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THE 6-PSEUDODIFFERENTIAL CALCULUS ON GALOIS COVERINGS

AND A HIGHER ATIYAH-PATODI- SINGER INDEX THEOREM

ERIC LEICHTNAMt AND PAOLO PIAZZA^

Abstract. Let F —^ M —^ M be a Galois covering with boundary. In
this paper we develop a 6-pseudodifferential calculus on the noncompact
manifold M. Our main application is the proof of a higher Atiyah-Patodi-
Singer index formula, for a generalized Dirac operator D on M, under the
assumption that the group P is of polynomial growth with respect to a word
metric and that the Z^-spectrum of the boundary operator DQ has a gap at
zero. Our results extend work of Atiyah-Patodi-Singer, Connes-Moscovici
and Lott.

Resume. Soit P —^ M —^ M un revetement Galoisien a bord. Dans cet
article nous developpons un b-calcul pseudodifferentiel sur M. Ceci nous
permet de prouver un theoreme de Pindice superieur d'Atiyah-Patodi-Singer,
pour un operateur de Dirac D sur M, sous Phypothese que Ie groupe P est
a croissance polynomiale par rapport a une metrique des mots et que zero
est un point isole du spectre L2 de Poperateur de bord Do. Notre resultat
generalise des travaux d5 Atiyah-Patodi-Singer, Connes-Moscovici et Lott.
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0. Introduction.

One of the fundamental tools in the development of index theory for elliptic
operators has been the use of heat-kernel techniques. As this introduction
in meant for a wide audience, we briefly recall the main point of this ap-
proach. Suppose, for simplicity, that M is an even dimensional closed spin
compact manifold with a fixed spin structure. Let S = S~^~ © S~ be the
bundle of spinors and let D be the Dirac operator associated to the given
spin structure. The operator D is formally self-adjoint and odd with respect
to the Z2-grading; thus D± : C°°{M, S^ -^ C°°{M, S^) and D- = (^+)*.
The heat operator of the Dirac laplacian, exp(—^D2), is a smoothing op-
erator for each t > 0. Thus the Schwartz kernel of exp(-^Z)2), the heat
kernel, is smooth on M x M and it is therefore trace class acting on the
Hilbert space of L2 sections of S. Consider the supertrace of exp(—^D2),
STr(exp(-tD2)) EE Tr(exp{-tD-D^)) - Tr(exp(-^D+D-)). The vanish-
ing of the trace on commutators implies that this difference does not depend
on t, thus

^{S^r(exp(-tD2)))=0 (0.1).

Moreover, by Lidski's theorem, it is given by the difference of the integrals
of the two heat kernels over the diagonal A of M x M. It is well known that
as t —^ +00 the heat operator converges exponentially to the orthogonal
projection onto the null space of D2. This implies that STr(exp(—^D2))
converges exponentially to the supertrace of the projection onto the null
space of D2 which is easily seen to be the index of D^. On the other hand
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2 E. LEICHTNAM AND P. PIAZZA

as t —^ 0+ the heat kernel restricted to the diagonal converges itself to a
density on A =. M which is explicitly computable. We denote this density by
AS[yi], n being the dimension of the manifold M and AS being an explicit
differential form constructed out of the riemannian curvature tensor . The
index theorem for D^ then follows by equating the integral over A ^ M of
this explicit geometric expression with the supertrace of the projection onto
the null space of D2 (which is the index of D+). Here formula (0.1) has been
used. Thus

ind(D+)= / AS.
JM

What we have just explained is a sketch of the proof of the local index
theorem for Dirac operators (see [ABP][G][BGV]).

The fascinating idea of using the heat equation to investigate the index
of Dirac operators (due to McKean and Singer in its first formulation) opened
the way to a variety of extensions of the original results of Atiyah and Singer,
some of which will be now recalled.

In a fundamental series of articles, Atiyah, Patodi and Singer [APS
1,2,3] extended the results of [AS 1,3] to Dirac operators on manifolds with
boundary.

