(Q) has Fourier p-coefficients. This non-
vanishing of p-coefficients affect the form of Lemma 5.3 [41] which is the key to the
deduction. To formulate the p-ordinary version of Lemma 5.3 of [41], we recall some
notation from [41]. Let x be the central character of 7' = ®,m; generated by right
traslations of g(Q). We consider its space V = V(7') in La(G(Q)\G(A), x), which
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is the space of square integrable functions f (modulo the center) on G(Q)\G(A)
with f(gz) = x(2)f(g). Suppose that for each infinite place o € I, 7/ is the discrete
series representation o (1, u2) with

pa(a) = la|™/* and  pz(a) = a™ " a|™ /2,

where m = m(Q). Let m be an ideal of r. For any pair (£,&’) of finite order
character of (r/m)*, regarding them as characters of r5, we consider the subspace
V(£ ¢) = V(r';€ ¢, m) consisting of functions ¢ € V satisfying the following
conditions:

1) ¢ is the lowest weight vector of weight k = m(Q) + ¢

(that is, ¢ corresponds to a holomorphic modular form of weight k);
(if) ¢ (2 (25)) = E(am)€ (dm)d(z) forall (24) € Lo(m),

where T'o(m) = {(28) € G(Z)lc € mt}. Since the central character of 7’ is given
by x, V(£,¢') is trivial unless £¢ = x on TX. Let C be the conductor of 7’ in
the sense of [11]. Then V(id, x;C) is one dimensional and spanned by a unique
element f° with a(1, f°) = 1. This form f° is called the primitive form associated
with the representation 7’. We can describe the subspaces V' (£, £’) locally. For that,
let us write 7' = ®qm for a local representation 7; at each place q and take a
representation space V; for m;. When q is finite, we define V(&4,£;; M) by the
subspace of V, consisting of vectors v satisfying 7} ((24)) v = & (a)€ (d)v for all
(at) € To(m),. When q is an infinite place o, V(£g,&5;m,) is the space of lowest
weight vectors of weight k,. Then V({,&;;m,) is one dimensional for almost all g
and, fixing a generator v, for such places, we can naturally identify

V(g ¢5m) = @) V(& & ma)
q

as modules over the (complex) Hecke algebra with respect to To (m).

Let gg be the primitive form associated with V' = V(7). We want to express the
special value:

p(M@ P 4p) g
by means of L(s, \p ® fig) (which is equal to L(s, 7 x 7") up to finitely many Euler
factors). By definition, g(Q) belongs to V(n';id, x; JB*). It is known that me for
B € Sr is either principal or special, and the special representation occurs only
when m, = 1 for all the p-adic places 0 : F < Q — @, (see [34] Lemma 12.2,
[38] Proposition 2.1 and Corollary 2.2). Write 7y, = (&g, &5) (resp. o€y, &) with
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Epén o |p) when g, is principal (resp. special). Here, we follow the convention
explained below [38] Proposition 2.1 to describe principal series representations and
special ones. Writing C(§g) = B ¥ for the conductor of &> we now define subsets
of Sg as follows:

T1 = {B € Sp|y (V) >0}

%3 ={P € Sp|7y'(V) =0 and my, is principal }

Ty ={B € Sp|Y (V) =0 and my is special } .
Here we use the same index system as in [41] Lemma 5.3 in order to facilitate
comparison with the lemma there. Especially, in our p-ordinary case, the set ¥
in [41] will not show up. By [38] Corollary 2.2, we may assume that &y (resp.

&) coincides with the trivial character on 1: (resp. x3) and that g(Q)|T(%) =
&y (wp)g(Q) for the Hecke operator T(R).

Similarly as above, let m = ®gm; be the automorphic representation spanned
by f(P) and write its p-component as m(ng, ng) or o(ng,ny) for B € Sr so that
F(P)|T(R) = n(wsy) f(P) (where ny is unramified at € Sr). We define

51(P) = {®B € Sr| 1y is ramified}
%2(P) = {® € Sp| my is principal }
%3(P) = {B € Sr| my is special} .

Then Theorem 6.5.2 is a direct consequence of Theorem 6.5.1 and the following
result:

Lemma 6.6.1 — (i) We have

1 when L € T3 U X,
o) =1, .
Y (B) otherwise,

where JPR is the exact level of g(Q) and a = ((B))pese -

(i) Write e for [m(Q)] — 1 and define operators By for each B € Sr acting on
V(x";id, X5l§ JB*) for the unitarization ©"' of the contragredient of ©' by

gB:Id if38621U24,
By = 1d —|wy |, /)71 (wg)[wglo i B € Ts.
Then we have {g(Q)|7(jw*)}* = Co(9(Q)*)*|B for B = [|g¢s, By, where

Co = W(u@)liw®|5? [ (—€ (we))|lwsly >+
BeXs

and h|[@wglo(z) = h (:c (wg%_r (1))) for h e V(n";id, xél; JR).
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(iii) Define an Euler factor Eg (P, Q) at each B € SF as follows:

(1= eI (@) e
¢ @) w0 @l T
=1 (g () 1 ~
e TP
L if%EE@

— ) @)

where we have written w for wsy. Then the Euler factor at B of

Lip(2,x ) (PN 1), g(@)1r(jo))

is given by C1E(P,Q), where E'(P,Q) = HiBeSp E{B (P,Q) and

a(SB))lwa(sB)lqsG(EsB)
1€€' (dsg)|

BeSF

(iv) Write f3 for the primitive form of the unitarization of = and C(r) = NB°
and define for s = #(X3(P))

SP)=(-1° [[ @—n""n(wp)lwgle)d—n"'7 (ws))

BeX2(P)
x H n/n—l(w%(%))lwgg(%)l%‘
BeX1(P)
Then we have
((f(P))¥|r (@), f(P)")a
(f]C;’f}%)S

dg)
— o P2y (W OR)SE) [ o) [T |7m Edsts
PeX1(P) ReSF ' S’B

The assertions (i) and (iv) follows from [41] Lemma 5.3 (ii), (vi), and the assertion
(ii) follows from [41] (5.8). Since the proof (iii) is a straightforward computation
similar to (and simpler than) that of Lemma 5.3 (iv) of [41], we do not repeat
it here and leave it to the attentive reader. From this lemma, we conclude the
assertion of Theorem 6.5.2 in the same manner as in [41] Section 5. In the sense of
Conjecture 4.2.1 (iii) in Chapter 4, the Euler factor E’'(P, Q) as above is associated
to Lg ;. (m(A\)®7 (1)), and S(P) is associated to Ly ;.. (Ad(m(\))). This fact supports
the description (iii) of Conjecture 6.3.1 and (ii) of Conjecture 6.3.3.
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6.7 p-Ordinary adelic Eisenstein measure

Here we give a construction of the ordinary Eisenstein measure. Let

Up(Lp*) = {z €|z =1 mod Lp°T} and Up(Lp™)= ﬂ Ur(Lp®).
a>0

We consider the ray class groups Z and Z defined as follows:

Z =7Z(L) = F} JFXUp(Lp®)F% and Z = Z(L) = F [F*Up(Lp=)FZ

where F*XUp(Lp>®)F% is the topological closure of F*Up(Lp®)FX in Fy', Foo =
F ®q R and FZ, is the identity connected component of F. The group Word
can be naturally regarded as an open subgroup of Z and Z. By class field theory,
we can identify Z and Z with the Galois group of a suitable abelian extension of
F. Write C1%(Lp*) (resp. Clg(Lp*)) for the (resp. narrow) ray class group modulo
Lp®. Then
7z @aCl%(Lpa) and Z = lim o Clp(Lp®).

