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SPECTRAL PROPERTIES OF SELF-SIMILAR LATTICES
AND ITERATION OF RATIONAL MAPS

Christophe Sabot

Abstract. — In this text we consider discrete Laplace operators defined on lattices
based on finitely-ramified self-similar sets, and their continuous analogous defined
on the self-similar sets themselves. We are interested in the spectral properties of
these operators. The basic example is the lattice based on the Sierpinski gasket. We
introduce a new renormalization map which appears to be a rational map defined on
a smooth projective variety (more precisely, this variety is isomorphic to a product of
three types of Grassmannians: complex Grassmannians, Lagrangian Grassmannian,
orthogonal Grassmannians). We relate some characteristics of the dynamics of its
iterates with some characteristics of the spectrum of our operator. More specifically,
we give an explicit formula for the density of states in terms of the Green current
of the map, and we relate the indeterminacy points of the map with the so-called
Neumann-Dirichlet eigenvalues which lead to eigenfunctions with compact support
on the unbounded lattice. Depending on the asymptotic degree of the map we can
prove drastically different spectral properties of the operators. Our formalism is valid
for the general class of finitely ramified self-similar sets (i.e. for the class of p.c.f.
self-similar sets of Kigami). Hence, this work aims at a generalization and a better
understanding of the initial work of the physicists Rammal and Toulouse on the
Sierpinski gasket.
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Résumé (Propriétés spectrales des réseaux auto-similaires et itération d’applications ra-
tionelles)

Dans ce texte, nous considérons le laplacien discret, défini sur un réseau construit &
partir d’un ensemble auto-similaire finiment ramifié, et son analogue continu défini sur
I’ensemble auto-similaire lui-méme. Nous nous intéressons aux propriétés spectrales
de ces opérateurs. L’exemple le plus classique est celui du triangle de Sierpinski (Sier-
pinski gasket) et du réseau discret associé. Nous introduisons une nouvelle application
de renormalisation qui se trouve étre une application rationnelle définie sur une variété
projective lisse (plus précisément, cette variété est un produit de grassmanniennes de
trois types : grassmanniennes classiques, grassmanniennes lagrangiennes, grassman-
niennes orthogonales). Nous relions certaines propriétés spectrales de ces opérateurs
avec la dynamique des itérés de cette application. En particulier, nous donnons une
formule explicite de la densité d’états en termes du courant de Green de ’application,
et nous caractérisons le spectre de Neumann-Dirichlet (qui correspond aux fonctions
propres a support compact sur l'ensemble infini) a I’aide des points d’indétermination
de ’application. Suivant le degré asymptotique de 1’application nous pouvons prou-
ver que les propriétés spectrales de I'opérateur sont trés différentes. Notre formalisme
s’applique a la classe des ensembles auto-similaires finiment ramifiés (ou autrement
dit a la classe des « p.c.f. self-similar sets » de Kigami). Ainsi, ce travail généralise et
donne une compréhension plus profonde des résulats obtenus initialement par Rammal
et Toulouse dans le cas du triangle de Sierpinski.
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INTRODUCTION

In this text we investigate the spectral properties of Laplace operators defined on
hierarchical lattices based on finitely ramified self-similar sets, and their continuous
analogs. The basic example is the lattice based on the Sierpinski gasket. These
operators have much to do with the operators considered in the context of Schrodinger
operators with random or quasi-periodic potential. Here, the disorder is not in the
potential but in the lattice itself. It is well-known that in the context of Schridinger
operators on the line the spectral properties are intimately related to the dynamics of
the propagator of the underlying differential equation (cf. for example [8], [33]). In
comparison, in our models we will show that the characteristics of the spectrum of
our operator are related to the dynamics of the iterates of a certain renormalization
map that we explicitly define and that appears to be a rational self-map of a compact
complex manifold.

The interest in such lattices and in their spectral properties comes from physicists
(cf. [35], [34], [1] and [4]) because they present interesting computable models, with
peculiar properties. In [35], [34], on the particular lattice based on the Sierpinski
gasket, Rammal and Toulouse discovered interesting relations between the spectrum
of the discrete Laplace operator and the dynamics of the iteration of some rational
map on C. More precisely, they exhibited a polynomial map on C that relates the
spectrum of the operator on successive scales: they remarked that if A is an eigenvalue
at level m + 1 then A(5 — \) is an eigenvalue at level n. Traditionally, this law was
called the spectral decimation of the Sierpinski gasket, 7.e. this terminology reflects
the existence of a 1-dimensional map that relates the spectrum of the operator on
successive scales. Starting from this, Rammal ([34]) gave a fairly complete description
of the spectrum of the discrete operator on this lattice. In particular, he computed
explicitly the eigenvalues and showed the existence of the so-called molecular states
(that we call Neumann-Dirichlet eigenfunctions in this text) which are eigenfunctions
with compact support. This was made rigorous and generalized to the continuous
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operator defined on the Sierpinski gasket itself by Fukushima and Shima (cf. [19]).
The spectral type of the operator on the Sierpinski lattice, has been analyzed by
Teplyaev, cf. [49].

In general, the spectral decimation that works for the Sierpinski gasket is not valid,
and the question of generalizing the initial work of Rammal remained unsolved. In
[20] a class of lattices for which the spectral decimation works is exhibited. In [38],
for the particular example of a Sturm-Liouville operator defined on R, the author
made explicit some relations between the spectral properties of the operator and the
properties of the dynamics of the iterates of a rational map; this map is no longer
1-dimensional but is defined on the 2-dimensional projective space.

This text aims at a generalization of these previous works. Besides the interest of
the generalization, this brings new understanding of the models. In particular, the
renormalization map involved is now multidimensional and certain notions which are
specific to the dynamics in higher dimension and which were hidden in the case of
the Sierpinski gasket (where the renormalization map involved was 1-dimensional),
such as the notion of indeterminacy points (which corresponds to the singularities
of the map), the degree of the iterates, enter the discussion and play an important
role. In comparison with our previous work, [38], the main progress that allows us
to handle the general case is the construction of a new renormalization map. This
renormalization map is a rational map defined on some compact Kéhler manifold. It
is of the type of the maps considered in [13], [12], and our techniques rely heavily
on recent works of Fornaess Sibony, Diller Favre, Guedj (cf. [45], [16], [13], [12],
[14]) on the dynamics of rational maps in higher dimensions. It is interesting to note
that many of the key notions in this field (such as the degrees of the iterates, the
indeterminacy points, the Green current) find a significance related to the spectral
properties of our operators. In particular, we are able to give an explicit expression
for the density of states in terms of the Green current of the map and we prove that
the molecular states of Rammal (called Neumann-Dirichlet eigenvalues in the text)
correspond exactly to the indeterminacy points of the map.

Since the text is long, we first describe the model and our results on the par-
ticular example of the lattice associated with the Sierpinski gasket. Let F' C C,
F = {0, 1,% + z@}, be the vertices of a unit triangle, and ¥;, W5, U3 be the three
homotheties with ratio % and centers the points 0, 1, % + z‘/Tg
known that there exists a unique proper subset X of C self-similar with respect to
Uy, Uy, Uy, d.e. such that X = U?_,¥;(X), and that it is the celebrated Sierpinski
gasket, represented on Figure 1.

, respectively. It is well-

Fix now a sequence w € {1,2,3}", called the blow-up, and define Xy = X and
Xy =Tyl o0 (X))

w1

It is clear that X, is an increasing sequence of sets and that X,y is a scaled
copy of X that contains X,y as one of the three subcells; more precisely, we have
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FIGURE 1

Xy =95 o000 (T, (X)), which is clearly a subset of X(, ). Remark

that the position of the cell X,y in X, for n > p depends on the blow-up w. We
then set

Kooy = Unz=oX(n)-
We define the boundary of X, by 0X ) = F and
8X<n> =0 lo...0 \II;i(F)

w1

There is a natural discrete sequence of lattices associated with this structure. The
lattice at level 0 is Figy = F, the vertices of the unit triangle in X . The lattice at
level n, is the set of vertices of the unit triangles in X,y. More precisely,

Fly =0, o oW U, 5, W) 000 (F)).

w1

The position of Figy in the lattice at level n depends on w, and we represent on figure 2
the lattice at level 4, F;. The bolded small triangle is the set Fioy for the blow-up
starting from (w1,...,ws) = (1,1,1,1) on the left and (1,3,1,2) on the right. The
sequence F,) is increasing and we set

Floo) = UnZoFlny,

and 8F<n> = 8X<n>

It is important to realize that the infinite lattices Fy obtained from different
blow-ups w and w’ are a priori not isomorphic (except when w and w’ are equal
after a certain level). To understand this, one can compare the constant blow-up
(1,...,1,...) with a non-stationary blow-up: the first one contains a point with only
2 neighbors (which is the point 0, center of the homothety ¥;), on the second one all
points have 4 neighbors (indeed, the boundary points 9F;, are sent to infinity when
n goes to infinity).
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4 INTRODUCTION
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FIGURE 2

The aim of this text is to investigate the spectral properties of some natural Laplace
operator defined either on the infinite lattice Fiy or on the unbounded set X .
The class of lattices or self-similar sets we consider is issued from the class of finitely-
ramified self-similar sets (also called p.c.f. self-similar sets in [25]) described in section
1.1, and is much larger than the Sierpinski gasket. Although the classical examples
have a natural geometrical embedding, these sets are defined abstractly from a very
simple finite structure: one starts from a finite set F' and one constructs Fi;y as the
union of N copies of F', glued together according to a prescribed rule (represented
by an equivalence relation R on {1,..., N} x F), then Fy is defined as the union
of N copies of Fijy glued together according to the same rule, and so on. From this
discrete structure, one can construct an increasing sequence of sets F<n>, and also a
self-similar set X (cf. section 1.2 for precise definitions).

To take into account the eventual symmetries of the picture, we fix a group of
symmetries acting on each F,, (but in general not on F(,). For the Sierpinski
gasket we can see that the group G ~ S3 (S5 denotes the group of permutation of F')
of isometries of the regular triangle 0F\, leaves globally invariant the lattice Fi,,.
We fix this group G as the group of symmetries of the structure (i.e. this means that
we will only consider G-invariant objects).

Note that for consistency with the notations of the main text, we denote by N the
number of subcells of F;y. Here, we have N = 3.

We now define the type of operators we will consider in this text. We restrict to the
discrete setting in this introduction and we present the definitions only in the case of
the Sierpinski gasket. On F(,,, we define the difference operator A, as the operator
on RF defined by

(1) Ay f@) ==Y (fly) = f(@), VfeRm,

Y~z
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INTRODUCTION 5

where y ~ x means that y is in the same triangle of unit size as . The measure b,
is defined as the measure which gives mass 1 to the points of 0F,, and mass 2 to
the points in Fi,y \ 0F,). The choice of this particular operator and of this measure
comes from the fact that they are self-similar in the sense that A,y (resp. byy) is
the sum of N™ copies of the operator A, (resp. the measure b)) on each of the
small triangles of Fy,y). The operators we will be interested in are the operators H (';>
defined on R¥t by

1

It is clear that H Z;> is self-adjoint on L? (Finy, bny) and semi-negative. The operator
with Dirichlet boundary condition on 0F,y, H (:W is defined as the restriction to

{f € RFfm for,, = 0} of H(—:W and is self-adjoint on L2(F<n> N OF ), biny). The
+

measure b, and the operators H n

) naturally extend to a measure by on F and
to semi-negative self-adjoint linear operators Hi@ on L2(F<oo>,b<oo>).
There are two measures which play a crucial role in this text. The first one is the

classical density of states: for each n, denote by u?;w the counting measures of the

eigenvalues of H ffw. The density of states is defined as the limit

= i, S
(In general, this measure exists and does not depend on the boundary condition.)
The second measure is the measure that counts the asymptotic number of the so-
called Neumann-Dirichlet eigenvalues: we say that a function is a Neumann-Dirichlet
eigenfunction (or N-D eigenfunction for short) of H,y with eigenvalue X if it is both
an eigenfunction of H (‘;> and H (with eigenvalue A), i.e. if it is an eigenfunction
of H Z;w null on OF,y. These particular eigenfunctions play an important role since,
when extended to Fi.,) by 0, they are eigenfunctions with compact support of the
operators H <j<[>0> on the infinite lattice. One can define the counting measure of N-D

eigenvalues 1/82 ;3 and show that uf\[l £1> >N VZX f’ . This implies that the limit

pNP = lim —nyf\[f

exists and is pure point. We call it the density of N-D eigenvalues.
As we said before, the lattice F, depends on the particular choice of the blow-up

w, hence the topological spectrum X+ of H <ch>0) and the Lebesgue decomposition, L2

ac?
ESEC, Z?fp, of the spectrum of the operator on the infinite lattice H <j<[>0>

w. By contrast, the measures p and p™¥? do not depend on w (since the measures u?fw

a priori depend on
and I/gl ? obviously do not depend on w). In [40], we proved basic results regarding

the spectral properties of the operators H a) and, in particular, on their relations

with the measures p and uNP. First we showed that the topological spectrum %% (w)
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6 INTRODUCTION

and the Lebesgue decomposition X7, (w), 3% (w), ¥, (w) of the operators H(io) (w) (we
write X(w), ... to show the a priori dependence in the blow-up w) are constant almost
surely in the blow-up w, for the measure on {1,..., N} equal to the product of the
uniform measure on {1,..., N}. Hence, we can talk about the almost sure spectrum
and the almost sure Lebesgue decomposition of the spectrum of the operator H (jgo>.
We also proved that the almost sure spectrum is equal to the support of the measure
t, i.e. that we have ¥ (w) = supp(u) for almost all blow-up w (actually, our result
is more precise than this). Finally, we showed that when the density of states is
completely created by the N-D eigenvalues, i.e. when p¥? = y, then the spectrum of
H <j<[>0> is pure point with compactly supported eigenfunctions, almost surely in w.

So, the measures 1 and uV P give important information on the spectral properties
of the operators H £O>. Hence, these two measures deserve to be understood and our
aim in this text is to describe the relations that exist between these measures and the
dynamics of a certain renormalization map that we construct.

There are two renormalization maps, closely related, which play an important role.
We do not define precisely these maps in this introduction, we just describe some
of their properties. The first one, denoted by T', is defined on the space Sym%, the
space of G-invariant symmetric operators on C, and is a rational map (i.e. TQ,
for @ in SymG, is rational in the coefficients of @). For example, in the case of the
Sierpinski gasket SymG ~ C2: indeed, if W, is the space of constant functions on F
and W its orthogonal complement (for the natural scalar product on C'), then any
element of Sym® can be written thanks to 2 coordinates (ug,u1) € C? under the form
uop|w, + ui1pjw, where pyw, and py, are the orthogonal projections respectively on
Wy and W1. We do not define explicitly the map T in this introduction (cf. section 2
and 3.1), but this map is easy to compute; for example, in the case of the Sierpinski
gasket, in coordinates (uo,u1) we have T'(uo, u1) = 3(z/44 "ggﬁ":utl) ). This map is
the one that was considered in earlier work of the author, [38]; it is also very closely
related to the renormalization map that was introduced initially by Rammal and
Toulouse in the case of the Sierpinski gasket. The iterates of this map contain some

information on the spectrum of the operators on the n-th level lattice H(ﬁ)‘ This
explains why it was useful in the understanding of the spectral properties of these
operators.

Nevertheless, this map fails to give enough information. The main progress in this
text is the construction of a new renormalization map defined on a bigger space: more
precisely, it is defined on a projective space that contains SymG as a smooth subvariety
and it coincides with 7 on Sym®. We consider two sets of variables (7, )zcr and
(Nz)zer, and the Grassmann algebra generated by these variables (i.e. the algebra
generated by (7, )zcr and (7:)zer, with the relation of anticommutation between
all these variables). We denote by A the subalgebra generated by the monomials
containing the same number of variables 77 and 7. We also denote by P(A) the
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INTRODUCTION 7

projective space associated with A and by 7 : A — P(A) the canonical projection.
We set

M= Y Quyluny

x,yeF?2

for any F x F matrix Q. Then there is a natural embedding of Sym® into P(A) given
by

Q — (exp7Qn),

where exp denotes the exponential of the Grassmann algebra. We denote by L& the
closure in P(A) of Sym® (i.e. of the points of the type m(exp7Qn)). We can show
(cf. section 2.2) that LE is a smooth analytic subvariety of P(A) and it defines a
compactification of SymG. For example, in the case of the Sierpinski gasket L is
equal to P! x P! (and indeed, P! x P! is a compactification of C?). The key point in
our work is the following: we construct a homogeneous polynomial map R : A — A
of degree N. This map naturally induces a rational map on the projective space
P(A): a fundamental property of this map is that it leaves invariant the subvariety
LY c P(A), and thus induces by restriction a map g : L — L. Actually, the map
g coincides with 7" on the subset Sym® of L&. More precisely, we have the following
formula

g(m(exp(MQn))) = m(R(exp(MQn))),

when both expressions are well-defined. Hence, the restriction of the map ¢ to LE
extends T to the compactification L of SymG. The measures p and uV P are related
to the properties of the map R and g, and in particular, to the dynamics of the
restriction of g to LC.

Let us now state our main results. We define the Green function of R (introduced
by Fornaess and Sibony, cf. [45] or appendix B) as the function G : A — RU {—o0}
given by

G(z) = nh_}rgo % In||R"(z)|], VzxeA
The limit exists for all  in A and is a plurisubharmonic function (this essentially
means that G is subharmonic when restricted to a complex line). This function G
contains important information on the dynamics of the map induced by R on P(A).
We denote by p,(z), for x € LY, the order of vanishing of the restriction of the
function R"™ to LY (cf. section 3.2). Since R is homogeneous of degree N, we have
pnt+1(2) = Np,(x) and we set

poo(@) = Tim ~—po(2).

n—oo N7

SOCIETE MATHEMATIQUE DE FRANCE 2003



8 INTRODUCTION

We define ¢ : C — A by ¢(\) = exp7(A4g) — Ald)n. Theorem (3.6) gives the following
explicit expressions for p and p™NP

(3) §= iAGo¢,

(4) Z poo (5)\,

where A in (3) is the distributional Laplacian, and dy in (4) is the Dirac mass at A
(Poo(6(N)) is null except on a countable set of ’s, so that the sum (4) is well-defined).

In section 4, we investigate the structure of the Green function on 7 ~!(IL%). This
is important since the Green function G| -1(Le) is related to the dynamics of the
map g. On the other hand, we see from (3) and (4) that it is also related to the
measures g and pV?. The function G|x-1Le) is the potential of a unique closed,
positive, (1, 1)-current on L¢: precisely, if s is a local section of the projection 7 on
an open subset U C L% the current dd°G o s does not depend on s and defines a
positive closed current on all LS (c¢f. appendix, we recall that

ddCGOS——aaGos Za 5% (G o s)dz N dz,,
2i0%

where the derivatives are taken in the sense of distributions). The current S is inti-
mately related to the dynamics of the map g and to the structure of the measures p
and pVP. With the iterates of g we can associate an asymptotic degree do, (called
the dynamical degree, cf. section 4.3) and we show in theorem (4.3) that the following
dichotomy holds:

— If doo < N, then S is a countable sum of currents of integration on hypersurfaces
of LE. 1In this case puNP = pu, thus the spectrum is pure point with compactly
supported eigenfunctions, almost surely in w. (We also show that the number of
Neumann only eigenvalues, i.e. |u<tl> — ng ? |, grows like n?=).

— If doo = N, then the current S does not charge hypersurfaces; it is the Green
current of the map ¢g. In particular, it is null on the Fatou set of g. Moreover,
generically (in a sense made precise in theorem (4.3)), we have puN? = 0, i.e. there
does not exist N-D eigenfunctions.

Note that a similar dichotomy theorem was shown in [20] for the particular class of
decimable fractals, for which there exists a 1-dimensional renormalization map that
relate the spectrum on different scales (but the relation with the N-D spectrum was
not made).

Let us now make some remarks. The renormalization map we consider here is
not the same as the one considered in our previous work [38]. The introduction of
this new map is the key point that allows us to handle the case of lattices based on
general finitely ramified self-similar sets. In particular, this map is not defined on a
projective space. This induces several difficulties, for example, the notion of degree
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is more complicated and is related to the action of the map on some cohomology
groups. But there are several facts that seem to indicate that the map we consider
is the good renormalization map: the first one is that the indeterminacy points of g,
which have a crucial influence on the dynamical properties of g, have a clear meaning
in terms of the Neumann-Dirichlet eigenvalues of our operator. The second is that
the map g behaves well in the non-degenerate case, i.e. when doo, = N: to be more
precise, the map g is algebraically stable (¢f. definition in appendix), and this allows
us to define the Green current; this is not the case for other maps we could consider
(cf. section 4.5 where we compare different renormalization maps) and which are bi-
rationally equivalent to g. Finally, let us mention that considering expressions like
exp(77Qn) in the Grassmann algebra is very natural in the context of supersymmetry,
and that the theory of supersymmetry appeared to be very useful in the context of
random Schrédinger operators (cf. for example [28], [47], [51]).

The important question of determining the type of spectrum of the operator on
the infinite lattice remains largely open: with our techniques we are only able to
characterize a small part of the spectrum, namely the part of the spectrum which cor-
responds to compactly supported eigenfunctions (i.e. N-D eigenfunctions). It would
be very interesting to determine the almost sure type of the spectrum of the opera-
tor (for example, to determine whether it is continuous or purely punctual) in terms
of characteristic of the dynamics of the map (for example, in the spirit of Kotani’s
theorem where the Lyapounov exponent can characterize the type of the spectrum).
There are very few examples where results in this direction are known: in the case
of the Sierpinski gasket Teplyaev, cf. [49], gave fairly complete results (depending on
the blow-up); for a self-similar Sturm-Liouville operator on R we investigate the type
of the spectrum for different blow-ups, cf. [41]. Another interesting question would
be to consider random potential on Fi. (or random fractal lattices as in [23]) and
to determine whether Anderson localization occurs as for 1-dimensional Schrodinger
operators.

Let us now describe the organization of the paper. In the first part, we introduce the
models and recall three elementary results obtained in [40], concerning the spectrum
and the density of states. In the second part, we give some preliminary results,
which are crucial in the rest of the text. We introduce the Grassmann algebra and
the Lagrangian Grassmannian. The third part is devoted to the proof of the main
formulas (3) and (4). In the fourth part, we analyze the structure of the current S
on LY. Finally, in part 5 we illustrate our results by several examples. In the appendix
A, B, C, we recall some of the results from pluricomplex analysis and rational dynamics
that we need in the text. In appendix E, we describe the topological structure of G-
Lagrangian Grassmannians.

We treat both the lattice case and the case of operators defined on continuous
self-similar sets. For a reader not familiar with the subject it is better, upon a first
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reading, to skip the discussion of the continuous case which is of a more technical
nature.
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CHAPTER 1

DEFINITIONS AND BASIC RESULTS

1.1. Finitely ramified self-similar sets and associated lattices

We introduce here an abstract definition of the notion of finitely ramified self-
similar sets and of the associated lattices. Although all classical examples have a
natural geometrical representation we choose to present the abstract setting since the
procedure of construction is simple and natural. Let us describe it briefly: first choose
two integers N and N, 1 < No < N. The basic cell is Figy = F' = {1,..., No}. The
set at level 1 is defined as the union of N copies of F, glued together according to
a prescribed law R (formally defined as an equivalent relation on {1,..., N} x F).
In F{;y we define the boundary set 0F(;y as the set of points of the type (z,xz) for
x € F which can be identified with F' (if R satisfies some minor properties). Then we
define the set at level 2, Fi3), as the union of N copies of F; glued together by their
boundary points, 0Fy, according to the law R, and so on. To define the infinite
lattice we blow-up the structure, according to a sequence w in {1,... ,N}N, i.e. at
each level, F, is the sublattice wy 11 of Fiy,41y. To construct the self-similar set we
refine the structure instead of blowing it up. Let us now present precise definitions.

1.1.1. The lattice case. — Let N and Ny be two positive integers such that
1< Ny < N. Weset FF={1,...,No}. The set F will represent the basic cell and
N the number of cells at level 1. We suppose given an equivalence relation R on
{1,..., N} x F (this equivalence relation will describe the connections in the set at
level 1). For some reasons that will appear clearly later we assume that R satisfies

— (4, 2)R(i,y) implies x = y.

— The class of (4,4) for ¢ in F' is a singleton.

— For any (4,7) in {1, ..., N} there exists a sequence i; =4,...7, =4’ of {1,..., N}
such that for all k < p — 1 there exists j and j’ such that (ig, )R (ik+1,75).
We first give the formal definition of the infinite set Fo) and of its subsets Fi,,.
The lattice structure on these sets will be apparent only in section 1.2 and will be
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inherited from the discrete Laplace operator we construct on these sets. Let us fix
an element w = (wi,...,wk,...) in {1,..., N}N called the blow-up. As explained in
the introduction, the blow-up w describes how the sets Fl, fit into one each other.
Denote by ﬁ(oo> the set of backward sequences (..., j_x,...,j5-1,7)in{1,..., N}\x F
such that j_, = wy after a certain level. On ﬁ<oo> we define the relation R () given
by (ooy gk J1, ) Riooy (-, 3 gy -+ 5 511, 2") if and only if there exists ko such
that

(5) Jok =Ly, fork>ko+1,
(6) jok=z j =2, fork>1and k<ko—1,
(7) and (j*km'r) R (.j/—koaz/)'

Using the second property of R, we easily check that R . is an equivalence relation.
Then we define F) as the set Fiy quotiented by R(). The increasing sequence
of subsets Figy C -+ C Flpy C -+ C Floy is defined by

Fry = {(ooyJmkyevyjo1,2) € Fioo | jok = wy for all k = n}.
(N.B.: in the last expression and in the following, we simply write (..., j_k,...,j—1,2)
for the class of (...,j k,...,j-1,2) in Fio). It is clear that

F<00> = U;.LO:OFW)-
Denote by R, the equivalence relation on {1,... ,N}" x F exactly as R, i.e. by
(Jonseo oy J-1,8)Rny (Gps - -, 311, @) iff there exists ko < n for which (5), (6), (7)
are satisfied. In the definition of Fy,y we see that only the terms (j_,,...,j_1,)
count — the others are fixed to wy — and it is easy to see that Fy,y can be identified
with {1,...,N}" x F/R ). (More precisely, if F,, is defined as the set of points
(c.yj—ky...,x) such that j_p = wy for all k > n, then it is clear, thanks to the first
property of R, that the natural bijection © : F,,y — {1,..., N1}" x F, commutes with
R0y and Rpy, i.e. that XR ooy Y iff O(X)R,,y©O(Y). Hence, F(,,y can be identified
with {1,...,N}" x F/R,y.) For example, the set Fqy is equal to F and the set Fiy)
is equal to {1,..., N} x F/R. The boundary of the set Fyy is defined as
OFy = {(z,...,x) € Fyy, for some z in F' = {1,..., No}}.