Thus suppose now that M has a boundary 9M and that the rieman-
nian metric is of product type near the boundary. The Dirac operators D"^
can be written, near the boundary, as ± 9/9u + DQ with u equal to the
normal variable to the boundary and DQ the Dirac operator on 9M. The
operator DQ is elliptic and essentially self-adjoint. Let II> be the spectral
projection corresponding to the non-negative eigenvalues of jDo and let

(^(M,̂ ,!̂ ) = {s € C°°(M,S^ | H>{s\9M) =0}.

The Atiyah-Patodi-Singer theorem [APS 1] states that the operator D^~
acting on Sobolev completions of C°°(M^ 54', II>) (we denote this operator
by D^) is a Fredholm operator with index

ind(Dn ) = / AS - ̂ (A)) +dimnullZ?o).
- JM z

Here rj(Do) is the eta invariant of the self-adjoint operator Do. It is a
spectral invariant that measures the asymmetry of the spectrum of Do. It
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A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 3

is defined as the value at s = 0 of the meromorphic continuation of the
complex function

^signAIA]"6 SSts»0
A^O

with A running over the eigenvalues of -Do- Equivalently, using the Mellin
transform,

00 00

7?(A)) = —— ^GDoe-^0)2)^ EE tr,{Do)(t)dt. (0.2)
0 0

The proof of the Atiyah-Patodi-Singer theorem relies heavily on the heat-
kernel method.

The Atiyah-Patodi-Singer index theorem has seen a number of refor-
mulations and alternative proofs. Among the latest contributions to the
subject we mention here the b-calculus approach of Melrose [Me] (see also
[Pl][MeNi]). In this new approach microlocal techniques are used in order
to give an elegant and conceptually simple proof of the original result of
Atiyah-Patodi-Singer (in fact for metrics which are more general then those,
product-like near the boundary, considered in [APS 1]). We refer the unini-
tiated reader to the introduction of [Me] for a very readable summary of the
main ideas surrounding the &-calculus proof.

We come now to Bismut's fundamental proof of the local family index
theorem for Dirac operators on closed manifolds [B]. Given a smooth family
of Dirac operators D = (Dz}z^B acting on C°°{Mz',Sz) and parametrized
by a compact manifold B, we can consider the associated (regularized) index
bundle Ind(7?) = [null^)] - [null(£)-)], an element in the K-theovy K°{B)
of the base B, and the associated Chern character Ch(Ind(D)), a cohomology
class in H^^^B^ R). From an algebraic point of view the index bundle can
be seen as the formal difference of two finitely generated projective C°(B)
modules, C°{B) denoting the algebra of continuous functions on B (see [A]).
Thus Ind(D) G Ko(C°(B)), with Ko{C°{B)) equal to the Oth algebraic K-
group of C° (5). This point of view will be exploited later

The problem is once again to give a geometric formula for Ch(Ind(2?)),
an a priori analytic object. The cornerstone of Bismuths treatment of the
family index theorem is the use of the superconnection formalism (see also
[Q]). Instead of considering the family of Dirac laplacians (2?j) one considers
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4 E. LEICHTNAM AND P. PIAZZA

a family of generalized laplacians with differential form coefficients. This new
family is manufactured out of a superconnection on the infinite dimensional
bundle, over By whose fiber at z G B is equal to C°°{Mz^Sz). The fiber
supertraces of the heat-kernels associated to this new family of generalized
laplacians combine to give a smooth differential form on B. We denote by
Kt the family of heat-kernels and by STr{Kf) this smooth differential form.
Bismut then proves that STr(Kt) satisfies the following properties

(i) It is a closed differential form W > 0.
(ii) It does not depend on t modulo exact forms: d/dt(STr(Kt)) = dp o^.

(iii) It is explicitly computable as t —^ 0^.
(iv) It represents Ch(Ind(25)) in H^^B).

