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We study families of objects in Fukaya categories, specifically ones whose de-
formation behaviour is prescribed by the choice of an odd degree cohomology
class. This leads to invariants of symplectic manifolds, which we apply to
blowups along symplectic mapping tori.

Nous étudions des familles d’objets dans des catégories de Fukaya, en particu-
lier celles dont le comportement infinitésimal est determiné par une classe de
cohomologie de degré impair. Cette étude aboutit à des invariants des variétés
symplectiques ; nous en tirons des conséquences pour les éclatements de tores
d’applications symplectiques.
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ABSTRACT ANALOGUES OF FLUX

AS SYMPLECTIC INVARIANTS

Paul Seidel

Abstract. — We study families of objects in Fukaya categories, specifically ones whose
deformation behaviour is prescribed by the choice of an odd degree cohomology class.
This leads to invariants of symplectic manifolds, which we apply to blowups along
symplectic mapping tori.

Résumé (Analogues abstraits du flux comme invariants des variétés symplectiques)
Nous étudions des familles d’objets dans des catégories de Fukaya, en particulier

celles dont le comportement infinitésimal est determiné par une classe de cohomologie
de degré impair. Cette étude aboutit à des invariants des variétés symplectiques ; nous
en tirons des conséquences pour les éclatements de tores d’applications symplectiques.
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MÉMOIRES DE LA SMF 137

6

6



INTRODUCTION

Motivation

An interesting invariant of a closed symplectic manifold M is its flux group, a sub-
group of H1(M ;R) obtained from the topology of loops of symplectic automorphisms
[74, Section 10.2]. This can be effectively studied using Floer cohomology, one of the
notable insights being that the flux group is always discrete [80]. Now consider the
following question:

Are there flux-type subgroups in H2k−1(M ;R), for k > 1, which can be
nontrivial for manifolds with H1(M ;R) = 0?

The last clause excludes one obvious direction, which is to take the subgroup formed
by the image of [ωk

M ] under all the mapsH2k(M ;R)→ H2k−1(M ;R) induced by loops
of symplectic automorphisms (this reproduces the flux group for k = 1, but it vanishes
if H1(M ;R) = 0, by the rigidity theorem [61]). Really, what the question is aiming
for is a formalism in which higher degree differential forms replace the closed 1-forms
in their usual relation to symplectic vector fields, so anything related to symplectic
automorphism groups can’t really be the answer. This clarification may make the
whole endeavour seem quixotic.

Still, if one looks at it from the point of view of quantum cohomology QH ∗(M),
the situation is less clear-cut. Passage to quantum cohomology generally reduces the
grading to Z/2, putting all odd degree cohomology formally on an equal footing (but
degree one classes retain a more direct connection to geometry, because the quantum
product with such a class remains equal to the classical cup product; this is by a
version of the divisor axiom). In that vein, it turns out that one can give a partially
positive answer to the question above, at least if one is willing to settle for an invariant
which is somewhat more obscure, lacking the simplicity and geometric elegance of the
flux group.

7
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2 INTRODUCTION

The examples

As an application, we consider a particular pair of 28-dimensional simply-connected
symplectic manifolds (the following is only an outline of the construction, omitting
many details and assumptions). Let K be a K3 surface, and T ⊂ K a symplectically
embedded two-torus. Take K7, the product of seven copies of K, and blow up the
12-dimensional submanifold T 2 × K2. Denote the outcome by Btriv. This has a
more interesting cousin B, defined in the same way but where the blowup locus is a
product of T and the symplectic mapping torus of a certain automorphism of K ×K
(embedded into K7 by using the h-principle).

It is known that the symplectic automorphism group of K has many connected
components which are not detected by classical topological means (see for instance
[94], or [97] for a mirror symmetry viewpoint). Based on that, one can ensure that
Btriv is diffeomorphic to B, and that their symplectic structures are deformation
equivalent. Nevertheless, for a specific choice of automorphism, we will show:

B and Btriv are not symplectically isomorphic.

The construction of these manifolds is similar to that of the first known examples of
distinct but deformation equivalent symplectic structures [73], which were also based
on blowing up. That paper used (roughly speaking) a bordism-valued refinement of
Gromov-Witten theory as an invariant. Because such refinements are hard to define
and compute, we can’t say how they would behave in our situation. In any case, the
approach taken in this paper is quite different.

The invariant. — Let’s temporarily go back to the simpler case of symplectic
mapping tori. The symplectic mapping torus of an automorphism f is a symplectic
fibration over T which has trivial monodromy in one direction, and monodromy f in
the other direction. Let’s say for concreteness that T = R2/Z2 has coordinates (p, q),
and that the monodromy is trivial in q-direction, and f in p-direction. The sym-
plectic mapping torus contains plenty of Lagrangian submanifolds fibered over trivial
circles {p}× S1. If one then moves such a Lagrangian submanifold by the time-one
map of the symplectic vector field ∂p, the effect is the same as applying f fibrewise.
For suitable examples of f , this allows one to show that [dq] does not lie in the flux
group, which distinguishes the mapping torus from the trivial one (a similar approach
was used in [92]).

To make a more abstract version of the argument, we consider families of objects
in the Fukaya category whose deformation is driven by the class [dq]. The idea of in-
troducing families of Lagrangian submanifolds into Floer cohomology theory is due to
Fukaya [33], [30]. Generally speaking, it shows much potential for leading to funda-
mental insights as well as applications, but also encounters considerable foundational
difficulties. Here, we bypass these issues by choosing a more constrained version of
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STRUCTURE OF THE PAPER 3

the notion of family, which has a straightforward basis in algebraic geometry, but is
somewhat harder to connect to symplectic geometry.

The outcome is an invariant of a symplectic manifold M , which also depends on
the following auxiliary data. Take an element λ of the (universal single-variable)
Novikov field, and an idempotent z in QH 0(M). To these we associate an appropriate
version of the Fukaya category Fuk(M)λ,z and its completion (split-closed triangulated

envelope) Fuk(M)perfλ,z . Additionally, choose an elliptic curve S over the Novikov field,
together with a nonzero algebraic 1-form on it. Given a class in odd degree quantum
cohomology, x ∈ QH 1(M), one can then ask whether it is periodic, which means
whether objects of the Fukaya category can be extended to families over S with
deformation behaviour prescribed by x.

In particular, we can apply this idea to symplectic mapping tori and recover some
of the results ordinarily proved using flux. More interestingly, we can exploit existing
ideas about the behaviour of Fukaya categories under blowups [100], and thereby
arrive at the result stated above. The main point is that the relevant part of the
Fukaya category of Btriv is well-understood, allowing us to prove that certain classes x
are periodic. The Fukaya category of B is not known to the same extent, but partial
computations are enough to determine that certain classes x are not periodic, since
that only requires finding a specific Lagrangian submanifold which can serve as a
counterexample.

To conclude this discussion, we should mention that the basic idea is by no means
new in homological algebra. From that elevated vantage point, what we are doing
(in a rather ad hoc way) is to study algebraic one-parameter subgroups (the elliptic
curves S which appeared above) inside the derived Picard group [110], [55] of the
Fukaya category. The idea is to think of elements of Hochschild cohomology as vector
fields on an abstract “moduli space of objects”, and that we are asking which vector
fields integrate to “periodic flows”. On an informal level, it is clear that this provides
an algebraic counterpart to the geometric ideas underlying flux.

Structure of the paper

Chapter 1 sets up the algebraic theory of families of objects, much of it straight-
forward. The key to uniqueness results for families is the discussion surrounding
Lemma 1.16, which is then further developed for our intended applications in Sec-
tion 1.11. An abstract version of our invariant is introduced in Definition 1.25. Chap-
ter 2 discusses the simplest example of the two-torus T . Of course, its Fukaya category
has already been studied exhaustively, starting with [85]. Still, we devote some energy
to it in order to prepare for the case of symplectic mapping tori, which is the topic of
Chapter 4 (following some preliminaries on Floer cohomology and Fukaya categories,
in Chapter 3).
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4 INTRODUCTION

At first, it will seem that our computations lead us further from the intended goal,
since we choose Lagrangian submanifolds whose Floer cohomology is largely indepen-
dent of the choice of automorphism used to construct the mapping torus. However,
we eventually do manage to recover some information about that automorphism, by
a double covering trick which appears in Section 4.5. Finally, most of Chapter 5 is
general discussion of blowups. The detailed construction of the manifolds B and Btriv

is carried out in Section 5.6.
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CHAPTER 1

FAMILIES OF OBJECTS

Suppose that we are given an A∞-category A, and a class in its degree 1 Hochschild
cohomology HH 1(A,A). This class determines one in H1(homA(X,X)) for every ob-
ject X , hence an infinitesimal first order deformation ofX . Deformations coming from
Hochschild cohomology have additional properties, for instance (in characteristic 0)
they can be extended to arbitrarily high orders in a formal parameter. However, in-
stead of looking at the infinitesimal theory, we want to consider global deformations.
For the sake of illustration, take the parameter space to be the affine line. One then
looks for families X = {X s} depending on one algebraic variable s, whose fibre at the
origin is fixed, X 0

∼= X , and whose first order deformation behaviour at any value of s
is the element of H1(homA(X s,X s)) induced by our Hochschild class.