Thanks to the second property of R, we see that 0F(,) can be identified with F’
(i.e. the map x € F' + (z,...,2) € OF, is bijective). The boundary set 0F . is
defined as

6F<Oo> = ﬂzo:O Um>n 5F<m>

= {(...,j_k,...,j_l,ac) S F(OO> |j—k =z for all k > 0}

We set Fuy = F(n} N 8F<n> and Flooy = F(oo} ~ 8F<oo>

REMARK 1.1. — By definition 0F # @ if and only if wy, is stationary to a certain
x in F: in this case 0F ) contains the unique point (..., z,..., ).

MEMOIRES DE LA SMF 92
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For all n, p and {i1,...,4p} in {1,..., N}? we set

Fngpysinysiy = 1U=(nap)s -5 3-1,%) € Fingpy | J—(mntp) = 15+, J—(nt1) = ip}-
It is clear that
Finy = Flntp) wnyprewnia
and that
Finip) = Uf\f,...,ip:1F(n+p>,i1,...,z'p~
In this sense, F(,4p) is the (non-disjoint) union of NP copies of Fi,y. The sub-
are called the (n)-cells of Fi,, ). It is clear that the (n)-cells
can only intersect by their boundary sets OF(,1p) 4,.....i, (with the obvious definition
aF(ner),il,...,ip = {(il, . ,’L'p,l', . ,LL’) S F(ner)a for x € F})

sets F(n+p),i1 .

ip

REMARK 1.2. — At this point we did not construct any lattice structure: the lattice
structure will be induced by the discrete Laplace operator we shall construct on F,
and Fi (in fact, as we shall see, two points will be neighbors for this operator if
they belong to the same (0)-cell).

To take into account the eventual symmetries of the structure we suppose given
a finite group G (eventually trivial) acting on {1,..., N} and leaving invariant the
subset F' = {1,..., No}. We suppose that the relation R is G-invariant, for the action
of G' on the product {1,..., N} x F. The relation R, is then clearly G-invariant
for the action of G on {1,...,N}"™ x F. Thus, the group G acts on the quotient
Fny, leaving globally invariant its boundary set 0F;,) (remark that if we consider
the action of G on Fl, ;1) then it does not leave the subset F{,, invariant in general.
For this reason there is no natural action of G on the lattice F(). This symmetry
group will play the following role: all the objects we will consider will be G-invariant,
in particular the discrete Laplace operator we will construct on F,.

1.1.2. The continuous (or fractal) case. — It is easy to construct a self-similar
set from the previous discrete structure. The definition we introduce here is a bit less
general than the classical definition of p.c.f. self-similar sets introduced by Kigami
(cf. [25]), but a bit more constructive. Formally, we define X as the set {1,..., N}N
quotiented by the equivalence relation ~ given by: (ji,...,Jk,-..) ~ (Jis -+ Jps---)
if and only if there exists an integer ko and two elements « and o’ in F = {1,..., No}
such that

(153 dko—1) = Lo+ -+ Jho—1):
jr =x and j, = 2’ for all k > ko + 1,
and (jkoax) R (jllcoax/)'

If we equip {1, ..., N} with the usual metric d given by d((jx), (j,)) = 1/2nfkis#ii}
then X is compact for the quotient topology (and metrizable). It is also easy to check
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that the third property of R implies that X is connected. The boundary set of X is
define as the set
0X ={(x,...,z,...), foraxin F}.
It is clear that X can be identified with F' thanks to the second hypothesis on R (so
we usually write 90X = F). We denote by ¥; : X — X the application
Wi((1,y e yin, -0 ) = (6,01, e yin, ... ).
Thanks to the first hypothesis on R, each ¥, is injective. We see that
X = UL, ¥i(X),
U(X)NT;(X)="9,(F)NT;(F), Vi#j.
Hence the set X is self-similar with respect to the injections ¥,;. From the second
relation we see that the connections between the subsets ¥;(X) of X are contained
in the image of F' by the application ¥;: this justifies that we consider F' as the
boundary of the set X. We now construct an infinite sequence of sets X C -+ C

Xy C -+ C X as in the discrete case. Remind that we fixed w in {1,.. .,N}N
called the blow-up. We set:

)~((oo> = {(j) € {1,..., N} | there exists ko > 0 s.t. j_p = wy, for all k > ko}.

Then we define X ) as the quotient of X (o) by the equivalence relation ~ () defined
exactly as ~, i.e. by: (jr)kez ~(o0) (J)rez if and only if there exists ko € Z and two
elements z and z’ in F

Jr = g for all k < ko — 1,
jr=x and j, = 2’ for all k > ko + 1,
and (jres ) R (i, @)
Then we set for alln >0
Xiny = {0k) € X(oo) | & = wy, for all k > n}.

It is clear that for X, only the terms (j_,,...) counts, thus the set X, can be
considered as the set {1,...,N }[_"’Oo) quotiented by the equivalent relation induced
by ~ (o) (and in the following we will represent the points in X,y only by the sequence
(j—ns---)). It is then clear that X, = X (actually all X, can be identified with
X, just by shifting the indices), and that

X(oo) = UnZoX (n)-
As in the discrete case we set
Xintp)in,ip = L) ke (n4p) € Xinp) | U=(ntp)s - > J=(m1)) = (i1, ip) }.
It is clear that

Xy = Xintp) wntpreownin
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and that the set X, is the non-disjoint union
X(n+p) = Ui, ipX(n+P>,i17~~~aip'
The boundary of X, is defined by

Xy ={(z,...,2,...), forazin F}.

We set )%<n> = X(ny N 0X(py. Finally we set
6X<00> = UZO:O Nm>n a*X<m)
={(r) € X(0) | jr = x for some x in F},
and )%(oo) = X(oo) AN 8X(OO>

REMARK 1.3. — Theset X,y (resp. X)) contains the discrete set F,,) (resp. Fi))
as the set of sequences (ji) such that ji = x for a  in F and all k¥ > 0. With this
identification we clearly have X,y = 0F,y and 0X oy = OF (o).

1.1.3. Geometric embedding. — All classical examples come from self-similar
sets which have a natural embedding in R?. We now describe how such a structure
appears in geometrical examples of self-similar sets. It is essentially related to the

property of finite ramification. Suppose given Wq,..., Uy, N strictly contractive
similitude of R? with different fixed points z1,...,zx. It is well-known that there
exists a unique proper subset X of R? such that

(8) X = UL 05(X).

The set X is compact and actually equal to the set of limits lim,, oo ¥;, 0---0U; (y)
for (ix) € {1,...,N}". It is casy to sce that the former limit does not depend on
y, so that it defines a mapping from {1, ..., N}N onto X. Hence, X can be written
{1,...,N}"/ ~ for a certain equivalence relation ~. We can easily check that ~ can
be constructed as previously if the set X is connected and if there exists a subset F'
of the set of fixed points of ¥y, ..., ¥y such that

(9) V(X)W (X) = Wi(F) N0 (F), Vi

(This last condition is usually called the condition of finite ramification.) Indeed we
can as well suppose that F' = {z1,...,zn,} for Ny = |F| < N and identify F with
{1,..., No}. We define the relation R on {1,..., N} x F by (i,7)R(¢, j') if and only if
U;(x;) = Yy (xj). It is then easy to see that the relation ~ we just defined is also the
relation obtained as in section 1.1.2 from the relation R. In this case the sequences
X(ny and Fy,y are naturally embedded in R? as

Xiny =0 o0 UTN(X),

w1

F<n> = lI/_l 00 \I](;y}(u.717a]n\1]]1 0--0 lI/]n (F))

w1
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16 CHAPTER 1. DEFINITIONS AND BASIC RESULTS

The sets OF,,) and 90X, are just scaled copies of F, given by
8F<n> = 8X<n> =¥-lo...0 \I/;T}(F)

w1

1.1.4. Examples

The Sierpinski gasket. — In this case Ng = N = 3, F = {1, 2,3} and the relation R
is given on Figure 3. The set at level 4 is represented on Figure 2 in the introduction:

(1,2)R(2,1)
(2,3)R(3,2)
(3,1)R(1,3)

FIGURE 3

the initial cell Fy is represented by the bolded triangle for the blow-up starting from
(1,1,1,1) on the left and for the blow-up starting from (1, 3,1, 2) on the right. Usually
we take for G the group of permutations of F' = {1,2,3} (i.e. geometrically, G acts
on [, as the group of isometries of the boundary triangle 0F,,). But we could also
consider the trivial group as the group of symmetries (this is considered in section 6).
As it is well-known, the Sierpinski gasket is traditionally considered as a self-similar
subset of C. Let us now describe this and the relations with the discrete structure we
just introduced. Consider the 3 homotheties

x
Uy (z) = 3 Uy(z) =3(z—1)+1;
Us(z) = 3z — (3 +i4)) + L+,
There exists a unique proper subset of C that satisfies equation (8) and it is the
celebrated Sierpinski gasket represented on picture 1 of the introduction. Remark that
the set of fixed points F' = {0, 1,% + z@} of Uy, Uy, Uy satisfies (9) and defines the
relation R as explained in section 1.1.3 by (¢, 7)R(¢’, j) if and only if W;(z;) = Uy (z;)
(if we denote by x1, 9,23 the fixed points of ¥y, Uy, U3). The natural geometric

representation of X, is given by the sequence of preimages

X<n> =y ! OO\IJ(;}(X)

w1

The set Fy,) is the set of vertices of the triangles of size 1 in X,.
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The unit interval. — Let us first describe the continuous model, by its geometric rep-
resentation. Consider X = [0, 1] and areal 0 < a < 1. It is clear that X is self-similar
with respect to the N = 2 homotheties ¥y (z) = azx and Uo(x) =1+ (z — 1)(1 — «).
Remark that F' = {0, 1} satisfies equation (9): the abstract self-similar set would be
constructed from the equivalence relation R such that (1,2)R(2,1). (Remark that
when o = 1/2 the abstract definition of the self-similar set [0,1] as a quotient of
{1, 2} corresponds exactly to the expression of a point in [0,1] in base 2). We take
for G the trivial group G = {Id}. We remark that for different values of o we just
have different geometric representations of the same self-similar structure as defined
in 1.1.2. We will consider on these sets different operators depending on «, which have
a natural expression in these geometric representations. Concerning the blow-up we
remark that 0X . is non empty if and only if w is stationary. More precisely, if w is
stationary to 1 (resp. to 2) then X is a half-line bounded from the left (resp. from
the right) (for example, if w, = 1 then X,y = [0,a™"]). If w is not stationary then
X (o) = R.

The nested fractals. — The nested fractals define a class of finitely ramified self-
similar sets, introduced by Lindstrém (cf. [31]), embedded in RY, which are invariant
by a large group of symmetries. We refer to [31] for the definitions. Note that the
Sierpinski gasket is the basic example of nested fractals.

1.2. Construction of a self-similar Laplacian

We fix for the rest of the text two N-tuples (a1,...,an) and (05i,...,8n) of
positive real numbers. The N-tuple (ag,...,an), resp. (61,...,0n) will represent
the scaling in energy, resp. in measure in our structure. We suppose moreover that
(a1,...,an), (B1,...,0n) are G-invariant, i.e. that (ag.1,...,aqn) = (01,...,an),
(By1s--sBgn) = (Bi,...,Bn). We set v = (a;3;)~" and we make the following
assumption

(H) We suppose that (3i,...,3n) is proportional to (aj*,..., oz;vl) so that ~; does
not depend on i. We denote by v the common value of the ~;.

1.2.1. Discrete difference operators. — We suppose given A, a semi-positive
symmetric endomorphism of RF of the form

(10) Af(@) == Y awy(fly) = f(@), VfeR" VaeF,
yeF y#x

where a, ,, T # y, are non negative reals such that a,, , = a, . We suppose moreover
that A is irreducible, i.e. that the graph on F' defined by strictly positive a , is
connected and that A is G-invariant, i.e. that ag.p .y = aqy for all g in G. We
suppose also given a G-invariant positive measure b on F'.
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REMARK 1.4. — A typical example is the discrete Laplace operator Af(x) =
— > y2:(f(y) — f(2)) and b the uniform measure on F'. We denote by A, the
symmetric operator on R defined as the copy of A on the cell Finyir,..in, i-€- the
operator defined for f in RFt by

(A(n>1i17~~~ainf)‘F(n),il ,,,,, in A(f\Fw),il ,,,,, in)7
A(n),il ..... znf(x) =0 ifz¢g F<n),i1 ..... in -

as a function on F since Fi,) ;,

315 0ln

N.B.: In the first line we considered f‘pmwl
can be identified with F'.

..... in seeeyln

We denote by b,y i,.....i, the measure on F\,,y defined as the copy of b on F\,,

Ul seeeyln?

i.e. given by

/ fdb<n>7i1""’i" - /f‘FW),il,m,in db’ vf € RF(n)'
Fn)

Then we set

(11) Ay = Z Oéwn"'awlaﬁl---a;&m,ﬁ vvvvv .

N
(12) by = Y Bal B B Binbinyinin
i15emyin=1
REMARK 1.5. — We see from the definition that the value of A,y and b, depend on
the N-tuples (a1,...,an) and (B1,...,Bn) only up to a constant. Remark that A,
and b,y form an inductive sequence since, for n > p, if supp(f) C }%<p> U(OF 1,y NOF )
then

Aw)f = A f and / fabeny = / Fab).-

(Indeed, this comes from the fact that Fiy = Finy ..., wpy1)- Therefore b, can
be extended to a measure b,y on F(. Similarly, the linear operators A, can be
extended to a linear operator A, on RF) (a priori Aoy is defined on compactly
supported functions of Fi.., but since there is only “local interactions”, Ay can
be extended to a linear operator on Rf(= itself). Remark that thanks to the third
property of R the operator A, is conservative, i.e. A,y f = 0 is equivalent to f
constant.

Denote by (-,-) the usual scalar product on R¥t. Let HZ;> be the operator on
L2 (F(m,b(m) defined by:

(13) (Awy fr9) = —/H%fgdb(m Y f,g € RFtm,

The operator HZ;> is semi-negative, self-adjoint and must be viewed as a discrete
difference operator with Neumann boundary condition on 0F, (since no condition
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is imposed on the value of the functions on the boundary points). The operator with

Dirichlet boundary condition, denoted H<_n>, is the self-adjoint operator on R

defined as the restriction of H;", to RF< ~ {f € RFm | flor,, = 0}. We sometimes

(n)
write Dz:w = R and D(n) = Rﬁﬂw for the domain of H?fw.

If K > 0 is such that (Af, f) < K [ f2db for all f in RF then it is easy to see from
(11) and (12) and assumption (H) that the same inequality is true for A,y and by.
Thus the sequence H (ﬂf:l) is uniformly bounded for the operator norm on L? (b(ny) and
can be extended into a semi-negative, self-adjoint operator HZ;O> on Djoo) = L2(b )
We define H _, as the restriction of HZ;O> to Dy = {f € DZ%) | flor., = 0}.
Clearly, we have

(A f.9) =~ | HE fodbisg, V1.g€ DE,

Finally note that if 0F ., = @ then the operators HZ;O> and H(Oo> are equal and in
this case we simply write H . for HZ;O> = H<_OO>.
Let us now explain the consequences of condition (H). Let f be a function with

support contained in ]il(m. Denote by ]7 the function on Fi, with support in
Fintpy,is,....i, and which is a copy of f on Fynqpy i, ..i,- Then from formula (11),
(12) and (13) we see that

(14) (H(j(:)o>f)‘F(n+p)vL1 ..... i

and that H(jf)O)fis null on the complement of F,ypy i, ..4,- By (H) the coefficients

BN —
= Ywnt1 """ VYwntp (711 T Wip) 1(H<oo>f)|F<n>

P

Yor " Yo, (Viy * ~’yip)_1 are equal to 1, which means that H (jct>0> is locally invariant by
translation. This property is the counterpart of the property of statistical translation
invariance traditionally assumed in the case of Schrédinger operator with random
potential.

1.2.2. The continuous situation. — In this section we define a “natural” Laplace
operator on the continuous sets X(,). The problem of the construction of such an
operator is not easy (cf. for example, [31], [25], [30], [36]) and it is now clear that
the best framework to use is the framework of Dirichlet spaces. We essentially follow
the definitions of [36]. We suppose here that Zf;l B; =1 and that «; < 1 for all 4.
We know that there exists a unique probability measure m on X such that

(15) /dem = XN:@-/Xfo\Ilidm.
1=1

We suppose given a G-invariant self-similar Dirichlet form (a, D) in the sense of [36],
i.e. an irreducible, local, conservative, regular Dirichlet form on (X, m) satisfying the
conditions of theorem 2.6. of [36]. In particular, (a, D) is self-similar with respect to
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the weights (aq,...,an), i.e. for all f € D, fo ¥, isin D and

N
(16) a(f.f) = () ta(f o Wi, f o Wy),
i=1

and is G-invariant, i.e. a(g- f,g- f) = a(f, f). In [36], a criterion is given for the exis-
tence and uniqueness of such a Dirichlet form. Remark that the weights (aq,...,an)
can be chosen only up to a constant, since the scaling factor is determined by equation
(16). The problem of the existence and uniqueness of such a Dirichlet form is not
trivial and has been investigated in [31], [36] (and references therein). This is related
to the existence of a fixed point for a certain renormalization map (that corresponds
to the restriction of the renormalization map 7' that we introduce in section 3 to a
certain subset, cf. remark 3.11).

Remind that X,y is isomorphic to X so that we can define the Dirichlet form
(a<n>,D<n>) by D,y = D and ag,) = auw, - - Qw,a and the measure b,y on X,y by

by = Bo1 -+ B3 Tf f in D,y is such that supp(f) C Xy then using (15) and

w1

(16) we see that a(,4py (f, f) = awy(f, f) and [ fdm,y = [ fdm, . Hence, we see
that m,) can be extended to a measure m ) on X, and we set

Doy = {f € L*( Kooy, Mioo)) | 8UPy, a(ny (fix 5 f1x) < 00}

On D(oo} we define A (c0) by A (o) (f, f) = hmn*,oo QA (n) (f|X<n> y f|X<n> ) One can check
that a() is a local, regular, conservative and irreducible Dirichlet form (cf. [18]).
We set D\ = {f € Dy | flox,,, = 0} and D?:w = D(y, (and idem for D(ioo>). We
define H<ﬁ;> and Hio> as the infinitesimal generators of (a,, D<in>) and (@), D?EOO>).
Note that they satisfy the same property of local invariance by translation as in the
discrete case, i.e. formula (14) is still valid.

1.2.3. Examples

The Sierpinski gasket. — If we take G ~ S3 the group of isometries of the unit
triangle F', then the values of (a;) and (8;) are determined up to a constant, so we
can as well take in the lattice case a; = 1, 8; = 1. There is only one possible choice
for A and b, up to a constant: we take for A the canonical discrete Laplace operator
on F given by formula (10) with a,, = 1 if x # y, and for b the measure that gives a
mass 1 to the points of F. The operator A, is obviously given by formula (1) of the
introduction and b, is the measure that gives a mass 1 to the points of dF},, and

2 to the points of }%W)' Hence, the operator H?fl> is the operator defined by (2) in
the introduction. In the continuous case the construction of the Laplace operator was
initially done in [2] by probabilistic means. There is uniqueness of such an operator.
The value of (a;) and (0;) is determined by equation (15) and (16) to a; = 3/5,
B; = 1/3 (cf. for example, [30]).
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The unit interval. — In the lattice case we can take any «; and [; but since they
matter only up to a constant we take o1 = a, aa = (1—a)and 1 =1—a, o =«
(hence, assumption (H) is satisfied). In the lattice case the only possible choice for A
is, up to a constant, the discrete Laplace operator

A:(_llll).

The measure b is determined by two positive reals mg, m; by b = mgdg + m161.

In the continuous case we can explicitly construct the self-similar structure. Let
m be the unique self-similar measure on X satisfying (15). Consider on [0,1] the
canonical Dirichlet form a(f, f) = fol (f")2dz defined on

D={feL*m)| [ eL*([0,1],dx)}.

By a simple change of variables it is clear that a satisfies (16) with ay = « and
as = 1 — a. Hence we have explicitly constructed the self-similar Dirichlet space
(a, D), for all possible values of a. The operator HT = HZB> is the operator -% -+

dm dx
defined on
{f € (X, m) | 3g € L3(X,m), f(w) = az+b+ [ [ g(=)dm(=)dy,
f(0) = f'(1) =0},
by HT f = g. Similarly H~ is the operator %% with Dirichlet boundary condition
on {0,1}. The author considered this case in [38] and [41].

The nested fractals. — In general, for nested fractals we take all the a; equal, and
the (; equal (in the continuous case the exact value of the «; is given by the self-
similar structure and the 8; must be equal to 1/N). There is nothing special to say
about the lattice case. In the continuous case, Lindstrom and Kusuoka constructed
the self-similar Dirichlet space (c¢f. [31], [30]) and the author proved the uniqueness
of such a self-similar Dirichlet space (cf. [36]).

1.3. The density of states
1.3.1. Definition

The lattice case. — Denote by 0 = /\<+n> 1> A<+n> gz 2 )\zrm |y | the eigenvalues
of HZ:W Denote by 0 > )\<*n> L=z ){) N the Dirichlet eigenvalues, i.e. the
' n), | Fn)

eigenvalues of H (n)*
Let l/z;w (resp. 1/<_n>) be the counting measures of the Neumann (resp. Dirichlet
spectrum) defined by:

+ _
(17) Vi = §5Aa>,k’
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where 4, stands for the Dirac mass at . We write u?;)()\) = f”i) (d\), A <0, for
its repartition function.
It is clear by construction that the counting measures do not depend on the blow-

up w (since the operators H ?fw are isomorphic for different blow-up w).

DEFINITION 1.6. — If the limit

(18) lim — it

n—oo NT V(">

exists and does not depend on the choice of the boundary condition then it is called
the density of states and denoted by p.

REMARK 1.7. — The existence of the limit is proved in [18] and in [27] but will also
be a consequence of theorem (3.6).

REMARK 1.8. — The reader must be careful that our terminology is not coherent
with the classical terminology of [8], [33] and with the terminology of our previous
paper [38] where the measure p is called the integrated density of states. Remark
that despite the terminology, i is a measure which may have no density.

+
n

The continuous case. — In this case the operator H (n) has compact resolvent (cf. for

example, [30]) and the eigenvalues form a non-increasing sequence going to —oo. We
adopt the same definition for the counting measures u?;w and for the density of states

as in the lattice case.

ProproSITION 1.9. — If the density of states exists then its repartition function
w(A) = ff w(A)(dN) satisfies:

(19) 1(YA) = Npu(A).

Proof. — This is clear from the scaling relations satisfied by a(,y and m . O

1.3.2. The density of Neumann-Dirichlet eigenvalues. — We say that a func-
tion f is a Neumann-Dirichlet (N-D for short) eigenfunction of H,, with eigenvalue

A if it is both a Dirichlet and a Neumann eigenfunction (therefore we forget the sup-
+

script £ in H ,y since it is at the same time an eigenfunction of H (n

, and H<_n>), i.e. in
the lattice case this means that
~ fisin Dy, ie. f € RF and fiop,, =0,

- <A<n>f,g> = —X [ fgdb,y, for all function g in Dz:w =R,

and in the continuous case that
— fisin D<n>,

— agy(f,9) = =X [ fgdm,, for all function g in Dz;).
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We denote by I/gl ? the counting measure of the N-D eigenvalues of H ) (counted with
multiplicity) and by Ef;i ;3 the subspace of D&) generated by the N-D eigenfunctions.
Remark that any function f of ng?’ when extended by 0 to F,, 4,y (resp. X ypy)
is a N-D eigenfunction of H, . When extended by 0 to Fi (resp. X () it is an
eigenfunction of H (to> and H <_OO>, with compact support. Hence Egl ;3 is an increasing
sequence of subspaces of D(};) and we denote by Hyp the closure in D(&;) of the
space UnEa f’ .
REMARK 1.10. — By definition, the restriction of H(jgo> to the Hilbert subspace Hyp
is purely punctual, more precisely, the set of Neumann-Dirichlet eigenfunctions form

a Hilbert basis of compactly supported eigenfunctions.

It is easy to see that

Vingy 2 Nvjn)-
Indeed, if f is a N-D eigenfunction of H,) then we can construct N copies of f on
the N (n)-cells of Fi;, ). Precisely, for all i = 1,..., N we consider the function f;
on RFn+1 which is the copy of f on Finyy,i and equal to 0 on Frpyqy N Frngy i
These functions form an orthogonal family of N-D eigenfunctions of H, ) with same
eigenvalues (by the hypothesis (H) and formula (14)).

DEFINITION 1.11. — The limit
1 o
Nn V<">

exists and is called the density of N-D eigenvalues and denoted by p™¥ 7.

REMARK 1.12. — Obviously, the measure uV? is purely punctual. It is clear that
supp u™V P is the topological spectrum of the restriction of H a[)@ to the Hilbert subspace
HND-

REMARK 1.13. — In the continuous case the repartition function pNP(\) =
f)(\) du™NP |\ <0, satisfies the same scaling relation as pu(\): pNP(yA) = NuVP(\).

