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LIMITS OF CERTAIN SUBHOMOGENEOUS
C*-ALGEBRAS

Klaus Thomsen

Abstract. — It is shown that the Elliott invariant is a complete invariant
for the simple unital (7*-algebras which can be realized as an inductive limit
of a sequence of finite direct sums of algebras of the form

{/ e C7(T) 0 Mn : f(x,) C M^ i = 1 , 2 , . . . , N } ,
where x \ ^ x ^ ^ . . . ^XN is an arbitrary (finite) set on the circle T and d is a
natural number dividing n. The corresponding range of invariants is identified
and the classification result is extended to the non-unital case. A series of
results about the structure of these (7*-algebras and the maps between them
are also obtained.

Resume. — On prouve que Pinvariant d'Elliott est un invariant complet des
(7*-algebres simples a element unite qui peuvent etre realisees comme limite
inductive d'une suite de sommes finies d'algebres de la forme

{/ C G(T) ® Mn : f(xi) € Md, i = 1 , 2 , . . . , TV} ,
ou {x\^ x ^ ^ ' ' • , xpf} C T est un sous-ensemble arbitraire et d un entier divisant
n. On determine Pensemble des valeurs prises par Pinvariant et on etend
la classification aux algebres sans unite. Par ailleurs on donne une serie de
resultats sur la structure de ces (7*-algebres.
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INTRODUCTION

Dette arbejde blev fcerdiggjort i mindet om Birger Iversen

The purpose of this paper is to introduce a new type of building block
into the classification of inductive limit G*-algebras and show that the Elliott
invariant is also a complete invariant for the simple unital G*- algebras which
are inductive limits of finite direct sums of these building blocks. The building
blocks we consider are of the form

{/ G C(T) 0 Mn : f(xi) € Md, i = 1,2, . . . , N}

where x\^x^... ^XN is an arbitrary finite set of elements on the circle T and
n, d € N are natural numbers such that d divides n. Such (7*-algebras will be
referred to as building blocks of type 2. By taking d = n we just get an ordi-
nary circle algebra, but in general a building block of type 2 will have torsion
in its J^i-group. This allows us to introduce torsion in the J^i-group without
having more than one kind of building block. This is unlike the approach of
Elliott in [El], where torsion was introduced by adding an additional type of
building block, the socalled dimension-drop (7*-algebras. Note that the iden-
tity map of the dimension-drop algebra {/ e G[0,1] (g) Mn : /(0),/(1) e M^}
factors through {/ e C(T) (g) Mn : /(I), /(-I) € Md} which is a building block
of type 2. Hence an inductive limit of a sequence of finite direct sums of circle
algebras and matrix algebras over dimension-drop (7*-algebras is also the limit
of a sequence of finite direct sums of building blocks of type 2. Therefore the
following theorem, which is our main result, unifies and generalizes the classi-
fication result for simple unital inductive limits of finite direct sums of circle
algebras, [E3], [NT], and for simple real rank zero limits of finite direct sums
of (matrix algebras over) dimension-drop C^-algebras in [El], [DL2].



2 INTRODUCTION

THEOREM 0.1. — Let A and B be simple, unital inductive limits of sequences
of finite direct sums of building blocks of type 2. Assume that y?i: K\(A) —>
K\{B) is an isomorphism, (po: Ko(A) —> Ko(B) an isomorphism of partially
ordered abelian groups with order units and (pr: T{B) —> T(A) an affine home-
omorphism such that

rB(^)(vo(x)) = rA(y?r(^))(^), x C ^o(A), ^ e T(B).

It follows that there is a ^-isomorphism (p: A —> B such that (p^ = y?i on
K\(A), (p^ = y?o o^ Ko(A) and (p* = y?r on T(B).

The maps TA and rp in this theorem are the canonical continuous affine
surjections from the tracial state space onto the state space of the ATo-group
of A and B, respectively.

Let us emphasize one particular consequence of this result. Consider
{/€C7(T)0Mn:/( l)eMrf},

which is clearly a building block of type 2. It has exactly the same Elliott in-
variant as the circle algebra (7(T)®Mrf, although the algebra seems to be much
closer to (7(T)0Myi. It would therefore seem tempting to try to use this kind of
building blocks to construct two non-isomorphic simple, unital inductive limits
of type I (7*-algebras with the same Elliott invariant. This is not possible by
the above theorem, in fact a corollary of it says such inductive limits, build only
on these very special building blocks of type 2, will automatically be inductive
limits of finite direct sums of circle algebras, and hence be subsumed under
existing classification results, [E3], [NT]. This observation gives some support
to the belief that the Elliott invariant will turn out to be a complete invariant
for simple inductive limits of more general sub-homogeneous (7*-algebras. It
is very challenging to try for such an extension of the existing classification
results because even very elementary sub-homogenous (7*-algebras give rise to
simple inductive limits which display features that do not arise by using ho-
mogeneous building blocks, see [ET], [Th5], [Th6]; specifically, the ATo-group
can be an arbitrary unperforated simple, (countable) partially ordered abelian
group and the restriction map FA: T(A) —> SK-Q^A) an arbitrary continuous
affine surjection. However, these phenomena do not show up here since we
stick to building blocks of type 2. Indeed, if Elliotts conjecture is true, the
simple limits we build must also be inductive limits of a sequence of finite
direct sums of homogenous C*- algebras.

In very broad outline, the method of proof we use here is a combination of
the methods developed in [El], [Th2], [E2], [E3], [DL2] and [NT]. The key
words are eigenvalue functions (or characteristic functions as we prefer to call
them), determinants, KK-theory and unitary commutators. This paper is the
first to handle a case where all these ingredients come into play at the same
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INTRODUCTION 3

time. The KK-theory, which is an indispensable ingredient of the classification
result in the (non-simple) real rank zero case, [DL2], and the algebraic K^-
group, in the guise of the unitary group modulo the closure of its commutator
subgroup, which is needed to determine the approximate inner equivalence
class of maps lifted from the Elliott invariant, [NT], play so prominent a role
in the development presented here that it almost seems as a miracle that they
do not show up in the classification result. They both leave the stage, elegantly
we hope, just before the curtain.

On the way we establish several results which are of interest beyond their
role in the proof of the classification result. One is that a simple unital induc-
tive limit of a sequence of building blocks of type 2 is approximately divisible
(Theorem 5.1), a notion introduced in [BKR] and of crucial importance in
the previous classification results based on the Elliott invariant which go be-
yond the real rank zero case, [E2], [E3], [NT]. Another important step is
the result that two unital *-homomorphisms between building blocks of type
2 are approximately inner equivalent when they agree on the tracial states
(Theorem 1.4). At first sight it may seem surprising that no K\ -information
is needed to reach this conclusion. It shows that exact equality on traces is
a strong assumption, although it is of course a necessary condition. The K\-
information first becomes crucial when we consider, as we must, a case where
the two maps only agree approximately on the trace level. A third theorem
(Theorem B of Chapter 7) gives sufficient (and necessary) conditions for unital
*-homomorphisms between unital limits of sums of building blocks of type 2
to be approximately inner equivalent when the domain algebra is simple, and
we show that a map between the Elliott invariants of the two algebras can be
lifted to a *-homomorphism when the target algebra is approximately divisible
(Corollary A2 of Chapter 7). In fact, we show that the lift can be chosen to be
compatible with any KK-e\ement and any map between the unitary groups
modulo the closure of their commutator subgroups, which is consistent with
the map between the Elliott invariants (Theorem A of Chapter 7).

In the chapters following Chapter 7, which contains the main results, we
prove a series of results which relate to the classification result and which are
more or less direct consequences of that result and the methods leading to it.
In Chapter 8 we describe the quotient group Aut(A)/Inn(A) of approximate
inner equivalence classes of automorphisms of A when A is a simple unital
limit of sums of building blocks of type 2. The main new feature appearing
here, when compared with the previous chapters, is the introduction of the
quotient KL(A,A) of KK(A,A). By using this device together with some
recent results ofDadarlat and Loring, [DL3], we show that Aut(A)/Inn(A) is
the semi-direct product of the group of automorphisms of the Elliott invariant
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4 INTRODUCTION

by an abelian group, specifically that

Aut(A)/Inn(A) ^

[ext(^i(A),^o(A))©Hom(^i(A),AffT(A)/p(A:o(A)))] x Aut(^).

In this expression the third component, Aut(^A)? represents the expected part,
namely the group of automorphisms of the Elliott invariant. The first compo-
nent,

ext(A:i(A),^o(A)),

was discovered by Dadarlat and Loring in the real rank zero case, [DL3], in
which case the third piece, Hom(J^i(A),AffT(A)/p(I^o(A))), is zero (because
AffT(A) = P^KQ^A))). In the case where A is the limit of sums of circle
algebras, ext(K^{A)^Ko{A)) is zero, while

Hom(A:i(A),AffT(A)/p(^o(A)))

is zero if and only if A has real rank zero or K\{A) is a torsion group.
In Chapter 9 we describe the range of the Elliott invariant classified by

the main result. The range consists of the quadruples (A.r.C?,!?) where A
is a metrizable Choquet simplex, G is a countable dimension group (7^ Z)
with order unit, H a countable abelian group and r: A —> SG a continuous
affine extreme-point preserving surjection. This characterisation is fairly easily
obtained from the work of Villadsen [VI]. In order to tie the present work
up with previous work dealing with the classification of direct sums of circle
algebras and matrix algebras over the dimension-drop (7*-algebras, [El], [DL1]
(in the real rank zero case), we show that all the invariants are realized by
simple unital inductive limits of sequences of finite direct sums of circle algebras
and matrix algebras over dimension drop (7*-algebras. In this way it becomes
a corollary of the classification result that any simple unital limit of sums of
building blocks of type 2 is also the limit of a sequence of finite direct sums of
circle algebras and matrix algebras over dimension-drop (7*-algebras.

In Chapter 10 we show how to extend the classification result to the non-
unital case. While this is fairly straightforward and follows the line laid out in
[Th8], the other results from the unital case seem more difficult to generalize.
In particular, it is not straightforward to describe Aut(A)/InnA in the non-
unital case, and we make no attempts here.

Finally, in Chapter 11 we have gathered a series of consequences of our main
results for the structure of the class of (7*-algebras we consider. They all follow
fairly straightforwardly by comparing the classification theorem we obtain here
with previous work of others, except for the following result which is also of
interest for other classes of (7*-algebras. Namely, we prove that the non-stable
^-theory is trivial for all unital approximately divisible (7*-algebras, in the
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INTRODUCTION 5

sense that the homotopy groups of the unitary group of such a (7*-algebra
agree with the J^-theory of the algebra, or equivalently, that the unitary group
is homotopy equivalent to the 'unitary group5 of the stabilized (7*-algebra, see
Theorem 11.6.

The first seven chapters of this paper has been circulated in preprint form
with the title "Limits of certain subhomogeneous (7*-algebras I".
Acknowledgements. — An important part of this work was done during a visit
to the Fields institute in Ontario, Canada, and I take the opportunity to thank
the institute for the hospitality extended to me. I am indebted to Terry Loring
for some very helpful conversations which developed my understanding of the
role of KK-theory in the proof. S0ren Eilers, Karen Egede Nielsen and Jesper
Mygind helped me in the final stages by pointing out some mistakes and flaws
in the first versions.
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CHAPTER 1

THE BUILDING BLOCKS

Let n, di, d^..., d,N e N be natural numbers such that di divides n for all
i. Then M^ can be considered as a unital (7*-subalgebra of Mn. Let X be
either the interval [0,1] or the circle T. Let x\^x^... ^XN be distinct points
in X. Set

A=A(n,di,...,^)={/eC(X)0M^:/(^)eM^,z=l,2,...,7V}.

We are going to consider the following cases:
— X = T - in this case we call A a building block of type 1.
- X = T and d\ = d^ = • • - == (IN == d - in this case we call A a building

block of type 2.
— X = [0,1] - in this case we call A a building block of type 3.
- X = [0,1] and d\ = d^ = • • • = djv = d - in this case we call A a building

block of type 4.
In all cases the points xj € X, j = 1 , 2 , . . . , TV, where the dimension of the fiber
drops, will be called the exceptional points of A.

Let A be a building block of type 1. By renumbering the x^s if necessary,
we can assume that there are points i\ < t^ < ' " < t^ in ]0,1] such that
Xk = e27"4, k = 1,2,..., TV, and we can identify A with

{/ € q0,1] (SMn : f(ti)€M^i= 1,2,.. . , TVJ(O) =/(!)}.
Thus A is in a natural way a (7*-subalgebra of a building block of type 3.
Similarly, if A is a building block of type 2, then can identify it with a (7*-
subalgebra of a building block of type 4. In this picture the exceptional points
are^i ,^ .-- ,^ ^ [0,1].

A building block A (of any type) comes equipped with N inequivalent ir-
reducible representations, A^: A -> M^., with kernel {/ € A : f(xj} = 0},
j = 1,2,... , TV. These representations will be called the exceptional repre-
sentations of A and they shall play an important role in the following. When



8 CHAPTER 1. THE BUILDING BLOCKS

no confusion can arise from it, we will omit the superscript A and just write
Aj.

Now we consider two building blocks of type 1,

A=A(n,c?i,...,d^) and B == A(m,ei,... .e^),

with exceptional points x^ x^..., XN € T and *i, ̂ ,..., tu £ [0,1], respec-
tively, and a umtal *-homomorphism y: A -> B between them. Let z denote
the identity function on T which we can consider as the canonical unitary gen-
erator of the center of a building block of type 1. There are then continuous
functions A,: [0,1] ̂  T such that {A,(<) : i = 1,2,..., m} are the eigenvalues
ot y(z)(t), counting multiplicities, for all t € [0,1], cf. [K], Theorem II 5 2 For
each ( <E [0,1], let

Mtk=#{i•.\i{t)=xk}, A; =1,2,. . . ,TV,

and note that M{ is divisible by 4. Indeed, if a{ denotes the multiplicity of
A^ in the representation A 3 f ̂  y{f)(t), then a{dk = M^ k = 1,2,..., N .
We let r{ € {0,1,2, . . . . n/dk - 1} denote the remainder obtained by dividing
MJdk by n/dk, i.e. we write M^/dk = m{n/dk + r\, m\ € N.

LEMMA 1.1. — For each k € {1 ,2 , . . . , N}, the function t ̂  r{ is constant.

Proof. — Let t e [0,1] and choose 6 > 0 so small that 8 < \a - b\ for any pair
a,6of distinct elements from {\i(t),\^t),... ,X^(t)} U {x^x^,... .x^}. Let
g: T -> [0,1] be a continuous function such that g(\) = 1 when [A - Xk\ < 6 / 4
and g(\) = 0 when |A - Xk\ > 6/2, and consider g as a central element of A.
Then y(g)(s) is a projection in Mm for all s in a neighbourhood V of *, and
by continuity the rank of <^)(s) is the same as of <p(g)(t). Thus we have that

Mk+X,=M^ s eV,

where Xs = # {i: A,(*) = a;^, A,(s) ^ xk}. The crucial observation is that X,
must be divisible by n, indeed

Xs = ^ a\n,
AeT\{a;i,...,a;jv}

where GA is the multiplicity of the representation / i->. /(A) in / 1-4. y(fg)(s).
Hence

M,_M^^X^
dk dk dk

is divisible by n/d^ and ̂  = r^ for all s e V. Thus ^ ̂  rjt is locally constant
and hence constant. 1-1

MEMOIRES DE LA SMF 71



CHAPTER 1. THE BUILDING BLOCKS 9

We denote the constant value of r^t € [0,1], by r^. For every x G
T\ {^1,^2, . . . ,^7v} the number -#- {i : \i(t) == x} must be divisible by n (for
all t C [0,1]). It follows that m - ̂ N^ M\ is divisible by n. Thus

N N N
m - Y^ r^ = m - V^ MJ + n V^ mJ

%=i 1=1 i=i

is n-divisible and we set

„ _m-^r^
IV m — ——————————————————.

' n

For each i e { 1 , 2 , . . . , N} and each k G N, we denote by A^ the direct sum
representation of k copies of A% (= A^).

LEMMA 1.2. — There are continuous functions ^1,^2? • • • ^Ny : [0,1] —> TT
w^A ^Ae following property: For every t € [0,1] there is a unitary Ui € Mm
such that

^w(/)(^*
=diag(/(/.i(t)),/(^W),...J(^(t)), A? (A A? (/) , . . . , A^(/)), / € A.

Proo/. — Fix first a t G [0,1]. There are then elements

i^l(t), ̂ (t),..., ̂ L(t) G T\ [x^,x^.... a;^}

and 5i, 5 2 , . . . , SN e N such that A 3 / i-̂  y{f)(t) is unitarily equivalent to

A^/^diag(/(M(^)) , . . . , / (^(^)) ,A s l l( /) , . . . ,Ay(/)) .

Then 5jfc = M^/dk and we write 5^ = m^njd^ + r^, m^ € N. Set mo == 0 and
define

/^(t) =^,

when
fc-i k-i k-i

i = L + V^ m -̂ + 1, L + ̂  m -̂ + 2 , . . . , L + ̂  m -̂ + mjfc,
j=o j'=o j=o

A;=1,2, . . . ,^V.

Note that L + ̂ ^i rrij = Ny. Then A 3 / 1-4- y(f)(t) is unitarily equivalent
to

A^/^diag(/(^(^)), . . . , /(^(<)),A?(/), . . . ,A rJ(/)) .

SOCIETE MATHEMATIQUE DE FRANCE 1997



10 CHAPTER 1. THE BUILDING BLOCKS

It suffices now to show that there are continuous functions ̂ i,..., p,^ : [0,1] ->•
T such that v

(KI (<),..., KN^ (<)) = (/ii (t),..., /^ (())

as unordered ^-tuples for all t € [0,1]. By [K], Theorem II 5.2, it suffices for
this purpose to show that the map

tl-^(Ki ((),..., KNy(t))

is continuous into the unordered ̂ -tuples from T, endowed with the metric

d{(ti}, (si)) = min max |<, - s^J,
0'GS.Wy t '

where S^ denotes the symmetric group of order N^\. To do this, let t € [0,1]
and e > 0 be given. Let ^1,^2,. • • ,/^a be the mutually distinct elements
o f T such that {^^... ,^} = {/( , (() :?= 1,2,... ,̂ }. Let 8 > 0 be
smaller than both 2e and |a - b\ for any pair a, b of distinct elements of
{^l,^2,...,^}U{a;i,a;2,...,a;Ar}. For each k € {1,2,. . . ,R}, let g,,: T ->
[0,1] be a continuous function with support in {A € T : |A - pk\ < 6/2} such
that fffc(^fc) = 1. Consider gk as a central element of A. Then <p(gk)(t) is a
projection in Mm of rank a^, where

"Jfc = #{^ : /<»(<) ==/^}"
when (ik ^ {xi,... ,Xff}, and

ak =#{i :Ki(t) =fik}n+ r j d j

when ̂  = xj. Choose ^ > 0 so small that \\y(gk)(s) - v{9k)(t)\\ < 1 for all
k when \s -1\ < ̂ . Then y(gk){s) must be a positive element of Mm of rank
>. dk for all such s. Since ^(^(s) is unitarily equivalent to

diag(^(/d(5)),... ,<7fc(/^(s)),A?(^),... ,A^(^)),
we conclude that

# {i •• \Ki(s) - ijkk\ < S/2} n ̂  ak

when p,k ^ {xi,..., XN}, and

# {z : \Ki(s) - fik\ < S/2} n + r j d j > dk

when p,k = X j . Thus

# {i : \Ki(s) - ̂ \ < 6/2} >#{i: Ki(t) == pk}

MfiMOIRES DE LA SMF 71



CHAPTER 1. THE BUILDING BLOCKS 11

fo ra l l fc={l ,2 , . . . , ^} . But

N^ > E# {% : 1^00 -^| < J} > ]T#{z : ̂ (t) = ̂ } = TV
A;=l l 2J ^=1

so we see that #{i : \^i(s) — p,k\ < 5/2} = # { % : ̂ i(t) = /^} for all fc. It
follows that there is a permutation a € S ,̂ such that |/^)(5) — i^i(t}\ <
S / 2 < e for all i = 1 ,2 , . . . , Ny. D

LEMMA 1.3. — There is a continuous function $: [0, \/2-1[-^ R with ̂ (0) =
0 and the following property: When A is unital C*-algebra containing a finite
dimensional unital C*-subalgebra B spanned by the matrix units

^efj :iJ = l,2,...,n^,d= l,2,...,m^

and w is a unitary in A such that
m

(^)||we§ - e§w|| < t € [0,V^- 1[
^=1

/or aM %,j,d, ^en ^ere %5 a unitary u G A H B' 5ncA f/fca^ ||̂  — w|[ < ̂ (t).

Proo/. — We can take $(t) = ^+(l+t)(l-(l-2t-t2)-1/2). To see this note
that there is a conditional expectation P: A —^ A D B' given by the formula

m rid -.

^^-EE^S^ X^A•^1^=1^
Our assumption implies that ||w — P(w)|| < t. Standard arguments then show
that P(w) is invertible and that the unitary from its polar decomposition is a
unitary u € A H B' such that \\u - w\\ < ̂ (t). D

Recall that two *-homomorphism y, ̂ : A —^ 5 between unital (7*-algebras
are approximately inner equivalent when there is a sequence {un} C B of
unitaries in B such that v(a) = lim^-).oo'u^'0(a)^, a 6 A.

THEOREM 1.4. — Le^

y,^: A(n,di,...,d^) ->A(m,ei,...,eM)

be unital ^-homomorphisms. Assume that (p* -==- ^* on T(A(m, ei,..., CM))-
T^en y? and ̂  are approximately inner equivalent.

SOCIETE MATHEMATIQUE DE FRANCE 1997



12 CHAPTER 1. THE BUILDING BLOCKS

Proof. — Let F C A(n,di,d2, ' " . d ^ be a finite subset and let £ > 0. As
A(n, di, ^ 2 , . • • , ri^v) is separable, it suffices to find a unitary u C A(m, e i , . . . , CM}
such that

M/)^*-W)||<^
for all f e F .

Let yi, y 2 , . . . , VM e T be the exceptional points of A(m, e\, 6 2 , . . . , e^). We
first reduce to the case where ^(/)(y,) = W)(^), % = 1,2,... ,M, for all
/ 6 A(n,di,d2,.. . ,^). Fix i G {1,2,. . . ,M}. Take points 01,02... ,CLR in
T\{a;i,...,^} and elements j i J ^ . ' - ' j N e N such that / ^ ^(/)(y^) is
unitarily equivalent to the representation

/^diag(/(ai)J(a2),...J(a^),Af (/) , . . . , A^(/)).

Similarly, there are points & i , & 2 , . . . , & 5 C T\ {x^... ,a;7v} and elements
z i , % 2 , • • . ,iN G N such that / i-̂  ^(/)(y^) is unitarily equivalent to the repre-
sentation

/^diag(/(&i),/(&2),...,/(&s),A11 (/),. . . , A^(/)).

Since i^* = -ip* on r(A(m, 61,63,..., e^)) we know that

^ TrW){yi)) = ̂  'IY(^(/)(y,)), / e A(n, di , . . . , d^).

Hence

^>(/(a,)) + ̂ ^(A?(/)) = ̂ ^(/(fc,)) +f>(A^(/)),
^=1 A;=l ^=1 A;=I

/ € A(n,di, . . . ,d^). By inserting various types of such / it follows that
^ = 3k^ = 1,2, . . . ,A/ ' , and that there is a bijection a: {1 ,2 , . . . , S} -^
{1,2,. . . ,J?} such that bi = a^ for all i. Thus the representations / \->
^(/)(^) and / ^ ^(/)(^) of A(n,di, . . . ,d^) are equivalent. This must
therefore also be the case of the representations / i-̂  Af(y?(/)) and / i->
^Wf)). where B = A(m,ei,e2, • . . ,6^). Consequently there is a unitary
Wi C Me, C Mm such that

^W(/)(^X =W){Vi)

for all / G A(n,r i i , . . . ,d^) ,z = 1,2,.. . ,M. Let w € C(J) 0 M^ be a uni-
tary such that w(y,) = w,, % = 1,2, . . . , M. Then w G A(m, e i , . . . , e^) and
Adwoy;(/)(y,) = ^(/)(y,), / e A(n,di,.. . ,^), z = 1,2,.. . ,M. So for
the present purpose we may assume to begin with that y(f){yi) = ̂ (f)(yi)
/€A(n ,d i , . . . , d^ ) , i= 1,2,.. . ,M.

^h
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CHAPTER 1. THE BUILDING BLOCKS 13

Let G be a finite set containing F in A(n, di , . . . , d^v) such that

M f f ) ( ^ ) : f f e G }
contains a full set of matrix units for

Ai=y(A{n,d^,...,dN))(yi),
i = 1,2,. . . ,M. Let 6 € ]0,^[. The main problem in the proof will be to
construct a unitary W E C(J) (g) M^ such that \\Wy(f)W - ̂ (/)|| < 8 for
all / € G. Assume for a moment that this has been achieved. Set M =
supy^ 11/H. If 8 is small enough, Lemma 1.3 gives us unitaries Wi C Mm H A'^
such that ||tV(^) - Wi\\ < £/(4M). Let p > 0 be so small that

\\W(t)-Wi\\<e/{4M^

IIW)W-W)(^)11<^/4, and

\MW-^f){yi)\\<el^ /CF,

for all t G T with \t - yi\ < p, i = 1 , 2 , . . . , M. Let u: T -)- My^ be a continuous
path of unitaries such that

u(t) = W(t} when \t - yi\ > p,
u{t) = Wi when \t — yi\ = p/2,

u{Vi) = 1,
u(t} C Mm H ̂ , |^ - ̂ | < J/2, and

sup {||̂ ) - w,|| : p/2 ̂  \t - y,\ <p}< ^/(4M),

i = 1,2, . . . , M. Assuming, as we may, that 2p < min{|^ — Vj\ : i 7^ J'}, we
have that u C A(m,ei , . . . ,CM) and ||n^(/)n* - ̂ (/)|| < £ for all f e F.

We have now reduced the problem to the following: Assuming, in addition,
that y(f)(yi) = W)(yi),i = 1,2,. . . ,M, for all / € A(n,di , . . . ,d^), con-
struct a unitary W G C(T) (g) M^ such that \\W^{f}W - ̂ (/)|| < e for all
/ € F. This is done as follows. By Lemma 1.2 there are continuous functions

^:[0,1]->T,

% = 1,2,.. . . A^, and numbers
r^ r^ (^ N1 ? • • • ? 'A?- ^ rsl 5

such that the representation / ̂  (p{f)(t) is unitarily equivalent to

/^diag(/(^)),...J(^(^)),A^ (/) , . . . , A^(/))

for all f € [0,1]. For fixed t € [0,1], these data are determined, up to permu-
tations of^i( t) ,^2(^) , . . . ,A6^^), by the action of(/?* on T(A(m,ei, . . . .e^)).
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14 CHAPTER 1. THE BUILDING BLOCKS

Thus, since we assume that ̂  = ̂ * on T(A(m, ei , . . . , e^)), we have that the
data of Lemma 1.2 for ^ are the same as for (p. This means that there are
common numbers, L, ri, r^,..., r^ € N, and continuous functions /^: [0,1] -4-
T, i = 1,2,..., Z/, such that both

/^Um and/^(/)(^)
are unitarily equivalent to

/^diag(/(/.i(^))J(^(^)),...J(^W), A? (/), . . . , A^(/))
for each t € [0,1]. Choose a unitary 5 € C[0,1] ® My^ such that

S(t) diag(/(/.i (^)), /(/^)),..., /(^)), A^ (/) , . . . , A^ (/)) 5(t)*

takes the same value at t = 0 and t = 1 for all / e A(n, di , . . . , d^v). This is
possible because (/^i(0),.. . ,/^(0)) = (/^i(l), . . . ,^(1)) as unordered tuples.
It suffices to construct a unitary W C {/ C C[0,1] 0 Mm : /(O) = /(I)} such
that

\\Wv(f)W*(t) - S(t) diag(/(/.i(t)), /(^(*)),..., /(^L(<)),

A^(/),...,Ay(/))5(tr||<J£

for all t e [0,1], / G -F. To simplify notation, set

£>(?)(() =
S(t) diag(ff(^i(t)),5(^2(<)),... ,ff(^(*)), A^ (9),..., A^ (ff))5(()*,

ff € A(n, di,.. . , djv), * € [0,1]. Set Jo = 1/2 min {|a;, - a;j-| : i ̂  j} when N >
2 and ^o = 1 when N < 1, and define G,: T -> [0,1] by

Gi(z) = max {0,1 — ̂ 1 dist(,?,a;,)},

? = 1,2,..., JV, and ^A : T ->• C by

2;A(2;) =zdlSt(z,{x^X2,...,XN}).

Let {e^} and -'p^-1 be the standard matrix units in Mn and M^, respectively,

k = 1,2,... ,JV. Then i-b = •OA 0 ey} U [Gk 0^-} generates A as a C""-
algebra, so for the present purpose we can assume that F = FQ.

Let 6 > 0 and 0 < K < 1. We shall require that

(1) 3(L+N)K<6o,

(2) 4CK<V2-1,
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CHAPTER 1. THE BUILDING BLOCKS 15

(3) 6+^<6o,

(4) 3(L + N)K + 2^ < 6,

(5) 2^(4C^) + /^ < £/2,

K + (L + N) max {SQ^^L + N) + 8)^ (18(L + N) + 24)^4^-l^,4^}
( ) < e/2.