We are mainly concerned with the uniqueness of such families. This, while not
totally straightforward, turns out to be much easier than existence issues. An ele-
mentary parallel would be the question of integrating a vector field. Indeed, one might
think of the original Hochschild cohomology class as determining a vector field on the
“moduli spaces of objects in A” (making this rigorous requires machinery far beyond
that deployed here; interested readers are referred to [103]).

We work over an algebraically closed field R of characteristic 0. While the condition
of algebraic closedness is perhaps mostly for the sake of familiarity, the restriction on
the characteristic is crucial, since we will be using differentiation (and in particular
Lemma 1.4). Sign conventions for A∞-algebras and associated structures usually
follow [93]. Those for twisted complexes are specifically as in [93, Remark 3.26].

All categories are assumed to be small.

1.1. A∞-categories

Fix an A∞-category A over R. This is assumed to be Z-graded, strictly unital,
and proper. The units (identity endomorphisms) are denoted by eX ∈ hom0

A(X,X).
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6 CHAPTER 1. FAMILIES OF OBJECTS

Write H(A) for the associated cohomology level category, and H0(A) for the version
where only morphisms of degree 0 are allowed. Properness means that the morphisms
in H(A) are graded vector spaces of finite total dimension. Two objects of A are called
quasi-isomorphic if they become isomorphic in H0(A).

There are various canonical formal enlargements of A. Possibly the simplest one
is the A∞-category of twisted complexes Atw, introduced in [15] and [58]. One can
carry out this enlargement in two steps. First, consider the additive envelope A⊕,
whose objects are formal expressions

(1.1) X =
⊕

i∈I

F i ⊗X i[−σi]

where I is a finite set, the X i are objects of A, formally shifted by degrees σi ∈ Z,
and the F i are finite-dimensional vector spaces. Morphisms in A⊕ can be thought of
as matrices, whose entries are morphisms in A tensored with maps of vector spaces.
Correspondingly, the A∞-products combine those of A with composition of linear
maps and matrix multiplication (with auxiliary signs due to the shifts). In the second
step, one defines a twisted complex to be an object X ∈ ObA⊕ equipped with an
additional differential. This differential δX ∈ hom1

A⊕(X,X) is an endomorphism
which is strictly decreasing with respect to some filtration of X by sub-objects, and
which satisfies the generalized Maurer-Cartan equation

(1.2) µ1
A⊕(δX) + µ2

A⊕(δX , δX) + · · · = 0.

Atw is an A∞-category with the same general properties as A, and which contains A
as a full subcategory. It is closed under shifts and mapping cones, and is character-
ized up to quasi-equivalence as the minimal enlargement with this property. In our
formulation, it also admits a canonical operation of tensoring a given object with a
finite-dimensional vector space.

Remark 1.1. — Suppose that we allow only trivial 1-dimensional spaces F i = R.
The resulting objects, which can be written more concisely as

X =
⊕

i∈I

X i[−σi],

form a full A∞-subcategory, which is quasi-equivalent to all of A⊕ (and if one equips
them with a differential, the same holds for Atw). We prefer the form (1.1) since it is
better suited to later generalizations.

There is a different approach to formal enlargements, through A∞-modules [54].
Write C for the differential graded category of complexes of R-vector spaces whose
cohomology is of finite total dimension. A (right) A-module with finite cohomology
is an A∞-functor Aopp → C. Concretely, such a module M assigns to each X ∈ ObA
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1.1. A∞-CATEGORIES 7

a graded vector space M(X), together with structure maps

(1.3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µ1
M : M(X0)→M(X0)[1],

µ2
M : M(X1)⊗ homA(X0, X1)→M(X0),

µ3
M : M(X2)⊗ homA(X1, X2)⊗ homA(X0, X1)→M(X0)[−1],
. . .

satisfying the A∞-module equations (see [54] or [93, Section 1j]), and such that
(M(X), µ1

M ) belongs to ObC for all X . We require M to be strictly unital, which
means that µ2

M (m, eX0) = m, and µd
M (m, ad−1, . . . , a1) = 0 whenever d ≥ 3 and

one of the ai is a unit. Such modules form an A∞-category Amod (this is in fact a
differential graded category, but we prefer to view it as an A∞-category with trivial
higher order products, which entails slightly different sign conventions).

A morphism b ∈ homAmod(M0,M1) consists of

(1.4)

⎧
⎪⎨

⎪⎩

b1 : M0(X0)→M1(X0)[|b|],

b2 : M0(X1)⊗ homA(X0, X1)→M1(X0)[|b|− 1],

. . .

Again, we require strict unitality, which means that

bd(m, ad−1, . . . , a1) = 0

whenever one of the ai is a unit.
The Yoneda embedding (see [32] or [93, Section 1l]) is a canonical A∞-functor

A −→ Amod.

On objects, it maps Y to the module Y yon with Y yon(X) = homA(X,Y ) and
µd
Y yon = µd

A. The first level map on morphisms is

(1.5)

{homA(Y0, Y1) −→ homAmod(Y yon
0 , Y yon

1 ),

a &→ ayon, ayon,d(ad, . . . , a1) = µd+1
A (a, ad, . . . , a1).

Lemma 1.2. — The map (1.5) is a quasi-isomorphism.

Proof. — Consider the map in inverse direction, taking a module homomorphism b
to the element a = b1(eY0). Composing the two in one way yields the identity map on
homA(Y0, Y1). The other composition is chain homotopic to the identity: an explicit
homotopy is

(1.6)

{h : homAmod(Y yon
0 , Y yon

1 ) −→ homAmod(Y yon
0 , Y yon

1 )[−1],

h(b)d(ad, . . . , a1) = bd+1(eY0 , ad, . . . , a1).
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8 CHAPTER 1. FAMILIES OF OBJECTS

In other words, the Yoneda embedding is cohomologically full and faithful.
Moreover, it canonically extends to a cohomologically full and faithful A∞-functor
Atw → Amod. The easiest way to see this is to think of it as the composition

(1.7) Atw −→ (Atw)mod −→ Amod.

where the first arrow is the Yoneda embedding for Atw, and the second is restriction of
modules from Atw to A. Since objects of A generate Atw by definition, the restriction
functor is a quasi-equivalence, so (1.7) is again cohomologically full and faithful.

1.2. Idempotent splittings

Suppose that we have an object Y of A together with an endomorphism in the
categoryH0(A) which is idempotent. One can always lift it to a homotopy idempotent,
which is a sequence p = {pd} of elements pd ∈ homA(Y, Y )1−d (d ≥ 1) satisfying the
equations

(1.8)
∑

r

∑

k1+···+kr=d

µr
A(p

kr , . . . , pk1) =

{
pd−1 d even,

0 d odd

for any d ≥ 1, and such that p1 represents our original idempotent. This is proved
in [93, Section 4], but it is maybe useful to summarize the argument in more ele-
mentary language. The choice of p1, p2 is straightforward, and the remaining process
is inductive. Suppose that p1, . . . , pd−1 have been chosen satisfying the respective
equations. Take the sum of all the terms on left hand side of (1.8) which have r ≥ 2.
These give rise to a cocycle of bidegree (d, 2− d) in the following periodic complex of
graded vector spaces:

· · · −→ HomH(A)(Y, Y )(1.9)

[a] #→[(−1)|a|µ2
A(p1,a)−µ2

A(a,p1)]
−−−−−−−−−−−−−−−−−−−−−−→ HomH(A)(Y, Y )

[a] #→[(−1)|a|+1µ2
A(p1,a)−µ2

A(a,p1)+a]
−−−−−−−−−−−−−−−−−−−−−−−−−→ HomH(A)(Y, Y ) −→ · · ·

Since that complex is acyclic, we can modify pd−1 by adding a µ1
A-cocycle, so that the

same sum of terms represents the zero class in Hom2−d
H(A)(Y, Y ), and then choose pd

so that (1.8) holds.
The homotopy idempotent can then be used to define an A∞-module

M = (Y, p)yon,

which in the category H0(Amod) is the direct summand of Y yon associated to the
Yoneda image of [p1] (hence, independent of the choice of the homotopy idempotent
up to quasi-isomorphism). It consists of the spaces

(1.10) M(X) = homA(X,Y )[q]
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1.3. HOCHSCHILD COHOMOLOGY 9

where q is a formal variable of degree −1, and has differential

(1.11) µ1
M (aqj) =

∑

r≥0
k1+···+kr≤j

µr+1
A (pkr , . . . , pk1 , a) qj−k1−···−kr +

{
0 j even,

aqj−1 j odd.

We refer to [93, Section 4] for full details, including the definition of the remaining
maps µd

M . By the same kind of argument as in (1.7), idempotent summands of objects
in Atw (or indeed in Amod) can also be represented in Amod.

One defines Aperf , the category of perfect modules, to be the full subcategory
of Amod consisting of all objects that are quasi-isomorphic to an idempotent sum-
mand of an object in Atw. It is easy to see that Aperf is again proper.