By considering the class of an ideal a prime to Lp in every Clg(Lp*) or CI%(Np®),
we can associate to a an element [a] of Z or Z. Let w be the Teichmiiller character
of Z, that is, for each ideal a, w([a]) = limp—00 Nr/@(@)P", where the limit is taken
in Z,. Let N : Z — Z} be the cyclotomic character, that is, N([a]) = Ng/q(a).
We consider w to have values in @ via ip. Thus we may think eN'* as a character

with values in @: for any finite order characters e : Z(L) — Q. Then, by a result
of Deligne and Ribet [17], for any given ideal ¢ prime to Np, there exists a unique
p-adic measure { = (; , (in the sense of Mazur) such that

[ N @G z) = (1= eN™ () Lip(1 = )
for all m > 0 and all character eN™ : Z(L) — @: . Here we write

LLP(Svs) = H (1 - E(Q)NF/Q(C')_S)L(S’E)’
q|Lp

where % runs over all prime factors of p in . We write €(C1%(Lp®); 0) for the space
of all functions on the finite group CI%(Lp*), which is naturally the 0-dual space of
the group algebra 0[C1%.(Lp®)] by the pairing ( , ) given by (£, ¢) = Z[a] Eao(la]) €
0. Here &) is the coefficient of £ at [a] € C1%.(Lp®). Moreover these pairings for
varying a are compatible with the transition maps of the natural projective system
{C1%(Lp*)}o and the injective system {6(Ci%(Lp®);0)}q. Thus the continuous
group algebra O[[Z]] can be considered as the space of O-valued measures on Z.
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Then, writing €(T’; 0) for the space of continuous functions on a topological space
T having values in 0, we know that O[[Z]] is the O-dual of €(Z; 0). Thus ¢; 1. € O[[Z]].
We regard 1 — [t] as an element p of O[[Z]]. We have [ ¢(2)du(z) = 1 — ¢([x]).

Now we define the Eisenstein measure E; 1, : 6(Z(L);0) — M°"¢(Lp™;0) (for
each k > 1) by the following formulas:

©) 20,0(y, By o (6N)) = 27 1F°€) /7 N (2)dGe 1 (2),
a1, Fon (M) = 3 (8((8]) — Nrya@)d(ib])).
boyr

To compute the g-expansion of Ey r(¢N) when ¢N : Z(L) — @: is a product
eN* for a finite order character € : Clg(Lp®) — Q”, we introduce some classical

Eisenstein series. Write simply ¢ for eN* (k = [m(k)] + 1). Then there exists a
classical modular form E(¢) € M (Lp*;C) for k = (eN*~1,0) such that

ap(s, B(©) = 3" 6NN (b)) and a0,(ur, B(E) =27 AL, (1~ kye)
boyr

where €4(a,d) = £(d), n(k) = 0 and m(x) = kt — t. Then we can easily check that
E(&)|T(p) = E(£), and hence E(€) is p-ordinary. Further we get by definition

By 1(§) = E©)I(1 — @N ().

Thus, for any locally constant function ¢ on Z with values in K, Ey 1(¢¢) is
an element of M?2"¢(Lp>; K). Since the functionals: ¢ — a,(y, By r(4€)) and
a0, (Y, Er,1.(¢€)) are bounded measures with values in O on 6(Z; 0), the linear map
defined on the space $%(Z;0) of locally constant functions E; ; : $%4(Z;0) —
M?2™(Np>;0) extends by continuity to a p-adic measure having values in the space
of p-adic modular forms M°"¢(Np>;0). We have, by [12],

O Ryh(F) ot
(Resl) Ey,1.(id) = —log, (N((x))) w MI;IL (1 NF‘/Q(q)> .

6.8 Convoluted measure

Let us simply write the Eisenstein measure as E = E; .. Note that G°™¢ can
be naturally considered to be an open subgroup of Z(L). Then through the action
of the center of G, we can extend the action of G on U* = M(Lp™;0) and
S = S(Lp>;0) to Z(L) which actually factors through Z(L) because units in r*
acts trivially on modular forms. For each O-module M, we write M* for the 0-dual
of M. Let ¢ : M* — S(Lp*>;0) be an O[[Z(L)]]-linear map for an O[[Z(L)]]-module
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M. In this paragraph, in order to give a proof of Theorem 6.5.1 in the following
paragraph Section 6.10, we describe the theory of the convolution measure of E
and ¢ developed in [41] Section 9. We can decompose Z(L) = W x A(L) for a
finite group A = A(L) and the torsion-free subgroup W. We write A for O[[W]]. We
restate Lemma 9.1 of [41] which is a key to our construction:

Lemma 6.8.1 — Suppose that M is a A-submodule of a A-free module of finite
rank. Then M satisfies the following conditions:

(1) M = lim Mo as A-modules;
(it) M, is a A-module and is O-free of finite rank;
(ii) The transition maps: Mg — M, are all surjective.

Moreover if a A-module M satisfies (i), (ii) and (iii), we have

M* = Homg (M, 0) = lim . ((lig M) ®0 0/p*0),
(M*)* =2 M, Homp(M,A")=2 M* and Homp(M* L*)= M.

Note that U = (U*)* and S* satisfy the condition (i), (ii) and (iii) of Lemma 6.8.1.
We have a product m’ : U* x S — |D|S induced by the multiplication in the

ring of g-expansions (see Section 2.4 in Chapter 2). We may define a bilinear map

m:U* x S — S by m(f,g) = |D|~'m/(f, g). Then by definition, we see for z € Z

m(f|(2), gl(z)) = m(f,9)|(2)-

Note that E : 6(Z(L);0) — U* is O[[Z(L)]}-linear under the action:

¢ ¢|,2(2') = p(2'2)N(2')* on €(Z(L);0).

Consider a compact O[[Z(J)]]-module M satisfying the conditions (i)-(iii) of

Lemma 6.8.1. We regard M as an O[[Z(L)]]-module via a natural projection of
Z(L) to Z(J). For an O[[Z(L)]]-linear map ¢ : M* — S, define

P:M*QU* -8 by g=mo(p®Id),

where M*®¢U* is a p-adic completion lim ; (M*®U*)/p’ (M*®U*). By construction,
we can write U = lim ;U; for free O-modules of finite rank Uj;. For example, we
could take U; to be the O-dual of {3 ;<. <:.0 M. (Lp?; K)} N M(Lp>;0). We
write M®qU for the profinite completion @i,jMi ® U;. We say that a function
¢ : M — U* is continuous if it is continuous under the p-adic topology on U*
and under the topology of the profinite group M. Thus if ¢ is O-linear, then
¢ is continuous if and only if there exists ¢ > 0 for any j > 0 such that ¢
mod p/ : M/p"M — U*/p?U* factors through M;/p’ M;, where M = lim ; M; as in
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Lemma 6.8.1. Since U = ]gll kU for O-free modules Uy, of finite rank satisfying the
condition of Lemma 6.8.1, the image of ¢ mod p’ is actually contained in U} /p?U}
for some k. We denote by Hom.(M, U*) the space of all continuous O-linear maps.
Then we have

Hom,(M,U*) = lim ; lim ; lim , Home (M; /p’ M;, Ui /p Uy
= lim ; liny ; x Homo (M; /9’ M; ®¢ Uk, 0/p’0) = (M&cU)*,

where M®gU is the profinite completion of M ®¢ U. As shown in [41] Lemma 9.2,
we have

M*®cU* = Hom.(M,U*) = (M&cU)*,
where the identification is given by ¢ ® u* — (¢ ® u*)(m) = ¢(m)u*. For
each continuous function ® € 4(M x Z;0), we define an action of Z(L) by
(®]2)(m, 2') = ®(z~1m, 22’). We define E, : 4(M x Z;0) — 6(M,U*) by

E.(3)(m) = /G , (@12 DaBE)

Then E, induces on M*®¢%(G;0) (2 Hom.(M,%(G;0))) a morphism into
Hom, (M, U*) (=2 M*®¢U*). Then we have

B (3)(m) = /G o B MIEMEG) for @ € Hom (M, €(7;0)).

We now define the convoluted measure E ¢ : M*®¢%(Z;0) — S by
E + p(®) = 3(E.(D)).