Here (7 = {L+N)n and ^: [0, \/2-1[-^ R is the continuous function of Lemma
1.3. These conditions can be met by first choosing 6 and then K subsequently.

For each closed non-empty set S C T we define g s : T —^ [0,1] by

gs(t) = max {0,1 - ̂ -1 dist(t, S)} .

We call gs a /^-test function. With the Hausdorff distance as metric the closed
non-empty subsets of T form a compact metric space. By using this, it follows
easily that there is a finite set H of /^-test functions such that each ^-test func-
tion is within the distance K of an element of H, measured by the supremum
norm of (7(T). An alternative proof of this fact can be found in [S], Lemma
2.4. Set

FI = \h®eij^h®p^ : h € H, all f c , % , j } HA.

Let ^ > 0 be so small that |/^(t) - /^(5)| < /^ i = l , 2 , . . . , jL , whenever
\t - s\ < ^. There are points 0 = ZQ < z\ < • • • < ZK = 1 and unitaries
ui € Mmi i = 1,..., K — 1, such that

(7) \\uw{9)W-D{g)(t}\\<^

t € [^-i, ̂ +i], i = 1,2,.. . , K — 1, for all g C F\ U F. We may assume that
UK-I = u\. Let J = [a, b] be a small interval of length < p, centered around zi
for some i € {1 ,2 , . . . , K — 2}, not containing zi-\ or ^4.1. It now suffices to
construct a path V: J —> Mm of unitaries such that V{a) = u^V(b} == 1^+1
and \\Vy(f)V^(t) - D(f)(t)\\ < e /2 , t € JJ G F. Note that

\\Ui^D(g)(t)uiU^ - D(g)(t)\\ <2^ t € J,g € FI U F,

if the interval J = [a, &] is chosen small enough. Set s = (a + b)/2 = ^. Group
/^i(5),/^2(5), . . . , ^L(5),o:i,a;2,... ,rr7v into disjoint sets, 61,625 • • • ^ S Q , such
that every point of Si is at least 3^ apart from any element of Sj when % / j
and, on the other hand, no subset of Si is 3/^ isolated from the rest of Si. Since
the length of J is less than /^, it follows that fJ,j(s) e Si => dist(/^), S^) < /^,
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16 CHAPTER 1. THE BUILDING BLOCKS

* € J . Set Tk = {\ <E T : dist(A, Sk) < K}. The /t-test function g^ is within K
of an element hf: of H. For each k € {1 ,2 , . . . , Q}, either

(8) Sk n{a;i , . . . ,a; jv} = 0, or

(9) a^ € Sfe for exactly one ̂  € {1,2 , . . . , N} .

This is because diam(5fe) < 3(L + N)K < 60 by (1). In the first case g^ 0
eij,hk 0 ey € A for all i,j, because the 5,'s are 3/t-separated, and in the
second case g^ 0^, /i& 0p§ £ A for all ?,j, for the same reason. To simplify
notation, set do = n,p°^ = e,j and ^ = 0, when Sk D {a; i , . . . , XN} == 0. Then
we have that g^ 0p^,/ifc 0p§ e A for all k = 1,2,.. . ,Q, ?,j = l,2,.. .d^,
and since [|̂  - hk\\ < K for all k, we see that

(10) \\Ui+^D(gT, ®p^)(t)uiUi +r- D{gT, 0p^)(*)|| < 4K,

VA;, r, 5, ( € J. Set /§(() = Z)(^ 0^)(<), t <E J. Then {/^} are matrix units
for a finite dimensional unital C'-'-subalgebra B of C{J) 0 Mm. By combining
(2) and (10) with Lemma 1.3, we get a unitary w € (C'(J) ® Mm) fl ^/ such
that ||w(() - Ui+^\\ < WK),t e J . Set 9& = £»(^ ® l)|j = Ejjt ^d
^fc = WQfe.

Consider first the case (9). Using (4) we find that diam(Tfc) < (L + N)SK +
2n < 6 so that

(n) \x-x^\<8

for all x € Tk. Since the unitary group ofqk(C(J)^Mm<~}B')qk is connected we
can find a continuous path 7^ (*), ( e [a, s], of unitaries in ̂  (C'(J) 0 M^ n B') qk
such that 7^(0) = qk and 7fc(s) = Wk. We claim that

(12) \\-rk{t,t)D(zA 0 ey)(() - D(^ ® ey)(*)7fe((,<)|| < 4J,

for all ( € [a, s], z , j = l , 2 , . . . , n . To see this note first that

\\^k(t,t)D{zA ® eij)(t) - D(ZA 0 eij}(t^k(t,t)\\
^ 2 \\qk(t)D[zA 0 ey)(*)|| = 2||£>(<^A 0 ey)(*)|| < 2 11^^11.

When dist(M,Tfe) ^ /?, ^(^A (") = 0. When dist(u,2fe) < K, there is a
x € Tfe with |a; - •u[ ^ K and hence

|u-a; , -J<K+^ (by (11))
< 26 (since K < J by (4)),
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CHAPTER 1. THE BUILDING BLOCKS 17

so that \gTj,{u)zA(u)\ < 2S for all n, i.e. H^T^AII < 2^, proving (12). We claim
also that

(13) \\^t)D{Gi ^pi,)(t) - D(Gi ®p\,}(t^k(tM ̂  4Jo-1^

for all t 6 [a, s] and all l ^ i ^ j . To see this, consider first the case where / ^ ik-
Note that

qk{t)D{Gi ®pij){t) = D(gT,Gi ®p\,}(t}

for all t € [a, s}. However, g^ and GI have disjoint supports when I ^ ik
since there is no element y C T such that dist(y,T^) < K and dist(y^) < So.
(If there was such a y there would be an a: € Tk with \y — x\ < /^, so that
|y — x^ | < 6 + K < 60 by (11) and (3). This would imply that \xi — x^\ < 26o
and hence that / = ̂ , contrary to our present assumption.) Therefore

^t)D(Gi ®p\j)(t} = D(Gi ®p\,}(t)^t)
=-fk{t,t)qk{t)D(Gl(Splij)(t)=0

for all t G [0,5], and (13) is certainly true in this case. In the case I = ik we
use that ^k{t,f) commutes with D(gTj, ^P^)^) to g^ the estimate

\\^t)D{Gi (Spi,)(t) - D{Gi 0pi,m^t)\\ <

\\D(9T, ®^m -D{Gi, ®^mqk(t)\\ +

\\D{gn ^p^)W-qk(t)D(Gi, 0^)(t)||
< 2\\gT, - Gi.gT^

for all t G [a, s}. If u 6 T is in the support of g^ -> we have that dist(n, Tk) < K
and hence that

\u-x^\ < 1^+6 < 28

(by (11) and (4)), so that

\gT,{u)(l - Gi,(u))\ < |1 - Gi,(u)\ = S^u -x^\< 26,18.

Hence ||̂  - G^ffrJI < 2^1^ and (13) follows.
Next we establish estimates similar to (12) and (13) in the case (8). So

assume that (8) holds. Let c G S k ' The diameter of the support of gTj, is
< (3(£ + N) + 4)/^ so that \\ZA9Tk - ̂ (c)^ I I < (9(2. + N} + 12)^. Since we
are in case (8) the support of g^ does not contain any of the x^s and hence

(14)
\\D{ZA ® eij)qk{t) - ZA(c)D(g^ <8> ey)%(*)|| < (9(£ + N) + 12)^, ( € J.

SOCIETE MATHEMATIQUE DE FRANCE 1997



18 CHAPTER 1. THE BUILDING BLOCKS

Since ^k(t^t) commutes with D^gr^ ® e^-)^^), (14) implies that

(15) \\^(t,t}D{zA ® eij)(t) ~ D(ZA ® ̂ )(^(M)11 < (18(L + N) + 24)/,,

for all ( C [0,5] and all i^j. Over the support of gr^ each G^ varies by no
more than SQ times the diameter of the support of ^, i.e. by more than
S^^L + N) + 4)/^. Set A(fe , f ) = G^(c). Using again that we are in case (8)
so that the support of g^ contains no xi we see that

\\D(gT,Gi 0pi,)(t) - A(M)-D(ffr, ®P^)11 < 8Q\3(L + N) + 4)^ t e J,

and hence that
(16)

\\^k(t,t)D(Gi ^pij)(t) - D(Gi ®p\j}(t)^{t,t)\\ ̂  6o\6(L + N) + 8)/t,

for all t € J and all I , i,j.
Define V: [a,s] -)• Mn» by y(*) = E^^^*)^- Then y is a P^11 of

unitaries, V(a) = Ut and by combining (12),(13),(15) and (16) we find that

\\v{tM)(t)v(tr-D{f)(t)\\
Q Q

^ \\^7k(t,t)D(f)(t)-D(f)(t)^k(t,t)\\+K (by (8))
k=l k=l

^ (L+N)m^k(t,t)D{f)(t)-D(f)(t)^k(t,t)\\+K
K

< K + ( L + N ) max {(^^(^ + N) + 8)K, (18(L + AT) + 24)/<,4Jo'l^,4J}

< j, (by (6)),
for all t € [a,s], f € -F. Furthermore ||V(s) — •"1+11| = ||w(s)z(, — Ui+i|| <
^(4(7/t). We extend V to a continuous path of unitaries V: [a,b} —> Mm such
that V(b) = Ui+T. and ||y(<) - u,+i|| <, ̂ Cn) for all * G [s,&].

Then
II^M/)(*)^(()*--D(/)(<)11
^ 2$(4(7/<) + ||n,+î (/)(()^+i - D(f)(t) ||

^ 2$(4C'K)+/t (by (8))

< |, (by (5)),

for all t €. [s, b], f € F, and hence

\\V{t)y(f)(t)V{tr-D(f)(t)\\<£/2,
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CHAPTER 1. THE BUILDING BLOCKS 19

for all t € J and all / € F. D

COROLLARY 1.5. — Let A andB be building blocks of any type. Lety^: A —^
B be unital ^-homomorphism such that (p* = -0* on T(B).

It follows that y and ̂  are approximately inner equivalent.

Proof. — Consider the case where A and B are building blocks of type 3. Set

a( t )=6^te[0 , l ] ,

and

^2mt) = 2t, t € [0,1/2], ^(e27^) = 2 - 2t, t € [1/2,1].

Then K o a(t) = t. It is obvious how to define building blocks Ai and B\ of
type 1 such that / i—)- / o n defines unital *-homomorphisms AA '" A —> A\ and
AB: B —^ JE?i. Then f ̂  f o a defines *-homomorphisms TTA: Ai —> A and
TTB : B\ —> B such that TTA o AA = ^A, TTB o AB = %da. Since y?* = ̂ * on T(J5)
we have that (AB O-^OTTA)* ^ (AB O^OTTA)*. By Theorem 1.4 this implies that
\B o ̂  o TTA and Ajp o y o TTA are approximately inner equivalent. By applying
TI-B on the left and AA on the right, we see that ^ and y are approximately
inner equivalent. The other cases are handled in a similar way. D

We can now give the following description of the unital *-homomorphisms
between building blocks of type 1,

A = A(n, di, c?2, . . . , dN) and B = A(m, ei, 62 , . . . , e^),

with exceptional points xj € T,j = 1,2,. . . , TV, and ^^ - - -^M ^ [0,1],
respectively. By Theorem 1.4 and Lemma 1.2, any unital *-homomorphism
(p: A —> B is approximately inner equivalent to one of the following standard
form: Let r^ € N and let

m - ̂ N r^H,^. rn n -> T 7 - 1 9 2^i=l i z - fP'i ' V3') n ' ^i % — l, ̂ 5 . . . , ——————————— = ̂ <^,
Tv

be continuous functions such that

(17) ^{^n^^-^+^eN7",
Oj Cfc

j = 1,2,..., TV, and
777

(18) #{i:^(tk)=t}<EN-, t€T\{x^x^...,XN}
^k

for all k = 1,2,..., M, and such that

(19) (^(0),^(0),...,^(0))=(^(1),^(1),...,^(1))
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20 CHAPTER 1. THE BUILDING BLOCKS

as unordered Ly-tuples. There is then a unitary u <E C'[0,1] (g) M,» such that
V{f)(t) =

^)diag(/(^)),..., /(<(<)), A? (/), A? (/),..., A^(/))^,

/ € A,( e [0,1], defines a unital *-homomorphism y?: A —^ .6.
A similar notion of standard homomorphims exists for maps between build-

ing blocks of other types too. They will also be important for us later, so let
us describe them. Consider a building block A = A(n, di, ̂ 2, • • • , rijv) of type 3
and B = A(m, 61,62,. . . , e^f) a building block of type 1 or 3 with exceptional
points Xj e [0,1], j = 1,2,..., TV, and <i, (2 , . . . , *M € [0,1], respectively.

LEMMA 1.6. — There are integers r^ € {0,1,2, . . . , n/dk -1}, k = 1,2,..., N ,
and continuous functions ^1,^2, • • • ,̂  : [0,1] -)• [0,1] with the following
properties:

-^l(<)<^2(()<---<^^(*), (€ [0 ,1 ] .
- For every t € [0,1] there is a unitary Uf € Mm such that

<w(/)(*)<
=diag(/(^(<)),/(^2(t)),...,/(^(t)),A^(/),A22 (/),..., A^(/)),

for all f e A.

Proo/. — Fix first a ( e [0,1]. Take

M(t),/<2 (<) , . . . , /?!,(() e[0,l]\{a;i,a;2,...,.r7v}

and si, 52, • • • , SN € N such that A 3 / i->- y(f)(t) is unitarily equivalent to

A9/^diag(/(/<i(*)), . . . , /(^(f)),A^(/), . . . ,A^(/)).

We write s^ = m^n/c^ + r^, mfc € N, r^ € {0,1,2, . . . , n/dk - 1}. Exactly as
in the proof of Lemma 1.1 we see that the r^'s do not depend on ( e [0,1]. Set
mo = 0 and define Ki(t) = Xk, when

k-i k-i k-i
i = L + ̂ mj + 1,L + ̂ mj + 2,... ,L + ̂ m, + m^,

j=o j=o j=o
k =1,2,. ..,N.

As before we denote L + ̂ ^ m^ by TVy. Then A 9 / ^- y3(/)(() is unitarily
equivalent to

A9/^diag(/(^(()),...,/(^(t)),A^(/),...,A^(/)).
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As in the proof of Lemma 1.2 we see that the map t ̂  (^ i (^) , . . . , KN (t)) is
continuous into the unordered A^-tuples from [0,1]. We define the functions
l^i: [0,1] —> [0,1], i = 1 , 2 , . . . , A^, as the unique set of functions such that

^(t}<^(t}<"'<^(t)

and

{^(t},^(tY... ,/^)) = (/,i(^ ... ,/^(t))

as unordered tuples for all t. Then each /^ is automatically continuous, cf.
[CE], proof of Theorem 10, or use the min-max principle. D

Let r^ € N and let

m — ̂ N r^rl-^:[0,1]->[(U], ^1,2,...,^ 2^i^^

be continuous functions such that

— ±J^^

(20) #{,:^(^)=^.}n+^eNm,
dj ek

j = 1,2, . . . , TV, and

(21) # { ^ ^ ( ^ ) = ^ } e N m , ^e[0,l]\{^2,...,^v}
ek

for all k = 1 , 2 , . . . , M. When B is of type 1 we also need to have

(22) (^(0),^(0),...,^(0)) = (^(1),^(1),...,<(1))

as unordered Ly-tuples. There is then a unitary u 6 C'[0,1] <S> Mm such that

^(/)(a0 =

u(x) diag(/(/^0r)),..., /(^ (x)), A? (/), A? (/),..., A^ (f))u(x)\

f € A, a: G [0,1], defines a *-homomorphism y: A —> By and by combining
Corollary 1.5 and Lemma 1.6 we see that any unital *-homomorphism from A
to B is approximately inner equivalent to one of this form. By Lemma 1.6 we
can assume, in addition, that (21) holds.

Note that we can always take

(23) r^e^l ,2, . . . ,^-- l l , f e = l , 2 , . . . , 7 V ,

regardless of which type of building blocks we are considering. A standard
homomorphism as described above will be said to have minimal multiplicity
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22 CHAPTER 1. THE BUILDING BLOCKS

when (23) holds and

# { i : ^ ( y , ) = X j } - + r J ^
(24) ———————^———(h——3-<-, j=l,2,...,7V,fe=l,2,...,M.

^ ^

The functions /^, i = 1 , 2 , . . . , L^, will be called the characteristic functions
of (p and the numbers r^,... ,r^ will be referred to as the remainders of y?.
The numbers

#{i-.^(yk)=Xj}^+rJ
m
Ck

will be called the small remainders of (ft and denoted by ^(fe,j), fc = 1 , 2 , . . . , M,
j = 1 , 2 , . . . , N. Observe that

(25) ^(kj^^r^ modulo-^-,
ek J dk

and that s^^k^j) is the multiplicity of the representation Af in Aj^ o y?.
By Corollary 1.5 two *-homomorphisms y?,^: A —>- jB between building

blocks, A and 5, of standard form and minimal multiplicity, are approxi-
mately inner equivalent if and only if r^ = r ^ j = 1,2,.. . , TV, L(^ = Z^,, and
(p^(t),i^(t),..., ̂  (^)) = (p^(t),i4(t),..., /^ (^)) as unordered tuples for
alHG [0,1].

LEMMA 1.7. — Let y: A -^ B be a unital ^-homomorphism between two
building blocks A and B, of any type. For any finite subset F C A and any
e > 0 there is a unital ^-homomorphism ̂ : A —> B of standard form and min-
imal multiplicity, and a unitary w G B such that || Adw o y(a) — '0(a)|| < e,
a € F, and ̂ (j, k) = ̂ (j, k) modulo n/dj, k = 1 ,2, . . . , M, j = 1 ,2 , . . . , TV.

Proof. — We present the proof in the case where A = A(n,di,. . . ,d^v) and
B = A(m, ei , . . . , CM} are both of type 1. The proof in the other cases are
the same (except for notation). Let yi,y2? • • • ->VM ^ [O? 1] be the exceptional
points of B. We may assume that (p is of standard form, i.e. is given by

^€{0,1,2,. . . .n/4-1}, A;=1 ,2 , . . . ,TV,

and
N

fli: [0,1] -^ T, i = 1 , 2 , . . . , (m - Y^ridi)/n = L,
i=l
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through the formula

v(fm =
^)diag(/(^(t))J(^(^)),...J(^M),A^(/), A? (/) , . . . , A^(/))^)*.

If we freeze /^ i , . . . , ̂  in very small intervals Jy = [ay, &y] around each yr,r =
1,2,..., M, we can achieve that /^(t) = /^Q/r), ^ e Ir, i = 1 , 2 , . . . , L. By
freezing u in the same way we can achieve that

^fm=y(f){yr),

for all t € Iri r = 1,2, . . . , JV. The resulting perturbation of y? needed to obtain
these things can be made arbitrarily small (on F) by choosing each Ir small
enough, so we can simply assume that we have such "frozen" intervals to begin
with and that they are mutually disjoint, with yr in the interior of Ir .

Fix an r and let ir: M^ —^ Mm be the given embedding. There is then a
unitary v € M^ such that

V(f)(t) =

^(^diag(/(^),/(^),...J(^),A^(/),A^ (/), . . . , A^ (/))<),
/ C A, t € I r , for some Si C {0 ,1 , . . . , n/di - 1}, % = 1 , 2 , . . . . TV, and some
^1,^2, . . . ,tjc € T. Note that ^ = s^(%,r) modulo n/c^. Choose continuous
functions gi: Ir -> T such that

I f f z O O - ^ l <^, se ir, % = l , 2 , . . . , ^ ,
^ = ti on the boundary of Ty., and

{a;i, a:2,. . . , a;Ar} H {ffi(yr), ff2(yr), . • . , ff^(?/r)} = 0.
We can then define a perturbation (pr of (^ by ^pr{f}(t) = y(f)(t), f e A, ̂  Jy,
and

^(/)M =
^(z;diag(/(ffi^)),/(ff2^)),...J(^M),A^(/),A^2 (/), . . . , A^(/))z;*),

/ € A, ^ € Jr- By making such a change over each Ir and by choosing 8 > 0
sufficiently small, we get the desired perturbation of y?. D

LEMMA 1.8. — Let p be a projection A = A(n,di,d2,.. . ,ri^), where A is a
building block of type 1. Set r = Tr(p(t)),t 6 T, the rank of p. Then n/di\r for
all i = 1,2,... ,JV, and

pA(n,di,...,c^)p ^ A(r, <,... , d^)
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where A(r,d^... ,rî ) is a building block of type 1 and d[ == rdi/n, i =
1,2,. ..,N.

Proof. — The proof is a standard exercise. D

Of course, Lemma 1.8 holds for building blocks of other types too. Lemma
1.8 will be used repeatedly in the following, often without comment. However,
one particular application deserves to be mentioned because it will be used
over and over. If

A(n, d, N) = A(n, d, d,..., d)

N times

is a building block of type 2 and x e { 1 , 2 , . . . , d}, then there is an imbedding
A(nx/d^ x^ N) C A(n, d, TV), making A{nx/d^ x^ N) a full corner in A(n, d, N),
and if x\^x^... ̂ XM € N are natural numbers such that ^^i Xk = d, then
there is a unital imbedding ®^i A(m^/d,o^,JV) C A(n,d,A^).
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CHAPTER 2

THE KK - THEORY OF BUILDING BLOCKS
OF TYPE 2

In this chapter we will only consider building blocks of type 2. The KK-group
KK(A^B), where A = A(n,d,AQ and B = A(m,e,M) are building blocks of
type 2, is easily calculated by use of the universal coefficient theorem, [RS];
the result being that

.N-1KK(A,B) ̂  Hom(^o(A),^o(5)) ©Hom(^i(A)^i(B)) © (Z^
Nonetheless, it is not clear what information is coded into KK{A^B}. Of
particular importance for us here, is it to determine the signifigance of the
direct summand (^n/d) ~ ^d to decide which elements of KK(A^ B) are
represented by unital *-homomorphisms A —> B. We will answer this in the
case where e is larger that (27V + l)nd, and this will suffice for our purposes.

When A = A(n, d, N) is a building block of type 2 with exceptional points
x\^... ^ X N - I we set

Ao = Ao(n, d, N) = [f e A : /(^) = 0} .
There is then a split-exact sequence 0 —^ AQ —> A —> Md —> 0 from which we
deduce that

KK(A, B) ̂  Ko{B) © KK(AQ, B),
for any separable, nuclear (7*-algebra B, under the map

^A,B) 3 a ̂  (a*([en])^*(a)),
where L: Ao —>• A is the inclusion and e\\ is a minimal non-zero projection in
Md C A. The following lemma and its proof was pointed out to the author by
Terry Loring.

LEMMA 2.1. — For any nuclear C*-algebra B one has

KK{A^B)=lw^[A^Mk{B)].
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Proof. — By [L2] and [DL1] it suffices to show that Ao is homotopic sym-
metric. In other words we must show that the identity map id,Ao has an
inverse in IH^[AO,MA;(A())]. To this end we may assume that XN = 1 and that
{^i? ̂ 2 5 • • • 5 ^AT-i} is left globally invariant by the map T 3 z i-> z~1. We can
then define idAo: AQ -^ AQ by

idAo(f)(z)=f(z~^
z E T. We leave the reader to check that

idAo © idAo © - • • © idAo © ̂ Ao © ^Ao © " • © id^o

^ times ^ times

is homotopic to the zero map so that

zdAp © idAo © - • © idAo © idAo © ^Ao © • • • © ^Ao
§ — 1 times 2- times

represents the inverse of idAo m lim[Ao,Mfc(Ao)]. D

Let Af: A(n,d,TV) —> M^ i = 1,2,.. . , N, be the exceptional representa-
tions of A. When p,: AQ -> Mr(B) = A(rm,re,M) is a *-homomorphism we
let s^ € Z^/rf be the multiplicity of Af\Ao m ̂  ° ̂ ? taken modulo n/d,
j = 1 , 2 , . . . , N — 1, % = 1,2,. . . , M. The arguments from Lemma 1.1 show
that s^ € ^n/d ^ly depend on ^ up to homotopy, see also [DL2], proof of
Lemma 3.1. Hence

KK(A^ B) 3 M ̂  (4,4,..., 4_i)
defines a group homomorphism

/4: KK(A^B) -^ {Zn/df~1

for each % = 1,2,... , M. We get immediately the following conclusion.

LEMMA 2.2. — Let <^,^: A —> B be unital ^-homomorphisms such that [up] ==
[^] in KK(A,B). Then s^^kj) = ̂ (Jbj) modulo n/d for all k j . In other
words, (p and ̂  have the same small remainders modulo n/d.

Proof. — It follows from the preceding that

^j)=^(fcj), . 7 = 1 , 2 , . . . , TV-1.

The last small remainder, s^ (A, TV), is determined, modulo n/rf, from the fact
that y is unital; indeed s^^k^N) is the remainder obtained by dividing

N-l
e/d-^s^kj)

.7=1
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with n / d . D

Assume now that n < e. For each

ie {1 ,2 , . . . , TV-1}, ^ G { 0 , l , 2 , . . . , n / d - l } ,

define y?^ : Ao -> B = A(m, e, M) by

^(/) = (^(A^/), A^/),.... A^A 0,0,.... 0) e Me C B.
t, times

Then

(ti, t 2 , . . . , tN-i) ̂  K1 © y42 © • • • © yfc]

defines a group homomorphism A A ^ (Zn/d) —)- lim[Ao,M^(J3)] such that
^ o AA = id^ i\ = 1 , 2 , . . . , TV — 1. It is clear that

imAA C keT{KK(Ao,B) ̂  Hom(^i(A),^i(B))).

By the universal coefficient theorem, [RS],

keT{KK(Ao,B) -^ Hom(^i(A),^i(B)))

is the image of a homomorphism (Zyi/d) —>' KK(AQ^B). So we see, just
by counting, that

imAA = kei{KK(Ao,B) -^ Hom(^i(A),^i(B)))

when n < e. We conclude that the direct summand (Zyi/d) °f KK(A^ B)
keeps track of the small remainders.

Note that if e > Nn, we have that every element of imAA is represented by
a *-homomorphism AQ —> B. If, in addition, d|e, every element of

imAA = ker(KK(Ao,B) -> Hom(A:i(A),Xi(B)))

is of the form [y\Ao\ for some unital *-homomorphism y?: A —^ B. Indeed, if
(^1^2,. • . , tN-i) € (Z^/rf)^"1, we can set r = e / d - F^Ll1 ti' Then

v{1 © ̂ 2 © • • • © (̂ î1 © A^
can be realized as unital ^-homomorphism y: A —> Me C B such that

MA()] =AA(^1^2,... ,^-l)

in ATA:(Ao,B). Thus, if we identify Ilom{Ko(A),Ko(B)) = Ko(B) = Z, we
have that
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(1) when Nn < e and d[e, every element of the form
{e/d,0,x)

in Z©Hom(^i(A),^i(B)) © (Z^)^"1 = KK(A,B) is represented by
a unital *-homomorphism A —> B.

To proceed further into the investigation of which elements of KK{A^ B) are
represented by unital *-homomorphisms from A to -B, we need to take a closer
look at the -RTi-group of a building block of type 2. Let A be a building block
of type 2. For simplicity we realize it as a subalgebra of an interval algebra,
say

A=A(n,d,N) =
[f G C[0,1] ® Mn : f(x,)eMdJ= 1,2,... ,A^/(0) =/(!)}.

In this case I^i(A) c^ Z © (Zn/d) - , or closer to the unitaries:

K,(A) ̂  ^(Un) © {^(Un/U^f-1.

Let us describe how we get from a unitary U e A to an element of Z ©
(^n/d) ' By Theorem 1.4 there is a sequence TVyi of unitaries such that
lim^-^oo WnUW^ exists and is a unitary of the following form: There are con-
tinuous functions /^: [0,1] —^ T, i = 1,2,. . . , n, such that
(2) # {% : ^i(xj) = Q € n/dZ, t G T, j = 1 , 2 , . . . , N.
and a unitary V C (7[0,1] (8 M^ such that

^WnUW^t) =y(t)diag(/zi(^)^2M,...^n(<))^), ^ e [0,1].

The element
[;7] = (^o, (^1^2,..., ZN-I)) € ^i(A) = Z © (Z^)^-1

can be determined from the /^'s in the following way. Choose continuous
functions F^: [0,1] —^ R such that

e^W^^t),

t € [0,1], k = 1,2,... ,n. By condition (2) there are d continuous function
\i: [xj^Xj+-[] —^ T, i = l ,2, . . . ,d, such that {Xi{xj)} and {\i(xj^)} are
the eigenvalues (counting multiplicities) of U{xj) G Md and [7(^4.i) € M^,
respectively. Choose continuous functions r^: [^,^4-1] -> R such that

\k(x) = e2^^), ^G[^,^+i].
Then

(3) ^o^E^W-^W)
fc=i
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and
n d

(4) ^ = Z^C^+i) - JF^)) + ^ ̂ (^(^-) - ̂ (^-+l)) modulo ^Z,
A;=l a k=i a

j = 1,2,. . . , N — 1. Let us give the arguments for this. Firstly, the formula for
ZQ follows from the fact that the class of U in J^i((7(T) 0 Mn) is the winding
number of the loop t 1-4- Del U(t). The formula for zj is obtained as follows.
Since

U(xj)^u(x^)eu^
U\[xj,xj^] determines a loop in Un/Ud and zj is the element ofZy^ = ^(Un/Ud)
represented by this loop. Choose a unitary S € C[x^Xj^\} 0 M^ such that

S(xj)=U(xj)^S(xj^)=U(x^).