1.3. Hochschild cohomology

Let CC (A,A) be the (reduced) Hochschild complex of A, and HH (A,A) its coho-
mology. A Hochschild cochain g is a sequence of multilinear maps

(1.12) gd : homA(Xd−1, Xd)⊗ · · ·⊗ homA(X0, X1) −→ homA(X0, Xd)
[
|g|− d

]
,

where d ≥ 0, which vanish if one of the inputs is an identity morphism. The Hochschild
differential is

(∂g)d(ad, . . . , a1)(1.13)

=
∑

i,j

(−1)(|g|−1)
(
|a1|+···+|ai|−i

)
µd−j+1
A

(
ad, . . . , g

j(ai+j , . . . , ai+1), . . . , a1
)

+
∑

i,j

(−1)|g|+|a1|+···+|ai|−igd−j+1
(
ad, . . . , µ

j
A(ai+j , . . . , ai+1), . . . , a1

)
.

We need to remind the reader briefly of the (partial) functoriality properties of
Hochschild cohomology. Let G : A → Ã be a (strictly unital) A∞-functor. Then
there are canonical chain maps

(1.14) CC (A,A)
G∗−−→ CC (A,Ã )

G∗

←−− CC (Ã , Ã ),

where the middle term is the Hochschild cochain complex of A with coefficients in
the A-bimodule Ã . If G is cohomologically full and faithful, the left hand map is a
quasi-isomorphism. Less obviously (it is a form of Morita invariance), if G is a quasi-
equivalence, the right hand map is also a quasi-isomorphism. Informally one can
think of these two maps as follows. If we deform the A∞-structure on either A or Ã
infinitesimally, there will be a term measuring the failure of G to be an A∞-functor for
the deformed structure, which is the image of the corresponding deformation classes
in HH (A,Ã ).

We also need to know about the behaviour of Hochschild cohomology under formal
enlargement. Thinking again in terms of deformation theory, one expects deforma-
tions of A to induce ones of Atw. This can indeed be made rigorous, leading to a
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10 CHAPTER 1. FAMILIES OF OBJECTS

canonical map

(1.15) Γtw : CC (A,A) −→ CC (Atw, Atw).

To make this (partially) more explicit, take a Hochschild cochain g, and extend it in
the obvious way to a cochain g⊕ on A⊕. Then the image gtw = Γtw(g) has leading
term

(1.16) gtw,0 = g⊕,0 + g⊕,1(δX) + g⊕,2(δX , δX) + · · · ∈ hom|g|
Atw(X,X).

Maybe more obviously, restriction to the full subcategory A ⊂ Atw yields a map in
reverse direction to (1.15). These two maps are inverse quasi-isomorphisms (strict
inverses in one order, and inverses up to homotopy in the other), which is one form
of the derived invariance of Hochschild cohomology.

Let’s look at the analogous question for A∞-modules. As before, a deformation
of A induces a deformation of Amod, but one which remains within the class of dg
categories with curvature. In fact, the product µ2

Amod does not actually change, since
its definition does not involve µ∗

A. Concretely, this means that we have a map

(1.17) Γmod : CC (A,A) −→ CC (Amod, Amod)

such that gmod = Γmod(g) has only two nontrivial components

(1.18)

{
gmod,0 ∈ hom|g|

Amod(M0,M0),

gmod,1 : homAmod(M0,M1) −→ homAmod(M0,M1)
[
|g|− 1

]
.

These are given by

(1.19)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(gmod,0)d(m, ad−1, . . . , a1)

=
∑

ij

(−1)∗ µd−j+1
M0

(
m, . . . , gj(ai+j , . . . , ai+1), . . . , a1

)
,

(gmod,1)(b)d(m, ad−1, . . . , a1)

=
∑

ij

(−1)∗ bd−j+1
(
m, . . . , gj(ai+j , . . . , ai+1), . . . , a1

)
,

with ∗ = (|g|− 1)(|ai+1|+ · · ·+ |ad−1|+ |m|+ d− i− 1) + |g|..
There is a restriction map from the Hochschild complex of Amod to that of its full

subcategory Aperf . One can accordingly restrict (1.17) and get a map Γperf . Another
manifestation of derived invariance of Hochschild cohomology says that Γperf is a
quasi-isomorphism. Next, Aperf contains a full subcategory quasi-isomorphic to Atw,
and by restriction and the argument from (1.14), one gets a further map from the
Hochschild cohomology of Aperf to that of Atw.
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1.3. HOCHSCHILD COHOMOLOGY 11

The situation can be summarized in the commutative diagram

(1.20)

HH (A,A)

Γtw

∼=
!!

Γperf

∼= !!

Γmod

""

id "" HH (A,A)

HH (Atw, Atw)

∼=
##

HH (Aperf , Aperf)

∼=

##

HH (Amod, Amod)

##

where the vertical arrows are restriction maps. Other than derived invariance (which
we will not discuss further, but see [56, Section 5.4]), the only nontrivial point in this
diagram is that the map Γmod is compatible with restriction. To understand that, we
have to look at (1.14) for the Yoneda embedding:

(1.21) CC (A,A) −→ CC (A,Amod)←− CC (Amod, Amod).

Take g ∈ CC (A,A), and consider its image under the first map in (1.21). For sim-
plicity let’s look only at the constant term of this, which consists of an endomorphism
b ∈ homAmod(Y yon, Y yon) for each Y , given by

(1.22) bd(ad, . . . , a1) = µd+1
A (g0, ad, . . . , a1).

On the other hand, we can take gmod ∈ CC (Amod, Amod) and pull it back
to CC (A,Amod) as in the second map in (1.21), which leads to another cochain
CC (A,Amod) with constant term

(1.23) b̃d(ad, . . . , a1) = −
∑

i+j<d

(−1)∗µd−j+1
A

(
ad, . . . , g

j(ai+j , . . . , ai+1), . . . , a1
)
,

where ∗ = (|g|− 1)(|ai+1|+ · · ·+ |ad|+ d− i).

Assuming that g is a Hochschild cocycle, we can write

b̃d(a, ad−1, . . . , a1)− bd(a, ad−1, . . . , a1)(1.24)

=
∑

i<d

(−1)(|g|−1)(|ai+1|+···+|ad|+d−i)µi+1
A

(
gd−i(ad, . . . , ai+1), . . . , a1

)

+
∑

i,j

(−1)|g|+|a1|+···+|ai|−i+(|g|−1)(|a1|+···+|ad|−d)

gd−j+1
(
ad, . . . , µ

j
A(ai+j , . . . , ai+1), . . . , a1

)
.

This difference is the coboundary of another endomorphism of Y yon of degree |g|− 1,
given by (ad, . . . , a1) &→ (−1)|g|(|a1|+···+|ad|−d)+1gd(ad, . . . , a1). The general computa-
tion is similar.
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12 CHAPTER 1. FAMILIES OF OBJECTS

1.4. Bimodules

A∞-bimodules have already made a brief appearance before, but we will now con-
sider them in a little more detail. Let A and Ã be A∞-categories over R, with the
usual unitality and properness assumptions. An (A,Ã )-bimodule with finite cohomol-
ogy P assigns to any pair of objects (X, X̃) ∈ ObA × ObÃ a graded vector space
P (X̃,X), which comes with structure maps

µs|1|t
P : homA(Xs−1, Xs)⊗ · · ·⊗ homA(X0, X1)⊗ P (X̃t, X0)(1.25)

⊗ homÃ (X̃t−1, X̃t)⊗ · · ·⊗ homÃ (X̃0, X̃1)

−→ P (X̃0, Xs)[1− s− t]

for all s, t ≥ 0, satisfying analogues of the A∞-module equation. We assume that the

cohomology groups H(P (X̃,X), µ0|1|0
P ) are of finite total dimension, and also impose

strict unitality properties. A∞-bimodules form an A∞-category (A,Ã )mod (just like
in the case of modules, this has vanishing higher order compositions, hence could
be considered a dg category). In the special case A = Ã , we use the terminology
A-bimodule instead of (A,A)-bimodule.

Example 1.3. — The standard example is the diagonal A-bimodule, which has

P (X,Y ) = homA(X,Y ) with µs|1|t
P = µs+1+t

A (this also indirectly illustrates our sign
conventions). We usually just write P = A. Another example is the one which
appeared in (1.14): if G : A → Ã is an A∞-functor, one can define an A-bimodule
P (X,Y ) = homÃ (GX,GY ), with structure maps similar to the diagonal one but

plugging in multiple copies of G. We again denote this by P = Ã , but always make
sure to mention that the pullback to an A-bimodule is intended.