This last property can be proved directly as in Bismut's original argument
or by showing, as in [BV][BGV], that the limit as t -> +00 of STr(J^)
converges as a differential form on B to the Chern character of the index
bundle.
Using these properties the local version of the family index theorem follows.
In particular

Ch(Ind(D)) = t AS inff*(B).
Jfibre

Among the many implications of Bismuths heat-kernel treatment of
the family index theorem we concentrate now on the family version of the
Atiyah-Patodi-Singer index theorem. The first result in this direction is due
to Bismut and Cheeger [BC 1,2,3]; {Dz) is now a family of Dirac operators
on manifolds with boundary, parametrized by a compact smooth manifold
B. In order for the family D^^ to define a smooth (or even continuous)
family of Fredholm operators it is necessary that the null spaces of the
boundary operators DQ^ are of constant dimension in z € B. Notice that
under this assumption they form a smooth vector bundle over B, null(I?o) ~^
J3. Moreover the index bundle Ind(I?n>) is well defined and the following
formula holds

Ch^nd^nJ)- / AS - ^{fj + Ch(null(Po))) inff*(B) (0.3)
./fibre 2

(the formula is fully proved in the invertible case in [BC 1,2] and stated in
the constant rank case in [BC 3]; see [MP 1] for a complete proof of (0.3)).
In this formula i) is the eta form of Bismut-Cheeger; it is a higher version of
the eta invariant, in the sense that the 0-degree component of ff computed
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A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 5

at z G B is equal to rj(Do^). The Bismut-Cheeger eta form is defined in
terms of the superconnection formalism by a formula similar to (0.2). The
assumption that the operators of the family Do have null spaces of constant
dimension plays a crucial role in the proof of the convergence of the integral.

The results of Bismut-Cheeger were improved in [MP 1,2]. The use of
a new notion, that of spectral section associated to a self-adjoint family of
elliptic operators (like Do), together with the pseudodifferential fc-calculus,
allowed for the formulation and the proof of a general Atiyah-Patodi-Singer
family index theorem, both in the even and in the odd dimensional case.

Suppose now, as in the beginning of this introduction, that M is a
closed compact spin manifold. Let us denote by F the fundamental group
Ti-i (M) of M and by M —^ M the universal covering of M. The F-manifold
M is again spin with a F-invariant Dirac operator D acting on the section
of a r-invariant spinor bundle S. It is clear that M will be in general
non-compact. There are two sets of objects that are determined by the
appearance of the fundamental group of M.

First we can consider the classifying map v : M —^ BF associated to
the r-bundle F -^ M -^ M. For each cohomology class [/3] e H*(BF, C) we
can then consider z/*[/3] G H^{M) and the complex numbers

/ ASA^*[/3].
J M

Recall also that there is a canonical isomorphism between H^^BT^C) and
the group cohomology -ff*(F, C).

The second set of objects determined by the discrete group 71-1 (M) is
more analytic in nature. We can consider the reduced G*-algebra C^ (F), i.e.
the closure in B(^(F)) of the image of CF by the left regular representation,
and the infinite dimensional bundles

S±=S±S{MxrC^(^)).

These are bundles on M with fibres that are finitely generated projective
C^(F)-modules. The operator D defines operators P^ : C^^M.S^ —^
C°°{M,S^) which are ^(F)-Fredholm as maps ̂ (M,^) -> ̂ (M,^),
in the sense that [null(P+)j - [null(P-)] (really [null^ +7Z+)] - [null(P- +
^~)] ^ W ~ W] fo1' suitable compact perturbations 7?^, see [R]) is a
formal difference of finitely generated projective (^(F^modules. Thus, as
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6 E. LEICHTNAM AND P. PIAZZA

in the algebraic reinterpration of the index bundle for families explained
above, we obtain an index class Ind(P) € KQ(C^(T)). The proof of the
(7^(r)-Fredholm property for V is a consequence of the Mishenko-Fomenko
C^ (r)-pseudodifferential calculus [M-F]. Alternatively Kasparov KK-theoTy
can be employed [BJ][K].

To obtain characteristic numbers out of this index class one must pass
to cyclic (co)homology. In order to make use of the cyclic (co)homology
machinery it is necessary to fix a certain dense subalgebra B of C^(F), con-
taining OF and stable under holomorphic functional calculus of C^F), and
then show that T> defines index classes Ind(^) G Ko(B) ̂  Ko(C^(r)). This
step should be thought as a "smoothing" of the index class Ind('D), quite
analogous to the passage from a continuous to a smooth index bundle in
the family case. The Chern character of Ind('D) is now well defined in the
topological noncommutative de Rham homology of 23, Ch(Ind('D)) G H^(B\
and can be paired with topological cyclic cocycles so as to get complex num-
bers. The Connes-Moscovici higher index theorem on F-coverings can then
be stated as follows. Let us fix a group cocycle (3 G Z^F.C); in a purely
algebraic way f3 defines a cyclic cocycle r^ in ZC^CF) ; assume that this
cyclic cocycle extends to a cyclic cocycle 7/3 e ZC^Z?00). Then

< Ch(Ind(P)),r^ >= Ci ! AS A ^[{3} (0.4)
JM

with Ci a nonzero Z-dependent constant. When I = 0 this is the Von Neu-
mann index theorem of Atiyah and Singer [A] [S] on F-coverings.