Then [U] = [?75*] in ^(Un/Ud). But E/5* is a loop in Un and hence [[75*] €
^i{Un/Ud) = Zy^ is the image of the winding number of the loop Det US*(t)
under the canonical surjection Z —^ ^ n / d ' Set

d
7(aQ = exp(27rm/d^rA;(a;)),

A;=l

^ € [^,^-+1]. Then Del £75* = Det U-f~1 Det 5*7 and [Det 5*7] € n/dZ.
Hence ^j is the winding number of t —> DetE/(t)7-l(t) taken modulo n/dZ,
yielding (4).

Another, perhaps more transparent way to describe zj is obtained if we first
perturb U a little so that U(xj) and U(xj^) have d distinct eigenvalues and
U(x} has n distinct eigenvalues for all x € \Xj^Xj^\[. That this is possible
follows from the fact that U admits an arbitrarily close unitary approximant
in C7[0,l] 0 Mn with n distinct eigenvalues at every point of [0,1], cf. [El],
proof of Theorem 4.4. Then we can choose the F^s such that

Fi(xj) € [0,1[ for all %,

Fi(x) < F^(x) < • • • < Fn(x), and

^iFk(x) ̂  ^iF,(x)^ j ̂  ̂  ̂  ̂ i ^ ^ ]xj,Xj^[.

It follows that

^k-^n/d+j^j) = ^(A;-l)n/d+l(^')? J == I? 2,. . . , n/d, fe = 1, 2, . . . , d.

Set p = max{( : Fi{xj^\) = F-^(xj^)}. Then

(5) Zj = —p modulo n/dZ.
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FIGURE 1. Illustration of the case n = 9, d = 3.

Indeed, we can choose the r^s such that

rk(xj) = F(fc-i)n/rf+i(^), r^+i) = F(^_i)^+i(^+i)
for all k= l ,2 , . . . ,d . Then

^ d
E(̂ +i) - F^-)) +r- E(̂ ) - ̂ +1))= r- -p
k=l d k=l d

so (5) follows from (4).

LEMMA 2.3. — Let n,m,e G N such that e\m and let A = A(2mn/e, 2n, M)
be a building block of type 2. For every homomorphism

f:K^C(T)0Mn)^K^A),

there is a unital ^-homomorphism ̂ : C(T) 0 Mn -> A such that ̂  = /.

Proof. — K^C(T) (g) Mn) ^ Z, generated by the class of the unitary ZQ =
diag(^ 1,1,. .̂  1), and K^A) ̂  Z©(Z^)M-1. Let (ao, (ai, a^..., a^-i)) €
Z © (Zy^/e) = ATi(A). We must exhibit a unital *-homomorphism

^: C7(T)®M^^A,

on standard form, such that

[^o)j = (ao, (01,02,... ,OM-i)).

We will describe a set ^1,^2,. • . ,^2m/e of characteristic functions for ^. Let
0 = yi < V2 < • - • < VM < 1 be the exceptional points of A(2mn/e,2n,M).
Choose continuous functions F,: [0,1] -^ E, i = 1,2, . . . , 2m/e, such that

# {j ^ ̂ FJ(?/r) = l} = m/e, # {j : e27^) = -l} = m/e,
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f o r r = 1,2,. . . ,M,

# {e27^) : j = 1,2, . . . , 2m/e} = 2m/e,

when t ^ {yi, y2,. • • , VM} H [0, yML and

#{3 '' Fj{Vr) C Z,F,(y,+i) i Z} = a,,

r = 1,2, . . . ,M — 1. These conditions can be met in many ways and are
sufficient to ensure that the torsion part of [V?(^o)] ^ ^i(A(2mn/e,2n,M)) is
(a i ,a2, . . . ,aAf-i). To get the total winding number of t 1-4- Det'0(^o)(t) to
become ao we choose the Fj^s such that

F^)=F,O/M), te[yM^}.

j = 2 , 3 , . . . , 2m/e, and let Fi: [^/M, 1] -^ M be continuous such that

Fi{l)-F,(yM)=beZ.
Here b € Z is free to choose and, since the total winding number of [0,1] 3 t ̂
Dei^(zo)(t) is & plus the total winding number of the loop

2m

[o^^^n62^^j=i
we can clearly choose b such that the total winding number of Det^(zo) be-
comes OQ. D

LEMMA 2.4. — Le^ A{n,d^N) and A(m,e,M) te building blocks of type 2
5Hc/^ that d\e and (N + l)n < e. For any group homomorphism

X: A:i(A(n,d,AO) -^^i(A(m,e,M))

^Aere %5 a unital ^-homomorphism y: A(n^d^N) —> A(?n,e,M) 5?AcA that ̂  =
X-

Proof. — Following the notation used by Dadarlat and Loring, [DL2], we
denote the unital dimension drop (7*-algebra

{/eqo,l]8)M^:/(o)j( l)eCl}
by In. Note that K^Mddn/d)} = ^ n / d ' F011 any group homomorphism
TT: ^n/d ~^ (^m/e)M-l there is a unital *-homomorhism

^: Md(ln/d) -^ A(m/en,n,M)
such that ̂  = 71-. To see this, choose first mi e {0 ,1 ,2 , . . . , m/e - 1} such
that p2(miz) = qi o 7r(pi(^)), z € Z, % = 1 ,2 , . . . , M - 1, where pi: Z -4- Z^,
p^: Z —> ^rn/e ^d ^: (Zm/e)M-l ̂  ̂ /e are the natural surjections; the last
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one to the %'th coordinate. If we consider Md(ln/d) as a building block of type
4 in the natural way, (so that the exceptional points are x^ = 0 and x^ •==- 1),
we may define a standard homomorphism

^: Md(î /d) -)- A((m/e)n,n,M)

in the following way. Let 0 < yi < y^ < ' • • < VM e ]0,1[ be the ex-
ceptional points of A((m/e)n,n,M) and set yo == 0,yM+i = 1- For each
i € {1,2,.. . ,M}, we let hi: [0,1] —)• [0,1] be the function whose graph is
drawn in Figure 2.

FIGURE 2

Set a\ = 0 and for j = 2 , 3 , . . . , M, let aj € {0,1 ,2 , . . . , m/e — 1} be m\ +
^2 + • • • + yyij-i, taken modulo m/e. Then mj = (fly+i — Oj) modulo m/e.
Furthermore, since

m nijn
~ e ' ~cr

for all j, we see that
m djn
e ' d

for all j. Let a be a permutation of {1,2, . . . ,M} such that a^d) <: aa(2) <^
• • * ^ ^(M) • Let ^ be the standard homomorphism whose characteristic
functions consists of a^-m copies of ^C^i h^ and a^y) — da(j-i) copies of
T^Lj^a(i)'>3 = 2,3,. . . ,M, and the remainders ro = (l/d)(mn/e - ao-^n)
and ri = 0. Since

m o'a(j)n
e 1 d

for all j (and a^^n < mn/e), these data will satisfy (20)-(22) in Chapter
1 and define a unital *-homomorphism ^: Mrf(I^y^) —>- A(m/en,n,M). It is
straightforward to check that ̂  = TT on ATi(Md(I^/d)).
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Let 0 < x\ < x^ < - • • < XN < 1 such that

A(n, d, N) = [f € C[0,1] 0 M^ : /(^) € M^, i = 1 ,2 , . . . N, f(0) = f(l)} .

By identifying

{/ € C[xi,Xi^} (S)Mn : f(xi),f{x^) € Md}

with Mrf(I^) for all % = 1,2,... ,7V - 1, we can define a *-homomorphism
7: A(n,d,AQ -> (MdO^))^-1 by

7(/) = {f\[xi^"^f\[xN-l,XN])'

As shown above, we can choose, for each j G { ! , . . . , T V — 1}, a unital *-
homomorphism A^-: Mrf(i^) ^ A((m/e)n,n,M) such that A^ = \ o ^ on
^i(Mri(i^/ri)), where ^-: Z^ -^ (Z^)^"1 is the inclusion on the j'th coor-
dinate. Let

^: (M^i,/^-1 ̂  (A((m/e)n,n,M))^-1

C A((7V - l)(m/e)n, (A^ - l)n, M)

be the direct sum of the X^s. Then

^o7:A(n,d ,7V) -^ A((A^ - l)(m/e)n, (TV - l)n,M)

is a unital *-homomorphism such that

^*°7* = X | / _ \^-i-
l^/dj

By Lemma 2.3 there is a unital *-homomorphism

p: C(T) (g) Mn -^ A(2mn/e, 2n, M)

such that

P* = (X-$*°7*)|z.

Set m\=m- (N + l)(m/e)n, ei = e - (N + l)n so that

A((7V - l)(m/e)n, (TV - l)n, M) C A(2(m/e)n, 2n, M) C A(mi, ei, M)

C A(m,e,M)

and define
(p: A(n,d,7V) -^

A{(N - l)(m/e)n, (AT - l)n, M) © A(2(m/e)n, 2n, M) © A(mi, ei, M)

C A(m,e,M)
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by
^=$o7©p|A©A^

where A^: A -^ Mei C A(mi,ei,M). Then ̂  = ^ on A:i(A). D

PROPOSITION 2.5. — Let A = A{n,d,N) and B = A(m,e,M) be building
blocks of type 2. Assume that {2N + l)nd < e.

-Fbr any element a G KK(A^B) such that a^: KQ(A) —> Ko(B) is positive
and order-unit preserving, there is a unital ^-homomorphism y: A —> B such
that a = [(p\ in KK(A,B).

Proof. — Since o^: Ko{A) -> Ko(B) is positive and order-unit preserving, it
follows that d\e. Write e/d = x\ + x^ where (N + l)n < x\ and Nn < x^.
Then

^rnx^d^^ ^ ̂ (^^.x^ M) C A(m, e, M)
e e

as a unital subalgebra. Let

ij: A(mxjd/e^ xjd^ M) —> A(m, e, M), j = 1,2,
be the corresponding embeddings and note that [ij] is invertible in

KK(A{mxjd/e, Xjd, M), B), j = 1,2.
By Lemma 2.4 there is a unital *-homomorphism

y?i: A —>- A(mx\dje^ x\d^ M)

such that yi^ = %i^1 o a^ on K\{A). Since 3:2^ ^ Nn we know from (1) that
there is unital *-homomorphism

(^2'' A —> A(mx^d/e^ x^ M)
such that [%2 ° V2\ = 01. — [i\ o ip{\ G KK{A^ B). Then

y? = vi © y?2 ^ A —)- B
is a unital *-homomorphism such that a = [p\ in KK{A^B). D
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CHAPTER 3

AN APPROPRIATE UNIQUENESS RESULT

Theorem 1.4 says that all we need to know about a unital *-homomorphism
between building blocks can be obtained from the affine function between the
tracial state spaces induced by the map. In the proof of our main result, how-
ever, we will only know the map on the level of traces approximately and,
although we only ask for an approximate conclusion, Theorem 1.4 will not
suffice. This is to be expected, of course, since the tracial state space, with its
pairing with KQ^ can not be a complete invariant. The purpose of this chap-
ter is to obtain the substitute for Theorem 1.4, which "gives an approximate
conclusion for approximate assumptions", rather than a precise conclusion for
precise assumptions, and which can be made to work in the course of the proof
of the main results. Thus, what we are seeking here is, in Elliotts terminology,
the "uniqueness theorem".

Let

A(n, d, N) = [f E C7[0,1] ® Mn : /(^i), /(^),..., /(^) € M^ /(O) = /(I)}

be a building block of type 2. For once it is convenient to assume that x\ == 0.
A unitary U € A(n, d, N) will said to be of minimal multiplicity when there
are continuous functions Fi: [0,1] —> ]R such that

F,(0)C[0,1[, ^ = l , 2 , . . . , n ,
Fi(t) < F^t) < • . . < Fn(t}, t i {x^x^..., XN} ,
^w ^ ̂ (t)^ ^ ̂  ̂ ^... ,^} , ̂  fc,

#SpE/(^)=d, . 7 = 1 , 2 , . . . , T V ,

and orthogonal projections

gi,g2,...^n ^ C[0,l] ®Mn
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such that

U(t)=^e27^iF^qk(t^ (€[0,1].
k=l

The projections q\^q^... ,^n are called continuous eigenprojections for [7.
By using the fact that the unitaries with minimal multiplicity in each fiber

are dense in the unitary group of (7(T) 0M^, see [El], proof of Theorem 4.4, it
follows easily that the unitaries of minimal multiplicity are dense in the unitary
group of A(n, d, N).

For each r G Nj G { 1 , 2 , . . . , r}, let

r^ie^'.t^lU-^/rJ/r^

and choose a non-zero continuous function ^: T U {0} —)• [0,1] with support
in JJ.

LEMMA 3.1. — For each pair k^l € N such that I > 12, there is a finite set
FQ C <7(T, [0,1]) of non-zero elements with the following property: When (7, V
are unitaries in a building block, A = A(n,d,JV), of type 2, and 6 > 0 such
that

- 0(^(U}} > l/ l , j = 1 , 2 , . . . , M € T(A),
- ^(^(^)) > 2<U = i, 2,..., 3^, (? e r(A),
- |0(/(E/)) - 0(f(V))\ <, 6, f € F^O E T(A),
- (Aere %5 a continuous function a: T —>] — n/l^n/l[ and a constant IJL G T

^cA (Aa( Del C/(() = ̂ e^^W Det y((), ( 6 T, anrf
- [U}=[V}inK^A\

then, for any finite subset F C C(T) and any e > 0; (Aere %5 a unitary W € A
5^c/^ ^a(

lltY/^)^* - /OQII < sup J^^l : ̂  e T, ̂  ̂  (^ + ^TT + e

for all f € F .

Proof. — Let FO C G(T, [0,1]) be the finite subset of Lemma 2.3 of [NT]
corresponding to m = k^ n = I and let (7, V G A be unitaries meeting the five
conditions of the lemma. After an initial arbitrarily small perturbation of U
and V we may assume that they are both of minimal multiplicity. Let {^}
and {^} be the continuous eigenprojections of U and V, respectively. Thus

n n

U(t) = j^hi(t)qi(t), V(t) = ̂ giM(t), t G [0,1],
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where h^gr. [0,1] —)- T are continuous functions such that hi(t) -^ hj(t)
and gi(t) ^ gj(t) when t ^ {x\,x^... ,XN} and i -^ j. Since [U] == [V] in
jRTi((7(T) (g) Myi) there is a common permutation a e Syi such that

^(l)-^)^), ^(1)=^(0)

for all % = 1,2,.. . , n. We can therefore find a unitary 5 G (7[0,1] 0 Myi with
5(0) = 5(1) such that 5^5* = g^, % = l ,2 , . . . ,n . The second part of the
proof of Lemma 2.3 in [NT] now applies to show that

\9i(t)-hi(t)\<{28/k+6/l)7r

for all i and all t € [0,1]. For each j € {1 ,2 , . . . , N} there are partitions

{l,2,...,n}=p^o•)up2l/a)u..•upya),
and

{1,2,..., n} = P^(j) U P^(j) U • • • U P^(j),

such that

^(^•) = 9k(xj), i,k € P^(j), M^-) = ̂ (^-), ^fe € P^O'),

^ = l ,2 , . . . ,d . It follows from the description in Chapter 2 of the class in
ATi(A(n,d,7V)) represented by U and V, that the two partitions are identical
for each j. Set Pi(j) = P^j) = P^O), I = 1 , 2 , . . . , d, j = 1 , 2 , . . . , TV. For
each j we choose a small interval ̂  around xj such that

^•nn,=0,%^j,
and such that

^\fohi(x,)\\\qi(t)-qi(xj)\\<e/^
i

El/°ft(^)l l l^(*)-^(^)l l<£/4,

\\f(U)(t)-f(U)(x,)\\<e/^ and
im(<)-/(^)(^)ll<£/4, <e^-,

for all j and all / E P. Since

^ ^(^-), ^ ^(^j) ^ ̂ ^
^ePKj) ^ePzO')

there are unitaries Tj € M^ such that

T, ^ (̂.r,)T; = ̂  ^(^)
^Pf(j) ^Pf(j)

SOCIETE MATHEMATIQUE DE FRANCE 1997



38 CHAPTER 3. AN APPROPRIATE UNIQUENESS RESULT

for all / = 1,2,..., d, and all j. Then T^S(xj) commutes with each ^ q,{xj}.

Let V € (7(T) 0 M» be a unitary such that
V(t) = 1, ̂  U^-,

[^(<), ̂  <ft(^)]=0, (€^ , ;= l ,2 , . . . , d , and
»e^a)

V(.r,) = 5(^rr,

for all j. Set TV = 5V and note that W € A(n, d, N). We have that

1|W7(^)^)-/(V)(<)||
< \\W(t)f(U}(x,}W(tY -f(V)(x,)\\ + ̂

= \\S(t)f(U)(x,)S(tr -/(V)(^)|| + ̂
» n

\*< 1|5(*) ̂  / o ̂ (^)g,-(*)5^)* - ̂  / o g,[x^(t} || + £^V^J /^^

^=1 2=1

^"''{^N^-''61^'}^^)—
for all t E ̂  and all j. Since

ii^(^)w*^) - /(v)wii = \\sfw{t) - f{vm\ <
sup{|/(5) - f{t)\/\s - t\: s,t € T,s ̂  t} (28/k + G/OTT

for t ^ U^-^-, the proof is complete. Q

The next issue will be 'eigenvalue crossovers5; a notion introduced by George
Elliott in [E3]. Here, of course, we shall use a version of the procedure for maps
between building blocks of type 2. But first we need to introduce a collection
of generators for such building blocks which we can consider to be canonical.
So let A = A(n, d, N) be a building block of type 2 with exceptional points at
X^X^,...,XN € T. Set

SA = l/2min{|^ - xj\ : i ̂  j}

when N > 2, and 6 A = 1 when N = 1. (It must be remarked here that we can
always take N ^ 0. Indeed, C(T) (g) Mn = A(n, n, N) for all N G N.) Set

ff,(<) = max {0,1 - (l/^ - ̂ |} .
Then g, vanishes at xj for all j ̂  i and takes the value 1 at a;,. Furthermore,
we have control of the variation of g^

\9i^)-gi{t)\<{l/8A)\t-s\, ^ET.
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As in the proof of Theorem 1.4 we shall also use the function

ZA(t) = tdisi(t,{x^,x^,... ,XN}), t E T.

Let {eij} and {pij} be the canonical matrix units in Mn and M^ C M^,
respectively. The set

U^=i {9k ̂  Pij} U [ZA ® eij}

generates A as a (7*-algebra and hence could serve as the canonical set of gen-
erators. However, it is convenient to include the following additional elements.

Let 0 < y\ < 2/2 < • • • < VN be points in [0,1[ such that e2^^ = x^
j = 1 ,2 , . . . , ^V. We take VA to be the function ^(e27^) = e27"^), where
H: [0,1] —)- [0,1] is 0 on [O.yi], grows linearly from 0 to 1 on [yi^y^} and is
constant equal to 1 on [^2?1]- If N = 1, we can take VA to be the identity
function z on T. As the convenient set of generators for A we take

cg(A) = U^ [gk ®pzj} U {ZA (8) e^} U {z (g) 1} U ^ VA ® en + ̂  1 (g) e,̂  .

I ^ J
Note that [yA^^ii +S%>2 l®6^] generates the direct summand Z ofATi(A) =
Z © (Zy^/^) - . We observe that we have the estimate

\\f{s}-f{t}\\<^-\s-t\ ^GT,
OA

for all / Gc^(A).
We shall also need some additional notation. When ^: A —)- B is a unital

*-homomorphism between (7*-algebras, we let (p denote the map AffT(A) —t
AffT(B) induced by y, viz. ^(/)(cc;) = f^oy),f e AffT(A),cc; € T(B).
When a is a selfadjoint element of A we denote the corresponding element of
AffT(A) by a, i.e. a(c^) = c^(a), cc; G T(A). Note that when A = A(n,d,7V) is
a building block of type 2, we can identify AfFT(A) with the selfadjoint part
of the center of A, i.e. with C^T). When g € CR(T), we will not distinguish
between g considered as a central element of A and g considered as an element
ofAffT(A).

LEMMA 3.2 (A single eigenvalue crossover). — Let

( p : A(n, d, N) —^ A(m, e, M)

be a unital ^-homomorphism between building blocks, A = A(n,d,7V) and
B = A(m,e,M)^ of type 2. Let y i ^ y ' 2 ^ ' ' ' - ) V M be the exceptional points of
B. Assume that (p is of standard form and let ^1,^25 • • • ^A^ [0,1] —^ T be
characteristic functions for (p.
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Ift ^ ]0,l[\{yi,y2,...,yM} and i j € {1,2,...,L} are such that |/̂ ) -
fjij(t)\ < e, then, for all sufficiently small K > Q, there is a unital ^-homomor-
phism zp: A —^ B with the same small remainders as y such that

- Det(^0l)(f) ^Det^^®!)^), t € T,
- 1 1 ^ - ^ 1 1 <2n/m,
- V(x)-^(x)\\<2e/6A^xecg(A)^
- there are characteristic functions ̂  k = 1 ,2 , . . . ,L , for -0, such that

^k = ̂  k i [ i , ] } , J^i(s) = tii(s), Vj{s) = ^j(s) when s < t - ̂
y^s} = p.j(s), Vj(s} = /^(s) when s > t + ̂  and \^{s) - /^(s)| < e,
\i^j(s) - ̂ j(s)\ < £ when s € [t - K,t+ K\,

- y(f)(s) = W(s), si [t - ̂ t + ̂  f E A.

Proof. — Without loss of generality we may assume that i = 1, j = 2. We
have that

y(/)(5) = u(s) diag(/(^i(5))J(^200),..., /(^L(5)),
A^O^A^a),...^^^))^)*,

s ^ [0,1],/ € A, for some unitary u C C[0,l] 0 My^. Let ^ > 0 be so
small that [t - ̂ t + K\ H [yi,y^. • . ,VM} = 0 and |^(^) - ̂ j{s)\ < e when
\t - s\ < K. Choose continuous functions ^: [0,1] -^ T, fc = 1,2, . . . , L, such
that the fourth requirement of the lemma is satisfied and, at the same time,

^iC^OO = /^W^), s e [o, i].
Let v be the permutation unitary in U^n C Um which exchanges the first and
second n-block on the diagonal, specifically

v = ( ° r) (g) lGM2(8)M^.

There is then a path WQ : [0,1] —> U^ such that

wo(5)= ̂  J , 5< t - ^ ,

wo(5)= ̂  pj , s > t + ^ .

Set w(^) = wo (^) 0 1 € ?72n C Um and

W)00 =

u(s)w(s) diag(/(^i(5)),..., /(^(^)), A^ (/) , . . . . A^ (/))w^)*^^)*,
^ ^ [0,1],/ € A. Then ^ maps into B and it is straightforward to check that
^ meets the requirements. ^
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LEMMA 3.3 (Multiple eigenvalue crossovers). — Let

(p : A(n, d, N) —^ A(m, e, M)

6e a unital ^-homomorphism between building blocks^ A = A(n,d,7V) and B =
A(m,e,M), of type 2. Let yi,y2? • • • iVM ^ [0,1] be the exceptional points of
B. Assume that y is on standard form and let /^i,^2,... ̂ L'- [0,1] —> T be
characteristic functions for (p.

Let /^i, ^25 • • • 5 I^R'- [0,1] —> T 6e continuous functions and e > 0 5ncA ^a^

(A) /or eac/^ 5 € {yi,y2? • • • ̂ M}U{0,1}, ^ere are mutually distinct elements
ii^i'2^" ^R ^ { 1?2 , . . . ,L} 5HC/^ that ^(s) = Kj(s), j = 1 ,2 , . . . ,7?, and

(B) /or eacA ^ C [0,1], ^ere are mutually distinct elements mi, 7712? • • • 5 ̂ j? ^
{1,2,...,£} ^cA that\^(t}-^rn,(t}\ <£, j= l ,2 , . . . ,R .

It follows that there is a unital ^-homomorphism z^: A—^ B such that

- (ft and ̂  have the same small remainders,
- Dei y(z 0 l)(t) = Det ̂ (z (g) l)(t), t € T,
- \\<p-^\\<2n/m,
- V(x) - ̂ (x)\\ < 4e/8A, x G cg{A),
- There are characteristic functions, î, ̂ 2? • • • 5 ̂ L; fof ̂  such that

\^i(t)-^(t)\ <5£, te[o,l],

i^i{x) =i^i(x), x € {yi,y2,...,yM}U{0,l}, foralli = 1,2, . . . , R,

- (z/i(;r), 1/2(^)5 • • • 5 ̂ L(^)) == (^1(^)^2(^)5 • • • 5 I^L{x)) as unordered L-tuples
for all x € {yi,y2, • • • ,VM} U{0,1}.

Proof. — Choose 0 = 5o < 5i < • • • < ST = 1 such that

x,y G [^,5^+1] =^ |^(a:) -^(y)| < £, |^-(a1) -^(y)| < £,

% = 1,2, . . . , L, j = 1 ,2, . . . , R, I = 0,1,2,.. . T - 1. We may arrange that
{y i ,y2 , . . . , yM} C {.SQ^I? • • • ̂ r}- For each fc G {0 ,1 ,2 , . . . ,T} we choose
distinct elements m^m^..., m^ € {1 ,2 , . . . , L} such that

\^k\Sk} - Kj(Sk)\ <£, J = 1 , 2 , . . . , J?.

If •sjk E {yi, y2 , . . . , VM} U {0,1}, we ensure that

^^k) ==^(^ J = 1,2,. . . , J?.

Perform a single eigenvalue crossover in a small interval in the interior of]5o,5i[
such that the resulting *-homomorphism has the same characteristic functions
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as (p, except that /^o and /^i have been interchanged. In a second small inter-
val, disjoint from the first, we perform another eigenvalue crossover, now with
the new *-homomorphism, in order to interchange /^o with /^i. By continu-
ing through R single eigenvalue crossovers in this way, performed over mutually
disjoint subintervals in ]5o,5i[, we get a unital *-homomorphism </?i: A —^ B
such that the first four requirements of the lemma hold with ^ = ^i and

(1) there are characteristic functions /^,...,/^ for y?i such that ^}(t) =
/^(t), t > 5i, i = 1,2,...,£, and \^i(t) - Kj(t)\ < 5^, t E [0,5i],
j = 1,2,...,.R, and

(2) ^ l (^)=^(^) ,a ;e[0 ,5l ]n({0, l}U{yl , l /2 , . . .^M})^ ' = l ,2 , . . . , J^ .

In the interval ]si, s^[ we perform a series of single eigenvalue crossovers with
y?i in the same way, in order to exchange /^i with ^2, j = 1,2,..., .R.
The result is a unital *-homomorphism (p^: A —^ B such that the first four
requirements of the lemma hold with ^ == y?2 s^d

(3) there are characteristic functions /^,...,/^i for (p^ such that p^(t) ==
/^), ^ > 52, z = 1,2,. . . .Z, |^(t) -^j(t)\ < 5^, t E [0,52], .7 =

1,2,...,J?, and
(4) ^{x) = ̂ j{x), x C [0,52] H ({0,1} U {y i ,y2 , . . . ,yM}), j = 1,2,... ,1?.

After T steps of this kind, we reach a unital *-homomorphism ^ with the
stated properties. D

LEMMA 3.4. — Let A = A(n,d,7V) be a building block of type 2. For every
pair k^l € N with I > 12, 247r/(^A^) < I? ^ere is a finite subset

H C C(T, [0,1]) C A

of non-zero elements with the following property: When (p^: A —> B are
unital ^-homomorphisms into another building block, B = A(m,e,M), of type
2, satisfying the following requirements:

1. (p and ̂  have the same small remainders (modulo n/d),
2. ^)>2/Z,j=l,2,...,fc,
3. (p(g) > 3/^ € H,
4. ||^)-^)||<^Affe^
5. there is a continuous function a: T —>] — (/-c/2)m, (/^/2)m[ and a p, 6 T

such that Dei y(z 0 l){t) = ̂ ma{t^ Del ̂ {z (g) V)(t\ t G T,
6. 16Nn/e < K,
7. ̂  = '0* on ^i(A),
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for some K < 1/(2^ then there is a unitary w € B such that

72 13
|| Adw o y(a) - ̂ (a)|| < (—— + ——)TT, a G c^(A).