By our construction, if we let z € Z(L) act on ® via @ || 2(m)(z) = &(m)(2x)N(2)?
regarding ® as an element of Hom (M, %(Z;0)), then it is easy to see

(L1) E x ¢ is a morphism of O[[Z]]-modules.

6.9 Convolution along \

We fix decomposition: Z(N) = W x A(N) so that the projection Z(L) — Z(N)
induces the identity on W. We take X : h°"¢(Np>;0) — [ as in Theorem 6.3.2. Note
here ) factors through h°7%(1)) defined in Section 2.9 of Chapter 2. It is easy to check
that [ satisfies the conditions of Lemma 6.8.1. By composing the multiplication map:
I®al — [ with A®1Id, we can naturally extend A to an l-algebra homomorphism of
R = h°™(¢p) ®4 [ into [, which we again denote by A\. We now consider the [-algebra
decomposition Rl = K@ X introduced in Section 2.9 of Chapter 2 and write 1, for
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the idempotent of the factor K. We take 0 # H € [ which annihilates Co(A;[). Then
H1, € R. We write S°"%(3) (resp. S°"?) for the dual of h°"%(3) (resp. h°"¢(Np>;0))
in S (see Section 2.9 in Chapter 2). We also write M = Homp (M, A) for any A-
module M, and we define a pairing { , ) between R and S°"%()) = S°"4(¢)) @4 [ as
follows:

(P1) (h®i,f ®¢) = (h(0), f) = (h, fl#(3)),

where the pairing at the right-hand side is the pairing of Section 2.6 in Chapter 2.
We then define

(L2) 0y : ST P) 50 by O(f) = (HLy, f).

For a point P € %;(f2), we have an O-algebra homomorphism Ap = Po\: R — Q,,.
Suppose P is positive and arithmetic. For a suitable Sp-tuple a = (a())ges,, we
find f(P) € ngﬁ)(NiB“;@) such that a,(y, f(P)) = Ap(T(y)) for y € TNFy..,. As

seen in [41] Lemma 9.3, We have

_(f(P)’lr(nw®), hle)a

(F(P)e|r(n@*), f(P))a

forall h € Se(p) (NB<; Q), where e is the p-ordinary projector, and ( , )o = (, )Npe

is the Petersson inner product on S, p)(N*;C). Note that the expression on the
left-hand side does not depend on the choice of a = (a())s.

Now we take an A-free submodule X in K containing [. Then X/[ is a torsion
A-module. We recall our usage of symbol: M* for the O-dual module of M while M
indicates the A-dual module of M. Define a subspace of ¢(Z;0) by

BZ(N): 0)[¥] = { € €(Z;0)[¢(Ca) = p(Q)p(x) forall ¢ € A(N)}.

We know, by restricting functions on Z(L) to W, 6(Z;0)[y)] = €(W;0) as A-
modules. Similarly, we define

S(Liw) = {f € SIp=;0)| FIi) =(Q)f forall ¢eAL)}.

Then in exactly the same manner as in [41] p.381, we can show that

M*R¢(€(Z;0)[1h]) ®a X = M*&¢X*

(L3) ex(h) = H(P)

R

and define, for the twisted trace operator Tp,y in [41] p.367,
D = E*(p TN
U M*®¢(6(Z;0)[y)]) — S(L; ) —— S(N;9) 5 S(y) and
Exyp: M*®X* — 0 by £ (¥®Id).

The measure E )  is independent of the auxiliary choice of X, and as seen in [41]
Lemma 9.4, we know E ) ¢ € M&gl.

SOCIETE MATHEMATIQUE DE FRANCE



84 Haruzo Hipa

6.10 Proof of Theorem 6.5.1

Now the proof of Theorem 6.5.1 goes in exactly the same way as that of
Theorem 5.1 in [41] Section 10. We therefore briefly recall the argument and give
the proof of the residue formula in details. We take a primitive homomorphism
p : hom4(Jp™>;0) — [ factoring through h°"?¢(x). By the duality in Section 2.6 of
Chapter 2, we have p* : I* — S°m4(Jp>;0). Set L = N N J. We take I* as M*
in Section 6.8 and [L/J] o u* as ¢ in the previous section for the operator [L/J]
given in [41] Section 7B. Then E *, ¢ gives an element of (I*®¢l*)* = I®¢l. We
define an element D°"¢ in the quotient field of IQ¢l by %Ie. We can evaluate D°™¢
at (P,Q) € oy x o satisfying (Ad) in exactly the same manner as in [41] Section
10 and get the evaluation formula as in Theorem 6.5.1. We now briefly recall the
process in order to prove the residue formula.

We can choose H so that H(P) # 0 and H kills the congruence module Cy(A;1).
We first compute ¥ = Ty o e o (E * ¢). By extending scalars if necessary, we
may assume that P,Q : [ — @p have values in 0. Then especially @ € [* and thus
Q®n € M*®¢%(Z;0) for any character 5 of Z(L) with values in 0. We first compute
U(Q ® ¢p) € S°m4(x)), for the character vp : Z(L) — 0> given by the restriction
of Ap to Z(L), that is, ¥p = ™ MPINIMPI Let ¢(Q) € S21&,(JB*; 0) be the
normalized cusp form with Hecke eigenvalues pug. We write ¢ for the restriction of
pq to Z(L). Then, regarding Q ® ¥p € M*®¢(€(Z;0)[1]), we have by definition

¥(Q®r) =Ty 0 e(9(Q|IL/T)- (BOG vr)l(L - SENE)),
where § = 1 or 0 according as x = % or not. This can be rewritten as
(1- 8y @ &) )T @1)(Q® P) = Ty/w o e {g(Q)|[L/] - Brr(xg'vr)},
which implies
((1-5() ® () )D)(P,Q) = ex(Tryw o e {9(Q|IL/T) - B (x5 ¥p) })-

This is true for densely populated points (P,Q) in ¥; x ¥; and hence is true
everywhere over ¥; x ¥;. When P = Q, we still have

(1 =6(x) ® ()1 )D)(P, P) = £x (Tryw 0 e {(9(P)I[L/J]) - (By,L(id))}) -

It is clear from the definition that £x(Ty N o e(g(P)|[L/J])) = dx,u, Where 6y, is
1 or 0 according as A = p or not. Then the residue formula follows from (Resl) in
Section 6.8.
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7. p-Adic Rankin products in partially CM case

We call A : h = h™°"4(Np>;0) — [ “of CM type” if there exists a totally imaginary
quadratic extension L of the totally real field F' such that the isomorphism class
m(A) contains the induced representation ® of a character ¢ : 9§, — [*. In this case,
using p-adic Hecke L-functions of Katz [52], we can construct a “genuine” p-adic
Rankin product Lg(® ® p) for S = (0,1,0) and p € w(u) in Conjecture 5.5.1 of
Chapter 5 and Conjectures 6.3.1 and 6.3.3 of Chapter 6.