1.4. Some basic results

We recall from [40] three basic results on the spectrum of the operators Hio>
and their relations with the measures p and p’V”. For convenience, we suppose
here the existence of the density of states. We denote by L* the spectrum of the
operators H io> (and we simply write 3 when 0F |y = @). We recall that the essential
spectrum is obtained from the spectrum by removing all isolated points corresponding
to eigenvalues with finite multiplicity, we denote it by L&

ess”

PROPOSITION 1.14 ([40], proposition 1). — For both the lattice and the continuous
case we have the following:
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(i) If the boundary set 0X o0y = OF (o) is empty then supp pp = ¥ = Yegs.
(ii) Otherwise we just have supp p = St = X_... Moreover, the eigenvalues even-

tually lying in ©F ~ supp(u) have multiplicity 1.

REMARK 1.15. — In [41], we show that in the case of the unit interval blown-up to
the half-line Ry (by the constant blow-up wy = 1) the spectrum of the operator can
be pure point with isolated eigenvalues of multiplicity 1 lying in the complement of
supp ¢ and accumulating on supp u. Therefore in this case the equality ¥Z, = supp u
is satisfied by not ¥+ = supp p.

We endow Q = {1, ..., ]\/'}N with the product of the uniform measure on {1,..., N}.
The next two propositions give almost sure results on the blow-up. Remind that the
lattices Fooy (and the sets X)) are not isomorphic for different blow-ups. Hence,

to show the dependence of the operator H (jct>0> and of the spectrum X% on the blow-up

we write H<i00>(w) and ¥ (w). We denote by ¥ (w), L (w), and Epip(w) resp. the
absolutely continuous, singular continuous and pure point part of the Lebesgue de-
composition of the spectrum of H<i00>(w) (cf. [8], [33] for definition, or [40]). The
first result is the analogous of a classical result for ergodic families of Schrédinger
operators (cf. [8] or [33]).

PROPOSITION 1.16 ([40], proposition 2). — There exists deterministic X, Yae, Zec,

and Xy, such that for almost all w in Q (for the product of the uniform measure on
{1,...,N}) we have ¥F(w) = ¥..

PROPOSITION 1.17 ([40], proposition 3). — If the density of states is completely cre-
ated by the N-D eigenvalues, i.e. if pVP = p then for almost all w in Q the set of
N-D eigenfunctions is complete i.e. Hyp = Dzroo>(w) = Dzoo>(w). Thus, the spectrum
s pure point with compactly supported eigenfunctions.

MEMOIRES DE LA SMF 92



CHAPTER 2

PRELIMINARIES

2.1. The notion of trace on a subset

Let F be a finite set and F’ C F a subset.

DEFINITION 2.1. — Let @ be a complex symmetric F' x F' matrix. We denote by
Q|F+ the restriction of Q to F', i.e. the F' x I matrix defined by (Q|p/)z,y = Qu.y
for z,y in F’. We call trace on F”’ of the matrix @, the F’ x F’' matrix Qp/, given,
when the expression is defined, by

Qr = ((Q_l)\F')il-

N.B.: One must be careful that the close notations (Qr/) and (QF) represent two
different types of restriction.

N.B.: These definitions could of course be given for non symmetric matrices but we
will only be concerned with the symmetric case.

REMARK 2.2. — @Qp is sometimes called the Schur complement and appears in sev-
eral circumstances, cf. for example, [32], [7]. In [9] the properties of this operation
are carefully investigated, this operation is called “la reponse du réseau”.

ProproOSITION 2.3
(i) If Q has the following block decomposition on F' and F ~ F’

_(Qr B >
Q ( Bt Q\F\F’
then

(20) Qr = Qi — B(Qp ) 'B".

Therefore the map Q — Qp: is rational in the coefficients of Q with poles included in
the set det(Qp ) = 0.
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(ii) If det(Qp—pr) # O, then for any function f in CF', we denote by Hf, the
function of CF' given by
Hf=f onF',
Hf = f(Q|F\F/)_1Btf on ' F'.
We call H f the harmonic prolongation of f with respect to Q and we have Qg (f) =
(Q(Hf))\F/-

(iii) If moreover Q is real semi-positive then Qp/ is characterized by

(21) (Qp f, f) inf  (Qg.g), VfeR",

9gERY g p1=f

where (-,-) denotes the usual scalar product resp. on R and RF. The nfimum is
reached at the unique point H f.

REMARK 2.4. — The terminology comes from the theory of Dirichlet forms: if @ is
semi-positive and such that (@Q-,-) is a Dirichlet form (i.e. @ is Markovian, cf. for ex-
ample, [36]) then (QF--, -) is a Dirichlet form called the trace of (Q-,-) on F’ (¢f. [17]).
In particular, we remark that the Markov property is preserved by the operation of
taking the trace.

Proof
(i) Let f be a function in C¥ null on F C F’. Set g = Q' f. We easily get

gpr = —(Qrr) ' B'gpr,

and

firr = Qi gip + Qe g r
= (Qr — B(Qirr) " BY)gp-

By definition ((Q~')p fir/) = gjpr- This implies that fjr = Qp/(g)r) and thus
formula (20).

(ii) It is an immediate consequence of (i).

(iii) Classically, g realizes the infimum in (21) if and only if (Qg)|pp' = 0, i.c. if
Btf+Q|F\F/g|F\F/ = 0. If Qg is invertible then g is unique and given on F'\. F”
by gjp = —(Q‘F\F/)_lBtf. This implies that ¢ = Hf and thus concludes the
proof of the proposition. O

2.2. The Grassmann algebra

The operation of taking the trace of a symmetric matrix on a subset is central
in our problem. It is a complicated operation since it is rational. However we can
embed the space of symmetric matrices in a Grassmann algebra in such a way that
this operation becomes linear. This will be crucial in our work in order to construct
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a good renormalization map. This is the key tool we use to generalize some of our
previous works (cf. [38]).

2.2.1. Definition. — As in 2.1, F is a finite set and |F| denotes its cardinality,
most of the time we identify F' with {1,...,|F|}. Consider E and E two copies of
CF, with canonical basis (7, )zer and (1;)zer. We consider the Grassmann algebra

A(E @ E) defined by
_ 2R
NE®E)= & (E®E)",
k=0
where A denotes the exterior product. We denote by A the subalgebra generated by
the monomials containing the same number of variables 77 and 7, i.e.

—Ak
A= SFLE A gt
A canonical basis of A is
(L7, Ao ATy Ay Ao Ay 1 < ooe <ligy J1 <0 < ik, 1< ES|F)).

We endow A with (-,-) the hermitian scalar product which makes this basis an or-
thonormal basis (with the convention that it is linear on the left and antilinear on the
right). To simplify notations we will forget the sign A to denote the exterior product
and simply write n;n; for n; An;. Remark that the elements of A commute since A is
generated by the monomials of even degrees.
If @ is a I x F matrix then we denote Q7 the element of A:
neQn = Z Qi j7iM;-
i,jeF

We will be particularly interested in terms of the type

exp(NQn) = Z % (Z Qz‘,jﬁmj) '
0 1,7

k=
n
(22) =30 Y et (@ivvs )i o
k=0 i1 <---<ig JLseesdk
11<--<Jk

where (@), ..., 1s the kx k matrix obtained from @ by keeping only the lines iy, ..., i
J1s--Jk
and the columns j, ..., jk.

LEMMA 2.5. — Let Q be a complex |F| x |F| matriz, then

(23) | exp7Qn||* = det(Id + QQ™)
|F|

(24) - [la+e

where p1 < -+ < pip| are the characteristic Toots of Q, i.e. the eigenvalues of \/Q*Q,
and || || is the norm induced by the canonical scalar product (-,-) on A.
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Proof. — Tt is well-known that we can find unitary matrices U, W such that
1
Q=W U.
PIF|
Denote ( = W (i.e. {, = >, W, 7; for all k) and o = Un (i.e. ¢y, = > Ukji),

we have

1
exp(Qn) = exp Y
PIF|
|F|
=1+ Zpizii/fi + Z Pir Pis Ciy Wiy CiyWig + -+
i=1 11 <t2

Fp1-pip ot - 'E|F\¢\F|

But the family of vectors (1, (G, (Ei1¢ilzi2¢iz)v oy Gy 'E|F‘¢‘F|) is orthonor-
mal, so we proved (23). O

If Y is in A we denote by iy the interior product by Y, i.e. the linear operator
iy : A — A defined by

(25) (iy(X),Z2y=(X,YZ), VX,ZeA
In particular, remark that

i1, oy mun. (eXPTIQN)) = det Q.

Suppose now that F’ is a subset of F, and denote by Ap: the subalgebra of A
generated by the variables (77,)zer’, (Nz)zer. We define the linear operator

Rp_pr + A— Ap

(26) X i (X).
REMARK 2.6. — The operator Rp_,r/ is often presented as an antisymmetric inte-
gral. More precisely, Rp_ p/(X) coincides with the antisymmetric integral of X with
respect to [[,cp_p a7y, ie. Rp—p(X) = [ X [[,erp ey, as defined in [5]
(cf. also [47]). The antisymmetric integral appears in the context of supersymmetry,
as an antisymmetric counterpart of the Gaussian integral. It is interesting to note
that supersymmetry has been used in the context of random Schrédinger operators

several times (cf. for instance [28], [47], [51] and references therein).

PROPOSITION 2.7. — Let Q be a complex symmetric F' X F' matriz, we have
(27) det(Q) = (Rr—pr(expni@n), [] e ),

Tz€F’
(28) det(Q|F\F/) = <RF4>F/ (eXPﬁQn)a 1> s
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and
_ Rrp_.p (expQn)
29 exp(NQrm) =
(29) ( det(Qppr)
when det(Qpr:) # 0.
Proof. — The first two formulas are simple consequences of the definitions. For a
matrix @ we denote by det(Qi, ..., ) the determinant of the matrix where we keep
J1s--30k _il,...ik
only the lines i1, ..., i, and columns ji, ..., jk, and by det(QJ1,--3r) the determinant
of the matrix where we removed the lines i1,...7; and the columns ji,...,j;. It is

well-known that o
1150032k
det(Q7wt) = det((Q ")y ....ix ) det Q-

J1s--sJk
Let iy < -+ <ig, 21 < --- <7 ps|—j be elements of F’ such that
. S ~ /
{’Ll,...,’Lk,’Ll,...,Z‘Fq,k} :F,

and ji < --- < jg, J1 < -+ < Jjpr|—k be elements of F such that
{jla R ajkaj\la R 7./7\\F/|*k} = FI‘
We have

U1y Bl — g

<RF—>F’ (eXpﬁQﬁ),ﬁilnﬁ .. 'ﬁiknjk> = det(Qﬁ,...7 \F/\*k)
-1
= det Q det((Q )/1\17-~~7§F/\—k)

T\l ke

det Q
=d ")ty i) T N
et((Qr)is i) e S

Qo
-~ \det(Qrr) PICF My Mg~ iy e ) -

Evaluating the equality for k = 0 we get

7 det @

(Rp—p (expTiQn), 1) = det(Qpr) = o

and this is enough to conclude the proof of the proposition. O
Let us introduce a notation: if f is a holomorphic function from a domain D C C™
to C™ then we denote by ord(f,zo) the order of vanishing of f at the point 2° € D,

i.e. the maximal integer p such that one can find an open set U containing zy and
holomorphic functions hiy,..ipy 1 <41 < -+ - < ip < noon U such that

f = Z (‘ril - ‘T?l) T (‘rip - x?p)hi17“~ail’ (x)a onU .
i1§'“<l’p

If Q is a F' x F symmetric matrix then we denote by ker’?(Q) (for the Neumann-
Dirichlet kernel) the subspace ker’¥?(Q) = {f € ker(Q), firr =0}
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PROPOSITION 2.8

(i) If Qo is a symmetric F X F real matriz then:

(30) dim(ker™” (Qo)) = ord (Q — Rp—p (expQn), Qo) ,

where in the right hand side Q is taken from the set of complexr symmetric F x F
matrices.
(i1) Moreover, if B is a real positive definite symmetric F x F matriz then

(31) dim(ker™?(Qq)) = ord (A — Rp_ ' (exp7i(Qo — AB)7),0) .

REMARK 2.9. — The fact that the matrix Qg is real is crucial since this result is
essentially related to the fact that this matrix is diagonalizable.

REMARK 2.10. — A priori the order of vanishing of the function
Ar— Rp_.p(exp7(Qo — AB)n)

at A = 0 is greater or equal to the order of vanishing of Q — Rp_,p/(expTi@Qn) at Qp.
The point (ii) tells us that there is actually equality, i.e. that the line {Qo—AB, A € C}
intersects transversally at A = 0 the analytic set {Q | Rp— ' (exp7Qn) = 0}.

Proof

(i) The point (i) is a consequence of (ii). Indeed, the order of vanishing of @ —
Rp_ p/(expT@n) is equal to the order of vanishing in a generic direction. Otherwise
stated, this means that there is a proper analytic subset A C Symp such that for any
direction B in Symp . A the order of vanishing in (i) is equal to the order of vanishing
of the function A +— Rp_p/(exp7(Qo — AB)n) at the point A = 0. Denote by Symp
the space of real symmetric F' x F' matrices, regarded as the set of real directions in
the tangent vector space Symp. Since A is analytic, AN Sympp is of empty interior.
Considering that the subset of B in Sympg which are positive definite is open in
Symp g, we know that this set cannot be contained in A, hence if we assume (ii) we
know that dim ker(Qp) is the order of annulation in a generic direction. Hence (ii)
implies (i).

(ii) We first derive an explicit expression for T'(Qo — AB). Since Qg is real and B
real positive definite we can diagonalize (Qo)|r- p/ in an orthonormal basis for B|p._p/,
i.e. we can find eigenvalues A\ ,..., A

in RESNF such that

| and a family of functions f,..., fl}\F’l

|F~F’

(i sBfw)ppr = Ok
(Qo)ipr fry =X Bipwr)fy

where (,) g is the usual scalar product on RFNF' For a real function f on F’ we
denote by H f the harmonic prolongation of f with respect to Qo9 —AB. The function
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H) f can be written
|F\F’|
Hyf=f+ Y. cfy,
k=1
and we easily get
(f,((Qo = AB)fi )ip) o
A=A '
We set ¢pn = ((Qo — AB)f, )|r- and we denote by pyx : RF" — RF the projector
given by pra(f) = (f, ®k,2) o &k,x- Thus we have from proposition 2.3 (ii)

Cr —

|F~F'|

TQ = (QO — )‘B)\F’ + Z pk,ki )
P A=A

Denote now by ng the dimension of kerND(QO), and by n{ the dimension of
ker((Qo) ), so that ng = ng. This means that ng of the eigenvalues A are null.
We can as well suppose that A\ = .-+ = )\;6 = 0 and that f;,..., f, form an

orthonormal basis (w.r. to B) of ker?(Qo). This implies that for k& < ng, Qofy =0
and thus that ¢ x = MBf, ) p. For k < ng we denote by py : RF" — R the
projector given by
pi(f) = (f,(Bfi i) (Bfy )r

and we have py » = A\?pi. For k > ng + 1 we simply denote ¢, = ¢x,0 and pr, = py.o-
The functions {¢k}k:no+1,...,ng are linearly independent. Indeed, otherwise there
would exit a linear combination of the f,~, k = no+1, ..., ng, belonging to kerND(QO).
This is not possible since the dimension of ker™?(Qq) is ng. Considering relation (29),
we see that for small X’s the function Rp_, g/ (exp(7j(Qo — AB)n)) can be written

|F|

N TT OF =) exp(@(@Qo — AB) )
k=n{+1

\ ']

e (1 S5 L)) o (1 > ) e (( 3 )s)

k=no+1 k:n6+

ng |[F\F’|
’ _ _ 21 _ -1
= CA™ exp(Qon) exp (77( > ka)n) exp (n( > )\—,pk)n) (1+0(N)
=no+1 k=n{+1 k
where C is a non null constant. Considering that the operators p; have rank 1, the

last expression equals

ng |[FF’|

ex T O amnyess (13 5om)n) (1 +000)

k=no+1 k=n,+1 "k
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From this we deduce that A™ can be factorized in the last expression, hence that the
order of vanishing of the function A — Rp_,p/ (exp7(Qo — AB)n) is at least ng. In the
last expression, the term of degree nj — ng in the variables 77 and in the variables 7 is

g
A0 H (mpn) + (terms of order \*, k > ng).
k=no+1

Since the py’s are linearly independent HZ/“:M +1(Mpkn) is not null. This proves that
the order of vanishing of A — Rp_,p/(expT(Qo — AB)n) is exactly ng. O

2.2.2. The Lagrangian Grassmannian. — We denote by Sym the space of
complex symmetric |F| X |F| matrices. We denote by P(A) the projective space
associated with A and by 7 : A — P(A) the canonical projection. It is clear that the
map @ — 7(exp(TjQn)) is injective and hence defines an embedding of Sym  in P(A).
In this section we describe the subvariety defined as the closure of the set of points
of the type m(exp(7@n)) for Q in Symy. This subvariety defines a compactification
of the set Sym, and we will see that it is a Lagrangian Grassmannian. This type of
compactification already appeared in the context of electrical network, cf. [9], [10].

We first recall some classical notions. Let n be an integer and (-,-) be the bilinear
form on C*" given by (X,Y) = > X;Y; and J be the 2n x 2n matrix given by:

0 I,
=(5%)

where I, is the n x n identity matrix.
Obviously (-, J+) is an antisymmetric non-degenerate bilinear form (usually called
the symplectic form when considered on R?").

DEFINITION 2.11. — A linear subspace L of C?" is called Lagrangian if for all z,y
in L, (z,Jy) =0.

We denote by L™ the set of n-dimensional Lagrangian subspace of C?". It is a
homogeneous space. It can be indeed described as the quotient of the complex sym-
plectic group by the stabilizer of a point. Therefore L™ is a n(n + 1)/2 compact
smooth manifold. To precise the situation we describe explicitly a local parameteri-
zation. At a point L the set L"” can be parameterized explicitly by the space Sym,,
of symmetric n X n complex matrices. Indeed, if (v1,...,v,) and (v{,...,v]) are

orthonormal basis of respectively L and L+ (for the usual scalar product on C?" and
L+ the orthogonal subspace of L for this scalar product) then the map

Sym, — L"

32
(32) Q — Vect{v; + >, Qi jvjti=1..n
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defines a local set of coordinates. Indeed, it is easy to check that the subspace
Vect{v; + Zj Qiﬁjv;—}izlmn is Lagrangian and that any Lagrangian subspace in a
neighborhood of L can be represented in such a form.

Let (e1,...,en,€},...¢€,) denote the canonical basis of C2". We denote by
P(A"C?") the projective space associated with A"C?" and by # : A"C* —
P(A™C?") the canonical surjection. Classically, the manifold L™ can be embedded in

the projective space P(A"C?") by the Pliicker embedding
L — P(/\n(c2n>
(33)
L =Vect{z1,...,zp} — w(x1 A+ Axy).

We come back now to the Grassmann algebra introduced in section 2.2.1. Take
n = |F|, the subalgebra A can be easily identified with AIFIC2IF| by the isomorphism
defined on monomials by:

AFIC2IFl ., g4

(34) e
/ / Z‘FJI kzpfp— =
Ciy Ao Neijp  N€j N N (=1)%e= T T M
where iy < -+ < ijp—g, j1 < -+ <k and 71,...,7% is defined by 73 < --- <7, and

o,y dn, ek = {1, [ F
Thanks to the embedding (33) and the isomorphism (34) the manifold L!| can be
considered as a smooth subvariety of P(A). It is easy to see that by the isomorphism
(34) the point
NI (e + X Qigey)
is sent to the point exp(Qn) and thus that m(exp(7Qn)) is in LI, Hence we deduce
the following

PROPOSITION 2.12. — The application Q — m(expTQn) defines an embedding of the

space Symp of F' x F' symmetric matrices into the smooth projective subvariety LIFI,
More precisely, the set Symp is sent onto the subset LIFI < m{X € A, (X,1) = 0}.

Hence, the closure of the set of points of the type m(expTiQn) is equal to LIFI,

REMARK 2.13. — Therefore the set LIF| defines a compactification of Sym . There
are many different compactifications of Sym (for example, in section 4.4 we consider
the compactification by a projective space) but this one seems to be the best-suited
to our problem.

We will need some results on the dimension of the cohomology groups of LI*I. We
recall from [42] that the first and second betti numbers are given by:
(35) by = dim(HY(LIF1,C)) =0, by = dim(H*(LIF], C)) = 1.
The manifold LI*'! is a Kiihler manifold, as a smooth projective subvariety. A natural

Kihler form on LI*! is the restriction of the Fubini-Study form on P(A) (cf. appendix
A.5). By definition, the Kihler form is in H%'(LLIF!) the (1, 1) Dolbeault cohomology
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group of LIF! (which coincides for Kihler manifold with the subspace of H?(ILI*I, C)
generated by the forms of the type (1, 1), ¢f. appendix C). Thus we have by (35) and
general results on Kihler manifold that dim(H?°(LIFl)) = dim(H%2(LIF1)) = 0 and
dim(HY(LIF)) = 1.

G-invariant Lagrangian Grassmannian. — We suppose now given a finite group G
acting on F. We denote by L the closure in LI¥I of the subset Sym®, the space of
G-invariant complex F' x F matrices. As we shall see in Appendix E, LY is a smooth
projective variety, whose structure can be explicitly described. It is also clear that for
the isomorphism (34) the submanifold LY is the closure in P(A) of the points of the
type w(exp7@Qn) for @ in Sym®.

REMARK 2.14. — Assume that F” is a subset of F', invariant by the group G. The
element m(Rp_ p/(expT@n)) is then in the G-invariant Lagrangian Grassmannian
associated with . Moreover, remark that formula (30) of proposition (2.8) remains
valid for Qg in Sym® if we let Q run in Sym® instead of Sym - Indeed, using (ii) of
proposition 2.8, we know that for B real symmetric positive, G-invariant

dimker™?(Qo) = ord(A — Rp_p (expT(Qo — AB)n),0)
> OI'd(Q [— RF—>F’ (eXp(ﬁQn))a QO)

for () running in SymG. This last expression is bounded from below by the same
expression for () running in Symy instead of Sym®, which is equal to dim ker™™? (Qo)
by proposition 2.8, (i).

2.3. Trace of a Dirichlet form in the continuous situation

We recall here some results from [38] that will be useful for the continuous case.
Let X be a locally compact denumerable metric space and m a finite positive Radon
measure on X such that supp(m) = X.

Let (a,D) be a regular Dirichlet form on L?(X,m) such that:

(i) a is irreducible (i.e. a(f) = 0 implies that f is constant).
(ii) (@, D) has a compact resolvent.
(iii) There exists ¢ > 0 such that cap;({z}) > ¢ for all z € X.

N.B.: cap,({z}) stands for the 1-capacity of the point {z} (¢f. [L7], section 2).

The assumption (iii) implies in particular that the functions of the domain have
a continuous modification, so that the value at one point can be defined (cf. [17],
theorem 2.1.3). A second implication of assumption (iii) is that the resolvent R) is
trace-class (cf. [38]).

Let F' be a finite subset of X. The regularity of the form and assumption (iii)
imply that for any f € RF there exists g € D such that gr = f.
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We define the trace of (a,D) on the subset F as the bilinear form on R defined
by:

The irreducibility of (a, D) implies that the infimum in (36) is reached at unique point
called the harmonic continuation of f with respect to a.

If F is endowed with a positive measure b with full support then (ar,R) is a
regular, irreducible Dirichlet form on L?(F,b) (the process associated with ar and b
on states space F' can be represented by a time changed of the initial process associated
with (a, D) on L?(X,m) (cf. [17], theorem 6.2.1).

For A > 0, let ax(f) = a(f) + A [y f?dm for f € D. The bilinear form ay is a
regular irreducible Dirichlet form satisfying (i), (ii) and (iii). We denote by A(,) the
F x F symmetric matrix given by (A(\)-,) = (ax)r (-, ) where (-, ) is the usual scalar
product on R¥, and by H) f the harmonic continuation of f € R¥ with respect to ay,
so that (A (f), f) = ax(Hxf, Hxrf).

Set D~ = {f € D | fip = 0} (N.B.: D~ is the domain with Dirichlet boundary
conditions on F; (a, D7) is a regular Dirichlet form on L*(X ~ {F},m)).

We denote by 0 > )\f > > )\z > - -- the negative eigenvalues of the infinitesimal
generator associated with (a, D) and by o the multiplicity of the eigenvalue 0 (which
can be 0 or 1, indeed g = 1 if 1 € D and 0 otherwise).

We also denote by 0 > A7 > ---\; > --- the ecigenvalues of the infinitesimal
generator of (a, D) (in this case 0 is not eigenvalue because of the boundary condition
and assumption (i)). Let f;,...,f,,... be an orthonormal basis of eigenfunctions

associated with the preceding eigenvalues.
LEMMA 2.15 ([38], lemma 2.1). — For any f € R, A > 0:

(f Hoffk_dm)Q'

B (A f) = (A, f) + A / (Hof)*dm — 2y o=
k=1 k

In particular Ayy is meromorphic on C with at worst simple poles at the points

ISV S Y

We define some infinite dimensional determinants by the following formula: for
A € C we set

(38) o= [ (1- ),

(39) d~(\) = ] (1 - i).

The existence of these functions comes from the fact that the resolvent of (a, D) and
(a, D7) are trace class.
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LEMMA 2.16. — There exists a constant C > 0 such that
dr())
d=(A)’
A proof of this result is given in [38]. A more general version of this result, but
valid only for differential operators on R, can be found in [15].

(40) VAeC~{Al,.. ., A, .1 det(A(/\))zC
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CHAPTER 3

THE RENORMALIZATION MAP. EXPRESSION OF
THE DENSITY OF STATES

3.1. Construction of the renormalization map

In section 3 we will only be interested in the density of states. Therefore, since
the counting measures V?:w do not depend on the particular blow-up, we suppose to
simplify notations that wy = 1 for all k.