OAK OAI

Proof. — Set H = !^\ U ̂ f\ U FQ where FQ is the finite set from Lemma
3.1 corresponding to the present k and I . Let

X^,X^...,XN € T and i\,i^... ,^M ^ ]0,1[

be the exceptional points of A and B, respectively. We may assume, by Lemma
1.7, that ip and -0 are on standard form and of minimal multiplicity. Since (p
and ^ have the same small remainders, they also have the same remainders
ri ,r2, . . . ,r^v, cf. (25) in Chapter 1. Let

/^^: [0,1]^T, % = 1 , 2 , . . . , L ,

be characteristic functions for y? and '0, respectively. From the fact that (/? and
^ have the same small remainders we deduce that

# {i '' l^i{tr) = X j } =#{i: Vi(tr} = X j } = Nrj

for all r = 1,2, . . . , M, j = 1,2,. . . , N. Set LQ = maxy ̂  Nrj and note that
^o/^ ^ -^/e because y? (and ^) is of minimal multiplicity, cf. (24) in Chapter
1. We choose continuous functions /^: [0,1] —^ T, % = 1,2, . . . , Z/o, such that

#{% : /^(^.) =^-} =^-

for all r,j, ^(0) = ^(1) for all % and the ^(0)'s are mutually distinct.
Additionally, we want that m/e divides # { % : i^i(tr) = s} for all r and all
s G T\{a*i,a;25 • • • 5^}. This can be achieved because L — ^ - A ^ - is m/e-
divisible for all r. Let L' be a subset of {1 ,2 , . . . ,Z/} obtained by removing
< LQ elements. Then, for any g € C7([0,1],T),

L
II^'^Z^0^!! ^ ll^(ff)-^S^° ̂ ll+^o

i^L' i=l

^ Ez î nri n . ^ Nn n _ A^n nA^ 2-/Vn< ————— + —LQ < —— + —LQ < —— + —— = ——.
m m m m e e e

Similarly,

1 1 7f \ n V^ 1 1 ^ 27vrl

II^^-^X.^0^!! < ^-•m ^-- e
zGL'
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It follows from 6. that 2Nn/e < ̂ /8, so 3. implies that

^Z^t0/^) > 2/^ > 0
m ieL'

for all j^ t. Using 4. we find that

1 1 n \~^ n V^ 1 1 ^ ^ll^L^-^^0^ < T
%€!/ iGZ/

so that

-^-^^o^) > 2 / ^ - ^ = ^ > 0
m^

for all j^i. It follows that for each t € [0,1], the sets {^(t) : i € L1} and
{z^(^) : i G £'} are 27r/fc-dense in T. In particular, by perturbing each /^ in
neighbourhoods of 0 and 1 we can obtain continuous functions /^, ̂  : [0,1] —)-
T, % = 1,2,... ,Z/o, which have the same properties as {/^} and, in addition,
satisfy that

|[^ — ̂ || < 27r/fc, \\^i — ̂ || < 27r/k for all %,

{<(0)} C {^(0)} and {^(0)} C {^(0)} .

We can therefore meet the two conditions of Lemma 3.3 with R = LQ and
e = 27T/A;, both for (p and '0, and hence perform eigenvalue crossovers to perturb
(p and '0 to (p\ and '0i, respectively, such that the characteristic functions, {/^}
of (/?i and {^'} of ^i, satisfy

(5) /4-(0) = ^(1), ^(0) = ^(1). ^ = ̂  - Lo + 1, £ - Lo + 2 , . . . , L,
(6) ^(^) = ^(^r) = ^-(L-LO)(^), z = £ - Lo + 1,£ - 2.0 + 2, . . . ,£,

for all r, and

|^-^)+,(^)-4WI<io^/^
\^L-L^iW-^tW\<^/k

for all ^ G [0,1] and all i == 1 , 2 , . . . . £o- The last two conditons imply that

(7)
\p,'i(t) - Ki-(L-Lo)(-tr)\ < ——, *e [0,1], i=L-Lo+l,L-Lo+2,...,L,

and
(8)

127T
I^W - ̂ -(L-Lo)(^)| < -^-, * e [0,1], i = L - Lo + 1,£ - Lo + 2 , . . . ,L.

MEMOIRES DE LA SMF 71



CHAPTER 3. AN APPROPRIATE UNIQUENESS RESULT 45

By combining 6. with condition 6. of Lemma 3.3 we find that
#{ze{ l ,2 , . . . , £ -Lo} : /^ )=^}
= # {i G {1 ,2 , . . . , L - Lo} : ̂ (tr) = x,} = 0,

for all r,j. Combining (5) with Lemma 3.3 we conclude that

(/4(o),...y^(o)) = (//i(i),...,/4-zji))
as unordered tuples. Similarly, ^'(0) = ^'(1) for all i = L - LQ + 1, L - LQ +
2 , . . . , £, and

(^(0),...^L-Lo(0))=(^(l),...^L-Lo(l)).

as unordered tuples. By Lemma 3.3 we have
11^-^1 I I <2n/m,

\\^ -'01 I I ^ 2n/m,
V(x)-^(x)\\<S7T/(kSA)^

Wx) - ̂ {x)\\ < 87r/(fc5A), x € cg(A),
and

Det yi(^ 0 l){t) = Det (/?(^ (g) 1)^),
Det'01^01)^) =Det^(^(g)l)(f) , ^ G T.

Set m1 = m - {L - Lo)n, e' = m'e/m, m7' = (L - Lo)n, e" = m^e/m and
^2 = A(m',e',M), ^3 = A(m",e",M). Then ^2 © B^ C B as a unital (7*-
subalgebra. Up to approximate inner equivalence f\ and ^i are direct sums
of two *-homomorphisms of standard form, ^: A —^ B^^ ^: A —^ B^ and
^2 ^ A —^ B^ ^3: A —^ Bz, respectively, such that (p^ and ^2 are given by the
remainders

y^2 ___ ^ ___ ^ ___ ^2 • ___ 1 9 AT

J ~ J ——— J ——— J' 5 J ~ ' ' ' ' ' ? '

and the characteristic functions

/4 % = L-LQ+!,..., L,

and

^/, % = L - L o + l , . . . , L ,

respectively, and ̂  and ^3 are given by the remainders
^3 _ ^3 _ Q • _ i 9 A T
/^- — I j — U, ^/ — 1, Z, .... 7V ,

and the characteristic functions

/4 '̂ = 1,2,... ,L -LQ,
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and

v'i, i=l,2,...,L-Lo,

respectively. It follows from (6) - (8) that ̂  and ^> may be taken such that

(1()) \\^{x}-^(x}\\<^ x^cg{A).
OAK

In particular, since 487r/(^A;) < 2 and y = y^ ® en + ̂ ^ 1 ® ̂  e cg{A), it
follows that

h3Q/)] = [^(y)]
in ^1(^3). </;3 and ^3 satisfy that

„ . , i 2n + Lon + A^n 47Vn
11^3 - ̂ || < ————————— < ——,

m e

11^ _ ^( < 2n_^Lo^Vn 47Vn_
m e

247T
Since —— < 1, it follows from (5), (7) and (8) that

n ^) = e^w n ^
i=L-Lo+l i=L-Lo+l

for some function / 3 ' : [0,1] ->• R such that /?'(()) = /?'(!) and

l/^)^12^, <€[0,1] .
Since

^ 12£o7T K 12N7T K N

2 + ~ m k ~ < 2 ^ ^ J ^ < 2 + ~ e < ^
it follows from (5) that

(11) Det(^ 0 1)^) = ̂ 27r^) Det^3(^ ̂  1)(^), ^ € T,
for some continuous 7: T —] - ̂ m, /wi[ and some /^ e T. Furthermore,

(12) 11^3(^-^3^)11 < 8^+11^) -^^)||=^ g ^ H ^
(by 4. and 6.),

Nn
(13) ^3(^) > ^(^) - 4—— > 2^ g G ̂  (by 3. and 6.),

c-

and

(14) ^ (^)^^)-3^> 1 j = l , 2 , . . . , ^ , (by2.and6.) .
c' fc
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Note that (5) and (9) imply the existence of unit al *-homomorphisms (^4,^4:
(7(T) (g) Mn —^ B^ extending y?3 and '^3, respectively. The above estimates,
(12) - (14), hold for y?4 and -^4 also. Take a unitary w\ C B^ such that
Adwi o (^4(1 ® e^-) = '04(1 (g) e^-) for all z,j. Set B^ = B^ H {^(l (g) e^-)}7 and
note that B^ is also a building block of type 2. It follows from (11) that

Dei'^z (g) l)(t) = //e2^^ Det'Adwi o ̂ (z (g) 1)(^

t G T, for some // G T, where Det' denotes the determinant in ML-LQ- In
order to apply Lemma 3.1 to the unitaries Adwi o y^z (g) 1) and ̂ (z (g) 1), we
need to know that \^{t}/n\ < (L - L o ) / l , t € T. We have that

.^(t). Km
\-——\ < ——, t(E T.

n n

Since m < Ln + Nn we see that

(L - Lo)n m - Nn - L^n 1 Nn 1 1
——i——— > ————7————— ^ 7 — 2—-r > -, — ^ > — > A i ,Im Im I el I 21

from which we get the desired bound, \^(t)/n\ < {L — L o ) / l ^ t G T. In order
to meet the last condition of Lemma 3.1 we observe that y^ is homotopic to z
in (7(C(T)) so that

[Adwi o ̂ {z (g) en + ̂  1 ® e,,)] = [^Q/)]
%>2

= h3(?/)] = [^3Q/)] = [^4(^ ® en + ̂  1 (g) en)}
i>2

in -fCi(B3). It follows that

[Adwi o y^z (g) 1)] = ['04 (^ (g) 1)]

in K\{B^). We can now conclude from Lemma 3.1 that there is a unitary
W2 G I?4 such that

|| Adw2Wi o ̂ (/ (g) 1) - ̂ (/ (g) 1)11-p^a^-T,^}^^
for all/ ^ { g k : k = l,2,...,N}U{zA}U{z}U{yA}, cf. the definition of eg (A).
Then W3 = W2Wi G ^3 is a unitary such that

V(* -1 Q

|| Adw3 o ip^x) - ̂ (a-)!! < (^ + ̂ )7r, a; € cg(A).
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Combined with the previous perturbations we get a unitary w € B such that
72 13

|| Adw o y(x) - ̂ (x)\\ < (—, + —)^, x E cff(A).

D

Let
L

A = y^A^
1=1

be the direct sum of the L building blocks of type 2, Ai = A(n^d^A^),% =
1,2, . . . ,£. We consider each Ai == A(r^, c^, A^) as a (non-unital) (7*-subalgebra
of A and as the convenient set of generators for A we take cg{A) = (J^ c^(A^),
and we define 8 A = min^ JA^ The center of A is ®^i C(T) and we will let
cu{A) denote the L unitaries

(^1,1,...,1), (1,^1,...,!),. ..,(1,1,...,!^)

in ©^i (7(T) C A. The corresponding set of partial unitaries
(^0 ,0 , . . . ,0 ) , (0^ ,0 , . . . ,0 ) , . . . , (0 ,0 , . . . ,0 ,2 ; )

in ©^ C(T) C A will be denoted by cno(A).
Consider Z with its natural ordering and let A^, i = 1,2, . . . ,J and Bj,

j = 1 ,2, . . . , </, be unital (7*-algebras (building blocks for example) such that
Ko(Ai)^Ko(B,)^Z

as partially ordered groups for all i ^ j ^ k . Set
A = Ai © As © • • • © Ai, B = Bi e B2 © • • • ® Bj.

The multiplicity matrix of a unital *-homomorphism y?: A —> B is the J x I
integer matrix (5^) such that the composition

Z ̂  ^o(A^) ̂  ^o(A) ^> ^o(B) ̂  Ko{Bj) ̂  Z

is multiplication by Sji. We set mult((^) = min^j 5'̂ . Later, in Chapter 6, we
shall also need to consider multo(^) = min{6^ : Sij -^ 0}.

To formulate the next proposition we remind the reader that DU{B) denotes
the commutator subgroup of the unitary group U{B) of a unital (7*-algebra
B.

PROPOSITION 3.5. — Let A = @^A(ni,di,Ni) he a finite direct sum of
building blocks of type 2. For every pair k^l G N with I > 12, 247r/(A:JA) < I?
there is a finite subset G C C(T U {0} 5 [0,1]) of non-zero elements with the
following property: When (p^: A —> B are unital ^-homomorphisms into the
same finite direct sum of building blocks of type 2, B, such that
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1. [v>]=WinKK(A,B),
2. 0(y(^(uo))) > 2/1, j = 1,2,... ,M € T(B),UQ € cno(A),
3. ^(<^o))) >3K,g€G,0e T(B),uo e cuo(A),
4. \0(i{)(g(uo)) - y{g(uo)))\ < K2, g G G,0 € T(5),uo e cuo(A),
5. dist(^)V'(n)*,D[/(B)) < K2, •u € cu(A),
6. max, 167V, n, < Kmult(y5),

for some K < I/(21), then there is a unitary w € B such that

|| Ad w o y(a) - ̂ (a)|| ^ (—— + —)7r, a e cg{A).
OAK OAI

Proof. — For each i <E {1 ,2 , . . . , I,}, let ff, C C'(T, [0,1]) be the finite subset
of Lemma 3.4 corresponding to A(n,, d,, Ni) and the present choice of k, I . We
may assume that each Hi contains the constant function 1. Each / € Hi
extends to a continuous function / : T U {0} —>• [0,1] with /(O) = 0. Set

G=\j{f:feHi}.
i=l

Assume that we are given y,^: A —> B and a K e ]0, l/2l[ such that 1.
- 6. hold. To produce the desired unitary in B we can assume that B is
a building block of type 2, rather than a direct sum of such algebras. Let
pi^i = 1,2,... ,L, be the minimal non-zero central projections in A. After a
standard argument, using that y and ^ agree on jRTo(A) by 1., we can assume
that y(pi) =^(pi), i= 1,2,. . . ,L.

Fix i G {1 ,2 , . . . ,L} and set ^ = y(pi) = ^(pi). (p and ^ restrict to
unital *-homomorphisms A(n^d^A^) —^ qiBqi which we denote by ̂  and ̂ ,
respectively. We may assume that qi -^ 0 and then ^ must be a full projection,
so that QiBqi C B is a KK-equivalence and [^] = [ ,̂] in KK{Ai,qiBqi). In
particular, (/^ = '0^ on ^i(A,). Note that -B, = g,Bg, can be identified with
the building block, A(m',e',M), of type 2, where m' = Tr(^(^)),^ e T, and
e' = m'e/m, cf. Lemma 1.8. We conclude from Lemma 2.2 that ̂  and ̂  have
the same small remainders. Thus conditions 1. and 7. of Lemma 3.4 are met.

Every trace state of qiBqi is of the form x ^ cc;(^)-la;(;r) for some trace
state a; of B. Since a;(^)~1 > 1, cj e r(B), 2. and 3. imply that

(15) ^(^) > J^=l ,2 , . . . , f c ,

(16) ^(ff) > 3^ g e H,.
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But 3. implies that o;(^) > 3^, u G T(B), so 4. yields that

(17) Vi{9)-^{9)\\ < j, gen,.
There is an element u E w(A) such that ^{z (g) 1) = ^(-u)^ and ^,(^ (g) 1) =
^H<7z. 5. implies that there is a selfadjoint element b C B with [|6[[ < ^ and
a c G I?E7(B) such that

y(u) = ce^^u).
Thus, if we take determinants in Mm, we have that

Deiy(u)(t) = e^^W)) Det^(n)^), ^ e T.
Hence

(18) Det^(^ 0 1)(^) = e^^W)) Det^(^ 0 1)(^), t e T,

where the determinants are now calculated in Mm'. Note that

I Tr{b(t))\ < m^ = m'̂ 2m = m1^1- = m^
m' 3^ 2

for all t € T, so that we have condition 5. of Lemma 3.4 satisfied. Finally,
e' > mult(^), so that the present assumption 6. gives condition 6. of Lemma
3.4. We can now apply Lemma 3.4 to obtain a unitary w, G B, such that

||Adw,o(^(a) -^(a)|| < (—— + .—)7r, a e cg(A{m,di,Ni)).
OAi^ OAii

Then w = Z^i Wi does the job. Q
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CHAPTER 4

INJECTIVE CONNECTING MAPS

The purpose of this chapter is to establish the following

THEOREM 4.1. — Let A be a unital inductive limit of a sequence of finite
direct sums of building blocks of type 2. Assume that A is infinite dimensional
and simple. There is then a sequence A\ -^4 A^ -^4 As -^ • • • such that
each An is a finite direct sum of building blocks of type 2, each (pn is unital and
injective and A ̂  lim(A^, (pn)' Q

We shall need a set of generators for a building block of type 4 which we can
consider to be canonical. So let A = A(n, d, N) be a building block of type 4
with exceptional points at x\^ x^..., XN E [0,1]. Set

SA = l/2min{|^ - xj\: i ̂  j} ,

(and 8 A = 1 when N = 1), and

gi{t)=maxio,l-^-\t-Xi\Y

Let as before {pij} and {e^-} be the standard matrix units in M^ and Mny
respectively. Define QA '' [0,1] —)- C by

9A(t) ̂ e^dist^^x^x^'" ,^}).

The set Uj^ {gk Spij} U {gA 8) e^-} will be called the canonical set of gener-
ators for A and denoted cg(A). Observe that

\\f(t)-f(s)\\<-^\t-s\^ / ec f f (A) , ^€[0,1].

For the proof of Theorem 4.1 we choose, for each m G N, non-zero continuous
functions ̂  : [0,1] -^ [0,1] with support in l8^1^, j = 1 , 2 , . . . , m.
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LEMMA 4.2. — Let A and B be direct sums of building blocks of type 2 or 4,
A = ®^i ̂  ® ®^n2+i ̂  where A! is of type 2 when i < n^ and of type 4
when n2 < i < n^. Assume that (p: A -^ B is a unital ^-homomorphism such
that

^k(x?)^0, .7=1,2,. . . ,^,

where 2/k < 8 A,, when n^ < i < n^, and

^k(^)^0, j= l ,2 , . . . ,A; ,

where 47r/fe < 8 A,, when 1 < i < n^.
It follows that there is an injective unital ^-homomorphism V?: A —^ B such

that

l^|A.^)-^k(^||<-87- x^cg(A,)
^Ai1^

for alii = l,2,...,n4.

Proof. — It suffices to prove this when A is a building block of type 2 or 4.
We give the proof only in the case when A is of type 4. When A is of type 2,
the proof is the same, except for notation. Write

yyi2 m4
B=Q)B,@ (]) B,,

i=l i=m2+l
where BI is of type 2 when i < m^ and of type 4 when m^ < i < m^. Then y?
decomposes as a direct sum, (^ = ̂ ^ y?,, where each ^: A -^ ̂  is a unital
*-homomorphism.

Let a:i^2,...,^jv C [0,1] and 2/l,yi, . . . ,y^ € [0,1] be the exceptional
points of A and B,, respectively. We may assume that ^ is of standard form
and minimal multiplicity, i.e. is given by continuous functions

^•: [0,1] -^[0,1], j= l ,2 , . . . ,L , ,
and remainders

r}€{0 , l ,2 , . . . ,n /d- l} , j = l , 2 , . . . , 7 V ,
such that

w(/)W=^(^)diag(/o^(^,. . .Jo^(t),A^ (/). . . , A^(/))^)*,
^ e [O? 1]^ / ^ A, for some unitary ^-. The assumption on y? implies that

7714 I/i

UUw1])
i=lj=l
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is 3/fc-dense in [0,1]. Set /^.([O,1]) = [a}, ^•] and perturb ̂  to ̂  such that ^
and ^ agree on {yl ,yi , . . . ,y^L

|/4W-^)1<^ ^€[0,1] ,
and

^([0,l])=[a;-^&J+|]n[0,l].

Then

W)(<) = Ui(t) diag(/ o ^(<),, . . . J o ̂  (<), A? (/),..., A^ (/))^(*)*

defines a unital *-homomorphism ̂ : A —>• 5, such that

||̂ Cr) -w(x)\\ < —— ^ 8- ;rec<7(A).
<M<K <M.̂

Seti/>=(D^^. Since
m4 L,

UU^^1])-^1]-
t=lj==l

^ is injective. D

LEMMA 4.3. — Let A be a unital inductive limit of a sequence of finite direct
sums of building blocks of type 2. Then there is a sequence B\ -^4 B^ -^2>
-83 —^ • • • such that

— each Bn is a finite direct sum of building blocks of type 2, building blocks
of type 4 and matrix algebras,

— each <fn is unital and injective,
— A^lin^B^,^).

Proof. — Assume that A is the inductive limit of the sequence Ai —4 As —4
As —> ' • • of finite direct sums of building blocks of type 2 and let p k : A^ —> A
be the canonical *-homomorphism. If C is a quotient of a building block of
type 2, then there is a closed subset F C T and points a-i, x^..., XN € F such
that

C ^ {f € C(F) 0 Mn : f(x,) € Mrf, i = 1,2,.. . , N}
for some n, d C N, d[n. For every £ > 0 there is a subset R C F, such that
jR is either a circle or the disjoint union of closed intervals and points, and
a continuous map a: F —^ R with the properties that a(t) = (, t C R^ and
IQ^) — 51 < 5, 5 E F. Using these facts inductively, in combination with
Lemma 4.2, we obtain a sequence n\ < n^ < n^ < ' ' • in N, a sequence
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Bk of finite direct sums of building blocks of type 2, building blocks of type
4 and matrix algebras, together with unital and injective *-homomorphisms
^k'- B]^ —^ B^+i making the diagram

A^ I ker pn, ——> A^ / ker p^ ——> A^ / ker p^
I -> i s. .

into an approximate intertwining in the sense ofElliott, cf. [El, Theorem 2.2].
Then A c^ lin^B^, ̂ ) and the proof is complete. D

LEMMA 4.4. — Let Abe a unital inductive limit of a sequence of finite direct
sums of building blocks of type 2. Assume that A is simple and infinite dimen-
sional. There is then a unitary u G A with full spectrum, i.e. with Sp{u) = T.

Proof. — By Lemma 4.3 we can realize A as the inductive limit of a sequence
T~> l̂ 7~» ^2 ^P3±!i —> ^2 —> B^ —> " - such that each Bn is a finite direct sum of building
blocks of type 2, building blocks of type 4 and matrix algebras, and each ̂  is
unital and injective. Since a building block of type 2 or 4 contains a unitary
with full spectrum, the conclusion follows from this, unless each Bn is finite
dimensional. But then A is an AF-algebra and it is wellknown fact that a
simple unital and infinite dimensional AF-algebra contains a unitary with full
spectrum, m

LEMMA 4.5. — Lei B be a separable unital C7*-algebra. Then the following
conditions are equivalent.

- B is -^-isomorphic to the inductive limit of a sequence of finite direct
sums of building blocks of type 2 and 4 with injective unital connecting
* -homomorphisms.

- Given a finite subset F C B and an e > 0, there exists a unital (7*-
suhalgebra C C B such that C is a finite direct sum of building blocks of
type 2 and 4 and FCeC.

Proof. — It is trivial that the first condition implies the second. To prove the
reversed implication, we use that building blocks of type 2 and 4 have stable
relations by [L2]. We can then proceed as in the proof of [LI], Theorem 3.8,
except that we use Lemma 4.2 to choose the 7^'s injective. D

LEMMA 4.6. — Let A be a unital inductive limit of a sequence of finite direct
sums of building blocks of type 2. Assume that A is simple and infinite dimen-
sional. Then there is a sequence Bi ^4 B^ ̂  B^ ̂  ... such that each B,
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is a finite direct sum of building blocks of type 2 and 4, each (pi is unital and
injective and A ̂  lim(J3 ,̂ (pn)-

Proof. — By combining Lemma 4.3 and Lemma 4.5 we see that it suffices
to prove that every unital C7*-subalgebra B of A which is a finite direct sum
of building blocks of type 2, building blocks of type 4 and matrix algebras,
is contained in a unital (7*-subalgebra B\ of A which is a finite direct sum of
building blocks of type 2 and 4. Since the cutdown pAp by a central projection
p e B is also a simple unital infinite dimensional inductive limit of finite direct
sums of building blocks of type 2, it suffices to consider the case where B is a full
matrix algebra. But then A ^ B(g)(AnB'), where AnB' is also a simple unital
infinite dimensional inductive limit of finite direct sums of building blocks of
type 2. By Lemma 4.4, A D B' contains a unitary u with full spectrum. Set
Bi=C*(B,n). D

LEMMA 4.7. — Let A = A(n, d, N) be a building block of type 4 and let k G N
such that 2/k < 6 A' When y: A —^ B = A(m,e,M) is a unital and injective
^-homomorphism into a building block of type 2 or 4 such that

. ^ 2(N+l)n . , .
VW) > -———— .7=1,2 , . . . .A ; ,

0

then there are non-zero building blocks, BI = A(m^e^M),% = 1,2, of the
same type as B, such that B\ ® B^ C B (as a unital subalgebra) and unital
^-homomorphisms ̂ i: A -^ Bi, ̂ 2: A -> B^ and ̂ : B^@B^-> B, such that
î and ^3 are injective and

9
\\y(x) -^3(^l(^)^2(^))|| < -,-y, x € cg(A).

OAK
Proof. — We can assume that y? is on standard form and of minimal multi-
plicity with characteristic functions / /f , . . . , ̂ . Let x\, x^,..., XN G [0,1] and
^/i, ? / 2 , . . . , VM ^ [0,1] be the exceptional points of A and B, respectively. Set
^j = # {i '- ^(Vr) = Xj} and LQ = maxy. ̂  Nrj. The same estimates as in
the proof of Lemma 3.4 give that

E^°^>o
i=l

for all j. We can therefore perform eigenvalue crossovers as in that proof and
in this way perturb y to (// such that

V{x}-^{x}\\<—— xecg{A),
OAK
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and the characteristic functions of y1 are partitioned into the following two
sets:

{p,i: i == 1 , 2 , . . . , L - Lo} and {^ : i = 1 , 2 , . . . , Lo}

in such a way that the second set satisfies conditions (20), (21) from Chapter
1 plus condition (22) when B is of type 2, while the first set satisfies the same
three conditions, but with r^ = 0 for all j. Set

Bi =A(mi,ei,M), B^ = A(m^e^M)

with

m\ = (L — Lo)n, e\ = emi/m, 7712 = m — mi, 62 = em^/m

and note that I?i © i?2 C B as a unital (7*-subalgebra. Let A: A —^ B be the
standard homomorphism whose characteristic functions are

{fii: i = l,2,...,L-Lo}

and whose remainders are 0. Let ^: A —> B^ be the standard homomor-
phism with remainders rf,r^,. . . ,rj^ and characteristic functions vi : i =
1,2,... , £/o- By Corollary 1.5, y?' is approximate inner equivalent to the map
f ̂  (A(/),'02(/)) C B. We have that

A(^) > 2n > 0
c

for all j, so we can apply Lemma 4.2 to get a unital injective *-homomorphism
^i: A —)- BI such that

||A(^-^)|| < —— xecg(A).OAK
If we let ^ be the inclusion B\ @B^ C JS, there is an inner automorphism AdiA
of J5 such that ^i, ̂ 2 ^d ^3 = A.du o ̂  have the desired properties. D

Let A be a building block of type 4,

A = {/ e C[0,1] 0 Mn : f(xi) G Mrf, i = 1,2,..., N} .

Define /^: T-^ [0,1] by

^e2^) = 2f, f € [0,1/2], /^(e2^) = 2 - 2t, f C [1/2,1].

Then /^({a-i, x^..., a^}) consists of 27V points, {yi, ^25 • • • ? y2Ar}? with TV
points on the upper semi-circle and another N points on the lower semi-circle.
Set

A^ = {/ e C(T)(SMn : f(yi) € Md,z = 1,2,... ,2N}
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Define ^i: [0,1] ̂  T and </2: [0,1] -> T by

^)=e^

and

^)=e-^

respectively. We can then define AA: A —)- A1 and ^-: A1' -4- A, j = 1,2, by
AA(/) = / o AS and ^'(^) = ff ° ^"? respectively. Then %j o AA = id^^ = 1,2, AA
is injective and %i and %2 ^^ jointly injective in the sense that

^ i ( f f ) = 0 , Z 2 ( f f ) = 0 =^ g=Q.

Proof of Theorem 4 - 1 ' — By Lemma 4.6 we can assume that A is the inductive
limit of a sequence Ai —> A^ —^ A3 —^ ... of finite direct sums of building
blocks of type 2 and 4 with unital and injective connecting maps. Consider
m G N and let H be any finite subset of non-zero positive elements of Am-
Since A is simple and the connecting maps injective, there is an mo > m and
a K > 0 such that

^n,m(h) > ^ h e H,

for all n > rriQ. By using this in combination with Lemma 4.2, we can find a
sequence m\ < m^ < • • • in N and unital *-homomorphism (pn'' Ayy^ —^ Ay^^
such that the partial maps of (pn are ^l injective and

ll^n(^) - ̂ m^mĵ ll < ̂  ^ e cg(A^J,
for any sequence {en} C]0,l[. With an appropriate choice, Theorem 2.2 of
[El] shows that A ^ Um(A^,y^). So we may assume to begin with that all
the partial maps of the connecting *-homomorphisms are injective (and not
only the maps themselves). By using Lemma 4.7 in a similar approximate
intertwining argument, we may next arrange that each An has more than one
direct summand. The partial maps (of the connecting *-homomorphisms) may
then no longer all be injective, but that is then corrected by repeating the first
approximate intertwining argument. So all in all we may assume to begin with
that each An has more than one direct summand and that all the partial maps
of the connecting *-homomorphisms, the ^n's, are injective.