7.1 CM components of Hecke algebras

Let L be as above and write Clz,(Cp®) for the ray class group modulo Cp*, where
C' is an ideal of L prime to p. Then we consider Cly(Cp>) = lim Cl1(Cp®). By
class field theory, we may identify Cly,(Cp™>) with the Galois group of the maximal
ray class field modulo Cp™. Let 4 = 9 and # = 9r. Let A : h™°"¢(Np>;0) — |
be primitive and of CM type, and suppose that [ is torsion-free over A. Thus
® = Indy ¢ € w()\) for a character ¢ : % — [*. Since the ramification of m(\)
outside p is known to be finite, ¢ factors through Cly(Cp™) for some C. We take
the largest C' which we call the conductor of ¢. Since 7(A) is known to be irreducible,
@(cac™t) # (o) for some o € G, where c is an element in ¢ inducing a non-trivial
automorphism on L/F. By (Gal) (iv) in Section 2.8 of Chapter 2, for ¥ € Sp,
®|p, (Dg = Yr,) is reducible, and one of its characters is given by the character
6 : Fp* — Im(A\)* taking y € Fig™ to A(T(y)). There are two possibilities:
(i) Dgrg C ¥ or
(ii) we can find c as above in Dy and ¢.(0) = ¢(coc™) = ¢(o) for all o € Dg.
If Case (ii) occurs, g = @|pynx = P|pynx for a character ¢y of Dg. Then the
semi-simplification of 7(\)|p, is given by ¢g @ dgx for the quadratic character x
corresponding to L/F. Thus we may assume that ¢y = dy and n = det(®) = x&%
on Fyg*. We see that (a) = n(a) = T(a)? for (a,a) € G sufficiently close to 1, where
G is the weight group as in Section 2.1 of Chapter 2. Thus Case (ii) never occurs.
This implies Dy C #; in other words, all prime factors in S splits in L. We define
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a set S of primes P of L over p such that ¢|p,. = dg (Dp = 91,). Then S S =10
and S| | S¢ is the set S, of all primes of L over p. The subset S can be regarded as
a (p-adic L) type {Veg C V(®)} as follows: for B € Sp, writing P for the unique
prime in S above L, we take as Vo = Vg (M) the subspace of V(A) on which Dp
acts via ¢¢|pp. Thus the choice of S gives rise to the choice of {Vg }pesy- Let I
be the set of all embeddings of L into @, and write ¥ for the set of embeddings
made of o € Iy such that i o induces a p-adic place in S. Then I} = X[ |¥c,
that is, ¥ is a CM type. We call S the p-adic CM type associated with 3 and also
call A of type (L, S, X). Then as seen in [47] Section 6 and [48] Section 4, we have
N = N1/r(C)Dy F for the relative discriminant Dy, of L/F and

(CM1) A(T(n)) = Z ¢([a]) if n is prime to p,

aac=n

where a runs over integral ideals of L with norm 1n and [a] is the class of an ideal

a in Clp(Cp®). Here we understand ¢([a]) = 0 if a is not prime to Cp. As for the

value of A\(T(y)) for y € Fg™, we get from the above argument

(CM2) A(T(y)) = ¢(y) identifying Fz with Lpe for P € S with PNF =%.
Moreover the character ¢ satisfies the following properties:

(CM3) ¢ is unramified at S¢ if A is p-ordinary;

(CM4) ¢p is the p-adic avatar of a complex Hecke character @p for P € .

For any complex Hecke character w : L*\Ly — C* of type Ao, we define its
infinity type oco(w) = m € Z[I] by w(z) = 2™ = [, z°™ for x € LY. Writing
m = oo(pp) and m(X) = > .5 ms0, we have —m — mc = m(P) + n(P), and by
(CM2), we see that

(o01) n(P) = Z moalp = —m(Xc) | and m(P)= —m(Z)|F.
o€Xc

7.2 Periods of M (\p) of CM type

Let M = M(pp) /1, be the rank 1 CM motive ([4]) attached to the Galois character
pp for a positive arithmetic point P. The field E of coefficients of M(pp) is given
by Q(¢p), which is generated over Q by the value of ¢p on finite ideles = away from
p (that is, z, = 1). Since M(pp) is of rank 1, F(M(pp)) ®LeE,0c0i., C# 0 <
o € Yec. Since g(M((pp)) RLRE,c®i X = HDR(M) RLYE,0®i X (0’ € EC) for X =C
and Byr, we see (e.g. [42] Lemma 1.2) that

(7.2.1) cff’o(@p) =6,0(pp) #0 and oy (®) €l™.
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Thus for any iso, Lt (®) = Ls; () (for T = (8,1,0)), Lt (P ® p) and
Ly ;. (Ad(®)) are automatically normalized (see (NP) in Chapter 4 and Theorems
5.2.1 and 5.2.2 in Chapter 5); so, we drop i from the notation (for example, we write
Lyp(®) for L, (®)). For X = By, there could be two comparison isomorphisms
Ir, and Irr. The isomorphism Ir, is due to Faltings [21] which we used to construct
cIi_IT’L(M } in Section 3.2 of Chapter 3, and the other Igr is due to Raynaud-Tate
for abelian varieties [68]. Let €A be the category of absolute Hodge motives defined
over Q generated by Artin motives and abelian varieties of CM-type. Thus @M
is generated by H!(A) for abelian varieties A as above and Artin motives. If a
functorial extension to 6/l of Igr originally defined for H' of A exists, then it is
unique. We assume the existence of the extension:

(Crr) There exists a natural transformation between the following fibre functors on

@A:
IgpT : HP(M) ®@p Byt = HDR(M) ®ﬁ,ipa Bgr.

By [21] and [2] Theorem 0.3, Ir, induces another natural transformation on @/:
(Cra) Ipa : Hy(M) ®q, Bar = Hpr(M) ®g; , Bur.

Thus 0et : Ip) o Igr (resp. opr = Irq o Igy) gives an element of the motivic
Galois group Me¢(Bpur) (resp. Mpr(Bur)) for Mey = Autqu(Hp) (resp. Mpr =
Autey(Hpr)). Since opr commutes with the Galois action of %q,, opr €
Mpr(Qp). We can use Igr and Ip, to define the period c:ioo (M), which we write
c;,t(M ; Ix), if necessary, to indicates its dependence on Ix for X = Fa and RT.
Since IFa, = U'DRIRT, C%(M;IRT) = c;:(M) mod @;(

On the other hand, by using the monomial relation of CM periods due to Shimura,
Deligne and Blasius [4] for complex periods and to Gillard [27] and Blasius [2] for
p-adic periods, we can write cX (®p) and ¢t (®p;Ix) up to algebraic numbers in
terms of the periods of an abelian variety with complex multiplication of type (L, X):
We briefly recall the definition of the period from [52] and [47]. For that, we need
some more notation. We write V' = Ogq for the p-adic integer ring of {2. We then put
Vo =i, L(¥). Let R be the integer ring of L. We fix an element 0 # § € R such that

(A1) §¢ = —6 and Im(6?) > 0 for all 0 € I;

(A2) The alternating form (u,v) = (u®v — v°u)/26 induces an isomorphism
RN, R = d1¢ for an ideal ¢ prime to p,

where D is the different of L/Q. We can algebraize the complex torus C*/R* for

RE = {(@%)ses € C2|a eR}
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and find an abelian scheme A = As over ¥ with c-polarization P induced by
(, ). Let u = (us)sex be the coordinate of C*. We put weo = du = Y 5 du,
which is a generator of 24,c over the ring C*. Identifying the S-adic completion
Rs of R with 1, we have a trivialization i : F,/d, ' — A(C). This extends to a
trivialization 4 : ppe ® D~1 C A over V. Then i 1nduces an isomorphism of formal
groups 1 : Gm ®z 0~ = A for the formal completion Aof A along the origin.
Writing G,,, = Spec(Z|t,t™!]), Gm has a nowhere vanishing differential ‘it. Then
we put wp =% * (‘—1}) on A, which is a generator of {44 over the ring ¥ ®z Rs. We
pick a global section w of §24 v, which is a generator over the ring Q®zR. We can
supplement w with a section n € H'(A,O4) for the structure sheaf O4 of A /¥o SO
that Hpg(A) is generated by (w, n) over the ring Vo ®z L. We also choose a generator
a so that H1(A;Q) = La and [ we = 1. Then the two periods 2, = Q,(RT;X) in
(V ®z Rs)* C (V) and Qoo = Qoo (T) in (C*)* are defined by

(7.2.2) w=Qwp, and w =W (& Vs = / w).

«@

Then we have

(Pdoo) & ,(1(Ap)) = 2ri)"PP) P med @,

and we expect to have

(Pdy,) cE (1(Ap)i Ira) = ¢, ((Ap); Inr) = QPP mod @7,

where Q¢ =[], .5, Qd, for d € Z[I].