One traditional use of bimodules is as “kernels” defining “convolution functors”
between categories of modules. The tensor product of an A-module M and an (A,Ã )-
bimodule P is an Ã -module M̃ = M ⊗A P , given by a bar construction

M̃(X̃) =
⊕

M(Xr)⊗ homA(Xr−1, Xr)[1](1.26)

⊗ · · ·⊗ homA(X0, X1)[1]⊗ P (X̃,X0),

where the sum is over all r ≥ 0 and objects (X0, . . . , Xr). The induced differential is

µ1

M̃
(m⊗ ar ⊗ · · ·⊗ a1 ⊗ p)(1.27)
∑

i

(−1)|p|+|a1|+···+|ai|−iµr−i+1
M (m, ar, . . . , ai+1)⊗ ai ⊗ · · ·⊗ a1 ⊗ p

+
∑

i,j

(−1)|p|+|a1|+···+|ai|−im

⊗ · · ·⊗ µj
A(ai+j , . . . , ai+1)⊗ ai ⊗ · · ·⊗ a1 ⊗ p

+
∑

i

m⊗ · · ·⊗ ai+1 ⊗ µi|1|0
P (ai, . . . , a1, p).
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There are similar formulae for µd

M̃
, d > 1, which are in fact simpler since they involve

only µ∗|1|d−1
P . Naturality of the tensor product with a fixed P is expressed by a map

homAmod(M0,M1) −→ homÃmod(M̃0, M̃1)

for M̃k = Mk ⊗A P . This takes b to b⊗A eP , given by

(b ⊗A eP )
1(m0 ⊗ ar · · ·⊗ a1 ⊗ p)(1.28)

=
∑

i

(−1)|p|+|a1|+···+|ai|−ibr−i+1(m0, ar, . . . , ai+1)⊗ ai ⊗ · · ·⊗ p,

with vanishing higher order terms. The resulting convolution A∞-functor (in fact a dg
functor, since it has no higher order terms) between module categories will be denoted
byKP . So far, we have skirted the issue of whetherM⊗AP is really an object of Amod

as defined, meaning whether it satisfies the cohomological finiteness condition. This
fails in general, but it will hold if M is perfect (based on the fact that Xyon ⊗A P is
quasi-isomorphic to the Ã -module P (·, X), which has finite cohomology by assumption
on P ). Hence, we always get a functor KP : Aperf → Ãmod. If P is itself right perfect,
which means that P (. , X) is itself a perfect Ã -module for any X , then KP takes Aperf

to Ãperf .
Let’s suppose, for the sake of concreteness, that P is right perfect. There are

natural chain maps

(1.29) CC (A,A) −→ hom(A,Ã)mod(P, P )←− CC (Ã , Ã ).

Informally, one can think of these as follows. Given an infinitesimal deformation of
either A or Ã , they measure the failure of P to remain a bimodule with respect to
the deformed structure. This may remind the reader of (1.14), and indeed one can
define a map (represented by the dashed arrow below) which fits into a homotopy
commutative diagram

(1.30)

CC (A,A)

Γperf

!!

"" hom(A,Ã)mod(P, P )

!!
✤

✤

✤

CC (Ã , Ã )##

Γperf

!!

CC (Aperf , Aperf)
(KP )∗

"" CC (Aperf , Ãperf) CC (Ãperf , Ãperf).
(KP )∗
##

1.5. Connections

Fix a smooth affine algebraic curve S over R, with R = R[S ] its ring of functions.
Recall that R -modules correspond to quasi-coherent sheaves on S ; finitely generated
modules to coherent sheaves; projective modules to vector bundles; and rank 1 pro-
jective modules to line bundles. We will mostly use the algebraic language as it is
more elementary, but the reader is encouraged to keep the geometric viewpoint in
mind.
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14 CHAPTER 1. FAMILIES OF OBJECTS

Denote by Ω1
R the module of Kähler differentials, which is a rank 1 projective

module, and comes with its canonical derivation d : R → Ω1
R . A connection on an

R -module F is a map

∇F : F −→ Ω1
R ⊗ F

satisfying the Leibniz identity with respect to d. An equivalent viewpoint is as follows.
For any F there is a canonical short exact sequence of modules

(1.31) 0→ Ω1
R ⊗ F −→ J1(F ) −→ F → 0,

where J 1(F ) is the one-jet module [6]. Connections correspond to splittings of this
sequence. F admits a connection if and only if its Atiyah class

At(F ) ∈ Ext1R (F ,Ω1
R ⊗ F ),

which is the extension class of (1.31), vanishes. In particular, projective modules
always admit connections (this can also be proved directly). In the other direction,
one has [10, Lecture 2]:

Lemma 1.4. — Let F be a finitely generated R -module which admits a connection.
Then it is necessarily projective.

Let R(S) be the field of rational functions on our curve, which is the quotient field
of R . Tautologically, all projective modules of the same rank become isomorphic after
tensoring with R(S). However, it is intuitively clear that the situation for modules
with connections is quite different, which is indeed confirmed by:

Lemma 1.5. — Let F be a finitely generated R -module with a connection. Then, if
f ∈ F ⊗R R(S) is a rational solution of ∇F (f) = 0, it automatically lies in F itself.

Proof. — Suppose that f ̸= 0, and choose a point on our curve. Take a function r ∈ R
which vanishes (to order 1) at this point. There is a unique m ∈ Z such that rmf
takes a nonzero finite value at our point. By assumption

(1.32) ∇F (r
mf) = m(r−1dr)rmf.

Since connections are local operations, the left hand side is regular locally around our
point; but the right hand one has a pole, unless m = 0.

One can extend the notion of connection to the derived category (see for instance
[69], [50]), as follows. Any complex of modules F sits in a short exact sequence
generalizing (1.31).

Define a homotopy connection to be a splitting F → J1(F ) in the derived category.

If this exists, it induces connections on all the cohomology modules H i(F ). The
obstruction to the existence of a homotopy connection is the morphism completing
the short exact sequence to an exact triangle in the derived category, which we again
call the Atiyah class

At(F ) ∈ HomD(R )

(
F ,Ω1

R ⊗ F [1]
)
.
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1.5. CONNECTIONS 15

To get a more hands-on description, assume that each of the modules F i forming our
complex already comes equipped with a connection.

We call this a pre-connection on F , and denote it by F .

Its failure to commute with the differential dF gives rise to a chain map

(1.33) at( F ) : F −→ Ω1
R ⊗ F [1], at( F )(f ) = (idΩ1

R
⊗ dF )( F f )− F (dF f ),

which is the boundary homomorphism for (1.31), hence represents At(F ).

We call at( F ) the Atiyah cocycle of F .

Suppose that F0,F1 are complexes of modules, with F0 consisting of projective
modules. Then we have a short exact sequence [24, Thm VI.10.11]

0→ Ext1
(
H(F0), H(F1)

)
[−1] −→ H

(
hom(F0,F1)

)
(1.34)

−→ Hom
(
H(F0), H(F1)

)
→ 0.

In particular:

Lemma 1.6. — If F0 is a complex of projective R -modules, and F1 an acyclic complex
of R -modules, then hom(F0,F1) is again acyclic.

In the terminology of [101], this means that (unbounded) complexes of projective
R -modules are K-projective.

Lemma 1.7. — Let F be a complex of projective R -modules, and c : F → F a chain
map which is chain homotopic to its square, and which induces an isomorphism on
cohomology. Then c is chain homotopic the identity.

Proof. — Consider (1.34) with F0 = F1 = F . Left composition with c induces
isomorphisms on the left and right terms of that sequence, hence also on the middle
one. Since the identity and c become homotopic after composition with c, they must
have been homotopic in the first place.

Lemma 1.6 has implications for homotopy connections, as follows. Take a complex
of projective modules F , and assume that At(F ) = 0. Then the map at( F ) must
be nullhomotopic, which means that one can modify the given pre-connection F so
that it becomes compatible with the differential. The result should then be properly
called a connection on the complex F , and we reserve the notation ∇F for those.

Remark 1.8. — We want to briefly consider the extension of the theory to non-affine
bases. Let S be a smooth quasi-projective curve over R, and Ω1

S the line bundle of
differentials. For any quasi-coherent sheaf F we have an analogue of (1.31), which
can be used to define connections and Atiyah classes At(F ) ∈ Ext1S (F ,Ω1

S ⊗F ). The
same holds for complexes, except that projective resolutions do not exist, and need to
be replaced by injective quasi-coherent ones, which do. The analogue of Lemma 1.6
says the following: if F1 is a complex of injective quasi-coherent sheaves, and F0 an
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16 CHAPTER 1. FAMILIES OF OBJECTS

acyclic complex of quasi-coherent sheaves, the complex of vector spaces hom(F0,F1)
is again acyclic.

Let F0,F1 be complexes of injective quasi-coherent sheaves, and hom(F0,F1) the
complex of hom sheaves. By choosing pre-connections as in (1.33), one sees that
At(hom(F0,F1)) is the difference between left multiplication with At(F1) and right
multiplication with At(F0) (compare [69], which gives a similar formula for the Atiyah
class of a tensor product). Now fix some γ ∈ H1(S ,Ω1

S ), and restrict attention to
complexes F with bounded coherent cohomology, and such that

(1.35) At(F ) = γ ⊗ idF .

For any two such complexes, At(hom(F0,F1)) = 0. By applying Lemma 1.4, it then
follows that the cohomology sheaves H (hom(F0,F1)) are vector bundles. This is a
simple illustration of the ideas that will play an important role later on (starting with
Lemma 1.16).

Remark 1.9. — All we have said so far generalizes to higher-dimensional smooth
varieties. The higher-dimensional analogue of Lemma 1.4 can be derived from the case
of curves, which is indeed what happens in [10]. The generalization of Lemma 1.6
to higher-dimensional affine varieties is [23, Satz 3.1] (there is a spectral sequence
which replaces (1.34), and which can be used to generalize Lemma 1.7). For injective
quasi-coherent sheaves on affine quasi-projective varieties, one has [60, Example 3.10].
However, we have no real use for higher-dimensional bases in the present paper.