The next, and final step, is to substitute the direct summands of type 4 with
others of type 2 as follows. Write

rrin

^n = <P ̂
.7=1
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where X?, X^..., X^ are building blocks of type 4 and X^ +1, . . . , X^ are
building blocks of type 2. Set

On mn

Dn=Q)Xf © Xf
j=l i=an+l

and define \n'. An —> Dn by
AnO^i, a-2, . • . , ̂ , ̂ an+l^ • • • ^ ̂ mj

= {\xf ( r r i ) , . . . , Ajc^ (^o^), ̂ an+i ? • • • , ^mn ) •
Since all the partial maps defined by z/^n are injective and A^+i contains at
least two direct summands, we can write ^n = ̂  © '0^ where ^^ and ̂  are
both injective. Then

Qy(a;i,a;2,...^mJ = (^( l z ; l )? • • •? % J( a ; an)^an+l?• • •^mn)5 J = I? 2,

define unital *-homomorphisms Oj: Dn —> An such that a\{x} = a^(x) = 0 ==^
x = 0 and oy o \n = idc^ ? J = I? 2. Define TTn'. Dn —^ An+\ by

7Tn(^) = ^(^l(^)) © ̂ (^2(^)).

Then ^n 0 An = ^n' Therefore the diagram

AzOTTi A307T2 A407T3

is something so unusual as a (truly) commuting diagram. It follows that A is
the inductive limit of the lower sequence. Since each An+i o 71"̂  is injective, the
proof is complete. D

MfiMOIRES DE LA SMF 71



CHAPTER 5

APPROXIMATE DIVISIBILITY

The purpose with this chapter is to prove the following result which is applied
in the proof of our main result. It plays exactly the same role here as in [E3]
and [NT].

THEOREM 5.1. — Let A he a unital and infinite dimensional inductive limit
of a sequence of finite direct sums of building blocks of type 2. Assume that A
is simple. Then A is approximately divisible. D

A unital *-homomorphism (p: A(n^d^N) —> A(m,e,M), between building
blocks of type 2, is called extendible when all remainders rf^i = 1,2,. . . , N^
are 0, modulo n/d, and

# {i : ̂ i(yk) = A} € Nm/e, A € T, k = 1 ,2 , . . . , M,

for some (and hence any) set of characteristic functions ^1,^25 • • • ?^L (here
yi, y2 , . . . , VM are the exceptional points of A(m, e, M)). By Theorem 1.4, (p is
extendible if and only if y? is approximately inner equivalent to the restriction
of a unital *-homomorphism (7(T) 0 Mn -> A(m, e, M).

LEMMA 5.2. — Let A = A(n,d,^V) be a building block of type 2, k ^ l E N 5nc/^
that I > 12, 247r/(^Afc) < 1 and let H C (7(T, [0,1]) C A be the finite subset of
Lemma 3.4 corresponding to k and I . Assume that

y: A=A(n,d,N) -^B=A(m,e,M)

is a unital ^-homomorphism into the building block B of type 2, such that

(A) ^ )>3/^ j=l ,2 , . . . , fc ,
(B) y(g) > 4^ g e H ,
,. 4Xn 16Nn
(C) —— < K, ——— < K,

m e
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for some K < 1/(2Z). Let gi: [0,1] -^ T, i = 1 , 2 , . . . , X, be any set of continu-
ous functions such that

(ffi(O), 92(0),... ^x(O)) = (^i(l)^2(l),... , ffx(l))

05 unordered X-tuples and #{% : (^(^/r) = Q € Nm/e /or a/^ ^ € T and a^/
r = 1,2,. . . , M, where yi, y 2 ? • • • 5 2/M ^ [O? 1] flre the exceptional points of B.

It follows that there are unital ^-homomorphisms

y?i: A(n, d, N) —> A(mi, ei, M),

^2 ^ A(n, ri, TV) —)- A(m2,62, M),

wAere mi = Xn, e\ = Xen/m, m^ = m — m\, e^ = e — ei, 5?/c^ ^Aa^

— y?i ?5 extendible with characteristic functions gi^g^-)- - ' ^ 9 x ,
— (̂  (^2 ^^^ ̂ i © ^2 have the same small remainders,
— ||y — <^r©^2|| ^ 2(X + l)n/m, and
— ^/lere %5 a unitary u E A(m, e, M) 5^c/i that

on 1 o
|| Adu o y(x) - (y?i © ^2){x}\\ < (^ + ̂ )7r, rr C c^(A).

Proo/. — We may assume that y is on standard form and of minimal mul-
tiplicity. Let /^i, / ^2 , . . . , P^L be characteristic functions and ri, r2 , . . . , r^ the
remainders for y?. Let a;i, x^..., rc^v € T be the exceptional points of A. Take
A G T such that dist(A, [x^x^,..., x^}) > ̂ A/2. Since

^{.:MO-A|^} ̂ «

for some jo? it follows from (A) and (C) that

;?.)(')
#^:|/^)-A|<^ > 2X

for all t G [0,1]. We can then perform eigenvalue crossovers to obtain a
perturbation y/ of y? with characteristic functions ki^i = 1,2,...,2X, and
/^, i = 2X + 1,..., L, such that

fe,(0)=^(l), z = l , 2 , . . . , 2 X ,

# { z : ^ ( y , ) = Q e N m / e , t e T,

for all r, and

|^(^)-A| < l^^, z= l , 2 , . . . , 2X .

MfiMOIRES DE LA SMF 71



CHAPTER 5. APPROXIMATE DIVISIBILITY 61

By Lemma 3.3, y? and y/ have the same small remainders,

Det y ' ( z 0 l)(f) = Det y(z 0 1)(^), ^ e T,

l ly—^'l l < 2n/m

and

||^)-^)|| < ^ x e c g ( A ) .OAK
Set

m' = 2Xn, e' = 2Xne/m, m" = m— m1 and e" = e— e1.
It follows from Theorem 1.4 that there are unital *-homomorphisms

^i: A -^ A(m', e', M), ^2: A -^ A(m", e", M)

such that V?i is the extendible *-homomorphism with characteristic functions
fei, &2 , . . . 5 k^x-i ^2 is the standard homomorphism with the same small remain-
ders as (p and characteristic functions /^, i = 2X + 1,..., L, and -0i © ^2 is
approximately inner equivalent to y ' . We assert that ^i^ = 0 on -K'i(A). Since
^?i is extendible, '0i^ must vanish on the torsion part of K\(A). So it suffices to
check that ^i^ vanish on the Z-summand. Let ^: C(T) 0 Myi —> A(r?2',e',M)
be a unital *-homomorphism such that -0i is approximately inner equivalent
to ^\A- It suffices to show that

hM^/A ® en + ̂  1 ® e,,)] = [^(^ ® en + ̂  1 0 e,,)] = 0
i>2 i>2

in J^i(A(m',e',M)). As the continuous eigenvalue functions of

^(z 0 en + ̂  1 0 en)
i>2

we can take f e i , . . . , A;2x and 2X(n— 1) copies of the constant function 1. There
is a unitary u € G[0,1] 0 M^i such that

TV(f) = u(t) diag(fei^), ̂ (t),..., &2x(*), 1,1,..., l)^(t)*

and

^(t) = u(t) diag(/^, ̂ , . . . , ̂  1,1,..., l)n(f)*
2X times

define unitaries in A(m /,e /,M) for any /^ G T. (It is important that it is the
same unitary u.) By Theorem 1.4 there is a sequence {Tyj of unitaries in
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62 CHAPTER 5. APPROXIMATE DIVISIBILITY

A(m', e', M) such that

^ T^(,? ® en + ̂  1 ® e«)r^ = W.
i>2

Since

11^-^H < ^^2

and 5'A is homotopic to 1, this proves that [^(z ® en + V " , 1 0 e,,)1 = 0 in
^(A^e^M)). -2

Now we consider the extendible standard homomorphism

^3-- A—>A(m',e',M)

whose characteristic functions are f f i , . . . , gx and f f T , . . . , Jx- We want to apply
Lemma 3.4 with <^ = ^i © ^2 and ^ = ^3 © ̂ 2. So we check the conditions
of that lemma one by one. First note that ^i © ̂ 2, ̂ 2, ̂  and ^3 © ̂  all have
the same small remainders, modulo n/d. Next observe that

||^T©^2-^|| < 2n/m^K < 1

so that

for all j, and

for all g € H. Since

^h^^) > v{^) -} > 2

v i

^T©^2(ff) > v(g) -K > SK

||^r©V'2-^7©^2|| ^ 2xn- < K,
TTt Zi

we have verified conditions 1. - 4. of Lemma 3.4. Since
17 U\ \\ ^ ^ ^ 107T|^(^)-A < —— < <2

A; BA&
for all t,i, we conclude that there is a continuous function

a: T -^ [-37rXn/fe,37rXn/fe]

and a constant /^ e T such that

Det(^i C ̂ 2)(z ® l)(t) = ̂ ia^ Det(^3 © ̂ (z 0 1)(^), ^ € T.
Since

6Xn7r 37r4Xn
.̂̂  — o7~ _ <^ ^?km 2 k m
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we have condition 5. fulfilled. Condition 6. of Lemma 3.4 follows from (C).
Finally, we have checked that V^ = 0 on K\{A). It is clear that also ^3^ = 0
on ^i(A), so we have that (^i © -^2)* = (^3 © ̂ 2)* on K\{A}.

It follows now from Lemma 3.4 that there is a unitary v € B such that

Since

72 13
IWl ©^2)(^* - (^3 O^)^)!! < (^-r + .-,)7r, a: € cg(A).

OAK OA^

Mx)-v\x}\\<^ xecg(A)^
OAk

it follows that there is unitary u € B such that
on 1 o

\\UV(X)U" - (^3 ®^2)(^)|| < (^ + ̂ )7T, ^ C Cg(A).

Clearly,

n - /^^7 n ^ ̂  + 1)71
||^-^3©NI < - m

Finally, it is clear that ^3 © ^2 is approximately inner equivalent to a direct
sum (/?i © y?2 as in the statement of the lemma: Remove the characterisitic
functions gT,. . . , ~gx from ^3 to get y?i and add them to those of ^2 to get (^2-
By Theorem 1.4, -03 © -02 is approximately inner equivalent to yi © (/?2- D

LEMMA 5.3. — Let A\ —4 A2 —^ A3 —4- ... he a sequence of finite direct
sums of building blocks of type 2 with unital connecting ^-homomorphisms. If
A = lim(Ani^n) is infinite dimensional and simple, then

lim mult((^ n) = °°
k—>oo '

for all n € N.

Proof. — -Ko(A) is a simple dimension group, so if the conclusion fails, we
must have Ko{A) = Z. But then we may assume that An = A(myi,e,A^),
n € N, for the same e G N. It follows in this case that A == Me{B) where B is
the limit of building blocks of the form A(myi/e, 1,A^). However, it is easily
seen that such a B must have C as a quotient, and this is not possible when
A is simple and infinite dimensional. D

We can now begin the

Proof of Theorem 5.1. — Let A be the inductive limit of the sequence Ai -^4
A2 ^> A3 -^ ... where each Ai is a finite direct sum of building blocks of
type 2. By Theorem 4.1 we may assume that each (pi is unital and injective.
Let NQ G N and 0 < £ < 1 be given. It suffices to show that for any t € N
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64 CHAPTER 5. APPROXIMATE DIVISIBILITY

there is an s > t and a unital finite-dimensional C'*-subalgebra F C As, F c^
M^ C Mn, © • • • © MnK with min {m, n^..., n^} ̂  JVo, such that

dist((^((a), A, n F') < e, a e c^(A).
Write

Li La
A* = © A^ di, N,), A, = Q) A(mj, cj, Mj).

i=l j=l

Choose k, I e N such that I > 12, 24n/(6Ak) < 1 and
/ 248 39 ,
(-.—r + --—,)7r < e.

SAfk SAfl

Since A is simple and the connecting maps injective, there is for any non-zero
positive element h e A( an integer no € N and a K > 0 such that

^(Vs,t(h)) > K, a? e T(A,),

for all s > no- By choosing A; first and then I subsequently, we can therefore
assume that

(1) ^,t(^("o))) > y, a; 6 r(A,), j = 1,2,..., k, UQ € cuo(At).

Let fi" c C(T, [0,1]) be the finite subset of Lemma 3.4 corresponding to k,l.
We can ensure that

(2) ^s,t(9(.uo))) >5K, we T(A,), g e H, UQ € cuo(A(),

for some K € ]0,1/(2/)[. Note that we can increase s further without spoiling
(1) and (2). Since lim^ooinult̂ ) = oo by Lemma 5.3, we may assume
mult(< ,̂() to be as large as we want. Let p,, i = 1,2,..., Li, be the minimal
non-zero projections of the center of A(. Let TT,: A, -^ A(mj,ej,M,) be the
projection and set

(p = TT, o <^,(|A(n,,d,,jv;): A(n,-, di, Ni) ->• Try o y,,((p,)A(m_,-, e,, M,)̂ - o < ,̂,((p,).

To simplify notation, set A = A(n,,d,,JV,) = A(n,d,N) and

B = T T j O <ps,t(pi)A(mj, ej, Afj-)^- o y5,,((p,) = A(m, e, M).

It will suffice for us to find a unital finite-dimensional C'*-subalgebra F c B =
A(m, e, M) such that F ^ Mn, ©Mn, © • • • ©M^ with min {ni, n^..., n^} ̂
A?o, and

dist(<^(a), BHF') <£, a e cff(A).
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The fact that we may assume mult(y?s^) to be as large as we want, implies that
we can take e as large as we want. How large e should be, will be specified as
we go along. Set

X = m/e[(2N + l)(47Vo + 2)d + No}.

If e is large enough we have that 4:Xn/m < /^, 16Nn/e < K. Set
Xen

m\ = An, ei = ——, 777,2 = m — mi, e^ = e— ei.
m

Let y?i: A —>- A(mi,ei,M) be the standard *-homomorphism whose remain-
ders are all 0 and which have X copies of the constant function 1 as charac-
teristic functions. By Lemma 5.2 there is a unital *-homomorphism (^2'- A —>
A(m2,e2,M) such that

2(X + l)n
| |^-yi©^2|| < m

and
OQ -j 0

|| Mu o ip{x) - (yi © ^2)(^)|| < (.-, + .-,)7r, x e cff(A).
OA^ OA1

Set eo = (27V + l)nd and mo = (27V + l)ndm/e. Note that A(mo,eo,M) C
B as a full corner. By Proposition 2.5 there are unital *-homomorphisms
^+, ̂ ~: A —)- A(mo, eo, M) such that

[̂  ° Ao] = ±hi © <^2|Ao] e ^J^(Ao,B)
when % : A(mo,eo,M) —)- B is the imbedding. Define

2M)+1
^i: A^ ^ A(mo,eo,M)

1=1
by

^i(a) = (^(a),... .^(ft^X"^)^' ' ̂ X~W)
NQ + 1 times -NO times

and ^2: A -)• ©^+1 A(mo, eo, M) by

^(a) = (x+(a),.••,X+(a\,X~(a),.•.,X~W)

NO times TVo + 1 times

Set 7723 = 2(2A^o + l)mo, 63 = 2(27Vo + l)eo and consider ©^+2 A(mo, CQ, M)
as a unital (7*-subalgebra ofA(m3,63, M) such that ^i©^2 ^ A -> A(m3,63, M)
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is a unital *-homomorphism. Then (^/?i © ^2)* = 0 on ATi(A), so we have in
particular that the loop

t ̂  Det(^i © ̂ )(z ® l)(t)

is homotopically trivial. There is therefore a continuous function g: T —> R
such that

Det(^i © ̂ 2)^ 0 1)(^) = 6^\ t G T.

Let ^: A —> A((m/e)JVon,7Vo72,M) be the standard homomorphism whose
remainders are all zero and which has (m/e)7Vo copies of the function

M^^-IWf'2'"))
as characteristic functions. Then ^i © ^2 © ̂  A —^ A(mi,ei,M) is a unital
*-homomorphism such that

Det(-^i © ̂ 2 © ̂ )(^ 8) l)(f) =1, t C T.

Set y?3 = ^i © ̂ 2 © ̂  and note that

||^3^©^2-^1 ©^2|| < —— < T-m 4
Since

-——^ ,, 2(X+l)n
| | ^ -^1©^2| |<-——————

I I V

can be made arbitrarily small by increasing e, we may assume that e is so
large that conditions 2.-4. of Lemma 3.4 are satisfied, with y = y?i © ̂  and
^ = y?3 © y?2. Note that condition 5. is trivially satisfied since

Det^s®^)^®!)^) = Det(y?i©^2)(^8)l)(^ ^ e T,

by construction. As [(^3 ©y?2] = [^i ©^2] m ^^(A,!?), we have conditions 1.
and 7. of Lemma 3.4 satisfied by Lemma 2.2. Finally, condition 6. holds if e
is large enough. It follows that there is a unitary v € B such that

72 13
|| Adv o (^ © ̂ }(x) - ((p3 © V2){x}\\ < (—, + c , ) ^ ^ ^ ^^fl^)-

Set

04 = (27Vo + l)eo? ^4 = (2M) + l)^o? 65 = e - 64, m^=m- m^

and

^5 = ̂ 2 © ̂  © ^2 ^ A -4- A(m5, 65, M).
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Then ̂  © ̂  = '01 © y?5 and [y?5|Ao] = 0 in J^(AO, A(m5,65, M)). Note that
^\ (A)' H A(m4,64, M) contains a copy of M^ © M^o+i as a unital (7*-algebra
and that

1 1 ^ - (p5\\ < \\V - ̂ 7©^2|| + mi

m
1 1 ^ --̂ -̂̂ - 1 1 ^1 + ̂ ^4

< | | ^ -^1©^2 | |+——————-m
2{X + l)n + mi + m4 (3X + 2)n + (2JVo + 1)(2A^ + l)nd

~ m ~ e
Thus, if just e is large enough, we have that

^5(^) > p j = l , 2 , . . . , f c ,

and

(^5(9) > 4/^, g G ff.

We may assume that y?5 is on standard form and of minimal multiplicity.
Since [y^Ao] = 0 m ^^(Ao,A(m5,e5,M)), we know that most of the small
remainders of (^5 vanish, specifically that s^^i^j) = 0, j = 1,2,... ^ N — 1,
for all %, by Lemma 2.2. Let ^1,^25.. . ,/^L be characteristic functions for y?5.
Then we have that

#{r^r{yi)=xj} =0, j = 1,2, . . . ,TV-1,

for all %. Set

Li=#{r: p,r{Vi) = XN} , 2 = 1,2,. . . . M,

and I/o = max^Z/^. Since (/?5 is of minimal multiplicity, LQ < m/e. Note that
m/e\Lo — Li for all i. Since (^5 has minimal multiplicity, we must therefore
have that Li = LQ for all %. By Lemma 5.2 there is a unital *-homomorphism
^'. A—t A(m5,e5,M) such that ̂  and (^5 have the same small remainders
(in particular, also the same remainders),

2((m/e)JVo + Lp + l)n
1 1 ^ 5 - ^ 1 1 <

7715

on 1 o

(3) \\Adso^{x)-^(x)\\ <(^+^-7)^ ^^^(A),

for some unitary s G A(m5,65, M) and such that there is a set of characteristic
functions for ^ containing (at least) (m/e)No + LQ copies of the constant
function XN. Set

m' = r^d + {LQ + Nom/e)n, e' = m'e
m
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Then, by Theorem 1.4, ^5 is approximately inner equivalent to the direct
sum ^3 C y?6, where ^3: A -^ A(m', e', M) is a standard homomorphism with
remainders

^=^=...=r^=0, r^=r^

and whose characteristic functions are Lo+(m/e)No copies ofa;^, and (ps: A-^
A(m6,e6,M), m^ = m^ - m', eg = 65 - e'^ is a unital ^-homomorphism with
all small remainders equal to zero, modulo n / d . Observe that

m' n n Non
m ~ m e e ?

which may be as small as we want. Furthermore, observe that the relative
commutant

^(A/nA^'.e'.M)

contains a copy of MD, where D = (Lon/d + r^)e/m + Non/d > NQ, as a
unital C7*-subalgebra.

Since a standard homomorphism of minimal multiplicity and with all small
remainders equal to zero must be extendible, we can use Lemma 1.7 to ap-
proximate (pQ arbitrarily well with an extendible ^-homomorphism. Hence we
may assume that ^ is extendible, i.e. we may assume that there is a unital
*-homomorphism G(T) (g) Mn -^ A(m6,e6,M) extending it. We denote also
the extension by (pe. Furthermore, since ̂  = 0 and -^ = 0 on ^i(A),
it follows from (3) that ̂  = 0 on K^{C(J) (g) Mn). (We use here that
VA 0 en + ̂ 2 1 0 en € cg(A) and that (SO/^) + 13/(JAO)7r < 2). Since

11^6-^5|| < ——,
7715

we may assume that e is so large that we have

<A,(^) > }
for all j = 1,2,..., k. We factorize

A(m6, eg, M) = A(7"6, e6, M) 8> M»
n 7i

in such a way that

Adwio(^(/(g)e^.) = (^7(/)0e^, / G C(T), z , j = l , 2 , . . . , n ,

for some unitary wi G A(m6,e6,M) and some unital *-homomorphism

(^7: C(T) -^ A(m6/7i,e6/n,M).
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FIGURE 1. Illustration of the case 5=6, m/e = 2, M = 3.

After an arbitrarily small perturbation of (^7, which we can safely ignore, we
may assume that ^{z} has minimal multiplicity in A(m6/n,e6/n,M). There
are then continuous functions FI : [0,1] —)- R, i = 1,2, . . . , 5, such that 1^(0) G
[0,l[foralH,

F^t)<F^t)<'-<Fs{t), ^{yi ,y2, . . . ,2 /ML

e^W ^ e^W, t i {y^... ̂ M} . k + j,

#{F , (y , ) : z= l ,2 , . . . , 5}= 6 6 , r = l , 2 , . . . , M ,
»i'

and orthogonal projections 9i, 92? • • • 5 95 ^ ^[0,1] 0 My^g/^ such that

5

w(/)w=E^(627^%FJ?)^^- ^[°-1]- /^^(T)-j=i
Since y?6* = 0 on J^i(A), we find that

[^y(^) 0 en + ̂  1 ® en] = [ye(z 0 en + ̂  1 (g) e,,)] = 0
i>2 i>2

in J^i(A(m6,e6,M)). Hence [(^7(^)] = 0 in J?i(A(m6/n,e6/n,M)). This fact
is equivalent to the following two additional properties of the F^s:

F,(0)=F,(1), j= l ,2 , . . . , 5 ,

^-^m/e+^yr) = ^-1)771/6+1(^)5

% = 1,2,. . . . m/e, k = 1,2, . . . , (5e)/m, r = 1,2, . . . , M.
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The fact that ipj maps into A(m6/n, e^jn, M\ not just into (7(T) 0 M^g/^
implies that

m
e

W ^9(fc-i)s+,(y,.) eMa,,
1=1

for all fc = 1,2,..., 5e/m, r = 1,2,..., M. Write 6'e/m = XNo+Y where X €
N , y e { 7 V o , J V o + l , . . . , 2 7 V o - l } . Now define^-: [0,1] -). Rj = 1 , 2 , . . . ,5,
by

G(k-l)No^+j = ̂ (A-l)JVo's+i, ^l^,...,^7", A = 1,2,...,^,

and

^ = ^^">+i, j ̂  XN^ + 1.
° e

Since

^(#{r=e2^«)e^}) > ^)«)=^)(<) > J,

and we may assume that e is so large that 2// > No-m/^eme), it follows that

^e^We^} > Nom,

for all j = 1,2,.. . , k and all * e [0,1]. Hence

^2mGj(t) _ 2mF,(t)i <- 8^
• - k '

for all j, <. Thus, if we define y?g: C'(T) 0 Mn -^ A(me, ee, M) by

s
^(f^ei,)=^f(e2mG^)q,(t))0ei„ f e C-(T), i,j = 1,2,... ,n,

j=i
then

||Adwioy)6(a;)-^8(a-)|| < ̂ , a; e cff(A).
"A"

(Note that ^g maps into A(m^e^M) because of (9) and the choice of the
G'/s.) Since ys(A)' n A(m6, ee, M) contains a copy of M^ ® My as a unital
C""-subalgebra, we can now put everything together and conclude that there is
a unitary W2 € B and a unital *-homomorphism /^: A —>• B such that

<VJQ OQ

|| Adw2 o y(x) - ̂ (a:)|| < (^ + ̂ —)7r < e, x <E cg(A),

and such that fz(A)' n B contains M^o © M^g+i © Mo © M^o © My as a unital
C'*-subalgebra. Since D,Y ^ A^, we are done. 0
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CHAPTER 6

THE FINAL PREPARATIONS

In this chapter we collect a series of lemmas which will used in the proof
of our main results. They are centered around the problem of controlling the
determinant function for certain unitaries, via the distance to the commutator
subgroup. We will adopt the notation used in [NT], Section 3. See also [Th4].

LEMMA 6.1. — Let A = A(n,d,-/V) be a building block of type 2 andu € Uo(A)
a unitary such that Deiu(t) =- 1, t € T. It follows that there is a X € T and a
w € DUo(A) such that A71 = 1 and u = Aw.

Proof. — Since u G UQ(A) there are selfadjoints ai , . . . , ON in A such that
^ ^ g27rmi ^2ma2 . . . ̂ maN ^

Since
N

exp(27rmi) exp(27r%a2)... exp(2maN) = exp(27r% Y^ Oj)
j'-i

modulo DUo{A)^ it suffices to show that
N ______

exp(27r% ̂  aj) G AJ9?7o(A)
.7=1

for some A € T with A71 = 1. To this end, set b = S^i^' ^d note ^at
Tr{b(t)) € Z since Det^(t) = 1, t G T. Let z € Z be the constant value of
Tr(&(<)) and set A = e27"^. Then

e27"6 = Ae2"^

where a=b- z / n G A satisfies that Tr(a(t)) = 0 for all t € T. Now the proof
of Lemma 1.4 in [Th3] can be used to show that for every e > 0 there are two
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elements v^v^ e A such that

||a - (?;i^ - v^ + v^ - ̂ 2)|| < e.
Since

g27r^i^-t^i+Z;2^-^t;2) ^ ̂ ,/^

this shows that e27^0 e 7)(7o(A). Q

LEMMA 6.2. — 7.̂  A = A(n,d,N) be a building block of type 2 and p a
non-zero projection in A. For any unitary u e A, there is a unitary v e
pAp + C(l - p) such that u=v modulo DUo(A).

Proof. — Since p automatically is a full projection and the natural map

7ro(U{pAp)) —^K^pAp)

is an isomorphism, there is a unitary w 6 pAp + C(l - p) such that [w] = [v]
in ATi(A). Thus wn* e Uo(A) and hence

Deiwu^t) =e^\ t G T,

for some continuous function a: T -)- R. Take a selfadjoint element a; C
pAp + C(l -p) such that Tr(x(t)) = a{t), t € T. Then e-^wu" e AD[/o(A)
for some A € T by Lemma 6.1. Set v = Ae'^w. 0

LEMMA 6.3. — Let A(n,d,N) be a building block of type 2 and let U,V E
A(n,d,N) be unitaries such that [U] = [V] in K^(A(n,d,N)) and DeiU(t)
and Del V(t) are both constant in t C T. It follows that

dist^y^Z^A))^7'.
d

Proof. — There is a number A e T such that DeiXUV*(t) = 1, t G T.
By Lemma 6.1 there is then another number IJL e T such that p,UV* e
DUo(A). But if r is any cTth root of unity, we have that rl e DUo{A).
Hence dist(/^l,£)[yo(A)) < ^. Q

Let A be a unital (7*-algebra. We use the notation

p: Ko{A)-^AST(A)

for the canonical map. Recall that U(A)/DU(A) comes equipped with the
quotient metric,

DA{ql(u),ql{v)) = inf ^\\uv" - c|| : c e DU{A)\,
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where q'\ U(A) -> U{A)/DU(A) is the quotient map. AffT(A)/p(Ko(A)), on
the other hand, is a metric space with the metric

, ., . _ f 2 when d'(/,ff) > 1/2
W.9) - \^(f,g) _ i| ^en d\f,g} < 1/2,

where d! is the quotient metric of AffT(A)/p(^o(A)), cf. [NT].
The following two lemmas were stated in [NT] for unital inductive limits of

finite direct sums of circle algebras. However, the proofs only used that the
canonical maps 71-1 (£/(A)) -> Ko(A) and 7To(U(A)) —^ ^i(A) are isomorphisms.

LEMMA 6.4. — Let A be a unital C^-algebra such that the canonical maps
7Ti(U{A)) -> Ko(A) and TTQ(U(A)) —> ^i(A) are isomorphisms.

— There is a split exact sequence

0 ̂  AST{A)/p(Ko{A)) ̂  U{A)/mj^A) ̂  K^A) -^ 0.