A spectacular application of (0.4), given by Connes and Moscovici, is
the proof of the homotopy invariance of Novikov's higher signatures when
the group F is hyperbolic.

Notice that index theoretic methods for establishing this homotopy
invariance were pioneered by Lustzig [Lu] who established it when F = Z^.
In this case the higher index theorem (0.4) reduces to a family index theorem
with parameter space B equal to the dual group to F (i.e. a torus T^).

One could regard the higher index theorem of Connes-Moscovici as a
noncommutative family index theorem.

Recall now Bismuths heat-kernel treatment of the genuine family index
theorem. One is then led to speculate that there should exist a local heat-
kernel approach to the higher index theorem. This idea is pursued by Lott
in [LI], where a Bismut superconnection proof of (0.4) is given. The main
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A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 7

tool in [LI] is the use of a correspondence between B smoothing operators
on M and ordinary smoothing operators on M with Schwartz kernel rapidly
decreasing, in an appropriate sense, at oo.

Using this correspondence it is possible to define and effectively ma-
nipulate a noncommutative superconnection heat kernel Kf, an appropri-
ate supertrace STR and the noncommutative [Ka] closed differential form
STR(ATt). The higher index theorem follows as in Bismut by the equality

< Ch(Ind(25)),r^ >=< STR(^),T^ >

and the short time behaviour of STR(^):

J™ <STR{Kt),Tf3>=< I ASAo;,T^>= f ASA^*[/?]. (0.5)
J M J M

The form cu can be explicitly described. Notice that both equations in (0.5)
need to be justified. In [L2], using the above superconnection formalism,
Lott introduces the definition of the higher eta invariant 77. It is a non-
commutative 5-differential form essentially defined by an integral similar to
(0.2). The existence of the integral, in the present context, is far from being
obvious and two assumptions are needed in order to ensure the convergence
of the integral of i](t} at t = 0 and t = +00. First that the group F is of
polynomial growth with respect to a word metric. Second that the Dirac
operator on M admits a bounded Z^-inverse. These two assumptions are
needed in order to use finite propagation speed estimates on the noncompact
manifold M. When F = Z^ Lott's higher eta invariant reduces to the eta
form of Bismut-Cheeger.

In [L2] it is conjectured that such a higher eta invariant should enter
in a natural way into a higher Atiyah-Patodi- Singer F-index theorem on
manifolds with boundary having a product structure near the boundary.

In this paper we have two goals in mind. First we develop a b-
pseudodifferential calculus on Galois coverings; second we apply this an-
alytic machinery to the geometric problem presented above and show that
Lett's conjecture holds true. The proof of the conjecture rests more precisely
on such an extension of the fr-calculus, on Loft's superconnection proof of
the Connes-Moscovici higher index theorem and on a ^-fc-calculus on the
compact manifold with boundary M.

The same hypothesis that are needed to define the higher eta invariant
must be assumed in order to formulate and prove the higher index theorem.
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8 E. LEICHTNAM AND P. PIAZZA

Actually, by using an idea of Berline and Vergne, we extend the results
of [L2] and show the convergence of the integral defining the higher eta
invariant only assuming that the Z^-spectrum of the Dirac operator on the
covering has a gap at zero. Consequently we prove a higher Atiyah-Patodi-
Singer index theorem more general than the one conjectured by Lott. This
improvement opens the way to several possible geometric applications of the
higher index formula. The precise statement of our result is given at the
beginning of Sect. 14.