1.6. Families of objects

Take an A∞-category A as before, and denote by A the constant family of A∞-
categories over S with fibre A. This has the same objects as A, and its morphisms
and A∞-structure are obtained by extending constants to R in the obvious way:

(1.36) homA(X0, X1) = R ⊗R homA(X0, X1).

Objects of A can be thought of as constant families. To get more interesting
ones, we again have to introduce formal enlargements. First, there is an additive
enlargement A⊕, whose objects are finite formal sums

(1.37) X =
⊕

i∈I

F i ⊗X i[−σi]

where the F i are finitely generated projective R -modules, the X i are objects of A,
and the σi integers. The A∞-structure is extended to such sums exactly as for A⊕.

One then defines a family of twisted complexes to be a pair (X , δX ) where
X ∈ ObA⊕, and δX ∈ hom1

A⊕(X ,X ) is strictly decreasing with respect to some
filtration of (1.1), and satisfies the analogue of (1.2).
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1.6. FAMILIES OF OBJECTS 17

The A∞-category Atw of twisted complexes obtained in this way allows the op-
erations of shifts, mapping cones, and tensoring with a finitely generated projective
R -module.

Let C be the dg category of complexes of projective R -modules with bounded
finitely generated cohomology.

A family of A-modules with finite cohomology is an A∞-functor Aopp → C .

Concretely, such a family is given by a graded projective R -module M (X) for each
X ∈ Ob(A), with structure maps as in (1.3) but which are R -linear, hence extend to

µd
M : M (Xd)⊗ homA(Xd−1, Xd)⊗ · · ·⊗ homA(X0, X1) −→M (X0)[2− d].(1.38)

We impose the same strict unitality conditions as before. Such modules form an A∞-
category over R , denoted by Amod. The following statement is well-known in the case
of A∞-categories over a field, see for instance [54, Section 4], but slightly less so in
the current framework:

Lemma 1.10. — If the chain complexes (M (X), µ1
M ) are acyclic for all X, M is

quasi-isomorphic to zero in Amod.

Proof. — The length filtration of homAmod(M ,M ) gives rise to a spectral sequence,
whose starting page is

Ep•
1 =

∏

X0,...,Xp

H
(
Hom

(
M (Xp)⊗ homA(Xp−1, Xp)(1.39)

⊗ · · ·⊗ homA(X0, X1),M (X0)
))
.

Even though that spectral sequence does not converge in general, one can apply
comparison and vanishing arguments to it. Since

M (Xp)⊗ homA(Xp−1, Xp)⊗ · · ·⊗ homA(X0, X1)

is a complex of projective R -modules, and M (X0) is acyclic, it follows from Lemma 1.6
that the E1 page vanishes.

One has a Yoneda functor A → Amod as well as its extension Atw → Amod, which
are cohomologically full and faithful for the same reason as before. Moreover, given
Y ∈ ObAtw and an idempotent endomorphism on the cohomology level, one can
find an object of Amod representing the associated direct summand of the Yoneda
image Y yon.

To see that, one goes through the construction in Section 1.2, which defines a homo-
topy idempotent p over R as well as an associated family of modules M = (Y , p)yon. A
noteworthy technical point is that M (X) = homAtw(X,Y )[q] is still a complex of pro-
jective R -modules for any X , and has finitely generated cohomology since H(M (X))
is a direct summand of H(homAtw(X,Y )).

One then defines the full A∞-subcategory of perfect families of modules,

Aperf ⊂ Amod,
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18 CHAPTER 1. FAMILIES OF OBJECTS

to consist of all objects quasi-isomorphic to direct summands of families of twisted
complexes. This category is proper, in the sense that homAperf (M 0,M 1) is a chain
homotopy retract of a bounded complex of finitely generated projective R -modules.
In particular, the cohomology H(homAperf (M 0,M 1)) is itself bounded and finitely
generated over R in each degree.

For any point of S , with associated map R → R, we can define restriction A∞-
functors

(1.40) Atw −→ Atw, Amod −→ Amod, Aperf −→ Aperf .

The first one takes an X as in (1.37) and passes to the fibres F i = R⊗R F i to get an
ordinary twisted complex. The second one is similarly given by M(X) = R⊗R M (X).
In either case, the morphism spaces again get specialized to the given point, which is
unproblematic from a homological algebra viewpoint since they consist of projective
R -modules for Atw, and at least of flat R -modules for Amod (see for instance [18,
p. 122, Exercise 4]). Clearly, the first two functors in (1.40) are compatible with
Yoneda embeddings, which ensures that the third one is well-defined.

1.7. Twisted complexes with connections

Let X be an object of Atw, written as in (1.37). A pre-connection on X is a pair

X =
(
{∇F i},αX

)

consisting of an ordinary connection ∇F i on each R -module F i, together with an
element

αX ∈ hom0
Atw(X ,Ω1

R ⊗ X ) = Ω1
R ⊗ hom0

Atw(X ,X ).

This becomes more meaningful if one writes it as a formal expression

(1.41) X =
⊕

i

∇F i ⊗ eXi[−σi] + αX

(recall that due to sign conventions, the identity for the shifted object X i[−σi] is

eXi[−σi] = (−1)σi

eXi). There is some redundancy in this description: given elements
fi ∈ Hom(Fi,Ω1

R ⊗ Fi), one can change ∇F i &→ ∇F i + fi, and simultaneously αX &→
αX −

⊕
i fi⊗ eXi[−σi], and the result is still considered to be the same pre-connection.

With that in mind, pre-connections form an affine space over hom0
Atw(X ,Ω1

R ⊗ X ).

Now we include the differential δX in our discussion.

Its compatibility with a pre-connection is measured by the deformation cocycle

(1.42)

{def( X ) ∈ hom1
Atw(X ,Ω1

R ⊗ X ),

def( X ) = −
(⊕

i,j ∇Hom(F i,F j) ⊗ idhomA(Xi[−σi],Xj [−σj ])

)
(δX ) + µ1

Atw(αX ).
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1.7. TWISTED COMPLEXES WITH CONNECTIONS 19

Here, ∇Hom(F i,F j) is the connection induced by ∇F i and ∇F j . The formula becomes
clearer if one thinks in terms of components

(1.43)

{αji
X ∈ Hom(F i,Ω1

R ⊗ F j)⊗ homA(X
i, Xj)[σi − σj ],

δjiX ∈ Hom(F i,F j)⊗ homA(X
i, Xj)[σi − σj ].

Then, the components of the deformation cocycle are

def( X )
ji = −(∇Hom(F i,F j) ⊗ id)(δjiX ) + (−1)σ

i

µ1
A(α

ji
X )(1.44)

+ (−1)σ
i ∑

k

µ2
A(α

jk
X , δkiX ) + µ2

A(δ
jk
X ,αki

X ) + · · ·

Lemma 1.11. — def( X ) is a cocycle, whose cohomology class Def(X ) (the deforma-
tion class of X ) is independent of the choice of pre-connection.

Proof. — There is a simple trick which facilitates these computations, namely to
temporarily forget that morphisms are supposed to be R -linear. In this weakened
sense, one can consider X itself as a morphism from X to Ω1

R ⊗ X , and then the
formula (1.42) actually represents

(1.45) µ2
A⊕(δΩ1

R ⊗X , X − αX ) + µ2
A⊕( X − αX , δX ) + µ1

Atw(αX ) = µ1
Atw( X )

(this takes into accounts cancellations which arise from the fact that the components
of X −αX are multiples of the identity eXi[−σi]). The desired statements now follow
directly.

Take two families of twisted complexes X k =
⊕

i∈Ik
F i
k ⊗ X i

k[−σi
k] (k = 0, 1)

equipped with pre-connections Xk
, written in the analogous way. This induces a

pre-connection on the chain complex homAtw(X 0,X 1), namely

homAtw (X0,X1)(a) =
⊕

i,j

(
∇Hom(F i

0 ,F
j
1 ) ⊗ idhomA(Xi

0,X
j
1)

)
(a)(1.46)

+ (−1)|a|µ2
Atw(αX 1 , a)− µ2

Atw(a,αX 0).

By a computation similar to the one in Lemma 1.11, this gives a formula for the
Atiyah cocycle (1.33) of the chain complex homAtw(X 0,X 1):

at
(

homAtw (X0,X1)

)
(a) = µ1

Atw

(
homAtw (X 0,X 1) (a)

)
− homAtw (X0,X1)

(
µ1

Atw(a)
)(1.47)

= µ2
Atw

(
def( X 1), a

)
+ µ2

Atw

(
a, def( X0)

)
.

From here on, the obvious development would be the following one. Define a con-
nection on X to be a pre-connection for which (1.42) vanishes. If X 0 and X 1 carry
connections, (1.47) implies that homAtw(X 0,X 1) carries a connection. However, fam-
ilies with vanishing deformation class are close to constant ones and therefore not
terribly interesting.
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20 CHAPTER 1. FAMILIES OF OBJECTS

Instead, we want to introduce a relative version, as follows. Let CC (A ,A) be
the (reduced) Hochschild complex of the constant family A , and HH(A ,A) its co-
homology. More relevant for us is a twisted version, with coefficients in the bimod-
ule Ω1

R ⊗ A. The effect of twisting is fairly trivial, both on the cochain and cohomology
level:

(1.48) CC (A ,Ω1
R ⊗ A) ∼= Ω1

R ⊗ CC (A ,A), HH (A ,Ω1
R ⊗ A) ∼= Ω1

R ⊗HH (A ,A).