We now look at the specific abelian scheme Ay, of CM-type (L,¥). We
choose for each ¥, generators by and ng so that H}(Ag,Q,) = L ®z, Qpby and
H}p(Ay) = L®g Qny regarding Ay is defined over Q. Then we could have defined

O, (RT; ¥) by Irr(by) = Qp(RT; ¥)nw, because the Tate module T,(A) ®z Q is the
dual of H}(Ay,Q,). We define Q,(Fa; V) by Ir.(by) = Qp(Fa; ¥)ng. Note that
Op(Fa; ¥) = cy(0)Qp(RT; ¥), where cy(0) is an element of L ®z, Q, induced by
opr. Since we can always realize Mp inside ® gy H'(Ay)®** for a suitable choice of
integers kg, we can write down up to algebraic numbers c;,t (M;Ix) as a monomial
of periods Q,(X; ¥). The form of expression is independent of X = RT or Fa under
(Crr), and the ratio of two periods are given by the same monomial of cg (o). In
particular, if @gH(Ag)®* = @y H'(Ay)®*e, then %9—% is independent
of X. Thus Y

(Pdrrr)
cf(Mp(l);IRT)/Qp(RT; Z‘)m(P)‘n(P) = c;,t(Mp(l);Ipa)/Qp(Fa; E)m(P)‘"(P).
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We simply write ,(P) = Q,(RT; P) (resp. Qoo (P)) for Qp,(RT; £)™F)=7(P) (resp.
2ri)n @) Q) =P)) “gince

iy ' (¢; (Mp(1); Int) /Q(RT; P)) = i (¢ (Mp(1))/Qoo(P))

by (Crr), we can replace the transcendental factor Q,(RT;X)™(F)—n(P) by
cf,: (Mp(1); Irt). It is plausible that IrT coincides with I, on H! of abelian varieties
(and thus Igr = IF,), but it seems that this is not yet verified ([50] 4.3.5). Anyway
we assume

et .
U) There exists an unit € € [* such that —‘:M = e(P) for all motivic P
cp (Mp(1);IFa)

of type S.
If Ipq, = Igr, then € = 1. For the character ¢ :  — ¥, Katz (see [52] and

[47] Theorem II) found a p-adic L-function Ls(p) € I®¢"V satisfying the following
interpolation property for all positive arithmetic points P

(7.2.3)
L_é,%g)p‘) =@ rx)Wp(wpx—l)m(”|D|-1/2(—za>n<P>E(P>FF(m(gl,)(I%(?’ e5").

where D is the discriminant of F//Q, I'r(d) = [],¢;'(d,) for the gamma function '
I'(s), (20)" = Il,ex(207)™, Wy(ep) is the Gauss sum factor defined in [47]
Theorem II and ‘

EP) =[] - ¢z @) [T {1 - 05 @)1 — 0pP)N(P) )}

g|C PeS

Here we have written Ls(P,¢) = [ ¢p'du for the Katz’s measure given in [47]
Theorem II. Note that the ratio _ﬁs%;_)) is by definition independent of the choice of
the global differential w, and hence the equality (7.2.3) makes sense. We now rewrite
the value using the complex functional equation or its p-adic counter part in [47]
Theorem II. The result is

(7.2.4)

Ls(P,p) = @ - xON () er(OW (p) DI (28" B(P) DAL Pr)

where W(pp) = @p oo ()W (p5" )Wp((¢p)c) for the Gauss sums W, and W’
defined in [47] Theorem II. If Irr = Ir,, as we have seen, Q,(P)/c}(¢p) and
Qoo (P)/ct,(pp) are both algebraic and equal in Q. Under the milder assumption
(U), Ls(¢p) is a genuine p-adic L-function up to units if p > 2. Assuming the complete
splitting of p in F, the extensibility (Cgr) is basically proven by Gillard [27]. The
full splitting of p in F' guarantees that any complex CM type is actually ordinary;
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thus, Ay falls in the ordinary case treated by [27]. In this case, we could say that
Ls(p) is “genuine” with respect to Igrr replacing Ir, by Igr in the definition of
cy (ep).

P

7.3 Genuine p-adic Rankin products

We find, by computing Euler factors of L; (s, Ad(®p)) for an arithmetic point
P,

(7.3.1) Li,(1,Ad(®p)) = Li, (1, 05" (¢p)c) Li (1, XL),

where (¢p)c(0) = @p(coc™!), and x, is the quadratic character corresponding to
L/F. We suppose

(Prim) Every prime factor of C outside the conductor of ¢~ . is either ramified
or inert over F.

Under this condition, the imprimitive adjoint L-function obtained from Ap is just
a non-zero constant multiple of the primitive one; thus, under (Prim), we need not
worry about the vanishing of the extra Euler factors. We thus define

L (la XL)

e (xe N1’

where Lg(p~1p.) is the Katz p-adic L-function of type S studied in the previous
section. In the CM case, the restriction of m(\) to 9¥p, is reducible, and hence
we have two choices of Vg (Ap). Our choice is given by S as in Section 7.1 and
gives a unique choice of Vi’ (Ad(®p)) as explained in Section 5.6 of Chapter 5. Let
w2 h™or4(Jp>;0) — [ be another primitive A-algebra homomorphism. We have a
p-adic L-function D,(m()\) ® (1)) in the field of fractions of I®¢l. Then we simply
define for T = (0, I,0)

(7.3.2) Ly(Ad(®)) = Ls(¢ " pe)ei (e N ™)

(7.3.3) Lr(® ® #()) = Ly(Ad(®))Dp(r(X) ® 7 ().

Here we could have written Lr(® ® p) for Lp(® ® #(u)) taking p € m(u), but it is
actually independent of the choice of p by Theorem 5.2.1 and (NP) in Section 4.3
of Chapter 4.

Conjecture 7.3.1 — L (® ® 7t(p)) is entire (< Lp(® ® 7t(p)) € 1®61R¢0q).
This conjecture implies Conjecture 6.3.3 in Chapter 6 in our situation if
Irq = Irr. Conjecture 7.3.1 follows from the conjecture in [47] p.192 (see also
Conjecture 5.6.1 in Chapter 5 in the text). This conjecture is known to be true by
[55] and [71] (see also [48]) when F' = Q and hence, Conjecture 7.3.1 hold in this

case. We will show in the following paragraph that Conjecture 7.3.1 holds when p
is also of CM-type for general totally real F'.
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7.4 Totally CM Case

Let L' be another CM quadratic extension of F. We assume that p is of CM type
with data (L, S, %', %) like (L, S, %, ¢). Thus 7(p) has an induced representation
¥ of a character 9 : 91, — [*. We define the 2 x 2 Hecke matrix Ay for Ap so that
det(1 — A X) =1 —Xp(T())X + Ap({1))X? for each prime [ outside p. Thus the
above polynomial can be of degree less than 2 only when [ divides the conductor of
Ap. We define By similarly for ug. Then we define imprimitive Euler products

L(s,\p ® fiq) = [[ det (1 — A @ BIN(D)™) ",
[

£(s, Ad(Ap)) = [ det (1 — Ad(A)N(1)~*) "
!