A final comment on our assumption

3 8 > 0 such that spec(Z?o) H [-6, 8} = {0}

on the boundary operator. This assumption is the precise analogue, in the
noncommutative setting, of the Bismut-Cheeger hypothesis that the null
spaces of the boundary family have constant rank. In the truly family case
this assumption is completely removed from the picture by employing the
notion of spectral section (see [MP 1,2]). The notion of spectral section has
also been successfully used by Dai and Zhang in order to define the higher
spectral flow associated to a one-dimensional deformation of a family of
self-adjoint operators parametrized by a compact space B [DZ]. The higher
spectral flow of [DZ] is a class in K°{B) = Ko{C°(B)). Wu, on the other
hand, has extended the definition of spectral section of [MP 1,2] to the non-
commutative context and, generalizing [DZ], has defined a noncommutative
higher spectral flow associated to a one-parameter family {Df} of operators
on A-Hilbert modules [W], with A a (7*-algebra. Wu's higher spectral flow
is an element in .Ko(A). In a future publication we shall use in an essential
way the analytic tools developed in this paper and the notion of noncommu-
tative spectral section to give a general higher Atiyah-Patodi-Singer index
theorem (i.e. when the I^-spectrum of the boundary operator has no gap
at all).

We shall now briefly describe the contents of the paper and the struc-
ture of the proof. In the first three sections we really deal with higher index
theory on closed manifolds, thus extending some of the results of [LI]. Since
r is of polynomial growth we can fix, as in [L2], 5, the dense "smooth"
subalgebra of C^(r), to be equal to B°°, the convolution algebra of rapidly
decreasing function on I\

In Sect. 1 we show how to explicitly construct "smooth" representa-
tives of the index class associated to V\ this is accomplished by developing in
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A HIGHER ATIYAH-PATODI-SINGER INDEX THEOREM 9

a rigorous way a ff°°-Mishenko-Fomenko pseudodifferential calculus. Thus
Ind(P) == [Coo] — [Afoo] for suitable finitely generated projective ff°°-modules.
Essential to our treatment are the finite propagation speed estimates of
Cheeger-Gromov-Taylor [CGT] on the covering M. The functional analytic
technicalities of the proofs are gathered in Appendix A (Sect. 16). In Sect.
2 we show how to define higher eta invariants only assuming the existence
of a gap at zero in the I^-spectrum of the Dirac operator D on M. Thus
we assume

3 8 > 0 such that spec(Do) H [-S, 6] = {0}. (0.6)

In Sect.3 we consider higher eta invariants for the operator D + ^?, i9 small,
and study their behaviour as i? —)• 0 G spec (Do)- It is important to point
out that the correspondence between ff^-pseudodifferential operators on the
base M and rapidly decreasing operators on the covering M is fundamen-
tal throughout the paper, especially when we consider /^-operators with
^(Z?°°) ( i.e. noncommutative differential form) coefficients.

Sect. 4 to Sect. 10 are devoted to the extension of the ft-calculus to
Galois r-coverings with boundary, concentrating on the virtually nilpotent
case.

With Sect. 11 we enter in the truly higher case, showing how a b-
Dirac operator D on a F-covering with boundary defines an index class
Ind(D) € Ko{C^(T)). The "smoothing" of the index class is dealt with in
Sect. 12, where a B°°-b-Mishei\ko Fomenko calculus is developed. The b-
superconnection formalism is introduced in Sect. 13, where the definition
of the &- version of Loft's supertrace functional is given and its behaviour
on supercommutators is investigated as in the commutative case treated in
[M][MP].

In Sect. 14 we finally prove Lott's conjecture. The structure of the
proof, for simplicity in the invertible case, is as follows. Let H^{B°°) be the
topological noncommutative de Rham homology of B°° [Ka]. By KaroubFs
theory of characteristic classes for finitely generated projective modules, we
know that the Chern character of the B°° index class of 'D, Ind('D) = [Coo] ~
[.A/ooL can be expressed as the STR of the exponential of the curvature V2

of a connection on Coo © .A/oo^

Ch(Ind(P)) = STR(exp(-V2)) € H^B00). (0.7)

With the help of the ^°°-6-calculus we then prove that &-STR(exp(-V2)) =
STR(exp(—V2)). Using this equality, formula (0.7), various transgression

SOCIETE MATHEMATIQUE DE FRANCE