3.1.1. On the set of symmetric F' x F matrices. — We come back to the
situation described in section 1 and denote by Symy the space symmetric F' x F
matrices. We denote by SymG the subspaces of Symy of G-invariant matrices, i.e. of
symmetric matrices @ satisfying:

g-Qf =Q(g-f), VgeG,vfecCr.

Starting from @ in Symp we can construct a F(qy x Fyjy symmetric matrix Q1) by:
Quy(f) = Za1a21Q<1>,i,

where () (1) ; is a copy of @ on the cell Fiyy 4, i.e. it is a Fiqy X F(qy symmetric matrix
defined by

(Quy,if)1Fny . = QUFyy )
Quy,if(x) =0, if x & Fyy,,
for all f in RFw.

On the set {det(Q<1))\F<1>\6‘F<1> # 0} we consider the trace on 9F(y;y of Q(1y, which
is an element of Symy. So we define:

T : Symp — Symp
Qr— (Q(1>)6F<1>-

Considering the symmetries of the structure we see that T'Q is G-invariant if @) is
G) C Sym®. In all the following we will rather consider 7" as

(41)

G-invariant, i.e. T'(Sym
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a map on Sym® than on Sym . Using proposition (2.3) we know that the map T is
rational with poles included in the set {det(Q(1))|r,,~oF,, = 0}.

Let S, denote the set of complex symmetric F' x F' matrices with positive definite
imaginary part:
(42) S+ = {Q complex symmetric F' x F matrix | Im(Q) is positive definite},
and set Sf = S, NSym®. Usually, S, is called the Siegel upper half-space (cf. [46],
[50]). In the next lemma we prove a key property of T', which is that S, is left
invariant by T'. We also give some estimates, useful in lemma 3.9, to bound the speed
at which the iterates of T" approach the boundary of S;. In appendix D, we present
a different approach which avoid all explicit estimates, but only uses properties of
contraction of holomorphic maps on S .

For a matrix () we denote by p(Q) and p(Q) the minimal and maximal characteristic
root of @ (i.e. the minimal and maximal eigenvalues of \/Q*Q).

LEMMA 3.1. — The map T is well-defined and holomorphic on S4 (resp. on Sf) and
St (resp Sf) is T-invariant. Moreover for all Q in S we have

(43) p(Im(TQ)) > aya ' p(ImQ),

(44) p(Im((TQ)™Y)) = a7 tap(Im(Q™1)),

where o = inf{a; }, @ = sup{a;}.

Proof. — Tt is clear by proposition (2.3) that T is well-defined on Sy. We first derive
an expression for Im(7'Q). Let @ = ReQ@ + i{Im@Q be in S;. Let f be a real function
on F' (which can also be considered as a real function on 9F;y), and H f its harmonic

prolongation with respect to @y (which can be defined for @ in S, using proposition
(2.3)). We have:

(TQf. f) =(QuyHf, Hf)
=(QuyHf.ReHf)
= <ReQ<1>Rer, Rer> +1 <ReQ<1>Ime, Rer>
+i (ImQ 1yReH f,ReH f) — (ImQ 1) ImH f, ReH f)
Considering that <Q<1>Hf, Ime> = 0 we deduce the following identities:
(ReQyReH f,ImH f) = (ImQ 1y ImH f,ImH [ ) ,
(ImQ1yReH f,ImH f) = — (ReQ1yImH f, ImH f) .
Replacing in the expression of (T'Qf, f) we get
(ImTQf, f) = (ImQ1yReH f,ReH f) + (ImQ 1y ImH f,ImH f )

N
> Z alai_l <ImQRer‘F<1>Yi,Rer‘F<1>7i> .
i=1
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Since Im(Q) is positive definite we deduce from the last expression that
(Im(TQ)f, f) >0 since Re(H f) is not zero, and thus that T'Q is indeed in S,.
From the last inequality we can also deduce

N
(IMTQf, f) > p(mQ)asa " >_ (ReH fir,, . ReH fir,, )
i=1

> p(ImQ)ana ™| fII*.
Thus formula (43) is proved.

To prove equation (44) we need to express Qai in terms of Q! by a kind of
harmonic prolongation (just like T'Q is expressed in terms of @ by a harmonic pro-
longation). This is done in [37] in a slightly less general context. We state without
proof the following lemma (the proof is a simple algebraic manipulation and essen-
tially similar to the proof of proposition 1.1 of [37]. Note that this technical lemma
can be avoided, cf. appendix D.)

LEMMA 3.2. — Let v be in CF and D, be the set
D, ={(w,...,vx) e CFma s ... clow | SN 4 = v}

If Q is invertible then there exists a unique (v1,...,vN) in D, such that
Zal 04Z 1/1,1/1> =0
for all (vy,...,Un) in Dy, and we have:

((Q(l))_ll/)mlm =o'y Q 7w

Let @ be in S, We have p(Im((TQ)™")) > p(Im((Q(1y)~")). Let v be in RFw
Proceeding just as previously we can prove:

<Im((Q<1 W, 1/ Z ay ozz Im )Rel/i, Rel/i> + <Im(Q*1)Iml/i,Iml/i>),

> p(Im(Q™1)) Z oy tai((Revi, Rey;) + (Imy;, Tmy;))

i=1

p(Im(Q™1))ay 'allv[?,
where (v1,...,vn) is the element of D, obtained from lemma (3.2). Thus we have
proved formula (44). O

3.1.2. The map R defined on the Grassmann algebra. — Consider the Grass-
mann algebra with generators {7, 7. } »c r and A its subspace generated by the mono-
mials containing the same number of variables n and 7 (¢f. section 2.2). We denote
by A1y the counterpart for the set Fy;y. Remind that the elements of A and Ay,
commute since they contain only monomials of even degrees. The canonical injections
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s; + F'— Fyy given by s;(x) = (i, x) naturally induce the morphism s; : A — Ay
defined on the generators by: (7, 7z) = (s, (2)» Msi())-
For a real 5 > 0 we denote by 73 the linear map defined on monomials by:
T3 - A — A
Then we set
TB1,...0n8 * A— A(l)
X — s1(75, (X)) - - - sn (185 (X))
Using the commutativity of the subalgebra A1y, with these definitions, we get:
N

expnQeyn = [ [ exp(ara; NQuy im) =7, 41
i=1

a1 a&l (eXp ﬁQT/)

EERER)

Finally, using the construction of section 2, we define the map R: A — A by

R=Rry)—0Fu, © Tyt onagt

For @ in Symp, we denote by @), the F(,y X F,), G-invariant, symmetric matrix
defined, as in formula (11), by

where Qn).4,,...i, 18 the copy of @ on F,, i, as in section 1.2.1 (N.B.: remind

RO

that here we suppose w; = 1 for all 7). Similarly Q) , denotes the Fi,) i X Fip) i
matrix defined by

PRrRoOPOSITION 3.3

(i) The map R is polynomial homogeneous of degree N.
(ii) We have the following relation:

(45) R (expiQn) = Cuy det ((Quy), 5, ) exp(AT™Qn).

where Cy,y is a constant depending only on the a;’s

N
Cy = (L eei!
k=1

N.B.: For any matrix @ in SymG, Q) is the G-invariant, symmetric Fi,,y X Fyy,)
matrix with complex coefficients defined by formula (11), where A is replaced by Q.

_ o 1
)Z?zol |F oy | N3

Proof

(i) The map 73, ... 3y (X) is obviously homogeneous polynomial of degree N in the

coefficients of X. The map Rp,,—oF,

.....

1y 18 linear.
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3.2. THE MAIN THEOREM IN THE LATTICE CASE 41

(ii) We clearly have, using, for example, the variational formula of proposition 2.3
that T"Q is the trace on 9F, of Q ), i.e.

(46) T"Q = (Quny)or.,
(where as usual we identify 0F,y and F'). Iterating the map R we have
(47) R (exp(iQn)) = Conyint o 7une (XP(Qmyn))

TEF (n)

where as usual we identify the points of 0F\,, with the points of F'. Let us prove the
last formula by recurrence. Suppose that for n > 0

R Yexp(Qn)) = Cinnyiy 7.m. (exp(MQn—1yn)) -

TEF (1)

By definition, for all & in {1,..., N}, if we identify Fiyy ; with 0F,) ; we get

(arag e |sk(Ta1a;1 (R" ! (expTiQn)))

=Cloyin o 7m. (explaray, ' NQ ey i) -
k

w€P (.
Considering that the term exp7Q,)xn does not contain any term 7,,7, for z in
}%W),k’ and k' # k, we see that

N
11 (inme;i(n) REACS alaz?lmmxk??)) UL Ty 7ane (XPTQm))

k=1 FEF(n)
since Q) = Zivzl ala;1Q<n>7k. Formula (47) follows directly this last equality
since Cpy = C(J¥171>(Hk aflak)“%wflﬂ. We see then that formula (45) is a direct
consequence of formula (47), (46) and proposition (2.7). O

We denote by P(A) the projective space associated with A4 and by 7w : A — P(A)
the canonical projection. We denote by L& the closure in P(.A) of the elements of the
type m(exp(11Qn)) for Q € Sym®. We know from section 2.2.2 that L is a smooth
subvariety of the Lagrangian Grassmannian LI*| with the dimension of Sym“. We
remark from (45) that 7=1(L%) U {0} is invariant by R.

3.2. The main theorem in the lattice case

We define the Green function (c¢f. appendix B) associated with R as the map G :
A — RU{—0c0} given by

1
G(z) = lim n In||R"(z)||, =z=e€A

This limit always exists and is a plurisubharmonic function (¢f. Appendix A &
B). This function is related to the dynamics of the map on P(A) induced by R
(¢f. appendix B).
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For z € L we denote by p,(z) the order of vanishing at = of the restriction of
the map R™ to the submanifold LE: precisely if s : U — A is a local holomorphic
section of the projection 7 on an open subset U C LY containing z, then we denote
by pn(x) = ord(R" o s, ) the order of vanishing of the function R" o s at the point
(cf. section 2.2). The functions p,, satisfy:

pri1(x) > Np, (@),

since R is homogeneous of degree N. Thus the limit

1
poo(@) = lHm —=pn(z),

exists since p,, is bounded by N, the degree of R™.

Remind that in section 1.2.1 we fixed a difference operator A with real coefficients
and a positive measure b on F. We denote by I, (and simply I, = Iy, for n = 0)
the diagonal Fi,y x Fy,y matrix with diagonal terms (I, , )z« = b(n)(z). We denote
by ¢ : C — A the map

(48) d(\) =expT(A— A)n, AeC.
REMARK 3.4. — Remark that the map ¢ is polynomial (c¢f. formula (22)).

PROPOSITION 3.5

(i) The Neumann and Dirichlet spectrum are related to the map R by the following
formulas:

1
(49) Vi = 3o A (R 0 6(N), 1)|
1
(50) Vi = 3= Am| (R e 600, [] o)
x€eF

where A denotes the distributional Laplacian.
(ii) The Neumann-Dirichlet spectrum is related to the zeroes of R™ by the following
formula:

(51) v =D pa(m(3(N)))dx.
A

N.B.: §, is the Dirac mass at A. The terms in the sum (51) are non null only for a
finite set of points A.
N.B.: we recall that (-,-) appearing in formulas (49), (50) is the scalar product on A
defined in section 2.2.

Proof. — Using (47) and proposition (2.7) we get
Clny det((Agny = Aoy, o ) = (R0 d(A), 1),

C<n> det(A<n> — )‘Ib<n>) — <Rn o qﬁ()\), H ﬁmnz>

zeF

o
|F (n)
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Hence, formulas (49) and (50) come from the classical 5=Aln [A] = do.
(ii) The map Q — 7(exp(7Qn)) is locally invertible from Sym® to LS. Hence, for
any Qo in SymG, we have

pn(m(exp7Qon)) = ord(Q — R" (exp(Qn)), Qo),
for Q running in Sym®. By formula (47) we have
R"(expn@n) = CtnyRF, —oF,, (eXpTQ m)n),
for any Q in Sym®. This implies that
pn(m(expTQon)) = ord(Q — Rp,,, —or,, (expTQn), (Qo) (),

where in the right-hand side @ runs in the set of Fi,) x F,), complex symmetric
matrices. For Qg real, the right-hand side equals dim ker™¥? ((Qo)(ny) by proposition
2.8. On the other hand, we have
pu(m(expTiQon)) < ord(A — R"(exp7(Qo — Aly)n),0)
= ord(A — RF(n)*’aF(n) (eXpﬁ((Qo)m) - /\Ib<n> )),0)

and this last expression equals dim kerVP ((Qo)(ny) when Qo is real, by proposition
2.8, (ii). Thus we proved that for all Qg real we have

(52) pn(7(expTiQon)) = dimker™” ((Qo)(ny)-
Formula (51) is a direct consequence of this last formula since for any Ag in R we have
v ({Xo}) = dimker™ (A — XoJu) (ny) = pn(m(6(X0)))- O

THEOREM 3.6
(i) The density of states is given by the following formula

1
=—A .
) p=5-AGo9)
(ii) The density of Neumann-Dirichlet eigenvalues is given by
(54) PP =3 poo(m(9(N)))8n.
A

(53

REMARK 3.7. — Remark from formula (48) that ¢ is holomorphic, thus G o ¢ is
subharmonic and A(G o ¢) defines a positive measure.

REMARK 3.8. — By construction, we have supp C R. This implies that G o ¢ is
harmonic on C ~\ R. This property can be seen directly from the dynamics of g. We
know from lemma 3.9 that g is holomorphic on the Siegel upper-half space S+, and
that ST is left invariant by g. On the other hand, S* is hyperbolic in the sense
of Kobayashi, cf. for example, [45], definition 2.1. This implies that Sf is in the
Fatou set of g, that G is pluriharmonic on Sf, and thus that G o ¢ is harmonic on
{A, Im(X) > 0}, since ¢(\) € S¢ for Im()) < 0.
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Proof. — The proof of (ii) is a direct application of proposition (3.5), (ii).
(i) By general results on subharmonic functions (cf. for example, [24]) we know

from formulas (49) and (50) that the weak convergence w4 <i> — = A(G o ¢) would

be implied by the following convergence in L{, (C):

1
(55) lim N—ln|<R”o¢,1>|:Go¢,
(56) nILH;oN_ln‘< "o ¢, gﬁzﬁx> =Go¢.

This will follow from

LEMMA 3.9. — For all @Q in S+

1 R"(exp7Qn)

57 lim —1n‘ 1 ‘:O’

(57) n—so0 N7 <||R”(eXp77QTi)|| >
1 R" (exp7Qn)

58 lim —111’ zllr )=

(58) e N7 <HR" (expnQn)||” H et >

Let us finish the proof of the theorem before starting the proof of lemma (3.9). We
only prove (55), the proof of (56) is strictly identical. We write:

1 . 1 R0 $()\) 1 .
7 (R 0 6(3), 1) | = WWM’W + < 1R 0 9V

The first term of the right-hand side is negative since ‘<%, 1>’ < 1, and con-
verges to 0 for A € C\R since A— A1, isin S; or in —S; for A in C\ R, using lemma
(3.9). Therefore, we know that the sequence of psh functions w5 log| < R" 0 ¢,1 > |
is uniformly bounded from above and converges pointwise to G o ¢ for A in C \ R.
Using proposition (A.1) of appendix (or proposition 3.2.12 of [24]) we know that (55)

is true for the convergence in L{ (C). O

Proof of lemma 3.9. — We first remark that the terms of the sequences in formulas
(57) and (58) are non-positive. By proposition (3.3) and lemma (2.5) we have:
K R (expn@n) 1>} _ K exp1"Qn 1>‘
1R (exp7Qn)l|’ | expTI™Qn|’
1

[l expiI™Qn||
|F|/2

2
(1 + (p(T"Q))*)IFI/? ( ((T"Q) 1))

where p(T"Q) is the maximal characteristic root of 7"Q and p((7"Q)~") the minimal

characteristic root of (T"(Q))~!. Since (T"Q)~! is symmetric we have

p((T"Q)7) = p(Im((T"Q) ™)) = afa™"p(ImQ ™),

using lemma (3.1) in the last inequality. This is enough to prove formula (57).
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The proof of formula (58) works similarly. Using proposition (3.3) and lemma (2.5)
we get:

RY(explQn) 11— \|_ |det(T"Q)| 1
( i oo 11 Tt )| = lexpmT™Qull = (1 (p(T"Q) 1)) 712

_ (L%)llmm,

1+ (B(T”Q)

and we conclude similarly using lemma (3.1). O

zeF

3.3. The continuous case

We know that the Dirichlet forms (a(n>,D<in>) introduced in section 1.2.2 satisfy
the conditions (i), (ii), (iii) of section 2.3 (cf. [36]). For A > 0, we denote by a () »
the Dirichlet form defined by a(,y (f,9) = a@m)(f,9) + A fgdmyy, and by Apy
the symmetric F,y X F(,) matrix defined by

(A7) = (@) 2) iy (-
We simply write A(yy = Ag),(x). Using lemma (2.15) we see that A, (1) can be

extended to a meromorphic function on C with poles included in the spectrum of a,y, »
with Dirichlet condition on Fi,, i.e. in the spectrum of (a, D™) (indeed, X,y ~\ Fip)

is the disjoint union of N™ copies of )O()
We see that
(59) Ay, 00 = (A )
with (A(x))(ny defined by formula (11) (where A is replaced by Ay)).
PROPOSITION 3.10. — For all A € C the following equality is satisfied (when the

terms are defined)

ar'T(Aw)) = Ay

REMARK 3.11. — This means that, at least locally, A(\) is a holomorphic curve
invariant by the map al_lT. We remark that A is a fixed point of al_lT (in general
the existence of this fixed point is equivalent to the existence of a self-similar diffusion
on the fractal, ¢f. [36]) and that the direction (%A(,\))A:o is an unstable direction of
oy 'T since y > 1.

Proof — For any f in Rt ~ RF we have:

ar ' T(A)(f) = a7 H(Awy.o))or, (f)
1((“<1>1A)F<1> Jorg, (f)
Yagya)ory, (f)
= (ayx)r(f),

:al

:al
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where the last relation comes from the scaling relation a1y x = 010Gy O

Denote by diw the infinite dimensional determinant of (a<n>,Da>), as in section
2.3, and simply d* = dfo)' The infinite dimensional determinant of a,y with Dirichlet
boundary conditions on Fy,, is equal, up to a constant, to (d=)N" (indeed, Xy NFipy
is the disjoint union of N™ copies of )O() Hence, if we apply lemma (2.16) to Xy
and Fy,) we see that

+ d% W
(60) det(Am),(,\)) = C<n> P ()\)N" ,
(61) det((Am),(A))lIgw) = C(n>ma

for some constants ci}).

PROPOSITION 3.12. — Formula (49), (50) and (51) of proposition (3.5) are true in
the continuous case on the open ball B(0,|\]|) with center O and radius |A\]| and
when the function ¢ : B(0,|A]|) — A is replaced by

(62) P(A) = exp(MA)n)-

N.B.: Remind that A; is the first Dirichlet eigenvalue of a, and that A(,) is well-
defined on B(0, [AT|).

Proof. — On B(0, |\ |) we have, using formula (60), and proposition (2.7),

+ _ (1 +
o) iBoary = (AL 5o A )

= (zzAMm |det Ay )|+ N"vg)) 5o a; )

(£am|(r oo, [T 7n)
zeF

This proves formula (50). The proof of formula (49) is similar. To prove formula (51)
we first prove that

(63) dim E(]\rfz)D,A = dim keI‘ND (A(n>,()\)) = dim keI‘ND ((A()\) ) (n) )

)|B<07|A;\>'

for A\ < A <0, where Eé:i ;3 , denotes the vector space generated by the N-D eigenval-
ues of a(,y with eigenvalues larger that A. When this formula is proved then formula
(51) is a direct consequence of formula (52). Remark that

E@[ffx N{f € Dy, fir,, =0} ={0}

(otherwise, there would be a Dirichlet eigenvalue of (a, D) with absolute value smaller
than |[A7]). Hence, if f is in ng)\ then fip,, is non-null and in kerND(Am),(,\)).
Conversely, consider g in ker™” (A(ny,(»)), its harmonic prolongation with respect to

a(ny,x is well-defined and is in Ea?/\. This means that the map f — f|F<n> is a
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bijection from ng)\ to ker™P (A(ny,(x)), thus this proves the first equality of (63).
The second equality is given by relation (59). o

THEOREM 3.13. — All formulas of theorem (3.6) are true in the continuous case on
the ball B(0,|AT|) and when ¢ is given by (62) as in proposition (3.12).

Proof. — Tt is similar to the lattice case, using lemma (3.9). We just have to check
that Ay is in S for Im(\) < 0. This follows the classical relation

Tm(Agsy (f. ) = ~Tm()) / ENE

for f € R and Hyf the harmonic prolongation of f with respect to a (we remark
from the explicit expression of Hy f given in the proof of lemma 2.1 of [38] that H) f
admits an analytic prolongation for ImA < 0). O
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CHAPTER 4

ANALYSIS OF THE PSH FUNCTION G|;-1¢)

4.1. The dichotomy theorem

In this part we analyze the structure of the Green function G restricted to the
subvariety 7~ (IL%), or equivalently the current on L% with potential G |=—1(L¢)- This
will give some information on the measures ¥ ? and p. The structure of this current
is related to the dynamics of the restriction to LY of the map induced by R on
P(A) (indeed as seen in section 3, the subvariety 7—!(IL%) is invariant by R). We
first describe precisely this map. As in appendix C, we define the meromorphic map
g : LY — LY and its iterates g™ by their graph T'yn C LY x L€ constructed as the
closure of the graph

(64) Lon = {(n(z), 7(R"(«))) | « € 71 (L) \ {R"(z) = 0}}.

g
We denote by 71,75 @ LY x LE — LLE the projection on the first and second coor-
dinates. The set of indeterminacy points of g™, denoted I, is defined (¢f. appendix
C) as the set of points where m; : I'gn — L% is not a local biholomorphism. On
LG \ I« the map is defined by g"(z) = ma(m; ' (2)). The codimension of I, is at
least 2 and it will be useful to describe the structure of the set Iy» in terms of the
map R". This can be done locally: let  be a point in L and U an open subset of .
containing x, identified with a subset of CdimL by a local set of coordinates. If s is
a section of the projection 7 on the subset U then we can find holomorphic functions
fi,..., fr on U and positive integers cy, ..., cx such that

— we can write
(65) R"os = f{*-- fi* Rn,

where R, is a holomorphic function from U to A such that the set {R, = 0} is at
least of codimension 2.
— The analytic sets

(66) Zi ={fi =0}
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are irreducible and f; is a generator of the ideal
Z(Z;) = {f holomorphicon U | f =0 on Z;}.

Then the set of indeterminacy points Ig» N U is exactly the set {En = 0} and on the
set {R,, # 0} the map g" is given by g"(z) = (R, (z)). This gives us the opportunity
to introduce the divisor associated with the hypersurfaces of zeroes of the restriction
of R™ to LS. Precisely, we call divisor a formal sum Y , czZ where the sum runs
over the set of irreducible subvarieties of codimension 1 of L& and the coefficients ¢y
are integers and null except for a finite set of indices. We define D,, = > ¢z Z as the
divisor on LE such that for any subset U C L& we have

(67) (Dn)jy =12y + -+ + cx Zy,

where Z; and ¢; are defined by (65) and (66) (the restriction to U of an irreducible
subvariety Z can be decomposed as a sum of irreducible hypervarieties of U: this
naturally allows us to represent D,, NU as a divisor on U i.e. as a formal positive sum
of irreducible hypervarieties of U).

Since R is of degree N it is easy to see that

(68) Dpi1 =2 NDy,
for the natural ordering on divisors.

We denote by S (resp. S,,) the closed positive (1,1) current on L& with potential
Gir-1Le) (resp. (Gn)x-1Le)y where G,, = In[|R"||) i.e. S and S, are defined locally
on an open subset U of LY by

S=dd°Gos, S, =ddlog|R"os],

if s is a holomorphic section of the projection m on U. By definition the current
Sy is the restriction to L& of the Fubini-Study form defined on the projective space
P(A) and is therefore a Kihler form on LY (cf. Appendix A.5). The currents S,
are well-defined for all n since G, is not equal to —oo on LY (indeed, we know
that R"(exp(7Qn)) is non-null for @ in S, cf. lemma (3.1)). Since =Gy converges
pointwise in RU {—o0} to G we know that
) 1

(69) nlingo mSn =S
for the topology of current.

In Appendix C.2 we define the pull-back of a positive closed (1,1) current by a
meromorphic map. With this definition we have the following result.

ProOPOSITION 4.1. — For all integer n we have
(70) Sn = (9")"So0 + [Dn].

N.B.: For a divisor D = Y _ ¢z Z we denote by [D] the current [D] = > c¢z[Z] where
[Z] is the current of integration on the hypervariety Z (cf. appendix A).
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Proof — Let U be an open subset of L& identified with an open subset of C4i™ Le
thanks to a local chart. If s is a holomorphic section on U of the projection 7 then

R" o s can be written (cf. formula (65))
Rhos— [0 fo R,
and the map ¢g" is defined on the set {Rn # 0} by

9" () = m(Rn(z)).
The current S, is defined on U by
S, = dd°G,, o s
= dd°In || Ry || + c1dd® In | f1] 4 - - - + cpdd® In | fi],

with notations of formula (65) and (66). By Lelong-Poincaré formula (cf. appendix
A) dd°In |f;| = [Z;] and we will show that dd¢In||R,| = (¢")*So on U ~ {R, = 0},
which implies the equality on all U since by Siu theorem (c¢f. for example, [11]), a
(1,1) positive closed current cannot charge analytic subset of codimension strictly
larger than 1. Let 2o be in U ~ {R, = 0} and set wy = g(z0). Let r > 0 and
r1 > 0 be such that g(B(zg,r1)) C B(wo,r). Let 5§ be a holomorphic section of the
projection 7 on B(wp,r). We can write Ry (z) = j(2)5 0 g"(z) on B(zg,r) where j
is a holomorphic function which does not take the value 0 on the set {R,, # 0}. This
implies by definition dd®log||Ry|| = (¢™)*So on B(zg,r1) ~ {R, = 0}. O

Considering equation (68) and relation (69) we know that the limit of = [Ds]
exists and that the limit of ﬁ(g")*So exists. The question is now to know whether
these limits can be non null at the same time. The following proposition answers the
question.