Then the p-adic L-function D, = Dy(m(X) ® 7(p)) basically interpolates the ratio:
%. It is obvious that £(s,\p ® fig) (resp. £(s, Ad(A\p))) is equal to
L(s,®p ®¥g) (resp. L(s, Ad(®p)) up to finitely many Euler factors. By computing

Euler factors of L(s, Ap ® fig) for two arithmetic points P and Q, we find

L(s, pptg' ) L(s, pp(¥@): ') L' =L,

L(s, \pQ jig) = E ~
(5240 @ fa) (S)X{L(s,apw) I # L,

where E(s) is a finite Euler factor, and gp (resp. z/p\Q) is the restriction of pp (resp.
1q) to Gy for the composite LL'. Let E,(s) be the Euler factor of E(s) outside
p. If B, : (P,Q) — E(1) is a function in I®I, we just put

Ls(ep™')Ls(pyt) if L' =1L,
Ls(@pY) if L' # L,

where the L-function appearing on right-hand side is the corresponding Katz p-adic
L-functions of type S, and { (resp. {5) is the restriction of ¢ (resp. ¥) to §rr . Here
the subset S in Sr1+ is made of p-adic places given by the extensions of places in S
to LL'. Then the above Ly = L1(®® ¥) gives the desired “genuine” p-adic Rankin
product. As was done in [47] p. 250-51 when L = L', one can check that the p-Euler
factors of D, and Lt /L, for L, = L,(Ad(®)) match in general. Thus we only need
to prove E, € IR1 as follows. Let = be the set of prime ideals outside of p satisfying

the following condition:
(7.4.1) U= (V(2p) ® V(¥)"/(V(2r)") ® (V(¥q)") # {0}.

Then E, is the product of Euler factors at primes in Z. We can also check that = is
independent of P, because the Euler factor depends only on the restriction of ® and
¥ to Iy whose image is finite and hence independent of P and Q. Since E, is just
the polynomial of the eigenvalue of the Frobenius on Uy (I € E), it resides in I®I.

(N) Lr(®® V) = E, x {
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8. p-Ordinary Katz p-adic L-functions

Suppose that X : h°"4(Np>;0) — [ is of CM type, and & = Indy(p) € 7(A) for a
character ¢ : # — [*. We sketch a proof of the fact that the ordinary Katz p-adic
L-function L,(®) = Ls(yp), under the Leopoldt conjecture for F' and p, satisfies (G)
in Section 4.4 of Chapter 4.

8.1 p-Ordinary Eisenstein measures

We use the notation introduced in Chapter 7. Consider the maximal unramified
extension Ko in 2 over Q,. Let V" be a finite extension of the p-adic integer ring
of Ky. Let f be an integral ideal and ¢ be a fractional ideal prime to pf. For each
ideal a, we write a* = a~1d~!. We write V (¢, f2; R) for the space of Katz’s p-adic
modular functions of prime-to-p-level f with coefficients in R (see [47] 1.5 for precise
definition). It is defined geometrically as an affine p-adic ring whose formal spectrum
is the solution of a p-adic ordinary formal moduli problem classifying test objects
made of a Hilbert-Blumenthal abelian acheme A, its c-polarization ® and p™{2-level
structure ¢, everything being defined over a ring R. For any choice of fractional ideals
a, b with ab~! = ¢, evaluation of such modular function at the Tate abelian variety
(Tateq,5(q), Pcan, tcan) (described in [52]) gives an isomorphism of V (¢, ?; R) onto
the p-adic completion of the union (with respect to the level {2p* (o =1,2,...,00)
and weight k) of classical holomorphic modular forms with 4,-integral coefficients.

Over C, the category of the test objects is equivalent to the category of triples
(£, )\, 1), where & is an r-lattice in Fc = F ®q C, i is a level p™f? structure (that
is, an injective homomorphism i : F,/b;' x (f2)*/d7! — p™>L/% x {72£/%),
and X is an isomorphism £ A, &£ = d~lc¢~!. The link between A and & is given
by A(C) = Fg/&. The Eisenstein measure is a bounded measure with values in
V = V(c, %) supported on an open subset of T' = {r, x (r/f)} x {r, x (r/3)}
(3 D f). We consider the space of locally constant functions

@ ={¢:T - Clop(c™'z,e™'a ey, ey') = N(e)*b(x,2',,9)} -
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Each ¢ € €, , we associate an Eisenstein series of weight k& by

Ao o) = CDMTr(k + st) Po(w)
B A0 VIDI wef_;og,rx NN ()P =

where P is the partial Fourier transform with respect to (z,z’) which sends ¢ to
a function on f~!p~*°% supported by an r-lattice (see [47] (2.2)). Then we get, if
k>2,

Ek(d’» c)(Tatea,b(q), @cany ican) = N(a){z—[F:Q]L(]' - k; ¢’ C()
@ F Y Y sabsen(NE@)N@ ),

0ké€ab (a,b)e{axb}/t* ,ab=¢

where L(s,$;a) = 3 ccq_qop)/ex 2 0)sgn(N(€))*|N(€)|~*. The construction of
the Eisenstein measure is done in the following way: To each ¢ € ‘6:, we associate
linearly ¢° € €, asin [47] (3.1). Let N : T — @, be N(z,2,y,y') = Nr,/a,(2).
Then E*°" : N~%¢ s Ei(¢°) € V gives a linear map into V defined on functions
on T/rX which is locally a negative power of N. If ¢ is supported on T*/tX, by
(Q), the constant term of the g-expansion disappears, and hence E™°"¢ extends to
a unique bounded measure with values in V on T* /r*. This measure is studied in
[62] and [47]. Here instead of considering functions on T%, we consider functions ¢
on

T = (1 x (t/f) x (t/8))/t% for 8>F.

The space J is a quotient of T' = {r, x (v/f)} x {r; x (v/8)*} via 7 : (z,2,y,y)
(z,2',y'). Then we still get a linear map E : N~%¢ — Ex((¢ o m)°) € V. However
we can no longer expect the vanishing of the constant term of E(¢). Actually the
functional of constant term of E given by N=%¢ + (the constant term of Ej(¢°))
is the Deligne-Ribet pseudo measure [17] interpolating Hecke L-values of F' (see
Section 6.7 in Chapter 6), which can have singularity. Thus, for each choice of an
ideal ¢ prime to pf, we can define the ordinary Eisenstein measure E.; and the
Eisenstein pseudo-measure E. on J* with values in V (¢, {%;V) as follows:

Ecx(N7"¢) = Bi(¢%0)[(1 - (©)N(r)?) and E(N7*¢) = Ei(¢°;0).
Here the word “pseudo-measure” just means that E. ;(N ~*¢) is a bounded measure.
8.2 The p-ordinary Katz p-adic L-functions
Let (p,%,S) be the triple studied in Chapter 7 for the CM quadratic extension

L/F. Let p = [[pcgP. We define the p-ordinary Katz measure on 4(C) =
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Clp(Cp™) for a fixed ideal C prime to p and evaluate the integral of the p-
adic avatars of S-ramified (but S¢unramified) Hecke characters. We identify Fg
with C* via a — (a°)sex for a € F. For each fractional ideal 2 prime to Cp
in L, we take a test object (A(),P(A),w(A),i(A)) defined as follows: Over C,
A(A)(C) = Fc/E(A), where X(A) = {(a)sex|a € A}. We pick an element 6 € L as
in (A1-2) in Section 7.2. Then (, ) induces ¢(AA°)~!-polarization P(A) on A(N).
We define the level structure 4(%) : F,,/d, ' x (f2)*/d~! — A(W) in exactly the same
way as in [47] p.211. We recall the definition of i(2). We decompose C = FF.J so
that

(la) F+Be=R, F+F° =R, Fe+Fe=R and F.DOF,
(Ib) <3 consists of ideals inert or ramified in L/F.