As before, there is a chain map Γtw between the twisted Hochschild chain complex
and its analogue for Atw.

Definition 1.12. — A cohomology class

[γ] ∈ HH 1(A ,Ω1
R ⊗ A)

is called a deformation field. Let X be a family of twisted complexes. We say that X
follows the deformation field if the image γtw = Γtw(γ) satisfies

(1.49) Def(X ) = [γtw,0] ∈ H 1
(
homAtw(X ,Ω1

R ⊗ X )
)
.

In almost every situation where we use deformation fields, a choice of cocycle
representative γ is assumed to have been made (the resulting theory is always inde-
pendent of that choice up to quasi-isomorphism). If X follows [γ], we can choose a
pre-connection whose deformation cocycle is exactly γtw,0. Call these relative connec-
tions, and denote them by ∇X . Given two objects X k with relative connections, we
can introduce a modified version of (1.46), namely

(1.50) ∇homAtw (X 0,X 1)(a) = homAtw (X 0,X 1)(a) + γtw,1(a).

This is an actual connection, since the cocycle equation for γtw says that

(1.51) µ1
Atw

(
γtw,1(a)

)
− γtw,1

(
µ1

Atw(a)
)
= −µ2

Atw(γtw,0, a)− µ2
Atw(a, γtw,0),

which one can add to (1.47) to get the desired property.

We would like to study the behaviour of (1.50) under composition of morphisms
in Atw. Let’s temporarily forget about Hochschild cohomology and just assume
that we have families of twisted complexes X k (k = 0, 1, 2) equipped with pre-
connections. Along the same lines as in (1.47) one finds that for any µ1

Atw-cocycles
ak ∈ homAtw(X k−1,X k) (k = 1, 2),

− homAtw (X0,X2)

(
µ2

Atw(a2, a1)
)

(1.52)

+ µ2
Atw

(
homAtw (X1,X2) (a2), a1

)
+ µ2

Atw

(
a2, homAtw (X 0,X1)(a1)

)

= µ3
Atw

(
def( X 2), a2, a1

)
+ µ3

Atw

(
a2, def( X 1), a1

)

+ µ3
Atw

(
a2, a1, def( X0)

)
+ (coboundary).
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1.8. MODULES WITH CONNECTIONS 21

Assuming that the X k follow [γ] and come with relative connections, one adds the
correction terms from (1.50) and gets

−∇homAtw (X 0,X2)(µ
2
Atw(a2, a1))(1.53)

+ µ2
Atw

(
∇homAtw (X1,X2)(a2), a1

)
+ µ2

Atw

(
a2,∇homAtw (X 0,X 1)(a1)

)

= −µ1
Atw

(
γtw,2(a2, a1)

)
+ (same coboundary as before),

which means that the cohomology level connections act as derivations with respect to
the product.

We have to confess that the framework introduced above, even though natural and
accessible, is not satisfactory, for two reasons. The first (technical) reason is that the
definition of pre-connection (1.41) makes sense only under the assumption of strict
unitality, which we have imposed so far but will want to relax eventually. The second
(conceptual) reason is that families of twisted complexes are far too restrictive to be
useful in general — as one can see by observing that if X is such a family, its fibre at
any point of S represents the same class in the K-theory of Atw. With this in mind,
we will now switch to A∞-modules and carry out the corresponding developments
there.

1.8. Modules with connections

Let M be a family of A-modules. A pre-connection M is a sequence of maps

(1.54)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
M : M (X0)→ Ω1

R ⊗M (X0),
2
M : M (X1)⊗ homA(X0, X1)→ Ω1

R ⊗M (X0)[−1],
3
M : M (X2)⊗ homA(X1, X2)⊗ homA(X0, X1)→ Ω1

R ⊗M (X0)[−2],
. . .

where the maps m %→ (−1)|m| 1
M (m) are connections in the standard sense; and the

higher order terms
d
M , d > 1, are R -linear. Clearly, pre-connections form an affine

space over hom0
Amod(M ,Ω1

R ⊗M ) ∼= Ω1
R ⊗ hom0

Amod(M ,M ). The deformation cocycle

(1.55) def( M ) ∈ hom1
Amod(M ,Ω1

R ⊗M )

of a pre-connection is obtained by applying µ1
Amod to (1.54). This makes sense even

though
1
M is not R -linear. The same observation shows that:

Lemma 1.13. — The deformation cocycle def( M ) is closed, and its cohomology
class Def(M ) is independent of the choice of pre-connection.

Example 1.14. — Suppose that our pre-connection has vanishing higher order terms
d
M = 0, d > 1, hence is just given by a family of connections

∇M (X)(m) = (−1)|m| 1
M (m)
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22 CHAPTER 1. FAMILIES OF OBJECTS

on the graded R -modules M (X). Then the deformation cocycle is

def( M )d(m , ad−1, . . . , a1) = (idΩ1
R
⊗ µd

M )( M (Xd)(m), . . . , a1)(1.56)

− M (X0)

(
µd

M (m , ad, . . . , a1)
)

for m ∈ M (Xd), ak ∈ homA(Xk−1, Xk). This is just the covariant derivative of the
module structure of M , measuring its failure to be compatible with the connections.

Given two families of modules M k (k = 0, 1) equipped with pre-connections M k
,

consider the map

(1.57)

{
homAmod (M 0,M 1) : homAmod(M 0,M 1) −→ Ω1

R ⊗ homAmod(M 0,M 1),

homAmod (M 0,M 1) (b) = (−1)|b|µ2
Amod( M 1 , b)− µ2

Amod(idΩ1
R
⊗ b, M 0).

Spelled out, this means that c = homAmod (M 0,M 1)(b) is given by

(1.58)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(m) = (−1)|b
1(m)| 1

M 1

(
b1(m)

)
− (−1)|m|(idΩ1

R
⊗ b1)

( 1
M 0

(m)
)
,

c2(m , a) = (−1)|b
2(m,a)| 1

M 1

(
b2(m , a)

)
+ (−1)|b

1(m)| 2
M 1

(
b1(m), a

)

− (−1)|m|+|a|−1(idΩ1
R
⊗ b1)

( 2
M 0

(m , a)
)

− (−1)|m|(idΩ1
R
⊗ b2)

( 1
M 0

(m), a
)
,

. . .

cd(m , ad−1, . . . , a1) = (−1)|b
d(m,ad−1,...,a1)| 1

M 1

(
bd(m , ad−1, . . . , a1)

)

− (−1)|m|(idΩ1
R
⊗ bd(

1
M 0

(m), ad−1, . . . , a1)

+ (terms involving the higher order parts

of the pre-connections on M 0,M 1).

This shows that (1.57) is a pre-connection on the chain complex of hom’s. It follows
from the definition and the A∞-equations on Amod that

µ1
Amod

(
homAmod (M 0,M 1) (b)

)
−

homAmod

(
M 0,M 1)

(µ1
Amod(b)

)
(1.59)

= µ2
Amod(def

(
M 1), b

)
+ µ2

Amod

(
b, def( M 0)

)
.

Given a deformation field represented by γ ∈ CC 1(A ,Ω1
R ⊗ A), write

γmod = Γmod(γ).

In parallel with Definition 1.12, we say that a family of modules M follows [γ] if

(1.60) Def(M ) = [γmod,0] ∈ H1
(
homAmod(M ,Ω1

R ⊗M )
)
.

If this holds, one can equip M with a relative connection∇M , by which we again mean
a pre-connection whose deformation cocycle is exactly γmod,0. Given two modules
equipped with relative connections, one can modify (1.57) to get an actual connection
on that chain complex, as in (1.50):

(1.61) ∇homAmod (M 0,M 1) = homAmod (M 0,M 1) + γmod,1.
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Moreover, by essentially the same computation as in (1.53), these connections satisfy

−∇homAmod (X 0,X 2)

(
µ2

Atw(b2, b1)
)
+ µ2

Amod

(
∇homAmod (X 1,X 2)(b2), b1

)
(1.62)

+ µ2
Amod

(
b2,∇homAmod (X0,X1)(b1)

)
= (coboundary)

for any cocycles bk ∈ homAmod(M k−1,M k).

Addendum 1.15. — Unsurprisingly, all these notions are compatible with their
counterparts from Section 1.7 via the Yoneda embedding. If Y =

⊕
i F i⊗ Y i[−σi] is

a family of twisted complexes with a pre-connection Y as in (1.41), then the family
of modules Y yon inherits a pre-connection:

(1.63)
1
Y yon(a) = (−1)|a|(

⊕
i∇F i ⊗ id)(a) + µ2

A(αY , a)

for a ∈ Y yon(X) = homAtw(X,Y ) =
⊕

i F i ⊗ homA(X,Y i)[−σi], and

(1.64)
d
Y yon(ad, ad−1, . . . , a1) = µd+1

A (αY , ad, ad−1, . . . , a1)

where ad ∈ homAtw(Xd,Y ), and ak ∈ homA(Xk−1, Xk) for k = 1, . . . , d− 1.

The deformation cocycle of Y yon is the image of that of Y under the Yoneda
functor. One can take this comparison further to relative connections, but we will not
need that.