ProroSITION 4.2. — If D,, # 0 for an integer n then

1
lim —(g")*So = 0.

n—oo NT

The proof of this proposition relies on considerations on the cohomology classes of
the currents S, and is sent to section 4.2. Actually, this result would be straightfor-
ward if LE was a projective space : it would be obtained by simple considerations on
the degree as in the proof of theorem (B.5) of Appendix B. We deduce from the last
proposition the following results.

THEOREM 4.3
(i) If D, # 0 for an integer n then
1
= lim —|[D,
§ = Jim, D

and S is a countable sum of current of integration on hypersurfaces of LG,
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For both the continuous and the lattice case (i.e. for any choice of (A,b) in the
discrete case) we have:

(71) NP =y,

in particular, for almost all blow-up the spectrum of the operator is pure point and the
eigenfunctions have compact support.
(ii) If Dy, =0 for all n then the map g is algebraically stable (cf. appendiz C),
§= lim —=(g")"So
and S is the Green current of g. In particular, the current S does not charge hyper-
surfaces and the support of S is included in the Julia set of g.
Moreover, in the lattice case for a generic choice of (A,b) we have

NP — 0.
N.B.: For a generic choice of (A, b) means for any (A, b) in the complement of a proper
analytic subset.

REMARK 4.4. — The interesting information in this result is that a dichotomy ap-
pears between situations where either the N-D eigenvalues contribute for all the den-
sity of states or generically do not exist.

REMARK 4.5. — In proposition (4.14) we will relate this dichotomy theorem with an
asymptotic degree associated with g.

Proof

(i) Since w=[Dy] is increasing it is obvious that its limit will be a countable sum
of currents of integration. It is equal to S by proposition (4.2).

By proposition (3.5), (ii) we know that (7 o ¢)*[D,] < uﬁ? ((m o ¢)*[Dy] is the
pull-back of the current [D,,] as defined in appendix A.6, i.e. on an open subset U
the current [D,] has potential Y ¢; log | f;| where the ¢;’s and f;’s come from formula
(65), the pull-back is then defined by (7 o ¢)*[D,] = dd®_ ¢;log|f; o mo ¢|). There
is not equality a priori since it may happen that the curve ¢ meets some component
of {R™ = 0} of codimension larger than 2 which do not appear in [D,,]. This implies
that (m o ¢)*S < NP, but (70 ¢)*S = u by theorem (3.6), so ¥ = p.

(ii) We will see in the next section that Sy satisfies an equation in homology
N™{S0} = (¢")*({So}). Hence, S is by definition the Green current of g as de-
fined in appendix C.4 and theorem (C.6). It only remains to prove that for a generic
choice of (A,b), u¥P = 0. Suppose that D,, = 0 for all n. We want to prove that for
a generic choice of (A4,b) the line A 4+ A, A € C, does not meet the set {R"™ = 0}.
This is equivalent to prove that for any choice of A as in section 1.2.1, and D positive
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diagonal, G-invariant, with TraceD = 1, in the complement of an analytic subset of
codimension at least 2, the line A + AD does not meet the set R™ = 0. But the map

j : {A asin section 1.2.1} x {D diag. > 0, G-inv., and TrD = 1} x C — Sym®
(A,D,)\) — A+ AD

is a local diffeomorphism for A # 0. Therefore the subset j~*((R™)~1{0})N{\ # 0} is
of codimension at least 2. The set 77 1((R")~1{0})N{\ = 0} is also of codimension at
least 2 since R™ is not identically null on j({A = 0}). This implies that the projection
of j7Y((R™)~1{0}) on the first 2 components (4, D) is of codimension at least 1. O

4.2. Proof of Proposition (4.2). Structure of the variety L

4.2.1. Notations and preliminary results. — We denote by H®D(LY) the
(1,1) Dolbeault cohomology group of LE (cf. Appendix C, H\D is equal to the
subspace of H?(L%,C) generated by the forms of type (1,1)). If a is a (1,1) closed
form we denote by {«a} its cohomology class. As explained in the appendix the
cohomology class of a current w can also be defined and is denoted {w}.

We remind from the appendix that if « is a positive closed (1, 1) current then its
pull-back (¢™)*a is well defined and that if « is a smooth differential form then

~ (¢")*ais in L (L),

loc
— (g™)*a is smooth on LE \ In.

Moreover, the pull back (¢)* induces a pull-back on cohomology group H ™1V (LE).
We first prove the following result.

LEMMA 4.6. — For all integer n then:
(72) {Sn} = N"{So} = (9")"{So} + {[Dn]}-
Proof. — The equality between {S,} and the last term of the expression is immedi-

ately deduced from proposition (4.1). We only have to prove that {S,} = N"{So}.
Remember that S, has potential G,, = log||R"| on 7—*(LY), and G,, satisfies the
following homogeneity relation:

Gn(Az) = N"log |A| + G (x).

This immediately implies that {S,} = N"{Sp}: indeed, the function wu(z) =
log |R™(2)|| — N™log||z|| is well defined on LE. Thus S, — N"Sy = dd°u and
{dd°u} = 0 by definition. O

4.2.2. Description of the structure of L. — To go further we need to describe
the structure of the cohomology group H'''(L¥). In Appendix E, we describe the
topological structure of L¢. The main point is that L.¢ is isomorphic to the product
Lo X --- x L., where L; is a smooth projective variety with Betti numbers b; =
dim H'(£;) = 0 and by = dim H?(L;) = 1. When G is the trivial group then L& =
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LIFI, and the situation is considerably simpler. We treat this case separately, for
convenience, and the ready can restrict to this simpler situation, at a first reading.

Let us be more precise. The structure of ¢ depends on the decomposition of
RF into real irreducible representations of G. The space R¥ can be decomposed into
isotopic representation as

(73) RfE=Vo@ @V,

where each V; is an isotopic representation equal to the sum of n; representations
isomorphic to a single representation W;: we write V; = n;W; for simplicity. We
denote by Vi(C and Wi(c the complexifications of V; and W;. The representation W;
can be of one of the following 3 types (mutually exclusive). If W is C-irreducible
we say that W; is of type 2. Otherwise VV;C = U; ® U;, where U; and its complex
conjugate, U;, are C-irreducible. If the character of U; (and hence of U;) is not real,
then we say that W; is of type 1. If the character of U; (and hence of U;) is real, then
we say that W; is of type 3 (¢f. Appendix E for details and justification).

To state the result of appendix E, we need to introduce three types of Grassmanni-
ans. We denote by G™?” the Grassmannian of n-dimensional subspaces of C?". The
Lagrangian Grassmannian L™ has been defined in section 2. Finally we define the or-
thogonal Grassmannian as follows: Q™ is the set of n-dimensional isotropic subspaces
of C?" for the non-degenerate symmetric bilinear form (-, K,,-), where

0 Id,
Kn = (Idn 0 ) '

The set Q™ is a smooth subvariety of G™?", and has 2 connected components. We
denote by SO" the connected component which contains the isotropic subspace C™®0.

These three types of Grassmannian are homogeneous spaces associated respectively
with the classical groups Gi(2n,C), Sp(n,C) and SO(2n,C) (c¢f. Appendix E for de-
tails).

In appendix E, we proved that

LE ~ Lo X - X L,

where

— L; ~ G2 if W is of type 1; the dimension of £; is n?.
— L; ~ L™ if W; is of type 2; the dimension of £; is n;(n; + 1)/2.
— L; ~ SO?" if W; is of type 3; the dimension of £; is 2n? — n,.

REMARK 4.7. — Since the subspaces Vi(C are orthogonal for the canonical symmetric
bilinear form on CF, the space Sym®(C) is isomorphic to the product Sym%(VF) x
cee X SymG(VT). The tangent space to LE is SymG (C), and the dimension of each £;
corresponds to the dimension of Sym®(V,C).
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REMARK 4.8. — In particular, when all the irreducible representations of CF" are
realizable over R, then L is a product of Lagrangian Grassmannians. This is the
case in all the examples we are going to consider.

The main point is that the first and second Betti numbers of £; do not depend on
the type of £; and are equal to

by = dim(H"(£;,C)) =0, by =dim(H*(L;,C)) =1

(cf. for example [22] for the case of G™?", and [42], for the case of L™ and SO").
Since L; is a smooth projective variety, and hence a Kéahler manifold, it implies
that HY9(L;) = HYY(L;) = {0}, H*°(L;) = H*%(L;) = {0} and HYY(L;) =~ C
(cf. appendix A.5). Thus,

(74) HYYILE) = HY Y (Lo) @ --- @ HYY(L,),

and H%'(L%) is of dimension 7 + 1 (hence, we see that we are in the situation de-
scribed in appendix C.3). Each of these Grassmannians have a canonical embedding
in a projective space P*: indeed, the Grassmannian G™?" is naturally embedded in
the projective space P(A"C?") by the Pliicker embedding, and L. and SO™ are subva-
rieties of G™2". We call canonical Kihler form on G™2", L™ and SQ", the restriction
of the Fubiny-Study form on the projective space P(A"C?"), renormalized to be a
generator of the integral cohomology H%’l (cf. appendix A.5 and C.3). We denote
by v; the canonical Kéhler form on each £;. By abuse of notations we also denote
by v; the pull-back of v; by the canonical projection p; : L¢ — £;. A natural basis
for HV1(LLY) is given by ({vo},...,{r.}) where {1;} is the cohomology class of v;.
In this basis the pull-back (g")* on HY1(LE) is given by a (r + 1) x (r + 1) matrix
dn = (dn,i,j)Ogi,jgr defined by

(75) (9" {vi} = dugiwid.
=0

We know, cf. appendix C proposition (C.4), that (d,,) has non-negative integer coeffi-
cients. As explained in the appendix the matrix d,, plays the same role as the degree
in the case of maps on projective spaces (i.e. if LE was a projective space P* then d,,
would be scalar (since dim H'!(P¥) = 1) and would be the degree of the map g" as
defined in appendix B). Before going further we detail two particular cases where this
notion is easier to handle.

The case L = LIFI. — This means that C* is the sum of |F| times the trivial
representation Wy. This happens if and only if G acts trivially on F'. The cohomology
group H'1(LL%) is then 1-dimensional and the map (¢")* is scalar and represented by
the positive integer d,,. In this situation the proof of proposition (4.2) is significantly
simpler and we give it for the convenience of the reader. Considering relation (72) we
have

N™{So} = dn{So} + {[Dn]},
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thus D, # 0 implies that d, < N™. The sequence d, being submultiplicative
(cf. proposition (C.4)) this implies lim, o 7=dn = 0 and then
1
lim —(¢")*(Sp) =0
Jim 2 (9")"(So)

since the total mass of the current = (g™)*(So) goes to zero. O

The case LE ~ P! x .- x P* (r 4 1 times). — This occurs when n; = 1 for all i. In
[37], we gave a sufficient condition for this to happen.

PROPOSITION 4.9 ([37], Théoréme 3.2). — The following properties are equivalent:
i) For all (x,y) in F? there exists h € G such that h-xz =y and h-y = x.
ii) The representation CI' can be decomposed into v + 1 distinct C-irreducible rep-
resentations and this decomposition can be realized in R (i.e. n; = 1 for all i and the
representations W; are realizable in R).

REMARK 4.10. — It means that all the representations of C¥" are of type 2. Hence
Sym® ~ Cr+1,

REMARK 4.11. — In particular this is true for nested fractals (c¢f. examples, section
1.1.4, and [31]).

As explained in the appendix, when LE = P! x - - x P! then ¢" can be lifted to a
polynomial map on C2("+t1) and the matrix of degrees is equal to the degrees of the
polynomials involved in this map. In the example of the Sierpinski gasket we will use
this polynomial representation to compute the map g and analyze its dynamics.

4.2.3. Proof of proposition (4.2).— The proof of the proposition relies on the
following lemma.

LEMMA 4.12. — For any n the matriz d,, is primitive. More precisely, for any n and
any j =0,...,7, dp 0 >0 and dyo,; > 0.

N.B.: Primitive means that there exists a power with positive coefficients. Here, we
see that (d,)? has positive coefficients.
Suppose this lemma proved then the proof of proposition (4.2) runs very much

IFI. Let us first prove that {Sp} has non-negative

like in the simpler case L = L
coordinates in the basis ({vo}, ..., {v}). This is a direct consequence of the fact that

Sy is a Kihler form, as the restriction of the Fubini-Study form to L (c¢f. appendix

A.5). Indeed the real
/ v A Sdim]LGA
Lo 4 0 ;

is called the mass of v; and is a positive real when Sy is Kéhler. Thus if {Sp} =

> ci{vi} then

dim L¢
_ e S
Cio

= dimLG—1’
fILG vi NSy
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and fILG Sglim LY i positive. (Actually, the coefficients ¢; are even integral, since Sy is
an integral class, cf. [6], section 6.4.2, iii)).
Then Equation (70) reads as follows:

N™{So} = dn{So} + {[Dn]},

where {So} and {[D,]|} are considered as vectors of coordinates in the basis
({vo},...{vr}). Denote by ¢,, the largest eigenvalue of the non-negative matrix d,.
Suppose that D,, # 0, the primitivity of d,, immediately implies that ¢,, < N™°.
Indeed, (d,,)? has positive coefficients, thus

(N" = dpy ) (dp, {S0}) = (dng)* (N = ding){So})

has positive coeflicients which implies that ¢,, < N"°, cf. proof of theorem 1.1
of [43]). Thus, since d, is submultiplicative (cf. proposition (C.4)) we have

At any point z € LY the tangent space T, (LY) is isomorphic to Sym¢® (VEE) x + -+ x
Sym¢® (V.C). Therefore, at any point z € LE \ I,» where g" is smooth the differential
dg™(x) of g™ can be decomposed into blocks

(76) Bllj(z) : Sym®(V;F) — Sym“(V%), 0<i,j<r.
We first prove the following lemma.

LEMMA 4.13. — The coefficient dy ; ; is positive if there exists x in LG < Ign such
that B}';(x) # 0.

Proof — Let us first remark that when LE ~ P! x ... x P! this lemma is trivial.

Indeed, in this case the map ¢g” can be represented in homogeneous coordinates by

(77) g([l‘o : yO]""a[mT :yr]) = ([POn : Qg]a’[P:l : Q?])

where P*(zo,Yo,---,Zr,yr) and Q7 (xo, Yo, - ., Zr, yr) are homogeneous polynomials
of same degree in the variables (z;,y;) (and P; and Q; are prime). As explained in the
appendix, the degree of (P/*, Q¥) in the variables (x;,y,) is equal to d,, ; ;. Therefore
dn,i,j > 0 means that P/ and Q' are not constant in (z;,y;) and therefore that B}';
is not the constant 0.

Let us now prove the lemma in the general case. The volume of L;, f . z/fim £ ‘s
positive and we set

C:/ Vglmﬁo/\“'/\yilimﬁr :/ V(()llmﬁ().”/ l/gimLT.
LG Lo L

r

Remark that if w is a closed current of bidegree (1,1) and « a smooth closed form
of bidimension (1,1), then [icw A a depends only on the cohomology class of w.

SOCIETE MATHEMATIQUE DE FRANCE 2003



58 CHAPTER 4. ANALYSIS OF THE PSH FUNCTION G\wfl(LG)

Therefore if w is a closed current of bidegree (1,1) with cohomology class {w} =
CO{VO} + - 'CT{VT}v then

(78) / wApImEo AL A pdm LT AL A pdim L — O,
LG
Applying this formula to (¢")*v; we get
Cdp,ij= /]Lc(g”)*l/j AvdimLo n g ydimEim ALy dim L

Since (¢")*v; is a positive closed (1,1) current it does not charge the analytic subset
of codimension bigger than 1. Thus, we have:

(719) Cdy,, = / (g") v AvgmEo p g pdim BTl AL dim L
LENTIgn

As explained in the appendix the current, (¢")*v; is smooth on L¢ \ I(g") and we
can write at any point x € LY \ In

(80)  (9")"wy A EO A AT A A (1) = € (2)o (),

where e (x) is a smooth positive function on LY \ I;n and v the volume form
v = ygmEeo A A pdimLe T prove that dy,;; > 0 it is enough to prove that
e';(x) > 0 for at least one point z in LY N\ Ign. Let x = (zo,...,z,) be in LY\ Ign
and set ¢"(z) = w = (wo, ..., w,). We denote by B, (z, ) the ball of £; with center
x and radius . We choose € and € such that

9" (Bg,(xo,€) X -+» X Bg, (xr,¢€)) C B, (wo,€) X -+ X Be, (wy, &),
and holomorphic coordinates 2i,..., 2%, and 2},..., 2%, on Bg,(zi,e) and
B, (w;,€). If the Kéhler form v; has locally a psh potential u; on Bg,(w;,€) then
we can write
r dim£; dim Ly,

(81) @)=Y > > Cplidel Az,

LI=0 k=1 k'=1

where
/ o 0
(C5)) geime, = (o7 52w 0"
. rsaim ozl ozt E<dim £
K <dim £,/ 2 OZ k/gdimﬁiz
n 82w n n *
(82) = (Bl,j(z)) (ﬁ(ﬂ (Z))> (Bl’,j(z)) )
sznazm/ m,m’<dim L;
) & g

where we wrote By';(z) for the matrix of the block differential B}'; at the point 2, for

the local coordinates (z}) and (Ei) Since v; are kdhler forms on £; we can find ¢ > 0

such that
dim £;

v =c Z idz} A dZL,
k=1
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on B(zy,e). This implies that
(gn)*yj A Vgimﬁo A A V?imﬁi—l A A V;iimﬁT
r dim £

(ch k)H H (idz}, A dzY).

1=0 k=1
Thus e} ;(x) = 0 implies that >, C;czk( ) = 0, but the matrix (Ck L (x))k g is positive
so this implies that the matrix (C}}, ())k,r is null. From formula (82), and since

the matrix ( ~,aui~j (g" (x))) is of maximal rank, since v; is a Kahler form, we have
0%, 0%,/

BY; (x) = 0. O
Proof of lemma 4.12. — We know that the map @ — 7w(exp7Qn) defines an embed-
ding of Sym® into LE. On Sym® the map g is given by the map T (cf. proposition
(3.3)). Firstly, we compute the differential dT" at a point @) where @ is real and posi-
tive definite. For f in RY we denote by Hg(f) the harmonic prolongation of f with
respect to Q(1y. We can easily see from formula (21) that the differential d7¢ of T" at
the point ) satisfies:

(83) ([dTo(Y)(f), ) = (Yo, (Ha(f)), Ha(f))

for any Y in Sym®. At the point Q = Id the harmonic prolongation Hiq (f) equals f
where:
f: {f on 8F<1>
0 on F(1> N 8F<1>

We want to prove that dy, jo > 0 and dy,0; > 0. From lemma (4.13) it is enough
to prove that By ;(Id) and B; o(Id) are non-null. Let us prove that By ;(Id) # 0. We
choose a convenient Y in SymG(VO): we choose Y = py,, the projection on the sub-
space Vp for the decomposition (73). The projection on the component SymG(Vj) of
dT14(pv,) is just given by the restriction to the subspace V;. To prove that By ;(Id) # 0
it is enough to find f in Vj such that

(f,dTra(pvy)(f)) > 0.
But
(f,dTra(pv,)(f)) = Z oz;1 <ﬁF<l>’17pVofF<1>ym>,
x€eF

and ﬁpum (2) = 0,(2) f(x) where ¢, is the Dirac function at the point . Thus the
last term equals, since py, is an orthogonal projector,

> o (@) (pveda, prida) -

zeF
Since Wy is the trivial representation of G, the subspace V} is the subspace of func-
tions invariant by G. Thus (py, 0z, pv,0z) > 0 for all  in F. (Indeed, the function
‘—é,‘ > e 0g.¢ is non null and contained in V4. This implies that §, cannot be in the
orthogonal complement of V.) This implies that the block 0, j of the matrix dTiq is

SOCIETE MATHEMATIQUE DE FRANCE 2003



60 CHAPTER 4. ANALYSIS OF THE PSH FUNCTION G\wfl(LG)

non-null, i.e. that By ;(Id) is non-null. To prove that B;(Id) is non-null we proceed
similarly. We consider Y = py, and f =1¢€ V. We have:

(1, dTwa(pv, )( Z o, (00, v, (62)) -
zEF

But <pvj (0z), 6z> cannot be null for all z since (6,).cr generates the space Rf'. O

4.3. Asymptotic degree of ¢g"

We denote by [,, the maximal eigenvalue of d,,. Using the submultiplicativity of d,
we set
1
(84) deo = lim —logl,.
n—oo N,
Considering formula (72) we see that do < N. If we denote by ||d,|| the Lo, norm of
dp, i.e. ||dp|l = sup; 327 (dn)i,j, we can easily check that

1
(85) doo = lim_ —log||dy]|.
(Indeed, classically ||d,|| > I, and for all ny we can find a constant K > 0 such that

forallp > 0and k =0...n—1, ||dpop+rll < [|(dng)Pdi|l < K(In,)?, which immediately
gives the other 1nequahty lim 1 {|d, || < doo)
PROPOSITION 4.14

(i) We are in the case (i) of theorem (4.3) if and only if doo < N.

(i) In the lattice case for all choice of (A,b)

(86) deo > lim sup — 1og |1/ - VZYL>D|,

n—oo
where |l/<ﬂ:l> fyglﬂ is the total mass of the measure. Furthermore, for a generic choice
of (A,b) we have the equality

. 1
(87) doo = nlilrgo - log |V<in> - Vglﬂ.
Proof

(i) Indeed, we remarked in the proof of proposition (4.2) that D,, # @ is equivalent
tol, < N.
(ii) Let V* be the analytic subsets defined by

T ={Xen (LY (X,1) =0},
VE={X en (L) | (X TLep Tae) = O}
Proceeding exactly as in proposition (4.1) we know that dd®In|(R™, 1)| is a potential

for (¢g")*[V "]+ [Dy) (and idem for (R™, ], ¢y 7.72) and VT). Hence, by proposition
(3.5) we have

(88) Vipy = (100)"((9")* [VF] + [Da)),
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where (7 o ¢)* is the pull-back of 7 o ¢ as defined in appendix A.6. By proposition
(3.5) we know that the N-D spectrum corresponds to the zeroes of R™ and we deduce
(89) Vigy = Viny < (w0 )" (") [VF)),

with equality when ¢(A) does not meet the indeterminacy points of g™ (which is the
case for a generic choice of (A,b), as seen in the proof of theorem (4.3)). The map ¢
can be extended into a holomorphic function on P! by setting ¢(o0) = 7 (exp(fIyn)).
Remark that ¢(oco) does not belong to V't or V—, so that formula (88) and (89)
remain valid when (7 o ¢)* is the pull-back of the extension of 7o ¢ to P1. In P! the
cohomology class of a positive (1,1)-current (i.e. a positive measure) corresponds to
its total mass, more precisely, we have {v} = |v|{do} where v is a positive measure
and |v| its integral on P!. One can easily check that the coordinates of the linear map
(mo¢)* : HHY(LE) — HYY(P') in the basis ({t0}, ..., {v}) and {6} are positive as
well as the coordinates of {[V*]} in the basis ({v0},...,{v}). Considering equation
(89) in homology we get

vy = VP < (0 8)* (d{ VD),
with equality for a generic choice of (A,b). Thus we have
ity = vo | < ll(we @) ldall I{IVEI}

where ||70¢)*|| and ||d,|| are the L> matrix norm and ||{[V*]}|| the L> norm of the
vector {[V*]}. Thus (86) easily follows form (85). On the other hand, since {[V*]}
and (7 o ¢)* have positive coordinates we can find K > 0 such that |1/<j;> - V&ﬂ >
K||dy| when equality in (89) is satisfied. Thus, for a generic choice of (A, b), equality
(87) is satisfied. O

4.4. Regularity of the density of states

We first state a conjecture and show how it can be related to results on Lelong
numbers of the Green current.

CONJECTURE 4.15. — The measure p — p™NP is continuous, i.e. it does not charge
any point.

We introduce the notion of Lelong numbers of a psh function. Let u be a psh
function in a neighborhood U C C™ of 0. Then the Lelong number of w at 0 is defined
by

v(u,0) = max{c > 0| u(z) < clog||z]| + O(1)}.
The Lelong number of a positive closed (1, 1) current 7' is defined by v(T,p) = v(u, p)
for any local psh potential u of T', T' = dd°u. On C it is easy to see that the Lelong
number at p of a positive closed (1,1) current (i.e. a positive measure) is the mass of
the point p.
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Coming back to our situation, we suppose that we are in the lattice case and
that dow = N (otherwise u — u™P = 0). We remark that the Lelong number of
dd®In ||R™ o ¢|| at A is the order of vanishing ord(R"™ o ¢, \). By proposition (2.8), (ii),
we know that this order of vanishing is equal to uglf)({)\}) Hence, we see that the
conjecture is equivalent to

lim %I/(ddc In||R" o ¢, \) = v(dd°G o ¢, \).

n—oo

Since the current S = dd°G is the limit of the sequence of currents ﬁSn with
potential wdd¢In ||[R"|| the question is equivalent to know whether the limit of the
Lelong numbers of the restriction of the currents .S,, to a curve is equal to the Lelong
numbers of the restriction of the limit S. There is, at the present time, only one result
on Lelong numbers of Green currents: it says, c¢f. [13] theorem 2.4.6, that the Lelong
numbers of the Green current are null on the complement of the indeterminacy points
of the iterates: with our notations it means that the Lelong number of S is null when
the Lelong numbers of the S, are null. Unfortunately, it cannot be applied easily
to our case. Firstly, because it does not state that the Lelong numbers of S is the
limit of the Lelong numbers of %Sn at any point, and secondly, because we need
information on the restriction of the Green current of S to the curve ¢(X), which can
be strictly bigger than the Lelong number of S. Nevertheless, it could certainly be
possible, with a little more work, to prove a result in the generic case, but we prefer
to leave the general result as a conjecture.
The following result gives a criterion for the regularity in a much stronger sense.