Put f = I N F. We write f = [[;[*V. Thus we know that § = e ()
for primes X in L for (&) = e(X N F). We choose a prime element w; for each
prime [ dividing pf in F so that w; = 1 mod f{~*") (in this formula, we agree to
put £(B) = 0 if P|p) and wy is prime to other prime I’ dividing pf. We choose a
differental idele d of F' such that d = dpy and dq = (26)g for prime ideal £|F
(9 =2 NF). Then we have

W(A) : Fp /byt x () /71 - p®(FI) 2A/A by «— da,
which induces () : F,/d," x (f2)*/d~! — A(). We can find a model

(A(%IL @(%[)7 i(%[)|(f2)*/b—1)/l/'

for a finite extension L’'/Q which extends to an abelian scheme over the valuation
ring ¥’ of L’ corresponding to the embedding i, : L' < Q,, and there exists
a nowhere vanishing differential w() 4~ on A() . Moreover, defining V" as the
composite of Ok, and i, (V"), (A(A), P(A), w(A), i(A)) extends to an abelian scheme
over Vo = i;l(ip(@) NY). Weput 8 =F.NF =FNF and i = I N F. Then we
have homomorphisms

(8.2.1) L=10: {1 x (t/D)* x (t/8)%} /TX - 4(C)

induced by the natural inclusion of F into L, where by ¢, the factor r) (resp. (t/f)*,
(r/8)*) is identified with Rg = [[pcg Rp (resp. (R/F)* x (t/1)*, (R/Fc)*). The
morphism ¢ has finite kernel, and its cokernel is isomorphic to C!~(3J) which is
the quotient of Cl1(J) by the natural image of (r/1)*. We now choose a complete
representative set {2;} for Cl1~(3J) consisting of fractional ideals prime to pCC*®.
Let [%] denote the class of U in §(C). Then 4(C) = |l;jcor- (3 Im(1)[U;] 7" To
define measures on 4(C), we give a recipe of extending functions defined on 4(C)
to J which supports the Eisenstein measure. For each function ¢ on %(C) and
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index j € CI~(J), we define functions ¢; on J as follows: First on J*, we put
¢;(z) = ¢(z[A;]~1). We extend this function to T by 0 outside T*. We write the
ideal of the polarization %(%;) as ¢; and Ej (resp. Ej;) for the specialization of E;
(resp. [k, ;) at the test object (A(;),P(U;),4(Y;)). Then we define a measure
on 4(C) by

(822) (@ :1%) [g oy P =0 [T= 1= | > /g SidE.
J

2|F []i

Let x : Ly /L* — C* be a Hecke character of conductor Cp® for p® = []p ¢ Pe(P)
such that x(zs) = 7, with

(00) n=moeX for mgy > 0.

Then, in the same manner as in [47] Sections 4 and 5, we can compute [ Xdp,, where
X is the p-adic avatar of x defined on 9(C). We just state the outcome:

Theorem 8.2.1 — Let the notation and the assumption be as above. Let C be an
integral ideal prime to p in L. We put Wy(x) = [Ipecg NL/Q(P—C(P))G(26; xp) for

the local Gauss sum G(25; xp) as in [{7] (0.8). Then there exist a (unique) measure
wy on 4(C) for each ideal t prime to pC with values in V' such that

Jaoy Xy (=1)™'T p(mot) !
B e 5 - L(,
e S iy et | Gl | (1) £

for all Hecke characters x of conductor Cp® such that Xoo(Too) = TT0F for mg > 0.

Since 1 — (r) has zero at the trivial character, we expect a pole of the p-adic
L-function at the trivial character. By the construction of the Eisenstein measure,
the value [E¢;(1) for the characteristic function 1 of r; is a constant, and we see
from [12] Lemme 5.4 and its corollary that

(Res) Ee,x(1) = log, (N((x)

P€S< NL/Q(P)>

8.3 p-Ordinary L-function L,(®)

Here we use the notation introduced in Chapter 7. Let ) : h"¢(Np>;0) — [ be
a A°"%-algebra homomorphism of CM type for a finite torsion-free A°"%-algebra .
Since A factors through h°"¢, we see from (col) in Section 7.1 of Chapter 7 that
for a positive arithmetic point P, writing co(¢p) = m, we have m = —moX for
0 <mgp € Z. Thus 90;1 satisfies the condition (co) in Section 8.2. We then just put

L,(P,®) = / pldu for p=(1- )
4(C)
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Then assuming Ir, = Irr and using the complex functional equation, we see in the
same manner as in (7.2.4) that

Ly(P, @) -1 I'r(m(P))L(1, ¢p)
SR — (RX e )N(e) L p ()W (pp)VDETY(P el
where E°"4(P) = HB|C(1 — 5 (Q)) x [Tpes(l — @p(P)N(P)~!). Thus we know

from (Res) and (8.2.2) the following result:

Theorem 8.3.1 — Let the notation and the assumption be as above. We assume
that Ir, = IgT and the Leopoldt conjecture for F' and p. Then L,(®) defined as
above satisfies Conjecture 4.6.1 (i) in Chapter 4. Moreover Ly,(®) is holomorphic
everywhere (i.e. belongs to 1®¢0q) if ¢ is non-trivial on the torsion part of 9(C).
If ¢ is trivial on the torsion-part, it is holomorphic outside the unique point P such
that op = id, and it has a simple pole at P.

We can deduce from (Res) a precise residue formula for L,(®). We will deduce
the formula in the following paragraph in a bit different way from Theorem 6.3.2 in
Chapter 6.

8.4 Another proof of Theorem 8.3.1

There is another way of getting the residue formula in Theorem 8.3.1 from
Theorem 6.3.2 in Chapter 6. We shall give an outline of the proof here supposing that
¢ induces the identity character on the torsion part. To simplify the exposition, we
assume that C = 1 and write % for %(1). The idea of the proof is the comparison of
the residues of two p-adic L-functions: one is the p-ordinary Katz p-adic L-function
given in Theorem 8.3.1 and the other is the p-ordinary p-adic Rankin product
L-function constructed in Theorem 6.3.2. We use the notation introduced in the
previous sections. We decompose 4 = A x W, for a finite group A and a torsion
free subgroup Wy. Take a character v : A — Q. Thus we have the associated
projection 9, : O[[9]] - A = O[[W.]]. We assume that ¢ = 9, for the identity
character . Let ¥, = Homg-q14(AL, Q,) = Spec(Ar)(Qp). Then for each P € ¥z,
we have a continuous character pp = Po ), : # — @X We call pp' (or P) critical
(of type ¥ or §) if, regarding 9 as a quotient of Ly, we have pp(z,) = 2,7 for
n € Z|IL] such that

the p-type n of <p;,1 as above is mgY for an integer mgy > 0.

Then, there exists a complex avatar ¢p : Ly — C* with co-type —n such that
i (p(a)) =iy (pp(a)) for all ideals a prime to p. Let

L(s,¢p) Z‘PP JNLja(m)™*
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be the complex L-function. Write Ly(pp) (resp. Loo(pp)) for (1—¢p(£)) ™! [ ppdy;
for the Katz measure y1;'in Theorem 8.2.1 (resp. L(0, ¢ p)). Then we have

Lp(‘F’Pl)

Qs = Wo(ep)) [] (1 - w3 PN (P)?) (_l)mO[F:Q]FF(mOt)Loo(SD}—Dl)‘

Pes VDI

We now want to compare L, and D3™%(r(A\)®7())) in Theorem 6.3.2 of Chapter 6.
Since W°T? is naturally a subgroup of finite index of Wy, Ay, is a finite flat algebra
extension of A°"%. In the same manner as in [47] Section 6, we have the §-measure
0:6(%0q) - S“Td(DL/Fp“’;@) given by

a(n,6(¢) = > ¢(m).
Ny /p(m)=n
m+p=R
Then 6 induces an algebra homomorphism §* : h°"¥(Dy, pp™; 0) — 0[[¥]] satisfying
[47] (6.7b). By our assumption, A = 1,08* : h°"¢(Dp>°;0) — Ar. Then ) is primitive
in the sense of [34] Theorem 3.6. We pick two points P,Q € d,, . Let mgX and m{X
be the infinity type of cpl_,l and cpél, respectively. Then writing «(P) for the weight
of the point P, we have

mo = [m(k(P))] and n(x(P)) =0.