We want to highlight one simple consequence:

Lemma 1.16. — Suppose that M 0,M 1 are families of modules (as always, with finite
cohomology) following [γ], and where M 0 is perfect. Then H(homAmod(M 0,M 1)) is
a finitely generated graded projective R -module.

Proof. — Finite generation follows from the fact that M 0 is perfect. On the other
hand, the module carries a connection, hence Lemma 1.4 applies.

By construction, relative connections on a given family M form an affine space
over the space of cocycles inside hom0

Aperf (M ,Ω1
R ⊗ M ). If we change the relative

connections on M k (k = 0, 1) to ∇′
M k

= ∇M k
+ ck, the induced connection on the

morphism spaces changes to

∇′
homAmod (M 0,M 1)(b)(1.65)

= ∇homAmod (M 0,M 1)(b) + (−1)|b|µ2
Amod(c1, b)− µ2

Amod(idΩ1
R
⊗ b, c0).

In particular, if we are only interested in the connection on the cohomology level,
relative connections which differ by coboundaries yield the same result, so the space
of relevant choices is an affine space over HomH0(Aperf )(M ,Ω1

R ⊗M ).
If M is a family of modules with a pre-connection M , and F a finitely generated

projective R -module with its own connection ∇F , the tensor product F ⊗M inherits
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a pre-connection, defined by

(1.66)

{ 1
F ⊗M (f ⊗ m) = (−1)|m|(∇F f )⊗ m + f ⊗ 1

M (m),

d
F ⊗M (f ⊗ m , ad−1, . . . , a1) = f ⊗ d

M (m , ad−1, . . . , a1) for d > 1.

The associated deformation cocycle is

def( F ⊗M ) = idF ⊗ def( M ).

In particular, if M follows a given deformation field [γ], then so does F ⊗M . One
could generalize this slightly by allowing F to be a complex of projective R -modules
with a pre-connection, in which case the associated Atiyah cocycle would appear in
an additional summand in (1.8).

1.9. Functoriality

Let G : A → Ã be a (strictly unital) A∞-functor. We want to study the action
of G on families of objects, over a fixed base space S . For expository reasons, we
temporarily return to the framework of twisted complexes. It is well-known (to the
man on the street) that G induces an A∞-functor

Gtw : Atw −→ Ã tw.

The same formulae applied to families define an A∞-functor G tw : Atw → Ã tw.

A pre-connection (1.41) on X ∈ ObAtw induces one on its image X̃ = G tw(X ):

(1.67) X̃ =
⊕

i

∇F i ⊗ eG(Xi)[−σi] + G tw,1(αX ), def( X̃ ) = G tw,1
(
def( X )

)
.

If X k (k = 0, 1) are families with pre-connections, and X̃ k their images under G tw

equipped with the induced pre-connections, then for any cocycle a we have

(1.68)
homÃtw (X̃0,X̃1)

(
G tw,1(a)

)
= G tw,1

(
homAtw (X 0,X1) (a)

)

− G tw,2
(
def( X 1), a

)
− G tw,2

(
a, def( X0)

)
+ (coboundary).

Assumption 1.17. — Let [γ] and [γ̃] be deformation fields for A and Ã , respectively.
Suppose that there is a β ∈ CC 0(A ,Ω1

R ⊗ Ã ) such that

(1.69) ∂β = G∗(γ̃)− G∗(γ).

In the definition of β, we consider Ã as an A-bimodule by pullback through G .
As in (1.15), β induces a cochain βtw ∈ CC 0(Atw,Ω1

R ⊗ Ã tw), which satisfies the
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analogue of (1.69). Concretely, this means that

(1.70)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ1
Ã tw(β

tw,0) = γ̃tw,0 − G tw,1(γtw,0) ∈ homÃ tw

(
G tw(X 0),G tw(X 0)

)
,

µ1
Ã tw

(
βtw,1(a)

)
+ µ2

Ã tw

(
G tw,1(a),βtw,0

)

+ (−1)|a|−1µ2
Ã tw(β

tw,0,G tw,1(a)) + βtw,1
(
µ1

Atw(a)
)

= γ̃tw,1
(
G tw,1(a)

)
− G tw,1

(
γtw,1(a)

)
− G tw,2(γtw,0, a)− G tw,2(a, γtw,0),

. . .

A first consequence of (1.70) is that if X follows [γ], then X̃ = G tw(X ) follows [γ̃].
Indeed, if ∇X = X is a relative connection with respect to γ, then

(1.71) ∇X̃ = X̃ + βtw,0

is a relative connection for γ̃. Suppose that X k (k = 0, 1) are families with relative
connections, and we equip their images X̃ k with the induced relative connections as
in (1.71). From (1.68) and (1.70) it then follows that for any cocycle a,

(1.72) ∇homÃ tw (X̃ 0,X̃ 1)

(
G tw,1(a)

)
= G tw,1

(
∇homAtw (X0,X1)(a)

)
+ (coboundary).

This explains the sense in which, under Assumption 1.17, the cohomology level con-
nections on hom spaces are functorial.

Let’s turn to the corresponding question for A∞-modules. Take Ã , considered as
an (A,Ã )-bimodule by G-pullback on the left side only. This is right perfect, since
Ã (. , X) = G(X)yon, hence gives rise to a convolution functor

(1.73) Gperf = KÃ : Aperf −→ Ãperf .

In the same way, one can define an analogue Gperf = KÃ acting on families. Suppose
that M is a perfect family of modules carrying a pre-connection M . Then there is
an induced pre-connection on M̃ = Gperf(M ) = M ⊗A Ã :

(1.74)

⎧
⎪⎪⎨

⎪⎪⎩

0
M̃ (m ⊗ ar ⊗ · · ·⊗ a1 ⊗ ã) =

∑
i

r−i+1
M̃ (m , ar, . . . , ai+1)⊗ ai ⊗ · · ·⊗ ã,

d
M̃ = 0 for all d > 0,

def( M̃ ) = Gperf,1
(
def( M )

)
.

If M k (k = 0, 1) are families with pre-connections, and M̃ k their images under Gperf

equipped with the induced pre-connections, the following simpler analogue of (1.68)
holds:

(1.75) homÃperf (M̃ 0,M̃ 1)

(
Gperf,1(b)

)
= Gperf,1

(
homAperf (M 0,M 1) (b)

)
.

Now suppose again that Assumption 1.17 holds. Write

γperf ∈ CC 1(Aperf ,Ω1
R ⊗ Aperf)
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for the element induced by γ as in (1.17), and similarly for γ̃perf . Then, there is a
corresponding element βperf ∈ CC 0(Aperf ,Ω1

R ⊗ Ã perf) which satisfies

(1.76) ∂βperf = (Gperf)∗(γ̃perf)− Gperf
∗ (γperf).

Instead of attempting to define βperf by a direct formula, it seems more reason-
able to argue by restriction to the images of the Yoneda embeddings Atw → Aperf ,
Ã tw → Ã perf . This restriction induces quasi-isomorphisms on the relevant Hochschild
complexes, and it essentially reduces this situation to the previously discussed case of
twisted complexes. (1.76) also has similar consequences as before: if ∇M = M is a
relative connection for γ, then

(1.77) ∇M̃ = M̃ + βperf,0

is a relative connection for γ̃, and moreover these relative connections satisfy a sim-
plified version of (1.72):

(1.78) ∇
homÃperf

(
M̃ 0,M̃ 1)

(Gperf,1(b)
)
= Gperf,1

(
∇homAperf (M 0,M 1)(b)

)
.

Thinking in terms of modules naturally accomodates a generalization, in which
we do not start with a functor G, but instead with a general right perfect (A,Ã )-
bimodule P , and its convolution functor KP for families. As in (1.30), we then have
a homotopy commutative diagram

(1.79)

CC (A,Ω1
R ⊗ A)

!!

"" hom(A,Ã )mod(P,Ω1
R ⊗ P )

!!

CC (Ã ,Ω1
R ⊗ Ã )##

!!

CC (Aperf ,Ω1
R ⊗ Aperf) "" CC (Aperf ,Ω1

R ⊗ Ã perf) CC (Ã perf ,Ω1
R ⊗ Ã perf),##

where P is considered as a constant family of bimodules over R (the general theory
of such families will be our next topic of discussion, but it is easy to see what we
mean in this special case). The natural analogue of Assumption 1.17 in this context
is therefore:

Assumption 1.18. — Suppose that we have deformation fields [γ] and [γ̃] for A
and Ã , respectively, whose images in H1(hom(A,Ã )mod(P,Ω1

R ⊗ P )) agree.

If this is the case, one can apply the same argument as before to KP , meaning that
relative connections on perfect families of modules can be pushed forward, and the
analogue of (1.78) will hold.

1.10. Existence

In our discussion of functoriality, we have used the tensor product of a family of
modules and a fixed bimodule. The other combination, where the module is fixed
but the bimodule varies, is also useful. A family of bimodules with finite cohomology
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over S associates to any (X, X̃) ∈ ObA × ObÃ a complex P (X̃,X) of projective
R -modules, which comes with structure maps as in (1.25), and such that the coho-

mology of (P (X̃,X), µ0|1|0
P ) is bounded and finitely generated in each degree. Such

bimodules form an A∞-category over R , denoted by (A , Ã )mod. The elementary the-
ory of families of modules, as developed in Section 1.6, carries over to this situation
without any complications.