PROPOSITION 4.16. — When ds, = N, the integrated density of states p(\) = ff du
1s locally Holder continuous on the set of X’s such that there exist open subsets U C C
and V C LY such that A € U, UX_I;n CV and g" o p(U)NV = @ for all n.

N.B.: By locally Holder continuous we mean that for any relatively compact open set
U C C, we can find ag > 0 and C' > 0 such that |p(X) — p(N)| < CJA = N|* on U.

Proof. — By proposition VI1.3.9 of [8] we know that the Holder regularity of p(\) is
equivalent to the Holder regularity of G o ¢(XA). Thus the result is a direct adaptation
of Theorem 7.1 of [45] (¢f. appendix, theorem (B.3) (iii)) which states that the Green
function is locally Holder continuous in the set of normal points: a careful reading
of the proof shows that it can be straightforwardly modified to prove the Holder
regularity of G o ¢ under the milder conditions of proposition (4.16). O

4.5. Some related rational maps

As explained in the introduction, the map g defined on the projective variety L&
is from the theoretical point of view the best-suited to our problem, but from the
computational point of view it is not easy to handle. In this section we introduce
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related rational maps defined on projective spaces. The map g we introduce is the
map considered in the initial work of Rammal in the case of the Sierpinski gasket,
cf. [34], as well as in previous work of the author, cf. [38].

The map T is 1-homogeneous, hence it can be written

(90) T =

where R : SymG — SymG is a homogeneous polynomial map and p a homogeneous
polynomial, prime with R. We define R : SymG x C — SymG x C by

R(Q,2) = (R(Q),p(Q)2).

The map R has no common factor and induces a rational map g on Pdim Sym® - We
denote by d,, the degree of the iterate g" (cf. appendix B).

LEMMA 4.17. — The map g is birationally equivalent to the map g, i.e. there exists a
rational map h : PI™ sym® LG and two analytic subsets E C LS and E C pdimSym®
of codimension at least 1, such that h is a biholomorphism from PIm™ sym® (E onto
LY <\ E and such that

g=hogoh™ L

Proof. — This is clear from formula ((45) since h : Sym® — L& given by h(Q) =
7(exp(7iQn)) is biholomorphic from Sym® onto 7{X € 7~ (L) | (X,1) = 0}. Hence,
the map g and § extends the map T to 2 different compactifications of Sym®. O

Using the 1-homogeneity of 7', one can introduce a rational map on Pdi™Sy m®—1

which contains most of the information on g. Precisely, for all n one can write
R"™ = hy R,

for a homogeneous polynomial map ﬁn with no common factor and a homogeneous
polynomial h,,. This induces a map g on PdimSy m?—1 with degree d,, = degree(R,,).
Set

~ 1 -~ ~ 1 ~
doo = lim —Ind,, ds = lim —Ind,,
n—oo 1 n—oo 1,

which are well-defined thanks to the subadditivity of In c?n and In Jn

REMARK 4.18. — As we shall see in the examples, the map g is the renormalization
map that was previously considered, for example, in [34], [20], [38]. The map g is
1-dimensional when the space SymG is of dimension 2. Hence, the property of spectral
decimation is related to the fact that dim Sym® = 2.

PROPOSITION 4.19. — We have the equality doo = [i;o = &\Oo.
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Proof. — To prove that doo = doo we proceed as in [12]: we can write in homology

(g™)* = h.(g™)*h* and (g™)* = h*(g"™)*h.. If ||| denotes the L norm then we have

dn|| < dy [[7e[[[[2*][, from which we get do < d (N.B: note that d, is a scalar,

ie. dn = ||dnl). Conversely, d < 12 |1l l|dn |, from which we deduce dao < dos.
To prove that d = d we erte

RY(Q,2) = (R*(Q),po R"Y(Q) - p(Q)2)

= (ho B, (TTZ0 5 P(Q))p 0 Ruo1(Q) -+ p(Q)2).

But hi'igfee(p 1 divides hy, (since degree(R) = degree(p) + 1), thus HJ 70 hdegree(p )

divides h,, and d,, < degree(p)(c?nA +---dy + 1)+ 1. It immediately follows that
doo = doo- O

Remark that from the proof we see that R is algebraically stable if and only if
degree(hy,) = 0 for all n and that in this case G(Q,2) = G(Q) if G and G are the
Green functions of respectively R and R. But this result is not really useful since
in general the maps g and § are not algebraically stable. To convince the reader
of this fact we explicitly compute the degrees Jn when doo = N. Set Py Q) =
det((Q(ny) |7,y ~0F,,,)- We claim that when dos = N (i.e. when we are in the case (ii)
of theorem (4.3)) then

RM(Q,2) = (0, (@)T™(Q), P, (Q)2)-

Indeed, we know from formula (45) that Py simplifies the singularities of 7", and
we know from the same formula that p<_n> and p<_n>T” cannot have a common factor

because otherwise it would imply that R™ is null on a hypersurface of L”, which is
impossible since we are in case (ii) of theorem (4.3). Thus,

d,, = degree(p;, Piy) +1

n

= |F(n> AN 8F<n>| +1= ];]V — 11 |F(1> AN 8F<1>| + 1.
So, we remark that Jn grows like aN™ + b for some a and b. In particular, we see
that d,, cannot be equal to dy, = N™ except in the case where N — 1 = |F(1y \ 0Fyy].
In general it is not the case. However, in the example of the interval we have N = 2
and |Fi;y \ OFy| = 1 so there is a priori no incompatibility between do, = N
and the algebraic stability of g and g. As we shall see, in this particular case R
and R are indeed algebraically stable with degree 2 and one can express the density
of states in terms of the Green function G (this was shown directly in [38]). But
this is an exceptional situation: indeed, it is not difficult to see that the equality
N —1 = |Fyy \ 0Fyy| can occur only when the lattice is based on the unit interval
of R, i.e. when we are, up to isomorphism, in the following situation: the self-similar
set X is the interval [0,1] and ¥¢([0,1]),..., Uxn([0,1]) are N subintervals of [0, 1].
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REMARK 4.20. — From the formula we derived for Jn, we see that the map ¢ is not
algebraically stable (and none of its iterates is) in the case N = do, at the exception
of the unit interval (indeed, otherwise d,, would be equal to N™ after a certain level).
This means that there is no natural way to define a non degenerate Green current
associated with R and g. This clearly confirms the essential role played by the map g
defined on the algebraic subvariety L. Tt is quite interesting to note that this is very
coherent with the general philosophy that seems to emerge in the study of iteration
of rational map which is roughly that when a map is not algebraically stable then one
must seek for a birational transformation that makes it algebraically stable (c¢f. [12],
theorem 0.1, where a result in this direction is proved for a particular case). In our
case, the birational transformation has some “physical” meaning, since the complex
Lagrangian Grassmannian is known to be a natural compactification of the space of
complex symmetric matrices (cf. for example, [9]).
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CHAPTER 5

EXAMPLES

5.1. The Sierpinski Gasket

The maps T and g. — For the Sierpinski Gasket the group of symmetries is G = S
and C¥ can be decomposed into a sum of 2 irreducible representations, realizable
in R, CF = Wy @ W1, where W, is the subspace of constant functions and W; its
orthogonal complement (for the usual scalar product on C'). Hence, any Q in Sym¢®
can be written

(91) Q = uop|w, + U1P|w;

where (ug, u1) are in C* and pw, and pjw, are the orthogonal projections on Wy and
W1 respectively. We denote by QU0-%! the element (91) and we have Sym® ~ C2. As
in section 4.2.2, L& ~ P! x P'. A point in P! x P! will be represented in homogeneous
coordinates by

([uo : vol, [uz : v1]).
We denote by 7 x 7 : (C*)? x (C*)? — P! x P! the canonical projection. The space
Sym® is embedded in P! x P! by the injection Q“*1 — ([ug : 1], [us : 1]).

An easy computation shows that with the isomorphism SymG ~ C? the map T is
given by
UQUL uy(uo + uq)
92 T(ug,u1) =3 , .
( ) ( 0 1) (2u0+u1 5U1+’U,0 )

Thus, in homogeneous coordinates the maps ¢ is given by
(93) g ([uo : vol, [u1 : v1])
= ([3u0u1 : 2uov1 + u1vg), [Bur(uovr + urvo) : Bugveur + uovf]) .

The matrix of degrees is

(94) dy = G;)
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The map g onP!. — As shown in section 4.4 the 1-homogeneity of T naturally induces
a map on P, Indeed, if we set z = ug/uy and z = @ /u; where (g, u1) = T(ug,u1)
then we have z = g(z) where

N 2(z+5)

95 Z) = —————.
(95) 9=) 224+ 1)(z+1)

In homogeneous coordinates in P!, we see that g is given by
(96) Aoz al) =Lo@mtz0) 220+ 200 +21)
(i.e., in (95), g is given in coordinates [z, 1]). More formally, if we denote by § the
rational map 3: P! x P! — P! given by
S([uo = vol, [ur = v1]) = [uovr : u1vo)
then the following diagram is commutative

PlxpPl —9 . plxp!

pr 2 p
We set C, = 57 1({z}) for z in P!. We see that
g(Cz) C Cg(z).

REMARK 5.1. — At this point we already know, by proposition (4.19), that the
asymptotic degree do is equal to the degree of g, i.e is equal to 2. So we know that
we are in case (ii) of theorem (4.3), thus that we have VP = 1 and that for almost
all blow-up the spectrum is pure point with compactly supported eigenfunctions.

The map R. — At this point we are not yet in a position to describe the current S,,.
Indeed, we computed the map g on L but not the map R on 7~ !(LL%) (and to describe
the sequence of currents S,, we need to compute the map g and the hypersurface D, of
zeroes of R). In general, it is not easy to compute the map R on A4, since A has quite
large dimension. To overcome this difficulty we will lift the restriction of R to 7~ !(LY)
to a polynomial map on C? x C2. We first describe more precisely the isomorphism
LY ~ P! x P'. Let 1)y be an orthonormal vector of Wy and 11, ¢, be an orthonormal
basis of W;. We consider the homogeneous polynomial map s : C?> x C?2 — A given
by
s (w0, o), (ua,01)) = (v0 + uoPgio) (01 +wr ¥y n) (01 + w9,

We see that

S ((U’Oa 1)? (ula 1)) = eXP(Uowowo + Ul(wﬁﬂl + Ellwll)) = eXpﬁQuoﬂhna

and that s is (1,2) homogeneous, i.e. that

s (B(uo,vo), B (u1,v1)) = B(B)*s ((wo, vo), (w1, v1)) .
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Hence, the map s takes values in 771 (L) and the isomorphism L& ~ P! x P! is
represented by the commutation of the following diagram

(C2)* x (C2)* X7, Pl x p!
8 |~
a ' (L% —F— LE
Remind from formula (45) that
R(exp(nQn)) = det((Qq))|F,,~aF,, ) exp(NTQn).
An easy computation gives
det(((QZ")’ul)|F<1> “oF,) = 4(2ug + u1)(uo + 5uq)?.
By homogeneity, we get
R(s((uo, vo), (w1, vl))) = (vov%)SR(s((uo/vo, 1), (ug /v, 1))
Hence, we see that
(R(s ((uo, o), (u1,v1))), 1) = 403 (2uovy + uivo) (uovy + Suivg)?,

and that the value of R(s ((ug,vo), (u1,v1))) on the monomials of degree 1 of A is

12u0ulvf(uovl + 5u1v0)2 (ﬁp|W077)
+ 12u1v3 (uov1 + V1) (2ugv1 + u1vo) (uev1 + Suvo) (Mppwan) -
Thus, if we denote by R : C2 x C? — C2 x C? the homogeneous polynomial map given

by (we adopt the same notation for this map and for the map on A, since they are
different representations of the same map)

(97) R((uo,vo),(ul,vl))
= ((SUOU1U1, 2u0?}% + vougvy), (6uq (ugur + u1vg), 2(5uivevy + UOU%))) ,

then we see that the following diagram commutes

c2xc: P 2xe?

T (LY U {0} —— 7 (L) U {0}
(Indeed, by the previous computation we see that R(s((uo,vo),(u1,v1))) and

s(R((ug,vo), (u1,v1))) coincide on the unit 1 of A and on the monomials of degree 1
of A. Since they are also elements of 7~!(IL%) U {0} they are equal.)

REMARK 5.2. — This means that we are able to lift the map R on 7~ 1(L¥)U{0} to
a polynomial map on C? x C2. This will be useful for computation. It is clear that it
would be possible to do the same thing when L is a product of P!, i.e. for example,
in the case of nested fractals.
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Hence, we see that in P! x P! the analytic set D; is given by
Dy =7 x w{v; = 0} =P x [1,0].
Thanks to (97) we will be able to describe S, and S. Indeed ||s((ug,vo), (u1,v1))||* =
(u 4+ v3)(u? + v?)?, thus Sy is the current with potential
I {| (o, vo) || + 2Tn [|(uy, v1) |

on C? x C? (i.e. this means that we have (m x 7)*Sp = dd®In||(ug,vo)| +
2dd®In ||(u1,v1)]]). In particular, we remark that {Sp} = (3) for the canonical
basis of HU1(P! x P!). Since {[D1]} = (9) we see that equation (70) is indeed
verified for n = 1. The current S, will by defined by its potential on C? x C2,
In ||(R™)o|| + 2In||(R™)1|| where (R™)o and (R™); are the coordinates of R™ on the
first and second components of C? x C2.

The Green current S. — We are now in a position to describe the iterates R™ and
the currents S,,. We set zp = ugv1, 21 = u1v9. We remark that equation (97) can be
rewritten

R ((uo,v0), (u1,v1)) = ((u1P1(20, 21), v1 P2 (20, 21)), (u1 P3(20, 21), v1 P1(20, 21))) ,
where
Pyi(20,21) = 320,  Pa(z0,21) = 220 + 21,
Ps(z0,21) =6(20 + 21),  Pa(z0,21) = 2(20 + 521).
We define R by

~

R(z0,21) = (P1(20, 21) P20, 21), P2(20, 21) P3(20, 21))-
Note that R is a lift on C2 of g. For all k > 0 we set
Py =PsPsoR---Pyo R¥,
Pyx=PPoR---PyoR"
An easy computation shows

n—3

R™ ((uo, o), (u1,v1)) = (wyvr)®" [ (wrv1 Ps Py i)’
k=0

‘ ((P3,n—2P1 o R" 1, Py 2P0 R, (P3 -1, P4,n—1)) .

n—k—3

We remark that Ps(zo, 21) and Py(zo, 21) are null respectively on C_; and C_j, thus

we have
3nl—1
[Dn] 2 3——— ([ux = 0] + [v1 = 0])
n—3 n—k—2
3 -1
Y 3——( X Cl+ Y al).
k=0 z,gFz=—1 z,gFz=—5
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Since S = lim,, 00 S%Sn we see that

—k—1
98)  S2im=0+b=0+>—( ¥ e+ ¥ ).
: .

To prove that there is actually equality in the last formula it is enough to check that
there is equality in homology. It is easy if we remark that {S} = {So} = (1) and
{[C:]} = (}). Finally we sum-up our results in the next theorem

THEOREM 5.3. — For the Sierpinski gasket we are in the case (i) of theorem (4.3).
The asymptotic degree is 2 and the Green current S is given by the right hand term

of (98).

Description of i = p™P in the discrete case. — It is useful to make the change of
variable v = 3z/(1 — z) = 3uo/(u1 — uo) in (95). With this change of variable g is
conjugated to the polynomial

(99) p(v) = v(5 + 2v).

REMARK 5.4. — This polynomial is, up to a change of variable the polynomial that
appears in the initial work of Rammal, [34], and in subsequent works, [19], [49].

With the choice made in section 1.2.3 we see that the coordinates of A are (0,3)
in C? ~ Sym®. We take for b the uniform measure on F. In L& ~ P! x P!, 7(¢(\))
has homogeneous coordinates ([A : 1],[3 4+ A : 1]), which means that in coordinates v
it corresponds to v(\) = (35’)\% = \. Applying theorem (3.6) and theorem (5.3) we
get

THEOREM 5.5. — For the Sierpinski gasket in the discrete case we have
ND _ 1 o 37!
H=p 255—34-2 5 ( Z ox + Z 5/\)-
k=0 A\ pFA=—3/2 A\, pFA=—5/2

One can remark that [—5/2,0] is backward invariant by p, hence the Julia set J
of p is included in [—5/2,0] and it is not difficult to see that J is a Cantor subset of
[—5/2,0].

Since p(—5/2) = 0 we remark that —5/2 is in the Julia set of p, hence the Dirac
masses obtained by preimages of —5/2 are accumulating points of u. Iterating p we
see that —3/2 is in the Fatou set of p and hence the Dirac masses at the preimages of
—3/2 are isolated in . The point —3 is in the complement of the Julia set and hence
is an isolated mass in p.
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5.2. The unit interval

We will show that for this particular case, the density of states can be expressed
thanks to a rational map simpler than the map g, namely we express the density of
states in terms of the Green current of g, defined on P2, which has been introduced in
section 4.5. This relates the present work with our previous work [38]. But firstly, we
illustrate some of the notions we introduced in the text by an explicit computation of
the map R on this example.

In this case, F = {0,1} and G is the trivial group so Sym® = Symy can be
identified with C3: @ in Symp is represented by the point of coordinates (a, d, q) if

a
9= (q fl) '
In the Grassmann algebra generated by {7y, 70,71, 71 } we have:
(100)  exp(FQn) = 1+ aToro + diyi + a(Tom +Ty0) + (ad — ¢*)Tg0T 1.
Since G is the trivial group LY = L2 and from the last formula we easily deduce that
(101) L? = 7{Z1 + a7ono + diiym + q(Tom +T1n0) + DiignoTiym, ad — ¢* = DZ}.
We set § = a/(1 — a). An easy computation shows that

(102)  R(Z1+ amjgno + diym + q(Tons + Ty1m0) + DTgnomym1)
= Z1+amgno + dijym + q(Mem + 7y10) + DTjgnon 11,

where
Z=06(a+6"'d)Z, D=d2(a+61d)D,
a=0>+61DZ), d=6(d®+48DZ),
q=—dq*
On 771 (ILY), considering formula (101), we see that @ and d are also equal to
a=6(a(a+06"1d) -6 1¢%), d=05(dd(a+51d) —dg?).
It is then clear that
{R"=0}NL2 =L*nui_ 7r{a*a+ (1 —-a)*d=0|q=0}.

(hence the zeroes of R™ are of codimension 2 in L% so D,, = @ for all n and we
are in case (ii) of theorem (4.3)). In the lattice case we can easily describe the
function ¢(A). Indeed, A is the usual discrete Laplace operator with coordinates
(a=1,d=1,qg=—1). If bis the measure that gives weights mg and m; to the points
0 and 1 then we see that ¢(\) = exp(7(A + Alp)n) is a point of the form (100) with
a=14Xmg,d =1+ Amy and ¢ = —1. In particular we see that ¢(\) does not
meet the zeroes of R™ so that uNP = 0 (actually, it is very easy to see directly that
there cannot be any Neumann-Dirichlet eigenfunction for this 1-dimensional Laplace
operator).
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The maps T and g. — For this example the easiest way to describe the density of
states is to consider the simpler map g introduced in section 4.5. A simple computation
or an application of formula (102) gives in coordinates (a, d, q):

T(a,d,q) = (ala+67"d) —07'¢*, 6d(a + 67 1d) — 6¢%, —¢*).

1
a+6"1d
Set p(Q) = det((Q))|F,y~oF,,) =6(a+d~ 1d). As in section 4.5. we define the map
R : C3 — C3 obtained from T by simplifying the singularities:

R(Q) = p(@Q)TQ
=6(a(a+61d) — 672, 6d(a+ 6 1d) — 6¢°, —¢?).

We denote by § the rational map on P? induced by R. The map g has a simple
indeterminacy point [1, —4, 0] and we easily see that g is algebraically stable (cf [38],
for more details). We denote by G the Green function G = lim,, oo 2 5w log |R"||. In
the lattice case we set (b( ) = A — A, and in the continuous case gb( )= A

THEOREM 5.6. — In the lattice case
1 o~ o~
uw=-—AGo ¢.
2m
In the continuous case the same formula holds on the ball B(0, |\ ).

REMARK 5.7. — This result was proved directly in theorem 3.1 of [38]. As shown in
[38], this formula is related to the classical Thouless formula, and we can relate the
Green function G o qAﬁ with the Lyapounov exponent of the propagator of the PDE
associated with our second order differential operator. In [38] we used this formula to
prove that the density of states is continuous and supported by a Cantor subset of R
for o # % (for a = % we are in the situation of the classical Laplacian and everything
is well-known). We also proved the Holder regularity of p for some values of the
parameter . In [41] we go further and describe the spectral type of the operator,

depending on « and on the blow-up w.

Proof. — Thanks to the expressions of R and R we can easily deduce that G Q) <
G(expmQn) for any @ in Symp. On the other hand for @ in S; we know that
(cf. lemma (3.9))

— . 1 n —
Glexp7Qn) = lim = log| (R"(exp7Qn), 1) |,
and by direct computation we see that (R™(exp7Qn), 1) = [;_, po RE (Q) Hence we

see that for any @ in Sy we have @(Q) > G(expn@Qn). The equality Goqﬁ()\) = Gogp(N)
is satisfied for A in C \ R, so in L{. . Theorem (5.6) is proved. O

loc*
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5.3. Nested fractals

For nested fractals we shall prove that we are in the case (ii) of theorem (4.3). (The
existence of N-D eigenvalues was proved initially in [3]. The fact that u¥? = u was
proved directly in [39]). Denote by Wy, ..., W, W,11,..., W, the list of irreducible
representations of the group G, and assume that the representations Wy, ..., W, are
contained in R¥'. In [39], proposition 2.3, we proved that 7/ > r, i.e. that there exists
at least one irreducible representation which is not contained in R¥. The space RFtm
can be decomposed in

RE) = Viny,o ® - @ Vigy v,

where Vi,,y ; is the isotopic representation associated with Wj;. It is easy to check
that for n large enough, Vi, ; # @ for all j (indeed, for n large enough, there is
at least one point x in Fi,y such that g — g - x is injective; thus RFx) contains
the representation R® and since the representation RS contains at least once each
irreducible representation, cf. [44], we know that Vi, ; # @ for all j). For @ in
SymG the operator @, can be decomposed in blocks on Vi, o, ..., Viny,,v. Consider,
for example, (Q<n>)\V<n>,w: clearly, we have ker((Q<n>)|V<n>yr,) - kerND(Q<n>) since
Vi, C Dy~ Hence R"(exp7Qn) is vanishing on {det((Q))|v,,, .,) = 0}, which is
an analytic set of codimension 1 in SymG. This implies that D,, # @ and that we are
in case (ii) of theorem (4.3).

Remark that this implies that do, < N but that we have no more information on
the value of dn.
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CHAPTER 6

REMARKS, QUESTIONS AND CONJECTURE

The main open problem is to understand the almost sure Lebesgue decomposition
of the operator H(y. Let us be more precise. Consider a typical blow-up w, in
particular for which 0F ., = &. The Hilbert space D can be decomposed into
three parts Hac, Hsc, Hpp such that the restriction of H ) to these subspaces is
respectively absolutely continuous, singular continuous or purely punctual (i.e. this
means that the spectral measure of any function in these subspaces is resp. absolutely
continuous, singular continuous or purely punctual). The spectrum of H and
the spectrum of the restriction of H (00) 10 Hac, Hse, Hpp are respectively denoted
by ¥(w), Lac(w), Bse(w), Xpp(w) (they a priori depend on w). Proposition 2 of [40]
states that these sets are almost surely constant in w, i.e. equal to deterministic sets
%, Yac, Lses Lpp for almost all blow-up w. One can be more precise and split the Hilbert
space Hpp into two parts: the first, that we denote Hyp, is the subspace generated
by the Neumann-Dirichlet eigenfunctions, i.e. by the eigenfunctions of H . with
compact support, the second, ﬁpp, is defined as its orthogonal complement in H,p.
We denote by Yyp and ipp the spectrum of the restriction of H<oo> to resp. Hyp
and ﬁpp. It is clear that XVP = supp P, and we proved in proposition 2 of
[40] that ,p(w) is also determined almost surely in w. We also know that ¥ =
supp ¢ from proposition 1 of [40]. In this text we showed that p and p™P can be
computed from the Green function of the renormalization map R and the order of
vanishing of R. The natural question is then whether it is possible to characterize
the other parts of the Lebesgue decomposition of the spectrum Yuc, Xsc, Ypp, f]pp in
terms of the renormalization map R. We can even ask more: in [40], we introduced
several measures p?°, 5, uPP, PP which split p in several parts corresponding to the
different components of the spectrum by ¥. = supp p'. The question is whether it is
possible to compute these measures from some characteristics of the map R, as we
computed p and pVP from its Green function and the asymptotic multiplicities of
its zeroes. In particular, it would be interesting to understand at which condition
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there may be a pure point component f]pp not created by the Neumann-Dirichlet
eigenfunctions (i.e. at which conditions there are L? eigenfunctions which are not
generated by compactly supported eigenfunctions). But all these questions seem to
be very difficult.