- AA is an isometry when AST(A)/p(Ko(A)) is given the metric (IA- D

LEMMA 6.5. — Let A he a unital C*-algebra such that the canonical maps
Ti-i ((7(A)) -> Ko(A) and 7Vo(U{A)) —^ K-j(A) are isomorphisms. Assume that
V^i: ^i(A) ̂  K^(B) and ^o: AffT(A)/p(^o(A)) ^ AST(B)/p(Ko(B)) are
group homomorphisms such that ^o <ls a contraction with respect to (JA and dp -

There is then a group homomorphism ^: U(A)/DU(A) —^ U{B)/DU{B),
which is contractive with respect to DA and Dp, such that

AffT(A)/p(^o(A)) -^ U(A)/~DU(A) ^^ K^A)

^[ ^[ ^[
AST(B)/p{Ko{B)) -^ U(B)/DU(B) -^ K^B)

commutes. 0

LEMMA 6.6. — Let A = ®f^iA(n,,d,,A^) and B = ©^ A(m^e^M^) be
finite direct sums of building blocks of type 2. Let F C AffT(A) be a finite
subset and 8 > 0. Let M: AffT(A) -^ AffT(B) be a Markov operator and
h: Ko{A) —^ KQ (B) a group homomorphism such that

Ko{A) —^ AST {A)

h\ M\
•i- ^

Ko{B) —^ AffT(B)
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commutes. There is then an integer T (E N so large that whenever

H = M^ C M^ © • • • © M^

is a finite dimensional C*-algebra with mhij ̂  > T, then there is a unital
^-homomorphism ̂ \ A —^ B (g) H such that ̂  = d^ o h on Ko(A)y and

| |^(/)-doM(/)||<J, /OF ,

where d: B —> B 0 H is the ^-homomorphism d{a) = a® In-

Proof. — Set Ao = ©|Li C(J) (g) Mrf, and BQ = 0)^ C(T) (g) Me,. We will
use the identifications T(Ao) = T(A), ATo(Ao) = ^o(A), and T(Bo) = T{B),
Ko{Bo) = Ko{B). By Corollary 4.3 of [NT] there is a matrix algebra MK
and a unital *-homomorphism '0o: AQ —^ BQ ® MK such that ^o* = ^o* ° ̂  on

2<To(Ao) and

|[^o(/)-dooM(/)||<^ /OF,

where do(&) = &0l-Mx? b ̂  B. Let L be a common multiple of ni/di, n^jd^...,
f ^ s / d s - We can then consider A as a unital (7*-subalgebra of Ao 0 M^. Set

^i = '0o ® i^ML \A '' A —^ A 0 M^- 0 ML
and

di(&) = b0 ^MK^ML'
Then '0i^ = di^ o h on KQ^A) and

||^i(/)-dloM(/)|| ^ ^, feF.

Choose T G N so large that
.KL 8

sup
fCF T 2

Consider a finite dimensional C*-algebra H = M^ © M^ © • • • © Mi^ with
minj Zj > T. To define -0: A —> B 0 jFf we shall use a unital *-homomorphism
p: A —^ B which satisfies that p^ = h on J^o (^4) • The existence of p follows from
the fact that evaluation at exceptional points, one for each direct summand,
gives rise to two split surjections

s v
A -^ ©M

^
an(i

 B -^ ©M

^

i=l i=l

which induce isomorphisms on KQ. Since h defines a positive order unit pre-
serving group homomorphism ATo(®^Li M^) —> ^o(©^i Me,), we know that
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there is a unital *-homomorphism (9f=i M^ -^ (D^i Me, inducing h. By
composition with the first split surjection and a splitting map for the second
surjection, we get p. For each j, we write lj = XjKL + Rj, where Xj G N and
Rj G {0 ,1 ,2 , . . . , KL - 1}, and define \j: A->B® M^ by

\j{a} = diag(^i(a),... ,^1(0)^(0),... ,p(a)J.
Xj-times Rj-times

Then '0(a) = (Ai(a), As (a) , . . . , \p(a)) defines a unital *-homomorphism with
the desired properties. D

LEMMA 6.7. — Let A = A{n,d,N) be a building block of type 2. There is
then a set u^ ^i, ^25 • • • ? VN-I of unitaries in A such that

1. [u] generates the direct summand Z in K-^(A) = Z © (Z^/^)^"1.

2. [^], ̂ l,...,^—!, generate the direct summand (^n/d) -1 m K\{A) =

Z®(Z./,)^1.
3. Det-u(t) =t, t ^ T .
4. ^/d e DU{A).

Proof. — The existence of the v^s follows from the fact that the canonical
surjection U{A)/DU(A) ̂  K]_(A) splits, cf. Lemma 6.4. The element

V == VA ̂  en + ̂  1 0 e,, = diag(^/A, 1,1,. • . , 1),
%>2

which we took as an element of cg(A)y does generate the direct summand Z
of ^Ci(A), but does not have the right determinant function. However, the
loop t i-)- Dety(^) is homotopic to the identity loop, so there is a continuous
function a: T -^ R such that e^W Deiy(t) = t, t € T. Take

u(t} = diag^A^)^^, e^W/^ e^W/71,.... e^/71),

^ e T . D
A set u^ ^ i , . . . , v^v-i of unitaries in A satisfying conditions 1.-4. of Lemma

6.7 will be called a set of unitary K\-generators in A.

LEMMA 6.8. — Let A = A(n,d,7V) and B = A(m,e,M) be building blocks
of type 2, u a unitary in A such that Detu{t) = t, t € T, a e KK{A^B) an
element of KK{A, B) such that a^: KQ^A) —> Ko{B) is positive and order unit
preserving, and v G B a unitary such that [v] = a^{[u}) in K^{B}.

Let (p: A -> B be a unital ^-homomorphism satisfying the following condi-
tions:
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1. y^)>3/l,j=l,2,...,k,
2. ^)>4/<,^e^,

where k,l € N are natural numbers such that I > 12 and 247r/(JAfc) < 1,
H C C'(T, [0,1]) is the finite set of Lemma 3.4 corresponding to k,l, and

((8N + 4W + 4)n 1 16Nn
-————'-————'— < K < - ——— < K.e 21 e

It follows that there is a unital *-homomorphism ̂ : A —>• B such that [ip] =
a in KK{A,B), Detip(u)(t) = Detv(t), t € T, and

„, -„ . (6^+3)^+571
1 1 ^ - ^ 1 1 < ————-—————•

c/

Proof. — We use Lemma 5.2 to perturb (p to (// such that ( p ' is a standard
homomorphism with ((2N + l)nd + l)m/e copies of the constant function 1
among its characteristic functions and

^ _ ̂  (4n^2)n^+_4n_
o

Then (/;' is approximately inner equivalent to '0i © ^2 ® '03 where ^i: A ->
M^ C A(mn/e, n, M) is given by

^i(/)=diag(/(l), .,/(1)J,
?n/e times

'02 ^ A -> M(27v+i)^ C A((2A^ + l)mnd/e, (2N + l)nd, M), is given by

^2(/)-diag(/(l), .J(1)J,

^+^mT^d times

and -03: A -> A^i^e^M), ei = e — (27V + l )nd—n, m\ = mei/e, is a unital
*-homomorphism on standard form, whose specific data are irrelevant for the
present purposes. We may suppose that ^ = ̂  ® ^2 ® '03- By Proposition
2.5 there is a unital *-homomorphism

^A^Af^^^+l^M)
V e )

such that

[^i © ̂ 2 ® N = ^
in ^A"(A, B). Then [(^i © ̂  © ̂ 3)(^)] = M in ^Ci(B) and there is therefore
a homotopically trivial loop /?: T -4- T such that

f3(t} Det(^i © ̂ 2 © ̂ 3)(^) = Detv(t), t G T.
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There is then also a homotopically trivial loop 7: T —)- T such that

7(^ = /?(^ f c T .

Define z/}[: A —^ A(mn/e, n, M) by

^i(/) = diag(/(7(^...J(7(^
m/e times

and note that ̂  is homotopic to ^?i. Thus ^ = ̂  © ̂  © -03 is a unital *-
homomorphism which represents a in JOf(A, B). Since Det n(^) is the identity
map on T it follows that

Det^(u)(t) = 7(^/^01(^1 ©^2 @^3)(u)(t) = Det^(t), t C T.

Since ^_^(^±2)»^»,
e e

the proof is complete. D

We need an appropriate version of Lemma 6.8 which handles finite direct
sums of building blocks of type 2. To ease the formulation of this lemma,
which the reader will find messy enough as it is, we introduce some additional
notation. When A = ©Hi A(n^c?^A^) is a finite direct sum of building
blocks of type 2 and u G A(n^d^A^) is a unitary, we write u for the unitary
(1,1,..., 1, u^ 1,.. . , 1) € A, where u (of course) occurs as the z'th entry.

LEMMA 6.9. — Let A = @R^A(ni,di,Ni) and B = ©f=i A(m,,e,,M,) be
finite direct sums of building blocks of type 2y u1^ v\^v^ ... 5 v^_^ a set of unitary
K^-generators for A(ni^di^Ni), i = 1,2,...,!?, a an element of KK(A^B),
and S\ T[, T^..., T^_^ unitaries in B such that T^31^ C DU(B), a*([^]) =

[S^ ^([^.]) = \TJ] in K^B) for all i j .
Let (p\ A —^ B be a unital ^-homomorphism such that

- ̂  = <x, on Ko(A),
- 0{^{uo))) > f, j = 1 , 2 , . . . , k^uo G cuo(A), 9 e T(B),
- 0^(g(uo))) > ̂ ,g € G, UQ G cuo(A), 0 e T(B),

where k^l G N are natural numbers such that I > 12, and 24:7r/{8Ak) < 1,
G C (7(T U {0}, [0,1]) is the finite set of Proposition 3.5 corresponding to the
present choice of k^ I, and

(8Nj + 4)n2^- + 4^- l 167V,n,
max ——————————— < ^ < —, max ——-L—L < K.

j mult((/?) 21 j mult(^)
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It follows that there is a unital ^-homomorphism ̂ : A -> B such that

[^}=a inKK(A,B),

. (6Nj + 3)n2^- + 5^-
||̂  - ̂ || < max ——-————J———J,

3 mult((^)
and

^B(9/(^(^))^/(^)) < max^-, DB(q\^^q'W)) < max^,
r 67. J J r Or

forallj==l,2^..,Ni-l,i=l,2,..^R.

Proof. — It is straightforward to reduce the proof to the case where there
is only one direct summand in B. We may therefore assume that B =
A(m,e,M). Let pi,p2? • . • ,PR be the minimal non-zero central projections
in A. Let

(^: A(m, di, Ni) -^ y{pz)By(pi) = A(m,, e,, M), z == 1 , 2 , . . . , R,

be the partial *-homomorphisms of (p. Every trace state of y{pi)B(p(pi) is of
the form ^(^(p,))-1^-) for some a; € T(B). By the choice of G, cf. the proof
of Proposition 3.5, this means that second and third condition on (p turn into

^(^) > ^ J = l , 2 , . . . , f c ,

and

^i{g) > 4^, g e H ,

respectively, where H C C(T, [0,1]) is the finite subset of Lemma 3.4, cor-
responding to the present choice of k,l. By Lemma 6.2 there is a unitary
SQ € A(m,, e,, Mi) such that S^ + (1 - (/;(?,)) = AS" modulo DU(B) for some
A € T. By Lemma 6.8 there is a unital *-homomorphism ̂ : A -4- A(m^, e^, M)
such that

[^°N =^*(Q /)

in KK(A,B), where ^: (p(pi)By(pi) -^ B is the inclusion,

Det ̂ (^')(() = Det ̂ ((), < G T,

where the determinant is calculated in My^., and

II., _.,„ ^ (67V,+3)n^+5n, (6JV, + 3)n^ + 5n,
11^ ^11 ^ ———————————— S —————, . .———.e mult((^)
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Define -0: A —^ B by
J?

V?(<2i , . . . , a^) = ^^0-^(0,).
i=i

Then
(6A^- + 3)n]dj + bn,

\\V-^\\ < max-—3-——-3————3-,' " - j mult(^)

{^\=amKK{A,B}

and

t ̂  Dei -0(^)(t) Det S'̂ )"1

is constant for each i = 1,2,. . . , R. When W is a unitary in B such that

w"^ e DU(B),
then ^ i—>- Del W(t) must be constant. It follows from this that also

Det^(^.)(t)Detr|m-1
j •'

is constant in ^ for all j = 1 , 2 , . . . , Ni — 1, i = 1 , 2 , . . . , R. We can therefore
conclude from Lemma 6.3 that

DB^WU^^'^)) ^ ̂  DB(qfWv^)^f(Tj)) < ̂

for all j = 1,2, . . . , Ni - 1, i = 1,2, . . . , R. D

LEMMA 6.10. — Let AI ^4 As -^> As -^ • • • te a sequence of finite direct
sums of building blocks of type 2 with unital connecting ^-homomorphisms and
set A = lim(A^,(^). If A is approximately divisible, lim^_^oomulto((/^n) = oo
for all n G N.

Proof. — As in the proof of [NT], Lemma 4.4, it follows from the approximate
divisibility that Ko(A) has large denominators in the sense of Nistor [N]. By
applying [Thi], Lemma 4.4, to the AF-algebra whose Ko-gvoup is the limit of

^o(Ai) ̂  K,(A,) ̂  ^(As) ̂  • • • ,

we conclude that lim^-^comulto(^,n) = oo. D
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CHAPTER 7

THE MAIN RESULTS

In this chapter A and B will be unital inductive limits of sequences of finite
direct sums of building blocks of type 2. To formulate the results, observe that
a unital ^-homomorphism '0: A —)- B induces a contractive group homomor-
phism ̂ : U(A)/DU{A) -^ U{B)/DU{B) in the obvious way.

THEOREM A. — Assume that A is simple and that B is approximately divis-
ible. Let a be an element of KK(A^B) such that a^[l] = [1] in KQ{B) and
(pT'" T(B) —^ T(A) an affine continuous map such that

rpWa^x)) = rA(^r(^))(^), x C ^o(A), ^ € T(B).

Let $: U{A)/DU(A) -^ U{B)/DU{B) be a homomorphism such that

AffT{A)/p(Ko(A)) ——^ U{A)IDU{A) ——^ ^i(A)

f\ ^ Q!*

AST(B)/P(KQ(B)) ̂  U(B)/DU(B) -^ K^(B)

commutes, where y: AST(A)/p(Ko(A)) -^ AST(B)/p{Ko(B)) is the map
induced by y?r*: AffT(A) -^ AffT(B).

It follows that there is a unital ^-homomorphism (p: A —> B such that
^\T(B) = VT, ^ = ̂  and [y o j j i \ = /^*(a) in KK(D^B), whenever D is
a finite direct sum of building blocks of type 2 and IJL: D —^ A is a unital
* -homomorphism.

This result has the following corollaries.

COROLLARY Al. — Assume that A is simple and that B is approximately
divisible. Let a be an element of KK{A^B) such that a^[l] = [1] in Ko{B)
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and (pT: T{B) —> T(A) an affine continuous map such that

rB^){a^x)) = rA(yrM)(a;), x G ̂ o(A), uj C T(B).

It follows that there is a unital ^-homomorphism y. A —> B such that </?* =
y?r on T(5) and [(p o ̂ ] = /^(ci) ^ KK(D^B), whenever D is a finite direct
sum of building blocks of type 2 and fi: D —^ A is a unital ^-homomorphism.

COROLLARY A2. — Assume that A is simple and that B is approximately
divisible. Let (pQ: Ko{A) —> Ko(B), (p\: ^i(A-) ~^ K\{B} be group homomor-
phisms such that yo([l]) = [1] w KQ(B) and (pT'' T(B) —^ T(A) a continuous
affine map such that

rB{vo(x)) = rA(^r(^))(^), x C Ko(A), cj € T(B).

It follows that there is a unital ^-homomorphism (p: A —> B such that y^ = y?o
on KQ (A), (f^ = (p\ on K\{A} and y* = yr o^ T{B).

Examples in [NT] show that Theorem A is a stronger result than Corol-
lary Al, in the sense that *-homomorphisms (or even automorphisms) which
agree on the Elliott invariant and satisfy the ArAr-condition, may not agree on
U{A)/DU(A).

THEOREM B. — Assume that A is simple. Let (p^: A —> B be unital *-
homomorphisms such that y?* = '0* on T{B\ ^ = ̂  on U(A)/DU{A) and
[(p o p] = [̂  o fji\ in KK{D^ B), whenever D is a finite direct sum of building
blocks of type 2 and /i: D —^ A a unital ^-homomorphism.

It follows that y and ̂  are approximately inner equivalent.

THEOREM C. — Assume that A and B are simple. Let y?i: K-^(A) —^ K\{B}
he an isomorphism, yo: Ko(A) —^ Ko(B) an isomorphism of partially ordered
abelian groups with order units and (^T '- T{B) —^ T(A) an affine homeomor-
phism such that

raMO/^)) = rA^T^)){x), x G Ko(A), ^ € T(B).

It follows that there is a ^-isomorphism ^p: A —^ B such that (p^ = ^p\ on
K\{A), ̂  = (po on Ko(A) and ̂  = (RT on T(B).

Proof of Theorem A. — The conclusion is trivial when A is finite dimensional
so we assume that A is infinite dimensional. We set (pQ = a^: Ko{A) —^ KQ{B)
and (/?i = a*: -Ki(A) —^ K^(B). Note that the compatibility condition on a*
and (pT implies that (po is positive.
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We shall adopt the notation already established, and introduce the follow-
ing additional notation. A unital *-homomorphism y: A —^ B between G*-
algebras induces maps

AffT(A)/p(^o(A)) -^ AST(B)/p(Ko(B))

and U(A)/DU(A) -^ U(B)/DU(B) in the obvious way, and these maps will
be denoted by (p and (/^, respectively. Write A = limAn and B = ImBn where
Ai ^4 A2 ̂  As A ... and Bi A i?2 A Bs A .. . . Each A, and B, is
a finite direct sum of building blocks of type 2 and the connecting maps are
unital. By Theorem 4.1 we may assume that /^ is injective for all n and we
will therefore, occasionally, suppress the connecting maps of this sequence in
the notation. Let /^oo,n^ An -> A, poo,^ Bn —^ B, denote the canonical maps.
Then AffT(A) and AST(B) are the inductive limits of

AffT(Ai) -^ AffT(A2) -̂ -> AffT(A3) -^ ...
and

AffT(Bi) -^ AST(B^ -^ AffT(B3) -^ ... ,
respectively, and the canonical maps

AffT(AJ ̂  AffT(A), AST(Bn) -^ AST{B)

are /^n and po^n, respectively. Similarly, £7(A)/£)(7(A) and U(B)/DU(B)
are the inductive limits, in the category of complete metric groups, of the
sequences

£7(Ai)/IW(Ai) ̂  UW/DUW ^ U(A^)/DU(A^ -'!...

and

U(B,)/DU(B,) -i U(B^)/DU(B^ 4 U(B^)IDU{B^ -1 ....U^l;/^U^JDl

respectively. The canonical maps

U(An)/DU{An) -^ U(A)/DU(A)

and

U(Bn)/DU(Bn) -^ U(B)/DU(B)

are then p'oo.n and p6o,n? respectively.
As in [NT] we have the following fact.
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ASSERTION 7.1. — For every n C N, any finite subset F C AST(An) and any
e > 0 there is a m G N and a Markov operator M: AST {An) —^ AST{Bm)
such that

\\p^n o M{f) - y^ o f^n(f)\\ < C, f C F,

and a group homomorphism h: Ko(An) —^ Ko(Bm) such that poo,m^ ° h =
^Po ° ̂ oo,n^ ^d such that h and M are compatible in the sense that

AST{An) —^ AST(Bm)
T TT 'Tp\ P

Ko(An) —^ Ko(Bm)
commutes.

This assertion can be proved exactly as Assertion 1 in the proof of Theorem
A in [NT]. This is because a building block of type 2 contains a finite direct
sum of circle algebras with the same tracial state space and the same ATo-group,
cf. the proof of Lemma 6.6.

A major step in the proof is to establish the following

ASSERTION 7.2. — Let F^ C AffT{An) and F^ C U(An)/DU(An) be finite
subsets and e > 0. There is then a k € N and a ^-homomorphism ̂ : An -> B^
such that

(1) \\Q^{f) - ̂  o^(/)|| < e for all f e F^
(2) Dp{p^ k ° V^ ̂  ° t^,nW) < e for all u € F^.
(3) [p^k o ̂ ] = ̂ nW in KK(An, B),
(4) mult(^) > 0.

So let us first prove Assertion 7.2. Write
R

^ = ©A(n^,^),
i=l

where each A(n^d^A^) is a building block of type 2. Let k G N such that
207r/(JAn k) < 1. For each i we choose a unitary set, n\ v^ j = 1 , 2 , . . . , Ni — 1,
of K\ -generators for A(n^d^A^). Every element x € U(An)/DU(An) has, by
Lemma 6.4, a representation

^=n ii AAJ^)^^)^^^)^
%=1 .7=1
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where
<, G AffT(A^)/p(^o(An)), fef, n^ € Z.

For each x € ^2 and each j = 1,2,.. . , Ni - 1, i e {1 ,2 , . . . , R}, choose 6^ €
AffT(A^) such that q(b^) = a^ where q: AffT(A) -^ Affr(A)/p(A:o(A)) is
the quotient map. Since A is simple and the connecting maps injective, there
are numbers ̂  I ^ N, IQ > n, I > 12, such that

^o,n(^o))) > p j = 1,2,. . . , fc, 0 € T(AJ, no C c^o(A^).

Note that we can take I as large as we want; the appropriate condition is that

(^M)|e2^ - 1| + ^(l + sup ̂  \kf\ + |̂ -|) < e.
i=l " xeF2 i,j

Let G' C C'(TU {0} , [0,1]) be the finite set of Proposition 3.5 corresponding to
k,l. Let K e]0,1/(2;)[ such that

ff(Mo,n(g(uo))) > 5/t, g e G, no e cuo(A^), 0 e r(A;o).
Again we may take K arbitrarily small; we shall require that

(sup 11/H+1)^<-
f€F3 2l

where
F3 = Fi U {%• : rr G F2,J == 1,2,... ,^ - l,z = 1,2,... ,^}

U {^(^o), ffM : 3 = 1,2,. . . , fe, ff € G, H € c/ao(An)} .

We remark that if r > IQ^ then

^r,n(^o))) > p j=l,2,...,A;, 0er(A^), HGcno(An),

and

^r,n(ff(^)))) > 5^, 0 6 G, HO € CHo(An), 0 C T(A^).

Since Um mult(^y^) = oo by Lemma 5.3, we can increase /o to get mult(/^^^)
as large as we want; we will insist that

(SNj + 4)njdj + 5ny 16^-n.
max ———————-—— < K and max ——. J < K.

j mult(/^J j mult(/^^^)
Take now a 6 > 0 such that

7r6 < mm ̂ , — > and 8 max -7- < 1.t 2/J j dj
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From Assertion 7.1 we get an m 6 N, a Markov operator M: Affr(A^) —^
AffT(B^) such that

|[^oM(/)^r*o/^o(/)ll < 8,fe^n(F3),
and a group homomorphism /i: A^CA^) -> KQ^Bm) such that

/?oo,m^ ° h == y?o ° /^oo^o*

and such that h and M are compatible. Choose a finite set V of selfadjoints in
Bm such that {a : a G V} = M o p^^(F^). Let P be a finite set of projections
in Bm which generate Ko(Bm)' Let T e N be the integer from Lemma 6.6,
corresponding to A == A^, JE? = J5yn, F = p^n(F3),M^h, and the present
choice of S > 0. By the approximate divisibility of 5, and a standard pertur-
bation argument, which uses that Bm has stable relations by [L2], we can find
k\ > m, a finite dimensional (7*-subalgebra

H === Mi, © M^ © • • • © M^

of B^ with mniy Zj > T and a *-homomorphism ^: J3y^ -> Bj^^ n Hf such that

l^(^)-P^,m(^)|| < 8, x^VUP.

By Lemma 6.6 there is then a unital *-homomorphism ^o ' ' A^ -> l^(Bm) 0 ff
such that ^?o* == d^ o p,^ o h on KQ^A^) and

|(^o(/)-do/,oM(/)||<^ /€/^(F3),

where d(a) == a 0 ljy,a e p>{Bm)' Let /^: p.(Bm) 0 jEf -> B^ be a unital *-
homomorphism mapping onto C*{H^(Bm)) such that Kod(x} == ^, ^ G ^{Bm)
and set ̂ i = ^o^o. Then '0i^ == Pki,m^°h on ̂ 0(^0)1t^ l^st equality requires
only that S < 1. Furthermore,

||^)-p^oM(^)|| < ||^(^~/2oM(^)||+^

< ||^(^)-do^oM(^)((+|j^orfojSoM(a;)-j2oM(a;)||+^ < 2S

for all a; € /^(Fa). Set ^2 = ̂ i o /^: An -)- B^. Then

||j5^o^(/)~^,o^;(/)j[<3^ /€F3,

and

Poo,fei^ 0 ̂ 2* = PooM^ ° Pki.m^ oho ̂ ^^ == ^Q o ̂ oo,n^

on J^o(A^). In particular,

iGT0 > ^2(^(^0)) > y ~ 3 ^ > y, ^ = l , 2 , . . . , f e ,
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and

P^M ° ̂ 2(^(^0)) > 5/t - 36 > 4/^, ^ C G.

We can therefore choose k^ > k\ such that

0

^fc2,fci°-02(^("o))) > y, j= 1,2,...,/;, uo€cHo(An), 0^T(Bk^,

and

0(pks,ki ° ^(g{uo))) > ^K, g<= G, no € cuo(An), 0 e T(5^).

Furthermore, by increasing A;2 if necessary, we may assume that B^ contains
unitaries, 5'1, TJ, j = 1 ,2, . . . , Ni - 1, i = 1,2, . . . , R, with

(5) PaO^^)), $ o ̂ ((/(^))) < J,

and

^(^(^(Tp), ̂  ° ̂ ,„(9/(^•))) = ^
for all i^ j . For each % , j we have that

^(P^^^^))^^!)) < ̂
"J

so by increasing A;2, we may assume that

dist^^.P^SfeJ)^^^
"j

Since Smaxjnj/dj = 1, we have that

rf^e0 e DU(B^)
for some a = —a* (depending on i,j) with

IHI ^ ^^•dj

By exchanging each T1 with T^e0^/".', we may suppose that

rf^' 6 DU(Bk,).

The price we pay is that we only have that

(6) ^(^^(^J))^o^,n^(^))) < 67r

for all i^j. Since K^(An) is finitely generated, the functor KK(A^ •) is contin-
uous, [RS], so by increasing k^ again we may assume that /^ ^(a) = poo^^)
for some /? € ^jFC(Ayi, B^). And, since a* = yo on ^o(A) and poo,fci^ 0 ̂ 2* =
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Vo o p.oo,n^ on Ko(An), we may assume that /3» = p^i,. o ^2* on Ko(An).
Since TTJ < 2, it follows from (5) and (6) that

Poo,^([Tjj) = ^i(^oo,n(^)])
and

/w^^D^ia^oo,,^)])
in -Ki(-B) for all i,j. But ^i = Q!» on -K'i(A), so we can also assume that

M ]̂) = [TJ], /?*(M) = [y}
in ATi(B^) for all j = 1,2,..., N, - 1, i = 1,2,..., R. Since mult(^,,J ^
""•il1'̂ ,*! ° ̂ 2), our choice of /o guarentees that

(8^+4)nJ^+5n, , 16JV,-n,max ———,-7——-——;—— < K and max ———-—-—'—— < K.
j muh(pk^ o -^2) j muh(pk,,k, o -02)

Thus Lemma 6.9 gives us a unital *-homomorphism ip: An ->• B^ such that
W=f3mKK(A^Bk,),

iî  - pfca '̂̂ ii ^ K,
and

(7) ^(9/(^("^)),g/(^)) < K, DB^q'Wv^q'iTJ)) ^ K,

for all i,j. Note that mult(^) > 0 since

^» = /?* = Pkt,k^ ° V'2» = Pfc2,fci<. 0 ̂ l* o ̂ o,n»,

and mult(/^o,n) > 0. Hence (4) holds. Observe that

IIPo^fc2 ° W) - VT* ° 7^n(/)||

(8) ^ llpS0^^)-^^0^/)^!!^:"^/)-^^/^^)!!
^ sup ll/H/t + 36 < 1

f&Fs l

for all / e F3, by the choice of 6 and K. In addition,

hoo,fc2°-0] = Poo,k^W = ̂ o,n(")

in J^^f(An,5). In particular, this gives (1) and (3). (8) implies that

d' (p^ 0 ̂ «j), V ° /^n«j)) = ,
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for all x € F2 and all %j. Hence the D^-distance between

(Poo,A;2 °^(a0
R Ni-1

=H 11 ^(P^^^^^^oo^o^^^g'^^o^
%=1 .7=1

and
^ M-i
11 11 AB?o/^(<,))^(Poo^o^(^))^g/(p^^o^(^
%=1 J=l

is less than (^^^ ̂ ^[e2^^ - 1|. By combining (5) and (7), we see that

^(pL^(^(^)))^°^Ln^
for all %, and by combining (6) with (7) we get,

^(^(^(^•^^O^J^^

for all i^ j . It follows that the Da-distance between
R Ni-ln n AB?o^^(<,))g/(p^,o^))^g/(p^^

i=l j=l

and
R Ni-ln n AB(^o,^(<,))^o^J^(^))^^o^J

1=1 J=l

is less than l/l(snpy^ S,j I^I+I^-D- Combined with the previous estimate,
this shows that

£>B(^o^(n)^o^,n("))

1 R

< ySUp^lfcj'l+I^^E^)!62^-1! < £
2/eF2 tj 2=1

for all u e F^. We have proved Assertion 7.2.
The construction of (/?: A —>- B is now similar to the corresponding step in

the proof of Theorem A in [NT]. Choose finite subsets

Fn C AffT(An), Kn C U(An)/DU(An) and cg(An) C Hn C An

such that

fIn(Fn) C Fn+i, ^n(Kn) C Kn^ ^n(Hn) C ^+1,
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and Un^(^n). Un/^o,n(^n) are dense in AffT(A) and U(A)/DU(A), re-
spectively. Let 6(An) be a sequence in ]0,1[ such that

||AO/)-7^)K2-71, y e H n ,

whenever A, rj: An —> D are unital *-homomorphisms into the same (7*-algebra
D satisfying that

||A(a) - 77(a)|| < 6(An), a € cg(An).