Then 0(pp) = f(P) for the Ap-adic form f with Hecke eigenvalues given by \; thus,
0(pp) € Skp) (DL rp*;0) for suitable a > 0. Now we write J{ for the Katz measure
on G = Cl(p*) given in [52]. By the functional equation [52] Theorem (5.3.0), we
have

H(E) =N ()T EKE) (& Nija(O) ™' 71K = %),

where £*(11) = £(m°)~!N(n)~! for characters £ : 4§ — @: and a — a* is the
involution of O[[G]] induced by [n]* = N(n)~![n~¢]. Thus comparing the evaluation
formula of Theorem 8.2.1 and that of the Katz measure (see [52] and [47] Theorem
II), we get

H(E) = NOEOK () = @R - )N(©)E() [T @ - €®))u©)

PesS

for all character £ : G/A(= W) — @:. In other words, for the projection
p: G — Wy, we have

pd = (R )N [T A~ P

PeS
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Let Ly, L}, L3 € O[[W x W] and L™, (L™)* € O[[WL.]] be such that

Li(P,Q) = m(ep@), Li(P,Q) =X(epg), L2(P,Q) = A(epq),
Ly(P,Q) = X((€pq)") and L7(P)=%(ep), (L7)"(P) =¥(ep)

for all arithmetic points (P,Q), where epg = ¢p @0, €po = ©p'(¢g)e and
ep = pp (pp)e = ep p- As seen in [47] Section 8, these measures exist and are
uniquely determined. Then in exactly the same manner as in [47] Section 8, we have

Theorem 8.4.1 — Suppose that ¢|a is the identity character. Then we have

ULL}

Dy () @ #(3) = (@7 ) (1 = ) ® (1)) g s

for a unit U in Oq[[Wr x Wy]]|, where U(P,P) = 1 for all P and A(L/F) =
oo, (1 - Nr/a(a)~Y)h(L)/h(F) for the class numbers h(L) and h(F) of L and
F.

Since L3(P,P) = (L7)*(P) and Li(P,Q) = (R* : r*)N(O)[c][Ipes( —
[P])pz(ep,@), from the definition of L, in Section 8.3 and the residue formula of
Dg“i in Theorem 6.3.2 of Chapter 6, again we conclude Theorem 8.3.1 and the
following residue formula:

RCSp:id(Lp ((I)))

_ IR, .. h(I)Rs .
= (R* o) T2 11 = Npjo(BR = 1= Np,P)™),
| ( r*) Wil [1¢ ra(B)7) I Plels( aP)™)

Blp

where w is the number of roots of unity in L, and the relation of the regulator R,
with the S-adic regulator Rg is given by the following formula:

2Rs(R* : >
@)
w
. 2RL,OO(9RX:r>‘) _ . . . .
while %% 51— = Roo for the archimedean regulators. There is a canonical choice

of sign of % (see [12] Section 5) given by ordering the columns of the regulator
matrix and the discriminant matrix according to any fixed order of embeddings i,0
(o €1).

8.5 Representations isogenous to ¢

Here we analyze the singularity of Ly(¢) for ¢ isogenous to ®. Suppose that
F = Q and p > 2 for simplicity. Let W, = W¢ = 7, and W = Z3 be the
torsion-free part of 4(C) and G = Cl;,(Cp™). There are three elements ® and ®+
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in the isomorphism class of () when ¢ is trivial on the torsion-part of 4(C). To
describe these, we note that [ in this case is given by O[[W]], and ¢ is the inclusion
map of Wy, into [ composed with the projection: 4(C) — Wy. Thus [ is a unique
factorization domain, and for a prime divisor P = (r), ®p = Ind® id = id @ for
the quadratic character x corresponding to L/F' and the identity character id. Let
Wi = {z € W|czc = z*'}. Then for a generator w of W_, its projection to Wr,
generates Wr,, and m = o(w) — p(cwc). We let these representations act on V = [2
so that
Vie—=1]={(§)|zr€l} and Vic+1]={(2)|zel}.

These representations have an exact sequence of 9g-modules:
(8.8.1) 0—-V(E) - V(®p) = V() —0.

We can characterize ¢ € {®,®,®_} as follows:

o, ® o
Sequence(8.8.1) | non-split | split | non-split
&) (x,id) | (id,x) | (id,x)
Then on V,\, # = 4, acts via ¢, and we have V" (¢) and a(¢) as follows:
¢ V.t (9) () a_(4) ordp(Ly(9)) | £p(d)
@, | {(Z%) |z €1} | non-unit: 7 unit 2 2
o | {(P)|zel} unit unit 1 1
o_ | {(;2)|zel} unit non-unit: 7 1 0

In particular, for ® and @, the principle (AT,) holds in strict sense (i.e. (G) in
Section 4.4 of Chapter 4 holds), but for ®_, only weaker (AT}) holds.

Let v : bq — O[[[])* be the universal cyclotomic character as in Section 4.5
of Chapter 4. Then we can think about ®; ® v. Since W = Wy, x I identifying T"
with W, again using the (non-ordinary) Katz p-adic L-function, we can construct
L,(® ®v). Since a4 (®? @ v) = ax(P2) € O[[Wi]] C O[[Wr x I']], by the effect of
Euler factor at p, ordp(L,(® ® v)) = 0 at the prime divisor P : O[[Wy x T']] —
O[[I']] induced by the projection to I'. Thus we have ordp(L,(®+ ® v)) = 1 and
ordp (Ly(®_ ®v)) = 0. On the other hand, (4 ®v)p has a non-split exact sequence

0—-xv— (21 Qv)p > v —0.

This shows, on the contrary to the ordinary case, for _ ® v and ® ® v, the assertion
(G) holds, but for & ® v, the principle (AT}) fails to hold.
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A. Correction to [41]

page 317 (0.4b): &, should read ¥
page 317 line 8 from the bottom:
G(&', oy — 1) should read ~ G(&'; "¢/, ")
page 318 (x): L(0, M(fp) ® M(gg)¥) should read L(1,M(fp) ® M(gq)Y)
page 319 lines 2, 15 from the top:

M(fp) should read M (fp)(1) (the Tate twist)
page 320 lines 3, 4, 8 from the bottom:
A0, M(P,Q)) should read A(1,M(P,Q))

page 330 line 11 from the bottom:

Z(N) x Fg |F*Up(Np>®)FX should read  Z(N) = F{/F*Up(Np®)F}
page 330 line 2 from the bottom:
q outside N should read g dividing N
page 331 line 2 from the bottom:
tp(V) should read ¢, (V)
page 333 line 9 from the top: My ,,  should read Mk,w
page 333 line 8 from the bottom:
fern Fﬁf should read feTn FAXf
page 340 line 3 from the top:
er(—&x) should read ep(£x)
page 341 line 4 from the top:
D+2s)/ should read ~ D{+29)/2
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page 348 line 16 from the top

|D|1+m(Q)_(P) Should read |D|1+m(Q)'—m(P)
page 363 (6.8): 3_, cpx\ px should read 3, ¢ x\px
¢eF scF

page 366 line 3 from the top: z,7(m) should read z7(m)

page 374 (8.1a):
ap(¥, fgr) B!, 2)wN(z)dE)  should read  ay(y, [gr) d(w ™, 2)N(2)dE)
ao (v, fG(L) wtTP(2)N(2)dE) should read  ag p(y, fG(L) #(2)N(2)dE)
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Chapter 1

T,: above (A1)

%r, Gr,: above (Al)

[ : above (A1)

Mp, Ep T in (Al)

Vi in (A24)

Chapter 2

T': Section 2.1

G, G°"¢: Section 2.1
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%, X°7: Section 2.1
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Chapter 6
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k(P): Section 6.3

Derd(m(A) @ #(p)): Section 6.3
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L(s,Ap ® fig): Section 6.4

h*(z) (unitarization): Section 6.4 (U)
P, 7(nw®): Section 6.4

Co(P,Q): Section 6.5 Theorem 6.5.1
(, )a : Section 6.5 Theorem 6.5.1
W (¢): Section 6.5 (FE1), (W1)

Wo (P, Q): Section 6.5 (W2)

To(m): Section 6.6

E'(P,Q), S(P): Section 6.6,
Lemma 6.6.1

Ur(Lp®): Section 6.7
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