Let us now make few remarks and a conjecture. When N > d., we know that
the spectrum is pure point with compactly supported eigenfunctions, i.e. that ¥,. =
Y = f]pp = . Consider now the case where N = d,,. We showed in this text that
the N-D spectrum is related to the zeroes of R, i.e. to the indeterminacy points of g.
Considering that eigenfunctions of H .y which are not with compact support are in
some sense approximated by functions with compact support which are not far from
being eigenfunctions we can ask the following very imprecise question: does the exis-
tence of a pure point component in the spectrum different from the N-D component,
i.€e. ipp # @ imply that the iterates of g on ¢(\) approach the indeterminacy points,
in a sense to be made precise. This leads to propose the following conjecture.

CONJECTURE 6.1. — Consider the case doos = N. Assume that the condition of
proposition 4.16 is satisfied for all A € R, i.e. that for any A € R there exists two open
subsets U C C and V C LY such that A € U, UX_1;n CV and g"(¢(U)) NV = 2.
Is it true that in this case Xpp = &7

REMARK 6.2. — It is already known from theorem 3.6 that under these conditions
YND = O.

One of the main problem is the lack of examples where computations are possible.
There are very few examples where the spectral type of the operator can be analyzed.
The case of the Sierpinski gasket is now well understood and computations in this
example are easy. In this case N > d, and so the Neumann-Dirichlet eigenfunctions
are complete. The case of nested fractal is also understood, in this case also N > do.
We present the spectral analysis of the self-similar Sturm-Liouville operator on the
real line in [41]. In this case we can prove that ¥, = @.

But we have no example where f]pp # &, i.e. where there is a pure point component
not induced by the N-D spectrum. We think it could be interesting to understand the
following situation (at least by numerical computations), which could be a candidate
for f]pp # &. Consider the Sierpinski gasket and take G = {Id}, the trivial group as
group of symmetries of the picture. In this case the renormalization map T is defined
on the bigger space Symy of symmetric matrices on F' = {1,2,3}. The subvariety
LY is the Lagrangian Grassmannian I.3. There is then no reason that N > do,. We
would bet, on the contrary, that N = d, in this case. The question is the following:
what happens if we take for the initial operator A and initial measure by a small
perturbation of the usual discrete Laplace operator and of the uniform measure? Does
the spectrum remains pure point or not?
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APPENDIX

For the convenience of the reader we review several notions of pluricomplex analy-
sis and pluricomplex dynamics. Our point of view is very partial and only motivated
by the notions we need in the main text. The reader is strongly advised to refer
to the relevant literature for a better understanding. In appendix A.1 and A.2 we
introduce the notion of plurisubharmonic functions and of currents on complex mani-
folds. Most of the material is taken from the appendix of review texts of Fornaess and
Sibony (cf. [45], [16] and related literature as, for example, [6], [22], [24]). In B.1
we give a short introduction to basic notions that appear in relation with iteration
of rational maps of the projective spaces. All the material comes from [45], [16]. In
B.2 we introduce some notions on iteration of meromorphic maps of compact complex
manifolds. The material comes from works of Favre, Diller-Favre and Guedj-Favre

(¢f. [13], ¢f. [12], [14]).

A. Plurisubharmonic functions and positive currents

A.1. Plurisubharmonic functions. — Let  be a domain of C™. A function
f Q@ —RU{—o0} is said to be plurisubharmonic (resp. pluriharmonic) if

— f is upper-semi continuous,

— f is not constant equal to —oo,

— the restriction of f to any complex line is subharmonic (resp. harmonic).

Plurisubharmonic (psh for short) functions are in L{ . and can be characterized by

1

the following property: a function vin L;__

() is almost surely equal to a psh function
if and only if for all vectors w € C™

82
(103) 3N w2 0

in the sense of distributions, i.e. the first term is a positive measure.
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Ezamples and basic properties

(1) If f is a holomorphic function in Q then log|f| is a psh function. Moreover
log | f| is pluriharmonic on Q ~ {f = 0}.

(2) The function u = log ||z|| is psh in C™.

(3)If g : Q— € is a holomorphic map between an open subset of C"™ to an open
subset of C™ and if w is psh in Q' then wo g is psh or equal to —oo (note that if g has
generic maximal rank m’ then u o g is not identically —oco). In particular the notion
of psh functions can be extended to complex manifolds.

PROPOSITION A.1. — Let v; be a sequence of psh functions in a domain Q of C™.
Suppose that v; is uniformly bounded from above in any compact subset of 1, then

(i) either v; converges to —oco on compacts or there exists a subsequence vj, which

L . to a subharmonic function.
1

loc

18 convergent in L

(ii) If v is subharmonic and v; — v in Ly, then for any compact K C Q and any

continuous function f:

lim sup sup(v; — f) < sup(v — f).
j—oo K K

N.B.: This result is a corollary of the same statement for subharmonic functions on
R" (cf. [45]), as psh functions on C™ are subharmonic on R?™.

A.2. Currents. — We denote by Dy, 4)(€2) the space of C*° differential forms with
compact support on § and of bidegree (p, q), i.e. of the type

¢ = Z (b],‘]dZ]/\dZ],

[I|=p
[J|=q

where I = (i1,...,4p), J = (j1,---,Jq) and

dZ[:dZil/\"'/\dZip, dZ]:dEjl/\uJ\dqu.
We denote by DEp o () the space of currents of bidimension (p, ¢), 4.e. the space of
continuous linear forms on Dy, 4y(2). One can also talk about currents of bidegree

(m — p,m — q) since a current S can be represented as a (m — p, m — q) differential
form with distributional coefficients:

S = E S]/ﬁJ/dZ[//\dZ]/.
|I'|=m~p
|7/ |=m—q

The differential d is defined by duality by
(dS,¢) = (~1)"*171 (S, dg) ,

or equivalently on coefficients by

as=>"3%" (a‘?z" I dzj) Ndzp Adz .

joI,J’ J az]
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It can be decomposed in d = 0 + d where

08 = Z Z aSI/’J/ de ANdzp Ndz g, oS = Z Z aSI/J/ dzj ANdzp NdzZ .

j I/,J/ azj j I/ 7.]/ azj
We write d° = 5= (0 — ) so that we have dd® = £90.
A.3. Positive currents. — A current of bidimension (p,p) (or of bidegree

(m — p,m — p)) is positive if (S, ¢) > 0 for all ¢ of the form
¢ =ioy ATy A Aoy ATy,
with a; € D(1,0)(2). A current S of bidegree (1,1) can be written
(104) S =" 8;kidz; N dz,
.k

and is positive if for any w in C™ the distribution
Z S W W
Jik

is a positive measure.
With formula (103) we see that a function u in L

loc
psh function if and only if dd°u is a positive current. We have the following converse

() is almost surely equal to a

result.

PROPOSITION A.2. — Let S be a (1,1) positive closed current on an open ball of C™

then there exists a psh function u such that S = dd“u. We say that u is a potential
of S.

Ezamples and basic properties

(i) Let Z be an analytic subset of ) with pure dimension p. Let Reg(Z) be the
subset of regular points of Z (i.e the subset of points where Z is locally a complex
manifold of dimension p). We define [Z] as the current of bidimension (p,p) defined
by

(2], 9) = /R o TOE (@)
eg

This current is positive of bidimension (p, p) and in fact closed, as shown by Lelong.

(ii) Let f be a holomorphic function on §2. We call divisor a formal sum of irre-
ducible analytic hypersurfaces of Q. The divisor of f is the divisor > m;Z;, where
the Z;’s are irreducible analytic hypersurfaces, such that f can be written

f:g]__[ff”,

for a holomorphic function g which does not take the value 0, and holomorphic
functions f; such that Z; = {f; = 0} and f; is a generator of the ideal V(Z;) =
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{f holomorphic on §, f(z) =0 on Z;} (cf. for example, [22] section 2.1). Then the
Lelong-Poincaré equation states

(105) dd°log |f| =Y milZi].
(iii) All these definitions can be extended to complex manifolds using a local chart.

A.4. Currents of bidegree (1,1) on P*. — Let P* be the complex projective
space of dimension k¥ and 7 : C**! <\ {0} — P* the canonical projection. Let P be
the convex cone of psh functions u on C**! such that for a real ¢ > 0

(106) u(Az) = cln|\| +u(z), AeC, ze CHL,

To any u in P we can associate a positive closed current of bidegree (1,1) on P*: let
s be a holomorphic section of 7 on an open subset U C P then dd®(u o s) defines
a positive closed current S of bidegree (1,1) on U. If s’ is another section of 7 then
s’ = j - s for a holomorphic function j which does not take the value 0. Hence
dd®(uo s) = dd°(uo s") so S does not depend on the particular section and defines
a positive closed current on all P*. We denote by L : P — D;_Lk_l the operator

defined by L(u) = S.

PROPOSITION A.3 ([45], theorem A.5.1). — For any positive closed current S of
bidegree (1,1) on P* there exists a unique (up to an additive constant) function u € P
such that L(u) = S. The function u is called a potential of S.

For example, if P is an irreducible homogeneous polynomial of degree d on CF+1
then
log|P(Az)| = dlog|A| + log | P(2)|,
and by the Lelong-Poincaré formula (105) the current [P = 0] has potential log|P].

A.5. The Fubini-Study form, Kihler forms. — Consider on P* the closed pos-
itive form w of bidegree (1, 1) with potential log ||z|| on C**1. We take homogeneous
coordinates
[20221:---:Zk]
on P (i.e. the point [zg : - - : 23] represents the image by 7 of the point (zo, ..., zx)
of C*¥+1). The space C* is identified with P* \ ({2 = 0}) taking for coordinates
w; = 2;/20. On CF the form w is given by (cf. for example, [22], page 30):
%< 1+ww; (14> ww;)? >

The form w is called the Fubini-Study form on P* and has the following properties:
it is smooth, closed, and at any point the coeflicients (S} 1) defined by equation (104)
defines a positive definite matrix. In general, on a complex manifold a (1,1) form with

these properties is called a Kéhler form and a complex manifold with such a form is
called a Kéahler manifold. We do not want to enter into the details of this notion
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(¢f. for example, [22] or [6]) but we just want to point out that if X is a smooth
analytic subvariety of P¥ then the restriction of the Fubini-Study form w to X defines
a Kihler form on X (which is canonical for the embedding X C P¥). The volume

of X defined as
/ (WX)dimX
X

is finite and actually equal to the degree of X.
If S is a positive closed current on P¥ of bidegree (p,p) on P* then the total mass

of S is defined as
ISl :/ S AWFP,
]Pk

If S is of bidegree (1, 1) and has potential u then || S|| = ¢ where ¢ is the homogeneity
constant appearing in formula (106). Indeed, the function v = u — clog|| - || is well
defined on P*, hence ||S|| = ¢ [ wk + [dd°v Aw*™1 = ¢ [ w* since wF~! is closed, and
J wk = 1. Finally, we mention that if (S,) is a sequence of positive currents such that
the total mass converges to 0 then S,, converges to 0 in the sense of currents (cf. [45]).

In the same way, if S is a current on X (or on any compact Kéhler manifold) then
|S| is defined by [y, S A (wjx)H™ X7

A.6. Pull-back, push-forward of a current. — Let f : Q — Q' be a holomor-
phic map between open subsets of C™ and C™'. The pull-back f* of a smooth form
a in D, ) (€) is well-defined as an element of D, ,(€2). Thus we can define the
push-forward f.S of a current S of bidimension (p, ¢) by duality, i.e.

(f:S,0) = (S, f7¢), V¢ € Dpgy().

For some particular class of maps we can define the push-forward of differential
forms and then the pull-back of currents (cf. [45], A3) but we do not want to enter
into details since we will only consider the case of (1,1) positive closed currents for
which the situation is simpler. Suppose that the map f is dominating, i.e. that its
differential is generically surjective. Let S be a positive closed current of bidegree
(1,1) on Q. Let 2o be in Q and set wg = f(z). For r > 0 we can write S = ddu
for a psh function u on B(wg,r). Choose r; such that f(B(z,r1)) C B(wp,r). The
function w o f is psh (indeed, it is not equal to —oo since f is dominating). This
definition does not depend on the choice of the potential u since if u; and us are 2
potential of S then uw; — us, and hence (u; — ug) o f are pluriharmonic. Then the
pull-back f*S is defined locally by f*S = dduo f. In [45] it is proved that the
pull-back is continuous on the set of positive closed currents. Remark that when f is
not dominating the pull-back can be defined similarly, as soon as f(2) is not included
in the set where the potential of S is —oco (when f is not dominating the pull-back is
a priori not continuous). We will see in next sections that actually the pull-back can
be defined for meromorphic maps on compact complex manifolds.
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B. Dynamics of rational maps on the projective space P*

B.1. Definitions, indeterminacy points. — Let P* be the complex projective
space of dimension k and 7 : CF*! <\ {0} — P* the canonical projection. A point z
in P¥ can be represented in homogeneous coordinates by

Z:[Zoi"-izk],
where [z9 : --- : zi] denotes the point 7(zo,...,2;). Consider now a homogeneous
polynomial map R : CFF! — CF+! of degree d, i.e. R = (Ry, ..., Ri) where the R;’s
are homogeneous polynomials of degree d in the variables (2o, ..., z;). Suppose that

the R; have no common factor. It is natural to associate a map f on the projective
space P* such that the following diagram commutes:

Ck+1 R Ck+1

Pt L, p
The map f can be defined only on the set P*~\ I where I = 7{z, R(z) = 0}. The set I
is called the set of indeterminacy points of f and is an analytic subset of codimension
at least 2 (indeed if all the R;’s vanish on an analytic hypersurface then a polynomial

can be factorized in R). Usually one writes f in homogeneous coordinates as
f=1Ro,...,Rg]

The function f is a rational map of P* (a precise meaning to this notion is given at
the beginning of appendix C) and the polynomial map R, which is called the lift of f
to CF*1 exists and is unique (up to a multiplicative constant) for any rational map
of P*. The degree of f is defined as the degree of R, i.e. d. The map f is holomorphic
on P* if and only if I = @. The map f is said to be dominating if its differential
is generically surjective. If f is dominating and if S is a positive closed current of
bidegree (1,1) with potential u on C**! we define the pull-back f*S as the current
with potential u o R.

At a point p € I the image of f can be defined as a subset of P*: let B, be the
subset of P* defined by

B, =Nesof(B(p,e) N I)

where B(p,€) is the ball of center p and radius e. Then B, is an analytic subset
of P¥ called the blow-up of f at p (as we will see in appendix C, the blow-up can
also be defined using the graph of f). On the other hand an irreducible subvariety
of dimension p can be sent into a subvariety of dimension strictly smaller. These
phenomenons are new compared to the situation of 1-dimensional complex dynamics.
This results in the fact that the degree of the iterates of f do not necessarily grow
like d™. Let us explain this clearly: suppose, for example, that a hypersurface V is
sent by f on a point of indeterminacy. Then the map R? is null on V and a hence a

MEMOIRES DE LA SMF 92



B. DYNAMICS OF RATIONAL MAPS ON THE PROJECTIVE SPACE P* 83

polynomial can be factorized in R2. The degree of f? is then smaller than degree(f)?2
since f? is lifted to a polynomial map with degree smaller than that of R?. In general,
we can always write

R" = h,R,,

where h,, is a homogeneous polynomial and R,, a homogeneous polynomial map, with
no common factor, of degree d, = d" — deg(hy,). The map R, is a reduced lift of
f7, thus the degree of f™ is d,,. We say that there is decreaseness in the degree if
dn, < d".

PROPOSITION B.1 ([45], proposition 4.3). — Let f and g be rational maps of P* of
degree d and d'. The degree of f o g is smaller than dd' and equal to dd' if and only
if there does not exist any hypersurface V such that g(V \ I,) C Iy.

DEFINITION-PROPOSITION B.2. — The map f is algebraically stable if there does not
exist an integer n and a hypersurface V' such that
ffv~I)cl.

If f is algebraically stable the degree of f™ is d™, but in general we only have the
inequality

We define the dynamical degree as the limit
1
deo = lim —logd,.
n—oo M,

The map f is algebraically stable if and only if doo = d.

Proof. — The proof of this result is clear from proposition (B.1). Indeed d,, = d" for
all n if and only if f is algebraically stable and if d,, < d™ for a n > 0 then clearly the
limit doo (which exists by subadditivity) is smaller than d. O

B.2. Green function and Green current. The algebraically stable case

Let f be a rational map, algebraically stable, with degree d. We denote by I,
the set of indeterminacy points of f", we have I, C I, for n < m, and we set
I = U752 1,,. We recall the following definitions.

— A point p in P* \ I, is in the Fatou set of f if there exists a neighborhood U of
p such that fl?f is equicontinuous.

— The Julia set is the complement of the Fatou set.

— A point p is normal if there exist neighborhoods U of p and V of I such that
fM(U)NV =g for all n. We denote by N the set of normal points.

Denote by G,, : CF*! — RU {—o0} the psh function
(107) Gn(2) =log||R"(2)||, ze€CF
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Remark that Gy is by definition the potential of the Fubini-Study form w on P*¥ and
that G, is the potential of the pull-back S, = (f™)*w.

THEOREM B.3 ([45], Théoréme 6.1, 6.5, 7.1). — Let f be a rational map, alge-

1

braically stable, with degree d. The sequence d%Gn converges pointwise and in Ly,

to a psh function G satisfying:

G(A\z) =log |A| + G(z)
G(R(z)) = dG(z)

The function G is called the Green function of f. The current S with potential G is

called the Green current of f. It is the limit of the sequence %(f”)*w and satisfies

frs =ds.

(i) The current S does not charge hypersurfaces.

(ii) The support of S is contained in the Julia set of f. The set N N (P* < supp S)
is contained in the Fatou set (in particular, when N = P  the Julia set equals the
support of S).

(iii) The Green function is Hélder continuous in the set of normal points 7= 1(N).

REMARK B.4. — The question of whether the sequence of currents dln( f™)*So con-
verges to S when we start from a particular current Sy is not easy in general. In
particular, it is interesting to consider the preimages of the current [V] of integration
on a hypersurface V. In this case the limit - (f™)*[V] represents the asymptotic
repartitions of the preimage of V. Generically, the limit is S (cf. [45]), but for a
particular V' the problem to know whether the limit is S is a priori not easy. This
is more or less the problem we encounter in a particular case to prove theorem (3.6).
There are general results for this problem in the case of birational maps on compact

Kéhler manifold, cf. [12].

B.3. The non algebraically stable case. — When f is not algebraically stable
then we can write for n large enough

R" = hpR,,,

where h,, is a homogeneous polynomial of positive degree, R,, a homogeneous poly-
nomial map with non common factor. We can still define G,, by equation (107) and
S, as the current with potential G,,. Remark that in this case S, is not equal to the
pull-back (f™)*w since the map R™ is not reduced (i.e. its components have common
factors). Precisely, we have

Sp = (")*w+ [hn =0].
Indeed, we see that

ddlog||R"™|| = dd°log || Ry + dd®log |hy|.
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The first term equals (f™)*w since R, is a reduced lift for f” and log|hy| is a potential
of [hy, = 0] (counting multiplicities, i.e. [h, = 0] stands for the current of integration
on the divisor of h,) by the Lelong-Poincaré equation. Remark also that h,41 divides
he so that we have [h,.+; = 0] > d[h, = 0] (counting multiplicities). This implies
that —-[h, = 0] converges towards a current with support contained in Uy, {h,, = 0}.
On the other hand, we remark that the total mass of (f™)*w is equal to the degree of

R,, i.e. d,, thus dln( f™)*w converges to 0. This sums-up in the following result.

THEOREM B.5 (cf. [45], Théoréme 9.1). — When f is not algebraically stable then

(108) S = Tim —[hy = 0]

n—oo dn

and the current S is supported by a countable union of hypersurfaces.

REMARK B.6. — We see that in this case the current S does not contain much infor-
mation about the dynamics of f, but just about the distribution of the hypersurfaces
going to indeterminacy points.

C. Iteration of meromorphic maps on compact complex manifolds

C.1. Definitions, indeterminacy points. — Let X and Y be compact complex
manifolds. Denote by 711 : X XY — X and 7 : X XY — Y the projection on
the first and second components of X x Y. A meromorphic function f : X — Y is
defined by its graph I'r C X x Y, an irreducible subvariety of X x Y for which the
first projection is a proper modification, i.e. such that there exists a proper subvariety
V C X such that 7 is a biholomorphism from T'y ~ 7, 1(V) to X \ V. We denote
by Iy C X the set of points of indeterminacy, i.e. the set of points where 7; has no
local inverse. The set I; is an analytic subset of codimension at least 2. Of course,
at a point © € X \ Iy the image by f is defined by f(z) = ma(n; '(x)). When 2 is an
indeterminacy point the image by f is an analytic set defined by f(z) = m (7] * ({z})).
The map f is holomorphic on X \ Iy. The map is said to be dominating if w5 is
surjective.

If g : Y — Z is another meromorphic map then the graph I'g.s is defined as the
closure:

Pgor = {(z,9(f () |2 € X NIy, f(x) €Y N Iy}

One can also consider the graph
Iyol'y ={(x,2) |3y € Y such that (z,y) € I'y and (y,z) € ['y}.

PRrROPOSITION C.1 (cf. [12], proposition 1.5). — The equality T'gof =Ty o'y is sat-
isfied if and only if I'g o 'y is irreducible and this is true if and only if there is no
hypersurface V.C X such that f(V) C I.
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DEFINITION C.2. — A dominating meromorphic map f : X — X is said to be
analytically stable if I'y o I'yn = I'gnt1, i.e. there does not exist an hypersurface
V C X and an integer n such that f™(V) C Iy.

REMARK C.3. — When X is a smooth algebraic projective variety (i.e. a smooth
irreducible analytic subset of a projective space) the terminology meromorphic map
and analytically stable are replaced by rational map and algebraically stable (due to
the algebraicity of the manifold). In the case of a rational map on the projective space
defined as in appendix B the reader can check that the definitions are consistent.

C.2. Action on cohomology groups. — We suppose now that X is a smooth
algebraic variety, i.e. that it can be embedded as a smooth irreducible analytic subset
of a projective space (actually, we could only suppose that X is a Kihler manifold).
The counterpart of the degree in the case of projective spaces will come from the action
of f on the cohomology groups of X. We first need to introduce some notions and
notations. We denote by H"(X,C) the De-Rham r-cohomology group of X, i.e. the
quotient of closed r-differential forms by exact r-differential forms. The cohomology
class of a current can also be defined since there is identification between H” (X, C) and
the quotient of closed currents of degree r by exact currents of degree r. We denote by
{a} the class of a differential form (or current) «. For us the Dolbeault cohomology
group H®9 (X) will be the subspace of HP*4(X, C) of classes of differential forms of
bidegree (p,q) (in general the Dolbeault cohomology groups are not defined in this
way but in the case of Kihler manifolds there is identification).

Let f : X — X be a rational map. Using a desingularization of the graph I'y (we
do not want to enter into the definition of this notion here) it is possible to consider
the pull-back of 79 in the sense of forms and the push-forward of 71 in the sense of
currents. This allows us to define the pull-back f*a = 71, (75a) for all smooth form
a € Dy 4(X) as a current on X. The push-forward f, can be defined similarly. We do
not want to enter into details of the construction here (¢f. [12] or [13]), but we just
want to point out that f* and f, have the following properties

— f*a is smooth on X \ Iy,

~ ffaisin L,
— f* and f, commutes with d.

By the third property we see that the operators f* and f* induce linear operators on

the Dolbeault cohomology groups H® 9 (X) by

fHay ={f"a}, VaeDp,yX).

In general, it is not possible to define the pull-back f* on the space of currents in a
continuous way (cf. [13]) but when S is a closed positive (1, 1) current we can define
f*S = w73 S where the pull-back 73S is defined as in appendix A.6 using locally
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a psh potential for S and the push forward is defined in the sense of current. The
pull-back f* has the following properties (cf. [13], proposition 2.2.8):

— f* is continuous on the cone of closed positive (1,1) currents.
— For any hypersurface V C X

— f*{S} = {f*S} for any closed positive (1,1) current S.

C.3. The matrix of degrees. — Suppose now that
(109) X=X x--x X,

where the X;’s are smooth algebraic varieties, simply connected, and such that
dim¢ H¥1(X;) = 1 for all 4 in 1,...,r. Since X is Kéhler and simply connected we
have HM9(X;) = H%(X;) = 0 and thus H'1(X) = HYY(X,) @ - @ HYY(X,) is
of dimension r. Consider v;, the Kédhler form on X; obtained by restriction of the
Fubini-Study form to X; for an embedding of X; in a projective space, renormalized
to be a generator of the Z-cohomology. By abuse of notations we also denote by v; the
form on X obtained as the pull-back of the form v; on X; by the canonical projection
on the i-th coordinate of the right term of (109). The family ({¢1},...,{v-}) gives
a natural basis of H%1(X). In this basis the linear operator (f™)* on HY'(X) is
represented by a matrix d,, = (dn,; ;) defined by

(f") vt = Zdn,i,j{l/i}-

ProrosiTiON C.4

(i) The matriz d, has non-negative integer coefficients.
(il) The sequence of matrices (dy,) is submultiplicative, i.e. dpim < dpdy with
equality for all n,m if and only if f is algebraically stable.

Proof

(i) Consider the group of integral classes Hy'(X) = H“'(X) N H?(X,Z) where
H?(X,Z) is the cohomology group with values in Z (actually a class « is integral if
its integral along any 1-simplex is an integer). The element {v;} is a generator of
the group H,'(X;), be definition. Therefore ({11}, ..., {v,}) generates Hy'(X) and
the coefficients of d,, are integers since the linear operator f* leaves invariant the
lattice HY1(X) N H2(X,Z) (cf. [12], proposition 1.11). The positivity of coefficients
comes from the following fact: let H;ééf be the cone of classes {S} generated by closed
positive currents. In our case it is easy to see that Hgéif is the cone of elements with
positive coordinates in the basis ({v1},...,{v}): indeed, suppose that {S} € H;éif
then (S,vs, A--+ Awi,_,) > 0forall choice (i1, ..., in—1). Thus,if {S} = 31", si{wi},
we can choose (i1, ...,4,—1) such that <S, Vipg N A l/in71> = s;. Finally, we conclude
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the proof using the fact that the cone H;;if is left invariant by f*, ¢f. [12], proposition
1.11.
(ii) This is a direct application of proposition 1.13 of [12]. O

REMARK C.5. — In our case a considerable simplification comes from the fact that
we assumed (109). This implies that the cones H;;if and Hnle% considered in [12] are
equal and coincide with the cone R’} of classes which have positive coordinates in the

basis ({v1},...,{vr}).
C.4. Green currents. — We take from [13], [45] the following result.