We will construct sequences n\ < n^ < 773 < ' • • and m\ < 7772 < 7713 < • • • in
N and unital *-homomorphisms ̂ : Ay^ —)- B^ such that

(9) ||pmfc+i,mfc 0 ̂ k(x) - ̂ +1(^)11 < ^(AnJ, X € Cff(A^),

(10) ||po^o^(a)-^r*o/C;(a)|| <2-^ aeFn^

(11) ^B(p^ o^(^), ^o^(^)) < 2-^ ^ € ̂ ,

and

(12) [Poo^0 ^k] = ̂ ,n,(^)

in KK{Ank->B) for all fc. Let us check that such sequences will give us what
we want. First, it is standard to define (p: A —> B by

^00,7^)) = lim p^mi °^l° /^,m(^), X € Am,
l—>00

for all m € N. Then

^(^oo,m(a)) = lim poo,mz ° ̂  ° ̂ ,m(a), 0 C AjffT(A^),
t—>-00

and

^(^o,^)) = ^P^o^o^^(^), ^ € U(Am)/DU(A^

for all 772, so (10) and (11) imply that

^(/d(^)) = ^r*(/d(a)), aeFm,

and

y^oo,m(a0) = ̂ (^m^)). :r ^ ̂ m,

respectively. The density of [j^fj^n(Fn) in AffT(A), and (J^^^o^(^) in
U(A)/DU(A)y imply that (^ = (/?r^ and ^t1 = ̂  respectively. Furthermore,
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since each Am has exactly stable relations, [LI], [L2], we have that y o ^oo^m
is homotopic to poo.mi of^lo P"ni,m for all sufficiently large /, and hence

[^ o ^oo,m] = [Poo,mz o ̂  o ̂ ^] = /4^([poo,m, o ̂ ])

= ,̂m( ,̂n,(a)) =^,m(a)

in 2CRT(A^, B) by (12). Now, if D is a finite direct sums of building blocks of
type 2 and I J L : D —^ A a unital *-homomorphism, then, by [L2] and [LI], there
is a unital *-homomorphism A: D —> Ami for some m, such that /^oo m ° ̂  ls

homotopic to p.. Hence

[ y o p , ] = [ y o ̂ m o A] = A*([y? o /^o,m]) = A*(^^(a)) = /^*(a)

in KK(D^B). It now suffices to construct the sequences. This will be done
by induction, of course, but to make the induction work we have to impose
the following additional conditions: There are integers rj^tk C N, t^ > 12,
247r/(JAn ^fe) < 1 and numbers ̂  C ]0,1/(2^)[ such that

, 7 2 13 , ,_ ,
(c———+c——-)7r<^(AnJ,
^An^fc °A^k

O^tuo)) > ^-, j=l,2,...,r^ 0GT(A), ^oecno(An,),

0(ff(^o)) > 3^, geGk, Oe T(A), no € cno(Ayj,

^B(p^o^(9'(^))^o^nj9'(^)) ̂ ^l necn(A,J,

llpo^mfc 0 ̂ k(f(uo)) - VT^ 0 /^nfc(/(^o))|| ^ ̂  f ^ Gk, UQ € CU^An^},

and

mult(^) > 0,
where Gk C C(T U {0} , [0,1]) is the subset of Proposition 3.5 corresponding
to rk and tk' Let us assume that n\ < n^ < • • • < n^? m\ < m^ < " ' < m^,
ri < r2 < • • • < rj^, t\ < t^ < ' ' ' < ̂ , ^, 1 < i < fc, and ^, 1 < i < fe, have
been constructed. We shall construct m^+i,nA;+i^A;+i 5^+15^+1 and ^+1-
By (14) and (15) we can choose n^+i > n^ so large that

^M) > ^-, j=l,2,...,r^ 0€T(A^), noecno(A^)

and

0(ff(no)) > 3^, geGk, O^T(An^), u e cno(AnJ.
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Choose rjb+i € N such that
727T 1 ./ . ,

c—————-——— < ^(^+1).<^^n;+i 2
and subsequently tk+i 6 N such that

137T 1 „, „ ,
c————.—— < ̂ (An^i)^A^fe+l 2

and

^C^o)) > T^-, j=i,2,...,r^i, 0er(A), noe^o(An^).
J tk+l

Then take ^+l ^ ]0? l/(2^+i)[ such that

e(g{uo)} > 3^+1, peG^+i, 0er(A), noecno(An^).
By Assertion 7.2 there is an m^+i > mjb and a *-homomorphism

^: A^_^^ > -^mjb-n

such that

[poo,mfc+i°A] = /4),nfc+i(°0

m ArAT(An^^B), mult(A) > 0,

llpo^fc+i oA(/)-^r*°^'o^li(/)ll ^^ /^i,

and

^B(̂ ,̂ , o ̂ ^), <!> o ̂ ,̂ (H)) ^ 6, U € ^2,

where £ > 0 and the finite subsets

^cAffT(A^), ^CU{An^)/DU(An^

are free to choose. We take

^mm^il+i^-1}

and ^i to contain Fn^,^ and the images in Affr(A^_^) of

{^n,+i,nj/(^o)) : / e G^,'ao C CUo{An^)}

U {ff(^o) ^ ff ^ ^Jfc+i^o € c^o(Ay,^J}

and ^2 to contain
^(cn(A^J U^^,nJ^(A^))) U^n^.
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With these choices, the k + 1-versions of (10)-(18) hold (with ^k+i = A)- By
choosing e even smaller and rnk-^-i even larger, if necessary, we can also assume,
by using (16) and (17), that

DBm^l (A ° /^+i,nfc(^Pmfc4-i,mfc o ̂ k(u)) ̂  ̂  U C Cu(An^),

and

\\Pm^mk 0 ̂ ?0)) - ̂ +1 0 ̂ nfc7^fc(/(^o))|| < ̂

f ̂ Gk.uo e cuo(Ank)' Since

[Poo,mfc4.i 0 A o ̂ n ,̂nj = /4fc+i,nj[Poo,mfc+i 0 A])

= ̂ +l,nJ/4),nfc+l(QO) = /^nj^) = [Poo,mfc o ̂ ]

in KK^An^ B), the continuity of the functor ^^(Ay^, •) implies that we may
assume, if neccesary by increasing m^+i again, that [A] = [pmk+\,mk ° ̂ k] m
KK{An^ Bmk^)' Finally, since lim^oo mult(p^^^ o^) = oo by Lemma 6.10,
because mult(^) > 0, we can also increase mjfc+i to get the last condition in
Proposition 3.5 satisfied. Then that proposition gives us a unitary w G Bm^^
such that

[I Adw o \(x) - Pmk+^mk ° V^)ll < j-^- + ^——-JT < ̂ nj. x ^ ̂ (^fc)-

By choosing ^+1 = Adw o A, we will have the k + 1-versions of (9)-(18)
satisfied. This completes the induction step and the proof. D

Proof of the Corollary Al. — The compatibility between (pr and o^ implies
that we get a contractive map

ip: AST(A)/p(Ko(A))^AffT(B)/p(Ko(B))

induced by <fT^'' AffT(A) —f AffT(B). By Lemma 6.5 there is then a con-
tractive group homomorphism <&: U(A)/DU(A) —^ U(B)/DU(B) such that

^A , j r ( \\ IT^TT/ A\ 7rAAST(A)/p(Ko(A)) ——^ U(A)/DU{A) ——^ K^A)

^ 4 4
AST{B)/p(Ko{B)) ^^ U(B)/DU(B) -r^ K^B}

commutes. The corollary then follows immediately from Theorem A. D

Proof of Corollary A2. — By the UCT theorem, [RS], there is an element
a G KK(A^B) such that a* = <^o © Vi on K^(A). Apply Corollary Al. D
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Proof of Theorem B. — We adopt the notation and general set up from the
proof of Theorem A. Let n € N and e > 0 be arbitrary. It clearly suffices to
prove that there is a unitary u € B such that

|| Ad U o -0 o /^oo,n(^) - V ° /^oo,n(^)|| < ̂  ^ Cff(Ayj.

To this end we shall apply Proposition 3.5. So let k € N such that 247r/(^An^) <

1, and 727r/(JAnfe) < ^/6. Since A is simple and the connecting *-homomor-
phisms injective, there is an m > n and an I > 12 in N, such that 137r/(JAnO ^
e / 6 and

^m,n(^o))) > y, .7=l,2,...,fc, noecno(AJ, 0 G T(A^).&
Choose /^ € ]0,1/(2/)[ such that

^m,n(ffM)) > 3^, ff C G, 0 G T(A^), no C cno(A^),

where G is the finite set of Proposition 3.5 corresponding to the present choice
of fc, I . Since limm-^oo mult(/^^) = oo by Lemma 5.3, we can take m so large
that maxi 16A^ < ^mult(/^^), where 7V^ and rii are the numbers occuring
in the decomposition An = ©^iA(n^d^A^) of An as a sum of building
blocks of type 2. From the fact that Am is generated by a set of exactly stable
relations, [L2], we conclude that there is a r G N and ^1,^1: Am —^ By such
that

||poo,r°^l(^) - V ° ^oo,m(^)|| ̂  ̂  € F,

and

||poo,r o -0i (a;) - ̂  o ^oo,m(^)|| ^ ̂  X € F,

where J > 0 and the finite set I71 C Am are free to choose. In particular, we
shall require that S < e / 3 and that p'm,n(cg(An)) C F. By assumption we
have that y = ̂ : AffT(A) -^ AffT(B) and that ^ = ̂  on U(A}/~DU{A).
By increasing r and taking a sufficiently small 8 we can therefore arrange that

Wl o /^m,n(^o)) - VI o ^m,n(ff(^o)))| < ̂ 2, ^ C T(^) ^ 6 G,

and that

distal o ^m.nWVl ° /^m,n(^*), DU(Br)) < K2, U G CT(A^).

Furthermore, we can assume that '0 o ^oo,n and (/? o /^oo,n are homotopic to
Poo,r 0 ̂ i ° /^m^ and y9oo,r 0 ̂ i o ^m,n? respectively, cf. [LI]. Our assumption
on [y], [^] € KK(A^B) therefore shows that

hoo,r ° ̂ 1 ° ̂ m,n] =[(PO P'oo,n] = [^ o ^oo,n] = [poo.r 0 ̂ 1 ° ̂ m,n]
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in KK{Am,B}. By the continuity of the functor KK(An, •), we can there-
fore assume, by increasing r if necessary, that [y?i o p.rn,n\ = [^i ° /^m,n] in
KK{An,Br). We now get a unitary w € By. from Proposition 3.5 such that

72 13 £|| Adw o y?i o /^(a;) - ̂ i o /^nCr)|[ < (.—- + .—_)7r < . x € cg(An).
°Ar,k OAJ 3

Hence the unitary n = poo,r(^) ^ 5 will do the job. D

Proof of Theorem C. — If one of A and B is finite dimensional they must
both have KQ group Z. By the argument of Lemma 5.3 they are then both
matrix algebras and the conclusion is trivial. We may therefore assume that
A and B are both infinite dimensional. By [RS] there is a KK-equivalence
oi € KK(A^B) such that a^ = yo on Ko{A) and a^ = </?i on ATi(A). Let

^: U(A)/DU(A) —^ U{B)/DU{B)
be a homomorphism compatible with yr^o and (/^i, in the sense that the
diagram of Theorem A commutes. Such a <& exists by Lemma 6.5. Note that
<1> is an isometric isomorphism and that <1>~1 is compatible with y^1,^1 and
y~[1. By Theorem A, which can be applied thanks to Theorem 5.1, there
are unital *-homomorphisms A: A —> B and ^: B —> A such that A* = yr
on T(B), ^ = <^1 on T(A), A^ = ^, ^ = ^-1, and [A o ^] = /^*(a) in
KK{D,B), when 2) is a building block of type 2 and /^: D -> A a unital
*-homomorphism, and [^ o y\ = ̂ *(a~1) in KK(C,A), when (7 is a building
block of type 2 and ^: C —^ B a unital *-homomorphism. Thus (^ o A)* is the
identity map on T(A), (-^ o \)^ is the identity on ?7(A)/.D[/(A) and, when D
is a building block of type 2 and ^: D —^ A a unital *-homomorphism,

[̂  o A o /.] = (A o ̂ )*(a-1) = [A o ̂ ] . [a-1]

= /.*(a) . a-1 = ̂ (a . a-1) = /.*([^A]) = M
in ArAT(Z),A). (• denotes here the Kasparov product.) By Theorem B we see
that '0 o A is approximately inner equivalent to the identity map of A. In the
same way we see that A o ̂  is approximately inner equivalent to the identity
map ofB. It then follows from a standard approximate intertwining argument,
cf. e.g. [Rl], Proposition A, that there is a ^isomorphism (p: A —^ B with the
same action on K^{A) and T{B) as A. D
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CHAPTER 8

ON THE AUTOMORPHISM GROUP

Let A and B be unital inductive limits of sequences of finite direct sum of
building blocks of type 2.

The purpose of this chapter is to describe the automorphism group Aut(A)
of A modulo the normal subgroup Inn(A) of approximately inner automor-
phisms when A is simple. Besides the results of Chapter 7, we shall use ideas
and results from [R2] and [DL3]. In [R2] R0rdam introduced a quotient of the
Kasparov group KK{C^D)^ called KL(C^D), into the classification program.
The advantage of KL{C^ D) over KK(C^ D) lies in the fact that two approxi-
mately inner *-homomorphisms C —f D define the same element of KL(C^ D),
cf. [R2], Proposition 5.4, and that the contrava/riant functor KL(^D) is con-
tinuous on the Bootstrap category At for which the UCT is known to hold,
[RS], provided only that D is a-unital, cf. [DL3], UCMT and Lemma 2.2 (ii).
Thanks IQ this we can use KL in place of KK to improve the formulation of
some of the results in Chapter 7.

THEOREM 8.1. — Assume that A is simple and that B is approximately di-
visible. Let a he an element of KL(A^B) such that a^[l] = [1] in Ko(B) and
(pT'' T(B) -^ T(A) an affine continuous map such that

rB(^){a^(x)) = rA(yr(^))(^), x € J^o(A), a; € T(B).

Let ^: U(A)/DU(A) -» U(B)/DU(B) be a homomorphism such that

x^ , - - / „ , ̂ ^ ^ 7TAAST(A)/p(Ko(A)) ——^ U(A)/DU(A) ——^ K^A)

? ^ Cf*

AffT(B)/p(Ko(B)) -^ U(B)/DU(B) -^ K^(B)



98 CHAPTER 8. ON THE AUTOMORPHISM GROUP

commutes, where (p: AffT(A)/p(Ko{A)) -^ AST(B)/p{Ko(B)) is the map
induced by (^T* : AffT(A) -> AST(B).

It follows that there is a unital ^-homomorphism y. A —> B such that
V*\T(B) = VT, (/^ = <& and [p\ = a in KL(A^B). D

COROLLARY 8.2. — Assume that A is simple and that B is approximately
divisible. Let a be an element of KL{A^B) such that Q^[l] = [1] in Ko{B) and
(pT'' T(B) —)- T(A) an affine continuous map such that

ra^a^x}} = rA(w(^))(^), x € ^o(A), a; E T(B).

It follows that there is a unital ^-homomorphism y: A —> B such that y?* =
(pT on T(B) and [y] = a in KL(A,B). D

THEOREM 8.3. — Assume that A is simple. Let y?,^: A —> B be unital *-
homomorphisms such that y?* = ̂ * on T{B), ̂  = ̂  on U{A)/DU(A) and
[p\=[^\inKL(A,B}.

It follows that (p and ̂  are approximately inner equivalent. D

It should be noted that 8.1-8.3 take a particular simple form when K-^(A) is
torsion-free since KL{A,B) = }lom(Ko(A),Ko(A)) C Hom(ATi(A),^i(A)) in
this case. Also it should be noted that we have that KL{A^B) = KK{A^B)
when -PCie(A) is finitely generated.

Theorem 8.1 and Corollary 8.2 follow straightforwardly from Theorem A
and Corollary Al in Chapter 7. Theorem 8.3 does not follow directly from the
statement of Theorem B in Chapter 7. Rather, it follows from the following
slight change of the proof: Instead of the conclusion that [poo^r0^!] = [poo,r°^i]
in KK{A^m B)y we get (a priori) only this conclusion in KL(Am^ B). However,
KK(Am, B) = KL(Am, B) by [DL3], Proposition 2.9, since K^(Am) is finitely
generated. So we do actually get identity in KK(Am^B) also. The rest of the
proof is unchanged.

With these .K'Z/-reformulations of the results from Chapter 7 we can now pro-
ceed to the desired description of Aut(A)/Inn(A). This group is put together
by three components, the first of which is the group Aut(^A) of automorphisms
of the Elliott invariant SA of A, i.e. Aut(^) is group of triples (ao^^i^^r)
where OQ is an order unit preserving ordered-group automorphism of ATo(A),
a\ is a group automorphism of Ki{A) and ay: T(A) —^ T(A) is an affine
homeomorphism such that

TA ° c^1^) = rA(^) o OQ on Ko(A)

for all u) € T(A). The second component is Hom(Ki(A),AffT(A)/p(A:o(A))),
the group of homomorphisms from K-^(A) into AffT(A) modulo the closure
of the canonical image of Ko(A). The third component, ext(.Ki(A),.Ko(A)),
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was discovered by Dadarlat and Loring in [DL3]. ext(Xi(A),ATo(A)) is a
quotient of the group Ext(A:i (A), KQ (A)) of abelian group extensions of K^ (A)
by ATo(A); namely that group modulo the subgroup of such extensions which
splits over every finitely generated subgroup of K^{A).

To explain how

Aut(^A), Hom(^i(A),AffT(A)/p(^o(A)))
and

ext(^i(A)^o(A))

fit together to form Aut(A)/Inn(A), we let KL(A^A)~1 denote the group of
invertible elements a in KL{A^ A) (invertible with respect to the ring structure
coming from the Kasparov product) such that a^[l] = [1] and a*(J<To(A)4') =
Ko(A)^ in Ko(A). Let Aut(T(A)) denote the group of continuous affine home-
omorphisms of T(A) and set

r(A) =
{(^X) C Aut(T(A)) @KL{A,A)-1: TA^-\^) = TA^) o^, ̂  e T(A)} .

The map TT: Aut(A) —^ F(A) given by 7^(0) == (a"1*, [a]) is then a group ho-
momorphism which annihilates Inn(A) by Proposition 5.4 of [R2] and gives rise
to a homomorphism TT: Aut(A)/Inn(A) —^ F(A). We want to show that TT is a
split surjection and determine its kernel. To this end we first observe that the
group Aut(!7(A)/D[7(A)) of isometric group automorphisms of U(A)/DU{A)
is isomorphic to the semi-direct product

Hom(^i(A),AffT(A)/p(^o(A))) x (Aut(A:i(A)) © Aut(AffT(A)/p(A:o(A))))

where Aut(AffT(A)/p(Aro(A))) denotes the group of isometric group automor-
phisms of AST(A)/p(Ko(A)) and the action of

(a, (3) € Aut(^i(A)) ©Aut(AffT(A)/p(A:o(A)))

on Hom(ATi(A),Affr(A)/p(^o(A))) is given by

(a,/3)(y) = /?oy?oa~ 1 .

This follows straightforwardly from Lemma 6.4. An illuminating way of visu-
alizing this semi-direct product is by using matrix notation:

(a 0\ fa' 0\ ^ ( aoa1 0 \
[y (3) {^ ^-^oa'+^o^ /30/3';7
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100 CHAPTER 8. ON THE AUTOMORPHISM GROUP

where

a, a' C Aut(A:i(A)), /?,/?' e Aut(AffT(A)/p(^o(A))),

and

^ € Hom(^i(A),Affr(A)/p(^o(A))).

In particular, there is a group homomorphism

Aut(A:i(A)) © Aut(Affr(A)/p(A:o(A)))

3 (a,/3) ̂ (a °} € Aut([7(A)/^7(A)).

Let ^ G Aut(T(A)) such that f o ̂ -1 e p(J<:o(A)) for all / € p(A:o(A)) C
AfFT(A). Then -0 determines an element

^ € Aut(Affr(A)/p(^o(A)))

given by

^ (/ + p(A:o(A))) = / o ̂ -1 + p(A:o(A)), /eAffr(A).

In particular, (;^,^) i-̂  (x*?^) defines a homomorphism

F(A) -> Aut(ATi(A)) eAut(Affr(A)/p(A:o(A))).

Now, by using Theorem 8.1 and Theorem 8.3 as Theorem A and B were used in
the proof of Theorem C of Chapter 7, we get an automorphism o^,^ G Aut(A)
such that

-i

onT(A),

in KL(A^A) and

a

<x = ^

[a^} = X

^ = (^ ^
^^ \ 0 ^.

in Aut(E/(A)/P?7(A)). In particular, Tr(a^) = (^,x)- Using Theorem 8.3 we
see that

o^ o a^^f = 01^'^

modulo Inn(A), proving that TT is a split surjection. To identify the kernel of TT,
note that Theorem 8.1 and Theorem 8.3 tell us that it consists of the elements
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<& of A\ii{U(A)/DU(A)) which fit into a commuting diagram of the form

U(A)/DU(A)

0 ——> AffT(A)/p{Ko(A)) -^ U(A)/DU(A) ̂  K^A) ——> 0

But this is exactly the group Hom(^i(A),AffT(A)/p(JCo(A))), considered as
a subgroup of Aut(U{A)/DU(A)). It follows that Aut(A)/Inn(A) is a semi-
direct product

Hom(^i(A),AffT(A)/p(^o(A))) x F(A)

ofF(A) and Hom(^i(A),AffT(A)/p(JCo(A))). To identify the corresponding
action ofF(A) on Hom(^i(A),AffT(A)/p(^o(A))), note that when (V^) e
F(A) and y? is a homomorphism in Hom(^i(A),Affr(A)/p(^o(A))), we find
that

^ A'd 0\ h -i /x* 0\ Ad 0\ /x^1 0 \
<x0^ ^J0^ - (o ^^ i d ) [ o ^)

= ( id °\
\^o^o^1 id)

in Aut(?7(A)/^D[7(A)). So the action is

(^x)(^) =^o(pox^l'
To decipher the group structure of Aut(A)/Inn(A) further, we use the descrip-
tion of KL(A,A)~1 given in [DL3]. Following the notation of Dadarlat and
Loring we let

Aut(^o(A),[l])+

denote the group of order and order-unit preserving automorphisms of Ko(A).
The direct sum Aut(^o(A), [l^ ©Aut(^i(A)) acts on Ext(^i(A),A:o(A)) in
the natural way; in standard notation the action is

(^((O^o/r1^),
where e <E Ext(Xi(A), Ko(A)) and (a,^) e Aut(Xo(A), [!])+© Aut(Ki (A)).
This action passes to an action on ext(.K"i(A),.K"o(A)) for which we use the
same notation. It follows from [DL3] that KL{A,A)~1 is the semi-direct
product ext(^i(A),^o(A)) xi [Aut(Ko(A), [!])+ ©Aut(A"i(A))j corresponding
to this action. Hence

F(A) = ext(^i(A),Xo(A)) xi Aut(^)
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102 CHAPTER 8. ON THE AUTOMORPHISM GROUP

where the action ofAut(^A) o11 ext(ATi(A),.Ko(A)) is given by
(ao,ai,ar)(e) = ao* o a~[^(e).

To combine this semi-direct product decomposition of F(A) with the one we
have obtained for Aut(A)/Inn(A), observe that Aut(<?A) also acts on

Hom(Ki(A),AffT(A)/p(A:o(A)))

by
(ao,ai,ar)(^) =aroyoa~[1.

We have now proved the following

THEOREM 8.4. — Let A be a simple unital inductive limit of a sequence of
finite direct sums of building blocks of type 2. Then Aut(A)/Inn(A) is isomor-
phic to the semidirect-product

[Hom(^i(A),AffT(A)/p(A:o(A)))©ext(^i(A),^o(A))] x Aut^),

where the action of Aut(^A) o71

Hom(A:i(A),AffT(A)/p(^o(A)))©ext(^i(A),^o(A))

%5 ^wen by
(ao,ai,QT)(^e) = (aro^oa]~\ao* oai-l*(e)). D

When A is a simple unital inductive limit of a sequence of finite direct sums
of circle algebras, the structure of Aut(A)/Inn(A) reduces a little. In this case
jRTi(A) is an inductive limit of finitely generated torsionfree abelian groups, so
ext(J<i(A), Ko(A)) = 0 in this case, cf. [DL3]. We therefore have the following
corollary.

COROLLARY 8.5. — Assume that A is a simple unital inductive limit of a
sequence of finite direct sums of circle algebras. Then

Aut(A)/Inn(A) ^ Hom(^i(A),AffT(A)/p(^o(A))) x Aut(^),

where the action o/Aut(<?A) on Hom(Ari(A),AffT(A)/p(A"o(A))) is given

(ao^Q^arK^) = aroyoa^1. D

If in addition A has real rank 0 (or equivalently, is the closed linear span of
its projections), then AffT(A)//)(A:o(A)) = 0 and Aut(^) = Aut(A:i(A)) ©
Aut^oG4)^!])'^ so Corollary 8.5 reduces to Theorem 2.1 of [ER] (with A
simple.)
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CHAPTER 9

THE RANGE OF THE ELLIOTT INVARIANT

It is a very interesting and challenging problem to determine the range of
the Elliott invariant for simple (separable, unital, nuclear) (7*-algebras. The
research towards this goal has in recent years enlarged our stock of examples
of simple (7*-algebras quite dramatically, see [VI], [V2] and [Th6]. In the
context of this paper, and in particular in view of Theorem C of Chapter 7,
the problem is most relevant for simple unital inductive limits of sequences of
finite direct sums of building blocks of type 2, and it can also be answered
thanks to the results of Villadsen [VI]. Note first that Ko{B) is a simple
(countable) dimension group when B is a simple unital inductive limit of a
sequence of finite direct sums of building blocks of type 2 and that KQ^B)
is not cyclic unless B is a matrix algebra. Furthermore, for any finite direct
sum A of building blocks of type 2 the restriction map FA: T(A) —> S.KQ (A)
is extreme-point preserving, so it follows from Corollaries 1.6 and 1.7 of [VI]
that the same must be the case for B. Except for the general condition that
K-^(B) must be a countable abelian group and TA surjective, these are the only
restrictions. More precisely, we have the following

THEOREM 9.1. — Let G be a countable non-cyclic dimension group with order
unit, H a countable abelian group, A a compact metrizable Choquet simplex and
r : A —^ SG an affine continuous extreme-point preserving surjection. There
is then a simple unital inductive limit of a sequence of finite direct sums of
building blocks of type 2, A, such that

(T(A),rA,^o(A),A:i(A)) ^ (A,r,G,^).

Recall that (r(A),rA,^o(A),^i(A)) ^ (A,r,G,H) means that there is
a group isomorphism y?i: ^i(A) —> H, an affine homeomorphism y?r: A —)-
T(A) and an isomorphism (po: Ko(A) —> G of partially ordered groups with
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order unit such that

TA o ̂ rM(^) = r(u;)(yo(x)), u e A, x e Ko(A).

Actually, in order to relate this work to the work of others, where the di-
mension drop G*-algebras are used to include the possibility of having torsion
in K\, we shall prove the following.

THEOREM 9.2. — Lei G he a countable non-cyclic dimension group with order
umi, H a countable abelian group, A a compact metrizable Choquet simplex and
r : A -> SG an affine continuous extreme-point preserving surjection. There is
then a simple unital inductive limit of a sequence of finite direct sums of circle
algebras and matrices over dimension-drop C*-algebras, A, such that

(T(A),rA^o(A),^i(A)) ^ (A,r,G,ff). D

As explained in the introduction, Theorem 9.1 follows from Theorem 9.2.
But it also gives the following

COROLLARY 9.3. — Let A be a simple unital inductive limit of finite direct
sums of building blocks of type 2. Then A is ^-isomorphic to a unital inductive
limit of a sequence of finite direct sums of circle algebras and matrices over
dimension-drop C*-algebras.

Proof. — The conclusion is trivial when A is finite dimensional, so we can
assume that Ko(A) is not cyclic. By Theorem 9.2 the Elliott-invariant of A is
also realized by a simple unital inductive limit of sequences of finite direct sums
of circle algebras and matrices over dimension-drop C*-algebras. By Theorem
C of Chapter 7, the two algebras are *-isomorphic. D

For the proof of Theorem 9.2 we need a couple of lemmas. In the following
we will consider a matrix algebra Mn(lk) over the dimensiondrop (7*-algebra
1k as a building block of type 4 in the natural way, i.e. as

{/ e qo, i] ® Mkn : /(O), /(i) e Mn}.
We will let i: C[0,1] (g) Mn -^ Mn(lk) denote the natural embedding.