THEOREM C.6. — Let f be a dominating meromorphic map, algebraically stable. Let
a be a smooth closed positive form of bidegree (1,1) such that the cohomology class
satisfies f*{a} = p{a} for a positive real p > 1.

(i) The sequence of currents p~™(f™)*« converges towards a positive closed (1,1)
current S such that
(110) f*8 = ps.

The current S depends only on the cohomology class of «, i.e. if &' is a smooth dif-
ferential form cohomologous to o then the limit is the same.
(ii) The support of S is included in the Julia set of f.

REMARK C.7. — When the matrix d; is primitive (i.e. when d; admits a power with
strictly positive coefficients) there exists a unique (up to a multiplicative constant)
class with positive coordinates which satisfies equation (110). Thus, the current S
defined in this way is unique (up to a constant) and it is natural to call it the Green
current of f.

C.5. Examples
The projective spaces. — Let X = P*. Since dimc H*!(P*) = 1 the matrix d,, is
scalar and actually equals the degree of the map f as defined in appendix B. Indeed,
if w is the Fubini-study form on P* then the potential log ||R,|| of (f™)*w has the
following homogeneity

log || Rn(A2)[| = deg(f") log |A[ + log [ R (2)]-
This implies that u(z) = log || R.(2)|| — deg(f™)log||z|| is defined globally on P* and
thus that deg(f™)w — (f™)*w = dd®u. Thus d,{w} = {(f*)*w} = deg(f™){w}.

X =Pl x ... x P! (r times). — A point z in X can be represented in homogeneous
coordinates by

(111) z="(lz1:1], -, @ yr])-

A map f : X — X can be represented in homogeneous coordinates by

f=(Pr:@i,. - [P Q)
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where Pj(z1,y1,...,%r,¥yr) and Q;(z1,y1,...,%r,yr) are polynomials homogeneous
in the variables (z;,y;) with same degree and no common factor, i.e. we have

Pj(xlayla-- -7)\$ia)‘yia" '7$7‘ay7‘) = )\di'ij(-Tlayla' "7$7‘ay’r)

(and idem for @);) if the degree of (P}, @;) in the variables (z;,y;) is d; ;. It happens
that the degrees (d; ;) coincide with the matrix of degrees of f defined previously
(cf. [21]).

D. A different proof of lemma 3.9

We present here a different proof of lemma 3.9. This proof does not involve any
direct estimate but just the fact that Sy is T-invariant and general properties of
holomorphic maps on S .

On Sy we consider the hyperbolic metric given by (cf. [46], [50])

ds® = trace(V"1dQV1dQ), for Q =U+iV € S,.

It is well known that S, can be identified with sp(n, R)\U(n), and that ds? is invariant
under the action of the symplectic group sp(2n,R) (cf. [46], page 3, ¢f. [50]). The
geodesic distance induced by ds? on Sy is given by (cf. [46])

|F

(ds.(Q. Qu))* = 3 (log’ (”—T’im)),

1—r,1/2

where 0 <71 < -+ < 7p < 1 are the characteristic roots of the cross ratio R(Q, Q1)
of @, Q1 given by

RQ,Q1)=Q-0Q)Q-0) " (Q-0)(@—-Q1)"

(i.e. this means that the rp’s are the eigenvalues of \/R(Q,Ql)R(Q,Ql)*. These
values ry satisfy 0 < r, < 1, cf. [46], page 16).

The upper-half plane S; can be mapped holomorphically onto the matrix ball
{€ complex sym | I — EE > 0}
by the Cayley transform
(112) Qr— &= (Q—ild)(Q +ild)~".
Inverting this relation we get
(113) Q=ild+&)Id-&)
With these notations it is clear that the cross ratio R(Q,Id) is given by

(114) R(Q,ild) = EE.
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The key property we are going to use is the following generalization of the Schwartz-
Pick lemma (cf. [29]). Let f be a holomorphic map from Sy to Sy, then for any x,y
n S+

(115) ds, (f(z), f(y)) < VIF|ds, (2,9),

(|F| is the rank of the symmetric space S;. The exact value of the constant does not
matter, the important point is that it does not depend on the function f).
Then we prove the following lemma instead of lemma 3.1.

LEMMA D.1

(i) The map T is holomorphic on Sy (resp. on S¢) and Sy (resp. S¢) is T-
invariant. Moreover, for any Q in S+ and n we have

(116) ds, (11d, T"Q) < V/|F| (ds, (ild, Q) + nds_ (ild, T'(i1d))).
(il) For any @ in S1 we have the following inequality
det(Id + QQ) < 2/Flexp(2|F|ds, (i1d, Q)).
Proof. — The fact that Sy is T-invariant is proved in lemma 3.1. Using (115) for
each of the iterates T™ (indeed, each T™ is a holomorphic map from S to Sy) we get

ds, (i1d, T"Q) < ds, (i1d, T"(i1d)) + dg, (T"(i1d), T"Q)
n—1

<Y ds, (TH(ild), T (i1d)) + /| F| ds, (i1d, Q)

k=0
< VIF| (nds, (i1d, T(i1d)) + ds, (ild, Q)).

(ii) Let £ be the image of @ by the Cayley transform (112). Let 5 be the largest
eigenvalue of £€. We have p < 1 and we deduce from (114) that

' 1+ﬁ1/2
d5‘+ ('LId, Q) 2 10g <m

Considering now relation (113) we deduce

2
. 1 + ﬁl/Q
QQ < <1—7ﬁ1/2 )
which immediately implies

det(Id + QQ) < 2/Flexp(2|F|ds, (Q,i1d)). O

Proof of lemma 3.9. — This will be a consequence of the estimates we proved in
lemma (D.1). We first remark that the terms of the sequences in formulas (57) and
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(58) are non-positive. By proposition (3.3), lemma (2.5) and lemma (D.1) we have:
K R" (exp7Qn) 1>‘ _ K exp " Qn 1>}
[[1R* (expnQn)||’ | expT@nl|’
1

 |lexpnImQn)

1 1/2
B <det(1d + TnQW))
> 27317 exp(—| Flds, (T"Q, i1d))
> 2731l exp(— | F|V/IF] (ds- (Q, i1d) + nds+ (i1d, T(i1d)))).

This immediately implies equality (57). The proof of formula (58) works similarly.
Remark first that for any Q in Sy, dg+ (ild, Q) = dg+ (iId, —Q 1) (indeed, Q — —Q !
is an isometry of S, fixing ¢Id). Using proposition (3.3) and lemma (2.5) we get:

’< R" (expnQn) IEE, > _ _|det(T"Q)|
R (expnQn)|” S ™ | exp 7T Q|
( 1 ) 1/2
~ \det(ld + (T7Q)~H(T"Q)~Y)
and we conclude similarly using lemma (D.1). O
REMARK D.2. — We proved in theorem 3.6 the convergence of the counting measure

for the Neumann and Dirichlet boundary condition. The technic presented in this
appendix allows, with a little extra effort, to prove the convergence of the counting
measure for any boundary condition. Indeed, for each n let B,, be a real symmetric
operator on R¥t supported on OFy (i.e. Bpf = 0if fior,,, =0) (we can thus also
consider B,, as an operator on R by identifying OF, n) with F'). We consider the
boundary condition induced by B,, i.e. we denote by 1/< i the counting measure of
the eigenvalues of A,y — B,,. Proceeding as for the Neumann and Dirichlet boundary
condition, we can prove that I/<B i is given by

E:w = —Aln ’<exp( nB.n) - H 77$77z>’
z€F

We can as well replace the last expression by
1 exp(—71Bnn)
—Aln ’ <7 >
37 \Topmmapy © @) 1 70
By the same strategy as before we see that the convergence of 1/<n7; would be implied

by the following convergence for @ in S

| ‘< exp(=7B,n) R"(expnQn) H” 77>
| exp(=7Bnn)|| | R™ (exp7Qn)]| o

lim —
n—oo N7

zeF
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We see that as before the term in the logarithm is bounded from above by 1. The
term inside the logarithm is equal to

expT(T"Q — Bp)n _
117 ‘ — a2 ] 7ane
(117) <||exp(*ann)llllexpnT"QnH i >

_ |det(T"Q — B,)|
(det(Id +T"QT™Q) det(I1d + B2))

The key point is that the change of boundary condition can be viewed as a “rotation”

1/2

in Sy (by a rotation in Sy we mean the image by the Cayley transform of a rotation
in the unit ball). It is actually easier to map everything in the unit ball since rotations
have a simple expression. Let us first derive some simple formula. Let @)1 and Q)2
and &g, and &g, there images by the Cayley transform. Then a direct computation

gives
|det(Q1)]?  [det(Id + &g, )[?
det(Id + Q,Q1)  det(2(Id+Eg,&q,))’
| det(Q1 — Q2)? _ | det(2(E@, — £qa))I?

det(Id + Q, Q1) det(Id + Q,Q2)  det(2(Id + Eq,Eq,)) det(2(1d + £g,Eq,))
In particular in the last expression if Q2 = B is a real matrix then &g is unitary and
we get
| det(Q1 — B)|? _ _|det(&q, — Ep)P?
det(Id + Q, Q1) det(Id + B2)  det(2(Id + €0,£0,))
If we apply this to (117) we get

| det(Erng — Ep,)|
det(2(Id + ETnQETnQ))l/Q -
The isometries of the unit ball that fixes the point 0 (the rotations) are exactly the
maps & — U'EU for U unitary (cf. [46], page 11). If we take any U,, that sends g,
to —Id and if we denote by 7,,(T"Q) the point of Sy such that & (rng) = U} ErnqUn,
then we have dg, (iId, 7(T"Q)) = ds_ (ild, T"Q) and the last expression equals

| det(Id + E-(rng))| B | det(7,,(T™Q))]

det(2(Id + Er(rng)E-(rm@))) /> (det(1d + 7, (T"Q)m(T7Q))) .

Then we can apply as previously the estimates of lemma D.1 to conclude.

E. G-Lagrangian Grassmannian

Let us first recall the classification of complex irreducible representations, and the
Frobenius-Schur Theorem. Let G be a finite group and U an irreducible representation
of G over C. We denote be x its character. The representation U is said to be

— of type 1 if the character x is not real.
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— of type 2 if the character of x is real, and the representation U is realizable over
R (i.e., U can be realized as the complexification of an irreducible representation of
G over R).

— of type 3 if the character y is real, but U is not realizable over R.

Let us now recall a consequence of the Frobenius-Schur theorem (¢f. [44], proposition
38).

ProrosiTION E.1
i) If G does not have a non-zero invariant bilinear form on U, then U is of type 1.
it) If such a form exists, it is unique up to homothety, is non-degenerate, and is
either symmetric or skew-symmetric. If it is symmetric, then U is of type 2, and if it
is skew-symmetric, then U is of type 3.

Let us now consider an irreducible representation W of G over R, and denote by
W€ its complexification. Then, there are three possible cases (mutually exclusive). If
W is irreducible in C, then W is of type 2, and by extension we say that W is of
type 2. If W€ is not irreducible in C, then W = U @ U, where U and U (the complex
conjugate of U) are irreducible in C. In this case U is necessarily of type 1 or 3. If
U is of type 1, then so is U, and U and U are not isomorphic. By extension, in this
case, we say that W is of type 1. If U is of type 3, then so is U, and U and U are
isomorphic. By extension, in this case, we say that W is of type 3.

Let us now introduce some definitions. Let n be an integer. We consider C?" =
C" @ C™. We denote by (, ) the canonical symmetric bilinear form on C?", (X,Y) =
XY, and by (, ) the canonical hermitian scalar product, (X,Y) = (X,Y). We denote
Id,, the n x n identity matrix and by J,, the 2n x 2n antisymmetric matrix defined by

(118) (Ign Iod”) .

We define three types of Grassmannian on C?". We first denote by G™2", the
Grassmannian of n dimensional subspaces of C*". The group GI(2n,C) acts tran-
sitively on G™2", and G™?2" is isomorphic to the homogeneous space Gl(2n,C)/P,,
where

P,={(45) €Gl(2n,C) | C =0}.
In particular, the tangent space of G™2" is isomorphic to M, (C).

We recall that we defined " as the set of Lagrangian subspaces of C?", i.e. as the
set of n-dimensional isotropic subspaces for the canonical symplectic form w(X,Y) =
(X, J,Y). We denote by Sp(n,C) the linear symplectic group, i.e. the group of com-
plex 2n x 2n matrices S, such that S*J,S = J,,. The group Sp(n,C) acts transitively
on the set of Lagrangian subspaces of C? and IL" is isomorphic to the homogeneous
spaces Sp(n,C)/P,, where P, is the parabolic subgroup

P, ={(458) € Sp(nC)|C=0}.
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In particular, the tangent space of L™ is isomorphic to Sym,, (C), the space of complex
symmetric n X n matrices.

We consider now the non degenerate symmetric bilinear form (X, K,,Y) on C?",
where K, is the symmetric matrix

()

We denote by O™ the set of maximal isotropic subspaces, for the symmetric bilin-
ear form (-, K,-), i.e., the set of n-dimensional isotropic subspaces of C?". The
group O(C?", K,,) of linear transformation which preserve the bilinear form (-, K,,)
is isomorphic to the classical orthogonal group O(2n,C) (indeed, (-, K,-) is sym-
metric and non degenerate) and acts transitively on Q™. Hence, Q™ is isomorphic
to O(C?", K,,)/P,, where P, is the parabolic subgroup which leaves invariant the
isotropic subspace C™ & 0,

(120) P.={(45) €0@n,C) | C=0}.

In particular, the tangent space of O™ is isomorphic to the space of n xn complex skew
symmetric matrices. We denote by SO(C?", K,,) the subgroup of O(C?", K,,) of ele-
ment of determinant 1. Since P, C SO(C?", K,,), O™ has two connected components,
SO(C*" K,,)/ P, and £SO(C?*", K,,)/£P,, where £ is any element of O(C?", K,,) with
determinant —1. We denote by SO" = SO(C*", K,,)/P,, the connected component
which contains the Id - P,.

We suppose now that k is an integer and that R¥ is an orthogonal representation
of a finite group G, i.e. we consider G as a finite subgroup of the orthogonal group
O(k,R). The vector space C* is a complex representation of G, and we consider the
diagonal action of G on C2¥ = C¥ @ CF, i.e. G is the subgroup of O(2k) of elements

of the form
(g 0), VgeQG.
0 g

We consider the Lagrangian Grassmannian L* ~ Sp(k, C)/Py. We denote by LG c Lk
the subvariety of G-invariant Lagrangian subspaces. We know that Sym, (C), the
space of k x k symmetric complex matrices, is embedded in IL* as follows

Sym, (C) — L*
Q— Lg= vect{ei + 2?21 Qm-e;-},
where {e1,...,ex,€},...,e,} is the canonical basis of C2*. We denote by SymG((C)
the subspace of Sym,,(C) of @ which commutes with G. It is clear that the Lagrangian
subspace L is invariant under G if and only if Q € SymG((C). We denote by L the

closure in L* of Sym®(C). It is clear that LG C LC.
We suppose that RF is decomposed into isotopic representations as follows,

(121) RE=Vp@-- @V,
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where V; is an isotopic representation equal to the direct sum of n; representations iso-
morphic to a single R-irreducible representation W; (and the W; are not isomorphic).
This means that V; = W; 1 @ --- ® W, ,, where the W, ; are isomorphic to W; and
we can choose the W; ; orthogonal. For simplicity, we write sometimes V; = n;W;.

THEOREM E.2. — The subvariety L is the connected component of LE which con-
tains the Lagrangian subspace CF @0, and is isomorphic to

£0 X oo X ET,
where

— L; ~ G2 if W, is of type 1; the dimension of L; is n?.
— L; ~ L™ if W; is of type 2; the dimension of L; is n;(n; +1)/2.
— L; ~SO?™ if W; is of type 3; the dimension of L; is 2n? —n;.

Proof. — Let us first introduce some notations. If M = (M, ;) is a n X n matrix and
N a m x m matrix, we denote by M ® N, the mn x mn matrix of the tensor product,
given by blocks by

MiyjN
hi=1,.n

If U is a subspace of C*, then we will denote by U and U’ the subspaces of C2*,
equal respectively to the copy of U on the first and the second component of C* @ C*,
so that we have U’ = J,U. Similarly, if f is a vector of C¥, we denote by f and f’,
respectively the copy of f on the first and second component of C*¥ @ CF, so that
f' = Jf. We denote by VZ-(C the complexification of V;. Hence, with the previous
notations we have

(122) C*=Vio---aVie (V) @ --a V).

Let us first prove that ¢ is a connected component of LE. The space Sym,,(C) is
embedded in L* and, with this embedding,

Sym, (C) = LF~ {L € L* | LN (0@ C*) # {0}}.

As we already remarked, we know that a Lagrangian subspace of the type Lg is in
LE if and only if Q is in Sym®(C). Otherwise stated, it means that

Sym®(C) =LE~ {L e L% | LN (0®CF) £ {0}}.

Since Sym“(C) is connected, it means that L% is a connected component of LE. We
set

Spe(C) = {S € Sp(k,C) | gS = Sg, Vg € G},

and P¢ = P, N Sp®. Let us now prove that L¢ is isomorphic to the connected
component of Sp&/P% which contains Id - P%. Indeed, Sp& /P is isomorphic to the
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subset of IL¥ ~ Sp(k,C)/Py, of Lagrangian subspaces L such that there exists S in
Sp%(C), such that

S(CF30) = L.
Hence Sp%/P% C LE. But for Q in Sym®(C),

_ (1dg 0
o ( Q Idk> ’
is in Sp%(C) and S(C* ® 0) = Lg. Hence, Sym®(C) ¢ Sp&/P%, and thus LE C

Sp%/PY, since Sp®/P% is compact. This implies that L% is a connected component
of Sp¢(C)/PC.

REMARK E.3. — It is not true in general that LE ~ Sp¥/PC. Actually, we have the
inclusions L¢ C Sp¥/P% C L€, and each of these inclusions can be strict. We will
try to clarify this point in a subsequent work.

Let us first prove that we can reduce the problem to the case where R* contains
a unique type of irreducible representation, i.e. to the case where r = 0. Since the
subspaces V;, V' are real orthogonal, the subspaces Vi(C @ (Vi(c)' are w-orthogonal and
the restriction of the symplectic form w to V,* @ (V,)’ is non degenerated, hence is a
symplectic form. This implies that

Sp(C) = Sp(Vg™ @ (Vo)) x -+ x SpE(ViE & (V)7)'),
and
PE = POy & (Vy)) x - x PE(VE @ (V)),
where Sp%(V,C @ (VF)’) is the group of G-invariant symplectic transformation on
VE @ (VEY, and PY(VE @ (V,C)) the subgroup which leaves invariant V.. Hence,
LE ~ Ly x -+ x L, where L; is the connected component of
Spe(Vie @ (VE))/PE(ViE @ (ViE)),

which contains Id - P%(VE @ (V,L)).
Hence, we suppose now that R* contains a unique type of irreducible representa-
tions, i.e. that R¥ = nW = W, @- - -@W,,. This means that we have the decomposition

(123) Cr=wrfo---oaWlo WS @---o (WL,

If W if of type 2. — This is the simplest situation. In this case WJC and (W](-C)'
are irreducible over C. Let us set p = dim W, and choose real orthonormal basis
(91,55 9p,j) of Wj, which realize the isomorphism W; ~ W;. We denote by (g; ;)
the corresponding basis of WJ’ . By Schur lemma, we know that, in this base, any
element of End®(C* & CF) (where End® is the space of endomorphism commuting
with G), is of the form

M @1d,,
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where M € M>s,(C). Since the change of base is orthogonal, the matrix of the
symplectic form w remains equal to

Ty = Jp @ 1d,.

This implies that, by this change of bases, Sp“(C) becomes the space of matrix of
the type M ® Id, such that

(M ®1d,)! (Jn @ 1d,) (M ®1d,) = J, ®1d,,

which is equivalent to M*J,M = .J,. Hence Sp©(C) ~ Sp(n,C). Similarly, P% is
isomorphic to P, and LE ~ L™, since Sp(n,C)/P, is connected.
If W is of type 1. — In this case, W¢ = U @ U, and U and U are C-irreducible, not
isomorphic, and orthogonal for the hermitian scalar product (, ). Let p = dim W,
and choose an orthonormal basis (g1, . .., gp) of W (for the hermitian scalar product).
The family (g;,...,7,) is an orthonormal basis of U.

By isomorphism, we have the corresponding decomposition ngc =U; ® Uj,

= . . _ _

(W]C)’ = U; ® U;, and the corresponding basis (g1,j,---,9p.j)s (G1,5-->3p ), and
(91552 9p5)s (@145 Tp;)- We rewrite now the decomposition of C?* as

C*=U,0--aU,0U.a  -oU.0U,1e 60U, 00, - &U,,

and we denote by B the corresponding basis (i.e. we endow each component with the

basis (gi;), (gi;), -+, we just described).
By Schur lemma, in this basis, any element of EndG((Ck @ CF) has the form
71 ®1d 0
124 Z = P
(124) ( 0 Z® Idp) ’

where 71 and Z5 are 2n x 2n complex matrices. Let us now compute the matrix of
the symplectic form w in this new basis (the change of basis, from the canonical basis
of C?* to B is unitary, but not orthogonal). Since w(X,Y) = (X,JY) = (X,JY),
we see that w is null on all term except on the U; X U;, U]{ X Uj, and the symmetric

terms. On Uj; x U;-, we have
w(9i,, Ty j) = = (9ij» 9ir.j) = —Oiir-

On U} x Uj, we have w(g; ;, G ;) = —w(gi,5,9; ;) = di,i7. Hence, the matrix of w in

the base B is
Fo 0 Jn ®1d, .
Jn ®1d, 0

Hence, by this change of basis, Sp(C) is isomorphic to the group of matrices Z of
the form (124), which satisfies Z!JZ = J. Hence Sp%(C) is isomorphic to

(125) {Z=(% 2) | 21,22 € M2y (C), Z}J0Z1 = Jn}.
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Similarly, P is isomorphic to the subgroup of element Z of (125), such that Z; and
* ok
0 x/°

Since Z, is determined by Z; in (125) by Zo = —J,,(Z})™!, we see that Sp(C)/P%
is isomorphic to

Z5 are of the form

Gl(2n,C)/{Z € GI(2n,C) | Z of the form (§ %)} ~ G™*".

W is of type 3.— In this case W = U @ U, where U and U are irreducible and
isomorphic. Let us first remark that U and U are necessarily orthogonal for the
hermitian scalar product (, ). Indeed, by proposition E.1, we know that the symmetric
scalar product (, ) is null on U, thus (z,y) = (z,7) = 0 for # € U and y € U. Let
us now describe an explicit isomorphism between U and U. By proposition E.1, we
know that there exists a non degenerate G-invariant skew symmetric bilinear form B
on U. Thus, for all z in U, there exists ¢(x) € U such that

B(z,y) = (¢(x),y), VyeU

The map ¢ is antilinear (i.e. p(Az +y) = A\ (x) + ¢(y)) and bijective, since B is non
degenerate. Thus, ¢ = ¢ : U — U, is an isomorphism, commuting with the action
of G. Since B is skew-symmetric and non degenerate, dim U = 2p, and there exists a
symplectic basis (g1,. .., g2p) of U, i.e. a basis such that

B(gi, 95) = i j+p — Oij—p;

(i.e., the matrix of B in this basis is J,). We set f; = ¢(g;). The family (f1,..., f2p)

is a basis of U, which realizes the isomorphism U ~ U.

Let us come back to C2*. In each term I/VJ(»C (resp. (WJC)’ ) of the decomposition
(123) we make the corresponding decomposition VVJ(-C = U; ®U; (resp. (W](-C)’ =
U;® U;), and we define the corresponding basis (g1 5, .-, 92p,;) and (f1j,---, fop.j)

(resp. (ng7 . ,gépyj) and (f{yj, ey fép,j))-
We rewrite the decomposition of C?* in

C*=U,0-aU, 00,0 0U.0Ul® 00U, 06U, - a&U,,

and we denote by B the corresponding basis (i.e., we endow each component by the

basis (g1, ---592p.5)s (f14s---sf2pj)s --., we just described). By Schur lemma, the
matrix of any element of End®(C?*) in the base B, is of the type M ® Ida,, where
M e M4n((C)

Let us now compute the matrix of w in the basis B. Clearly, since w(X,Y) =
(X,JY), we see that w is null on all component except of C?* x C2* except on
components of the type U; x U;, Uj X UJ’», and the symmetric components. On
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U; x U;, we have
w(gi,jvfil,j/) == <gi,j7?z",j>
= —(¢(91.5), 9i,5)
= —B(gi5,9i,5) = Oiir+p — 0i,i'—p-
Similarly, w(fij, gir ;) = —(8i,i+p — di,i—p). Thus, the matrix of w in B is

-~ (0 —h®ld,
“\Led, 0

= 0 —J
K = .

Hence, we see that Sp&(C) is isomorphic to the set of matrices of the form M ® Ids),
such that

>E®%

where K is the symmetric matrix

(M & Idgp) (K ® J,)(M @ 1dgy) = K © J,,.
Since the first term is equal to (M*K M) ® J,, we see that the condition becomes
M'KM =K.
By the orthogonal change of base given by

~ (1dg, 0
o= (55

O'KO = Koy,
defined in formula (119). Thus Sp%(C) is isomorphic to O(C*", Ks,). Similarly,
P% is isomorphic to Py, defined in formula (120). Thus, Sp%(C)/P¢ ~ 02" and
LY ~ SO?". O

we see that K becomes
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