LEMMA 9.4. — Let k C N. For every finite set F C C^[0,1] and any e > 0
there is a N C N with the following property: When (p: (7[0, l](g)M^ -^ C[0, l](g)
Mm is a unital ^-homomorphism such that

V{xf) > 0, j= 1,2,. . . ,7V,

then there is a unital ^-homomorphism ̂ : Mn{lk) -^ C[0,1] 0 Mm such that

11^(/)-^(/)11<^+A;^||/||, f e F .r Tv
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Proof. — Choose S > 0 such that \f{x) - f{y)\ < e for all / e F when
\x - y\ < 6. Let N be so large that k / N < 6. We assert that this N has the
required property, so assume that (p is a *-homomorphism with the properties
of the lemma. By [Th9] there are continuous functions

ffl^2,. " , 9 m / n ' ' [0,1] ——> [0,1]

such that gi < 92 <: " ' < gm/n ^d ^ ts approximately inner equivalent to the
map

/ ̂  diag(/ o 51 J o g^... J o gm_Y
n

So for the present purpose we have assume that y is this map. Note that

\9i+j{t) - gz{t)\ < ̂  < 6, i < ̂  - k, j < k,

and

\9j{t)-l\ < ̂  j = k - r , k - r + l ^ . . ^ k

for all t e [0,1]. Write m/n = lk + r where r,l e N and r < k. Define
hj =^_i^+ij = 1 , 2 , . . . , ^ , and define ^: Mn{lk) -^ C[0,1] 0 Mm by

W) = diag(/ o h^f o h^... J o /^(/),A^(/),... ,A^(/))
r times

It is straightforward to check that ^ meets the requirements. D

As in Chapter 4 we shall consider the functions K : T —> [0,1] and i\: [0,1] —)-
T given by ^(e27^) = 2t, t C [0,1/2], /,(e2^) = 2 - 2t, t € [1/2,1], and
i\{t} == e^^, respectively. They give rise to *-homomorphisms

/^: C[0,l]®Mn^C(T)^Mn
and

^: C(T) 0 Mn -^ C[0,1] 0 Mn

given by /^(/) = / o ^ and ^(^) = g o i^ respectively. Note that v o ^ is the
identity map on (7[0,1] 0 M^. These homomorphisms are considered in the
following lemma.

LEMMA 9.5. — Let^p: C[0,l](g)M^ -^ C7[0,1]0M^ be a unital ^-homomorph-
ism, where m> n. There is then a unital ^-homomorphism ̂ : (7(T) (g) Mn —^
C[0,1] (g) Myy, 5ncA that

^ 0 ft = (p

onC^[0,l}.
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Proof. — By [Th9] there are continuous functions

gi: [0,1] —>[0,1], % = l , 2 , . . . , m / n ,

such that (p is approximately inner equivalent to the map
/ ̂  diag(/ o g^ f o g^..., / o ̂ ).

71

So for the present purpose we may assume that y is this map. Set ^ = y o i/.
Then ' 0 o ^ = y ? o z / o ^ = = y ? . D

Proo/ of Theorem 9.2. — Assume first that H is finitely generated, i.e. that

H ^ v © z^ e z^ © • • • © z^
for some n, fci, k^..., k^ e N. By Theorem 3.2 of [VI] there is a sequence
B\ -^4 £?2 -^ i?3 -^ • • • of finite direct sums of interval algebras such that
B = \v^{Bn^n) is simple and has (T(B),rB,Ko(B),K^B)) ^ (A,r,G,0).
Set Bi = ®^i C[0,1] 0 M^.. As pointed out in the proof of Theorem 4.2
in [VI], we may assume that lim^oo772;' = oo. In particular, we can assume
that rrij > N + n for all j. Furthermore, by construction each of the partial *-
homomorphisms of the connecting maps, the y^-'s, are injective. By simplicity
of B we have that lim^oo™ilt((^j) = oo for all j € N and, for an arbitrary
finite subset G of non-zero positive elements in AffT(-Bj), we can choose I > j
such that

^(/) > o, / e G.
Let e > 0 and fix a finite set FQ C Bj. For any S > 0 and any finite set
F C AST(Bj) of positive non-zero elements we can apply Lemma 9.4 and
Lemma 9.5 to get *-homomorphisms

N rrij

y:Bj^Q)Mn,(lk,) © C(T)®M^
i=l i=N+l

and
N rrij

^: ©M,̂ ) (9 C(T)0M^-^
i=l i=N+l

such that yij^ == ^* ° y^ on ^o(-Bj')?

llyW)-^knil < e, feF.
With the appropriate choice of jF and J > 0, we may now conclude from
Theorem 6 of [E2] that there is a unitary u € B[ such that

|| Adu o ̂  o y(x) - yij(x)\\ < 6, x € ^o-
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In this way we can proceed inductively to obtain an infinite diagram

V L ^2^1 ^3^2

which is an approximate intertwining in the sense of [El], such that the first
infinite row is a sequence of finite direct sums of circle algebras and matrix
algebras over dimension-drop (7*-algebras. By Theorem 2.2 of [El] we can
conclude that D = lim(D^ Xj) is *-isomorphic to B. Next we want to change
the connecting maps, the Aj^s, to other maps, say A'-s, to get the right K\-
group for the limit algebra. Note that all the partial *-homomorphisms of the
Aj's are 0 on K\ since they factor through an interval algebra by construction.
By construction

K^{Dj) ̂  V © Zfc, © Zfc, © ... ® Z^

and

^1(^+1) ^ z6 © z^ ® z^ © . . . ® z^
for some a, b >: n. We want A'- : K]_(Dj) —^ K^Dj^) to be the map

^'J^"- ̂ a^i^'-^^v) = { ^ i ' > " - ,2^,0,0, . . . ,0,a:i,...,a;^)

under these identifications. Thus we need only change the partial maps be-
tween direct summands of the same type, and we need only consider maps
between matrix algebras over the same dimension drop (7*-algebras. But we
must take care to make the changes so that the limit algebra remains simple.
For the last purpose we take dense sequences {ti} and {^} on the circle and
the interval, respectively. Consider two of the relevant partial maps,

if: C(T) 0 Mn -^ C(T) (S Mm

and

^:Mn(lk)-^Mm(lk).

Since the total number of direct summands tends to oo and the Ko-group is
a simple dimension group, we may suppose, after a compression of the given
sequence, that there are projections p G C(T) ®Mm and q G M^(I^) such that

rank(p) > 2n, 2-7 rank(p) < m
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and

rank(g) > 2n, 23 rank(g) < m

and such that

y(a)p = py(a), a € C(T) 0 Mn

and

^(a)g=^(^ aeMn(lk)'

Note that qMm(S-k)Q contains a copy of

M^fe) © Mn(lk) ® • • • © M^(ijQ

^^ times

as a unital (7*-subalgebra. Define '0i: Mn(S.k) —^ Mn(lk) ® Mn{lk) © • • • ©
M^(^) by

^(/)M-(/WJ(^),...J(^))

and consider ^i as a unital *-homomorphism into qMm^k}^' The new partial
map ^/, replacing ^ in Aj, is then given by

^( /)=W)(l-g)+^i( / ) .
To change y? we proceed in essential the same way. pC(T) (g) Mmp contains a
copy of

C7(T) 0 Mn © C(T) (g) Mn (S " ' ® C(T) 0 M^

™k(p) timesn

as a unital (7*-subalgebra, and we define (/;i: (7(T) (g) M^ -> C7(T) (g) M^ ©
C(T) 0 Mn © • • • ® C(T) 0 M^ by

^i(/)(^) = (/(^)J(^),...J(^)).

The new partial map (//, replacing y in Aj, is then given by

^( /)=W)(l-g)+^i( / ) .

It is now straightforward to see that lim(^, A'-) is simple and that the Elliott
invariant of this algebra is (A, r, G, H).

To handle the case of a general H we use that H = (J^ H.n where each Hn is
finitely generated. By the first part of the proof we may choose simple unital
inductive limits of finite direct sums of circle algebras and matrix algebras over
dimension-drop C7*-algebras, Am such that (T(A^), rAn^Ko(An)^K^{An)) ^
(A^C?,^). From Corollary A2 of Chapter 7 we conclude that there are
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CHAPTER 9. THE RANGE OF THE ELLIOTT INVARIANT 109

unital *-homomorphisms pn: An —^ An+i such that p^: T{An+i) -> T(An},
Pn^'' Ko(An) —^ Ko(An-^i) are both identity maps when T(Ayi+i) and T(An)
are identified with A, and Ko(An-{.i) and Ko{An) are identified with G. In
addition, we can arrange that pn^: K\{An) —> K\{An-^\) is the inclusion Hn C
Hn+i (under the identifications K\{An) = Hn and ^(Ayi+i) = Hn-^-i)- Set
A = lim(Ayi,/?yi). By continuity of the Elliott invariant we have that

(T(A),rA^o(A),A:i(A)) ^ (A,r,G,ff),

as desired. A is simple because each An is. The fact that A itself is the
inductive limit of a sequence of finite direct sums of circle algebras and matrix
algebras over dimension-drop (7*-algebras follows from [LI], Theorem 6.2 and
Theorem 3.8. D

SOCIETE MATHEMATIQUE DE FRANCE 1997



s



CHAPTER 10

THE NON-UNITAL CASE

In this chapter we show how our main result can be adopted to cover the non-
unital simple inductive limits of finite direct sums of building blocks of type 2.
The main idea behind the approach appeared in [Th8]. For any (7*-algebra A
with an approximate unit of projections we denote by TA the set of lower semi-
continuous densely defined traces on A. We endow TA with weakest topology
such that the functional TA 3 T \—> r(a) is continuous for every positive element
a of A which is dominated by a projection. This topology is Hausdorff because
A has an approximate unit consisting of projections.

LEMMA 10.1. — Assume that A is simple and that e e A is a non-zero pro-
jection. Then {r E TA '' r(e) = 1} is compact in TA and the restriction map
-R^r) = r\eAe lls an f^ffi^ homeomorphism from {r € TA '" r(e) = 1} onto
T(eAe).

Proof. — See Lemma 3 of [Th8]. D

Since every element r C TA extends canonically to Mn{A) for all n, we can
define a map

FA: TA -^ Hom+(A:o(A),R) = [p C Hom(^o(A),R) : ̂ (A)^ C [0,oo[}

by

^(^([p] - b]) = ̂ (P) - ̂ (^

where p^ q are projections in (J^ M^(A).

LEMMA 10.2. — Let A be a unital simple inductive limit of finite direct sums
of building blocks of type 2. Let p E A be a non-zero projection in A. The
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inclusion pAsaP C Asa and the map U(pAp) -> U(A) given by u ̂  u + (1 -p)
induce isomorphisms

AffT(pAp)/Ko(pAp) -^ AffT(A)/A:o(A),

U(pAp)/DU(pAp) -^ U{A)/DU(A) and
K^pAp)^Ki(A)

such that

0 ——> ^ST(pAp)/Ko(pAp) -XPAP^ U(pAp)/DU(pAp) ̂ ^ K^pAp) ——> Q

0 ————> AffT(A)/Ko(A) ——^——, U{A)/DU(A) ^ ) K,(A) ———> Q

commutes.

Proof. — It is straightforward to check that the diagram commutes and it
is wellknown that K^(pAp} -^ ATi(A) is an isomorphism. Furthermore, it is
easy to see that AST(pAp)/Ko(pAp) -^ AffT(A)/^o(A) is an isomorphism,
e.g. by using Lemma 10.1, and the wellknown fact that pAp C A induces
an isomorphism K^pAp) ^ Kp(A). Then Lemma 6.4 (or the three lemma)
implies that U(pAp)/DU(pAp) -^ U(A}/DU{A) is an isomorphism. D

It should be observed that the isomorphism

U{pAp)/DU(pAp) -^ U(A)/DU{A)

is not isometric (with respect to the natural metric).

THEOREM 10.3. — Let A and B be simple inductive limits of finite direct
sums of building blocks of type 2. Assume that (po: Ko(A) -> Ko(B) is an
isomorphism of scaled dimension groups, y?i: ATi(A) -^ K^B) an isomorphism
of groups and VT'' TB —^TA an affine homeomorphism such that

TA o VT{^)(x) = rB^)(yo{x)), x € ATo(A), u G TB.

It follows that there is a ^-isomorphism y: A —^ B such that

^ = vo on Ko(A),

y?* = (pi on K\ (A) and

roy?=^(r), r eTa.
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Proof. — Except for considerations regarding KK and U/DU the proof is
identical to the proof of Theorem 4 in [Th8]. By [RS] we may choose a KK-
equivalence a € KK(A^ B) such that a^ = (fo ® ^p\ on Ko(A) © K\{A). Since
A and B have cancellation of projections it is easy to construct sequences
Pi < P2 < P3 < ' ' ' and q\ < q^ < 93 < • • • of projections which form
approximate units in A and B, respectively, such that

^o(N) = fed
for all i. Let ai G KK(piAp^ qiBqi) be the image of a under the isomorphism
KK{A^B) ^ KK (piApi ^ qiBqi) induced by the inclusions piApi C A and
qiBqi CB. Let

Si: U{pi-iApi^)/DU{pi^Api^) -^ U(piApi)/DU{piApi)

and

T,: U{qi^Bqi^)/DU{qi^Bq^) -^ U(qiBqi)/DU(qiBqi)

be the isomorphisms given by Lemma 10.2. By recursive application of Theo-
rem A in Chapter 7 we can construct unital ^isomorphisms ̂ : pzApi -> qiBqi
such that

^* =Rp,o^ToRq^

^oSi=Tio^_,

on U(pi--iApi-i)/DU(pi^Api-i) and

[^op] = ̂ {ai)

in KK^D^qiBqi) for any unital *-homomorphism IJL'. D —^ pzApi defined on a
finite direct sum of building blocks of type 2. After conjugation with unitaries
from qiBqi we may assume that ^(j^-i) = qi-\ for all %. Consider the infinite
diagram

pi Api

^i
\- /

giBgi c 92^2 c q^Bq^ c

where \i is the inverse of ^%+i[^B^ fo1' all %. It follows from Theorem B
of Chapter 7 that \i o ̂  is approximately inner equivalent to the inclusion
piApi C pi^Api^ and that ^4-1 o A^ is approximately inner equivalent to the
inclusion qiBqi C g^+iB^+i for all i. So by conjugating the ̂ s and the A^s
by suitable unitaries from their target algebras we can make the above diagram
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into an approximate intertwining in the sense of [El]. Hence this diagram gives
rise to an isomorphism (p: A —> B with the stated properties. D

It is also possible to extend Theorem 9.1 to the non-unital case and we refer
the reader to [Vi] for this. Visoiu only handles the case of circle algebras, but
her methods carry over to building blocks of type 2 without trouble. As in the
unital case the only new feature, when compared to the circle algebra case, is
the possibility of having torsion in the AFi-group.

It is less obvious how the other results from Chapter 7, Theorem A and
Theorem B, should be generalized to the non-unital case.
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CHAPTER 11

QUALITATIVE CONCLUSIONS

THEOREM 11 .1 . — Let A be a unital and simple inductive limit of a sequence
of finite direct sums of building blocks of type 2. Then

1. A is the inductive limit of a sequence of finite direct sums of circle algebras
if and only if K^{A) is torsionfree.

2. A is the inductive limit of a sequence of finite direct sums of interval
algebras if and only if K-^(A) is zero.

3. A has real rank 0 if and only if TA'- T(A) -> SKo{A) is injective.
4. A is an AF-algebra if and only if A has real rank zero and K-^(A) = 0.
5. A is the inductive limit of a sequence of finite direct sums of interval

algebras and matrix algebras over dimension-drop (7* -algebras if and only
if K\{A) is a torsion group.

Proof
1. Since a circle algebra has torsionfree J^i, the necessity of the condition is

obvious. On the other hand, ifJ^i(A) is torsionfree, then the Elliott invariant
of A is also exhibited by a simple unital inductive limit of a sequence of direct
sums of circle algebras by Theorem 4.2 of [VI]. By Theorem C of Chapter 7,
A is then isomorphic to that algebra.

2. Again the necessity of the condition is obvious and the reversed implica-
tion follows in a similar way by using Theorem 3.2 of [VI].

3. If A has real rank zero, A is the closed linear span of its projections
and hence TA is clearly injective. The reversed implication can be proved in
two ways (at least). The first is almost identical to the previous reasoning;
one simply combines Theorem C of Chapter 7 with Theorem 8.3 of [El]. The
second way is to combine Theorem 5.1 here with Theorem 1.4 of [BKR].
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4. The necessity is clear and the reversed implication can again be obtained
in different ways. One is to combine Theorem C of Chapter 7 with the theorem
of Effros, Handelman and Shen [EHS]. The other is to use 1. or 2. in
combination with [El].

5. Since the K\ -group of an interval algebra is 0 and the K\ -group of a
dimension-drop (7*-algebra is finite, the condition is clearly necessary. For
the converse, observe that the proof of Theorem 9.2 can easily be modified
to show that the Elliott invariant of a given A whose T^i-group is a torsion
group can also be realized by a simple unital inductive limit of a sequence of
finite direct sums of interval algebras and matrix algebras over dimension-drop
(7*-algebras. Apply Theorem C of Chapter 7. D

In [Th7] it was shown that a unital inductive limit of a sequence of circle
algebras is an inductive limit of interval algebras if (and only if) K\ is zero,
also in the non-simple case. It is therefore natural ask if the conclusion 'K\ (A)
torsionfree =^ A is the inductive limit of a sequence of finite direct sums of
circle algebras' also holds for a non-simple unital inductive limit of a sequence
of finite direct sums of building blocks of type 2. That this is not the case can
be seen from the following example.

EXAMPLE 11.2. — For each n G N, n > 2, set

A ^ = { / G C 7 ( T ) ® M ^ : / ( l ) e C } .

Let A^ be the unique one-dimensional irreducible representation of An and
define ̂ : An -^ An-^-i by ̂ (/) = diag(/, A^(/)). Then A = Im^Ay,, ̂ ) has
ATi(A) ^ Z and (ATo(A),[l]) c^ (Z.I) as partially ordered groups with order-
unit. It is easily see that if A was an inductive limit of a sequence of finite
direct sums of circle algebras, A would have to be the limit of a sequence of
the form (7(T) —^ C(T) -> (7(T) —^ - • • which is of course not possible since A
is not abelian. If we instead set y-n{f) == diag(/ o ^,A^(/)), where g : T —)- T
is some homotopically trivial continuous and surjective map which takes 1
to 1, then the inductive limit will have trivial J^i-group, but can not be the
inductive limit of a sequence of finite direct sums of interval algebras. Hence
the conclusion 'jRTi(A) •= 0 =^ A is the inductive limit of a sequence of finite
direct sums of interval algebras5, does not extend to the class of (non-simple)
inductive limits of a sequence of building blocks of type 2.

Despite the preceding example we have the following result.

THEOREM 11.3. — Let A = lim(An,^pn) be a unital inductive limit of a se-
quence of finite direct sums of building blocks of type 1 and let Q denote the
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universal UHF-algebra (the one with KQ(Q) = Q)). Then A(g)Q is a the induc-
tive limit of a sequence of finite direct sums of circle algebras.

For the proof we need the following

LEMMA 11.4. — Let A = A(n,di,d2?--. ̂ 7v) and B = A(m, 61,62, . . . ,6^)
be building blocks of type 1 and let y: A —^ B be a unital ^-homomorphism.
There is then a natural number D and a unital ^-homomorphism ̂ \ C(T) 8)
Mn —^ B®MD such that^A is approximately unitarily equivalent to ̂ 01^-

Proof. — We may assume that y is of the standard form described in Chapter
1, i.e. is given by ri, r2 , . . . , r^ € N and /^: [0,1] —^ T, i = 1 , 2 , . . . , L with the
stated restrictions. Choose D € N so large that

m/ei | -D, n/dk \ D and m/ei \ r^d^D/n^

k = 1,2,. . . , N , i = 1,2,.. . , M. Let
N

Ki: [0,1] —> T, i = 1,2, . . . , Dm/n = DL + ̂  r^Djn,
k=i

be a tuple a continuous functions containing D copies of ^, % = 1,2,... ,L,
and rkdkD/n copies of the constant function a^, k = 1,2,. . . , N. Because the
multiplicities are m/e^-divisible for all i there is a unitary u G C7(T) (g) Mpy^
such that

u(t) diag(/(M(^)), /(^(^)),..., /(^m/nM))^M*^ C [0,1],

defines an element of Mp(A(m, e i , . . . , CM)) for all / G (7(T) 0 Myi. If we let
^: (7(T) (g) Myi -> Mj^(A(M, e i , . . . , e^)) be the corresponding *-homomorph-
ism, then Z^\A is approximately unitarily equivalent to y 0 ^-MD by Theorem
1.4. D

Proof of Theorem 11.3. — Let A be the inductive limit of the sequence A\ -^4
As —^ AS —^ • • • of finite direct sums of building blocks of type 1 with
unital connecting *-homomorphisms. By applying Lemma 11.4 inductively,
we construct a sequence D^ i € N, in N such that Di\D^ for all i and an
infinite diagram

T\^- ( A \ ̂ 10T1 HT ( A \ ^20T2 y?3^>T3M^(Ai) ——>MD^W ——>MD^A^)
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where the B^s are finite direct sums of circle algebras, the A^s, the JL&^S and
^iS are unital *-homomorphisms and r^: Mj^ —> MD^ is the standard unital
homomorphism. The diagram commutes in the sense that ̂  = A^+i o /^ and
/^ o A% is approximately inner equivalent to ̂  0 r^ for all i. It follows that the
inductive limits of the two horisontal sequences are isomorphic, see Theorem
2.2 of [El]. The limit of the upper sequence is of the form A 0 (UHF). Since
A 0 Q = A 0 (UHF) 0 Q? it follows that A 0 Q is *-isomorphic to the limit
of the sequence (Bi 0 Q^i 0 %rio) which is clearly the inductive limit of a
sequence of finite direct sums of circle algebras. D

We now turn to the non-stable K-theory, in the sense of [Thi], i.e. to the
calculation of the homotopy groups of the unitary group U(A). We want to
show that the approximate divisibility, which now plays a prominent role in
the classification program, also has important consequences for the non-stable
AT-theory. If A is a finite direct sum of building blocks of type 2, then the
natural map 71-0 (?7(A)) -^ K-^(U{A)) is an isomorphism. Therefore the same
conclusion holds when A is a unital inductive limit of building blocks of type
2. We show that a similar conclusion holds for the higher homotopy groups,
7r^(£/(A)), k > 1, whenever A is approximately divisible.

LEMMA 11.5. — Let A and B be unital C*-algebras with A approximately
divisible. Then the minimal (7* -tensor product A(^B is approximately divisible.

Proof. — Let F C A 0 B be a finite subset, n G N a natural number and
e > 0. For each / € F there is a finite sum

TRf

J^a((Sb{
i=l

of simple tensors such that
mf

y-^a((Sb(\\<-
i=i z

By the approximate divisibility of A there is a finite-dimensional C'*-subalgebra
AQ c^ ® ^ i Mn, of A such that nj > n for all j and

my

^||&Jl|dist(a{,AonA) < ,
j=i z

for all /, i. Set By = AQ (8 1 and note that
mf

dist(^ a{ 0 b{, B'Q n A 0 B) < .
i=l z
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D

THEOREM 11.6. — Let A be a unital approximately divisible C* -algebra. Then
A®B is K-stable in the sense o/[Thl] for all (7* -algebras B. f0 denotes here
the minimal C*-tensor product.) In particular,

/ - r r / ̂  f^o(A) when k is odd,7rk{U(A)) c^ <
v V / / I -J-T- / A \ -I -I •lKi(A) when k is even.

Proof. — The proof is modelled on the proof of Theorem 4.5 of [Thi]. By
Lemma 3.2 of [Thi] it suffices to prove that the canonical *-homomorphism
A ( S ) B — > J C ^ ) A ^ ) B induces a group isomorphism

fc_i(A(g)B) —)-A;-i(/C(g)A(g)B) = Ki{A®B)

for all B. Let B^~ be the (7*-algebra obtained by adding a unit to B. There is
then a split-exact sequence

O^A(g)B-^A(g)B+^A^O.

By applying the half-exactness of k-\ and K\ to this extension, it follows that
we need only consider the case where B is unital. Furthermore, by Lemma
11.5, A ® B is approximately divisible when A is, so we need only show that
the canonical *-homomorphism A —^ /C0A induces an isomorphism A;_i(A) ^
K\{A). Fix a k G N. We must show that the map

U(A) 3 u ̂  diag(n, 1 , 1 , . . . . 1) € U{Mh(A))

induces an isomorphism 7To(?7(A)) —>- 7ro(!7(M^(A))). Surjectivity: Let w be a
unitary in Mk{A). Since A is approximately divisible there is a finite dimen-
sional unital (7*-subalgebra ©^My^ c^ F C A with rii > k for all %, and a
unitary wi G M^(A D I71') such that

||w — wi|| < 1.

In particular, w\ is homotopic to w. Let e^, i = 1,2,... ,^V, be the minimal
non-zero central projections in F. Then

N
AnF'^^M^^),

i=l

where Bi = ei{Ar\F'). Thus it suffices, as far as the surjectivity is concerned,
to show that for any unital (7*-algebra B and natural number n > &, a unitary
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u G Mk 0 Mn 0 By which commutes with 1 0 M^ 0 1 C M/fc 0 Myi 0 .£? is
homotopic to a unitary of the form

diag(^l , l , . . . , l )eMfc(M^0B)

for some unitary v € Mn(B). Since ZA commutes with 1 0 Myi 0 1, it has the
form

u = diag(5,5,..., s) C Mn(Mk 0 B)

for some unitary 5 € M^^B. By standard arguments n is therefore homotopic
to

diag(^,l , l , . . . , l )GA^(A40B).

This shows that if we consider Mk 0 M ;̂ 0 jE? © C as a unital (7*-subalgebra of
M^ 0 Myi 0 B in the natural way, by using that n > fe, then ^ is homotopic to
a unitary of the form

(^i,l) eMkSMk(SB@C.

In fact, if we let e be a minimal non-zero projection in Mk, then

u^ = u^ + 1 — 1 0 e 0 1,

where 1^2^ = z^2 = 1 0 e 0 1. The "flip" ^-automorphism of M^ 0 Mjfc 0 B
which exchanges the two copies of Mk is homotopic to the identity so we see
that u\ is homotopic in the unitary group of Mk 0 Mk 0 B to a unitary ^3 of
the form

^3 = 1 4 + 1 — e 0 l 0 l

where ^4^ = 1̂ 14 = e 0 1 0 1. Since u^ is homotopic to (in fact equal to, if
the projection e is chosen right) a unitary of the form

diag(z;,l,l,...,l) eMk(Mn^B)

for some unitary v € M^(5), we have established the surjectivity.
Injectivity: Let u^v be unitaries in A such that diag(zA, 1,1,..., 1) and

diag('y, 1,1,..., 1) are homotopic in the unitary group of Mj^(A) for some
k G N. We must show that u and v are homotopic in U{A). Let

7:[0,1]—>£/(A4(A))

be a path of unitaries connecting diag(n, 1,1,.... 1) to diag(^, 1,1,.... 1). By
using that (7[0,1] 0 A is approximately divisible by Lemma 11.5, we can find
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a finite dimensional unital C*-subalgebra
N

©M^FCA
i=l

with HI > k for all i and a path 7' of unitaries in M^{A H F') such that

sup ||7'(t)- 7(^)11
<

is as small as we want. After a subsequent perturbation we may arrange that
7'(0) and 7'(1) are of the form

diag(^i, 1,1,..., 1) G M^(A H F')

and

diag(^U,. . . , l)cA4(AnF'),

respectively, where ||n—^i|| < 1 and H ' y — ' y i H < 1. Since u and v are homotopic
in U(A) to u\ and 'yi, respectively, it suffices to show that u\ and v\ are
homotopic in U{A). With the same notation as above we have that

N
M^HA^^QM^Mn^Bi)).

i=l

Thus, for the present purpose, it suffices to consider a unital C*-algebra B, a
natural number n > k and unitaries u^v G B, such that

diag(n, l , l , . . . , l )

is homotopic to

diag(^ 1,1,..., 1)

within the unitary group of M^(g)B, and show that l(^u € Mn®B is homotopic
to 1 (g) v in U(Mn ® B). But 1 (g) ^ and 1 0 z; are homotopic in the unitary
group of Mn(B) to

diag(^ n , l , l , . . . , l )=diag(^, l , l , . . . , l ) n

and

diag(^, l , l , . . . , l )=diag(^l , l , . . . , l )n ,

respectively, and these two unitaries are homotopic since diag(n, 1,1,..., 1)
and diag('y, 1,1,.... 1) are homotopic in the unitary group of M^(B). D
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COROLLARY 11.7. — Let A be a simple unital inductive limit of a sequence
of finite direct sums of building blocks of type 2. Then

7Tk(U(A 0 B)) ̂  [KQ{A 0 B) when k is odd^
\K\ (A ® B) when k is even

for every unital C*-algebra B.

Proof. — A is approximately divisible by Theorem 5.1, so Theorem 11.6 ap-
plies. r-i

By using approximate divisibility we also obtain an alternative calculation
of the homotopy groups of the unitary group of a nonrational noncommuative
torus.

COROLLARY 11.8 ([Rf, Theorem 3.4]). — Let A be a nonrational noncom-
mutative torus. Then

7r,((7(A ®B)}^\ KO{A 0 B) when k is odd-
[^i(A 0 B) when k is even^

for every unital C"-algebra B.

Proof. — A is approximately divisible by [BKR], Theorem 1.5, so Theorem
11.6 applies. Q
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