Let P be a family of (A,Ã )-bimodules. A pre-connection P is a sequence of maps

s|1|t
P : homA(Xs−1, Xs)⊗ · · ·⊗ homA(X0, X1)⊗ P (X̃t, X0)(1.80)

⊗ homÃ (X̃t−1, X̃t)⊗ · · ·⊗ homÃ (X̃0, X̃1)

−→ Ω1
R ⊗ P (X̃0, Xs)[1− s− t],

where the maps p &→ (−1)|p| 0|1|0
P (p) are connections in the standard sense, while

all the other terms are R -linear. Each pre-connection has a deformation cocycle

(1.81) def( P ) ∈ hom1
(A,Ã )mod(P ,Ω1

R ⊗ P ),

obtained by applying µ1
(A,Ã )mod to (1.80). As usual, the cohomology class Def(P )

represented by (1.81) is independent of the choice of pre-connection.
Take a perfect A-module M . Then M̃ = M ⊗A P , defined as in (1.26), is a family

of Ã -modules with finite cohomology. If we assume in addition that P is right perfect
(in the appropriate sense for families), then M̃ is again a perfect family. Moreover, a
pre-connection on P defines one on M̃ , formally defined by taking the identity on M
and tensoring it with P . We have an obvious correspondence between deformation
cocycles:

(1.82) def( M̃ ) = eM ⊗A def( P ),

where eM is the identity endomorphism. Now suppose that our target category Ã
comes with a deformation field represented by γ̃ ∈ CC 1(Ã ,Ω1

R ⊗̃A). In a slight
generalization of (1.79), we have a canonical chain map

(1.83) CC (Ã ,Ω1
R ⊗ Ã ) −→ hom(A,Ã )mod(P ,Ω1

R ⊗ P ).

As usual, we say that P follows γ̃ if its deformation class is the image of [γ̃] under
(1.83), and define the notion of relative connection by requiring equality on the cocycle
level. It follows from (1.82) and the explicit formula for (1.83) that if P follows [γ̃],
then so do all the families M̃ = M ⊗A P . The induced connection on the space of
morphisms between two such families is given by (1.61), which one can write as

∇homÃmod (M̃ 0,M̃ 1)
(b̃ ) = (−1)|b̃ |µ2

Ãmod(eM1 ⊗A P , b̃ )(1.84)

− µ2
Ã mod(idΩ1

R
⊗A b̃ , eM0 ⊗A P ) + γmod,1(b̃ ).

In particular, if b̃ = b ⊗A eP , then the first two terms cancel, while the last one
vanishes by inspection of (1.19). The application we are aiming for is this:
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Corollary 1.19. — Take an A∞-category A with a deformation field [γ]. Suppose
that there is a family of A-bimodules P which is right perfect, follows [γ], and whose
fibre at some base point s ∈ S is quasi-isomorphic to the diagonal bimodule. Then,
for any M ∈ ObAperf, there is a perfect family of modules M which follows [γ], and
with M s quasi-isomorphic to M . Moreover, any two such families satisfy

(1.85) H0
(
homAperf (M 0,M 1)

) ∼= R ⊗H0
(
homAperf (M0,M1)

)
,

and (for a suitable choice of relative connection) the induced connections on these
morphism spaces are trivial.

Proof. — Define M = M ⊗A P . By our previous discussion, this follows [γ] and has
the required behaviour at the fibre over s. Moreover, if we make the obvious choice
of relative connections, for each morphism [b] ∈ H0(homAperf (M0,M1)) we have a
covariantly constant section [b⊗eP ] ∈ H0(homAperf (M 0,M 1)), which specializes to [b]
at the point s. This establishes the remaining part of the statement.

1.11. Uniqueness

As before, we work with a fixed deformation field [γ]. As an aid to intuition, we
will increasingly use geometric language. Take two points s, s′ ∈ S . One can envisage
a process of moving objects of Aperf along the deformation field from s to s′. Namely,
start with some objectM , and suppose that there is a perfect family of modules M fol-
lowing [γ], whose fibre at s is quasi-isomorphic to M . Then, take the fibre M ′ = M s′ .
Generally speaking, no such family may exist, making it impossible to carry out the
process at all. However, assuming existence, there is a good uniqueness statement at
least for a certain class of objects M . Suppose from now on that the following holds:

Assumption 1.20. — H0(homAperf (M,M)) is a commutative ring. Moreover, the
ideal of nilpotent elements in that ring has codimension 1.

Proposition 1.21. — If M satisfies Assumption 1.20 and can be moved along the
deformation field from s to s′, the outcome M ′ is unique up to quasi-isomorphism
(which means independent of the family M ).

The proof is based on a number of elementary observations. For the sake of brevity,
let’s write

H = H0
(
homAperf (M ,M )

)
.

Choose a relative connection ∇M on our family, and write ∇H for the induced con-
nection on H .

Claim. — H is a commutative R -algebra.
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Proof. — By (1.62), the image of the commutator map

(1.86) H ⊗R H −→ H , x⊗ y $−→ xy − yx

is a subsheaf of H invariant under ∇H , which therefore must be locally free. By
looking at the point s, one sees that this sheaf must be zero.

Note that, because of the commutativity and (1.65), ∇H is actually independent
of the choice of relative connection on M .

Claim. — Consider the ideal H nil ⊂ H of nilpotent elements. Then H nil is preserved
by ∇H , and H /H nil is the trivial line bundle.

Proof. — Choose a tangent vector field ξ on S . For any element h ∈ H and any
m > 0, we have

(1.87) ∇m
H ,ξ(h

m) ∈ m! (∇H ,ξh)
m + hH .

Choosing h ∈ H nil and m large, one sees that H nil is closed under ∇H . By the same
reasoning as before, H /H nil must be a line bundle. But the identity endomorphism
yields a nowhere vanishing section, which provides a trivialization.

Now suppose that we have two perfect families M + and M − both following [γ]
and whose fibres at s are quasi-isomorphic to the same object M , which still satisfies
Assumption 1.20. Working on the cohomology level as before, we denote by H± the
endomorphism rings of these objects, by H nil

± the ideals of nilpotent endomorphisms,
and by H−+, respectively H+−, the space of morphisms from M + to M −, and vice
versa. We choose relative connections on M ±, equipping all these morphism spaces
with the induced connections.

Claim. — The multiplication maps

H−+ ⊗H nil
+ −→ H−+,(1.88)

H nil
− ⊗H−+ −→ H−+(1.89)

both have the same image, which we denote by H nil
−+. This is preserved by the con-

nection, and H−+/H nil
−+ is a line bundle.

Proof. — Let’s first define H nil
−+ to be the image of the first map (1.88). By com-

patibility with connections, H−+/H nil
−+ must be locally free, hence in view of the

behaviour at the point s a line bundle. Now take (1.89) and compose it with projec-
tion to H−+/H nil

−+. Again by the same argument, the composition vanishes identically,
hence the image of (1.89) is contained in that of (1.88). Running the argument the
other way yields the required equality.

Let’s define H nil
+− ⊂ H+− in the same way. It follows directly from the definition

that the composition H+− ⊗H−+ → H+ takes H+− ⊗H nil
−+ and H nil

+− ⊗H−+ to H nil
+ ,

and the same is true in the other order.
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Claim. — Multiplication induces isomorphisms

(1.90)

{ (H+−/H nil
+−)⊗ (H−+/H nil

−+) −→ H+/H nil
+ ,

(H−+/H nil
−+)⊗ (H+−/H nil

+−) −→ H−/H nil
− .

Proof. — We already established the well-definedness of these maps. Both sides are
line bundles and carry connections, which are compatible with the maps, and at the
fibre at s we get isomorphisms.

Claim. — There is a line bundle F such that M − is quasi-isomorphic to F ⊗M +.

Proof. — Since we are free to tensor M + with a line bundle, we may assume without
loss of generality that (H−+/H nil

−+) is the trivial line bundle. By (1.90), the same must
then be true for (H+−/H nil

+−). Choose trivializations and lift them to sections of H−+

and H+−, respectively (recall that we are working over an affine curve, so there is no
problem in doing this). The product of these in either order yields invertible elements
of H+ and H−.

The last-mentioned claim clearly establishes Proposition 1.21.

Remark 1.22. — Here is a slightly weaker uniqueness statement, which does not
require Assumption 1.20. Suppose that M + and M − are perfect families follow-
ing [γ], and whose fibres at s are quasi-isomorphic to M . The composition maps
H+− ⊗H−+ → H+ and H−+ ⊗ H+− → H− are onto. Specializing to any other fi-
bre s′, one finds that M +,s′ is quasi-isomorphic to a direct summand of a finite direct
sum of copies of M −,s′ , and vice versa.

We want to take a similar approach to morphisms. Let Mk (k = 0, 1) be ob-
jects of Aperf , and B ⊂ HomH0(Aperf )(M0,M1) a one-dimensional subspace. Suppose
that M k (k = 0, 1) are perfect families which follow [γ], and with M k,s

∼= Mk.
Choose relative connections on them. Suppose also that there is a line bundle B ⊂
HomH0(Aperf )(M 0,M 1) whose fibre at s equals B, and which is invariant under the
induced connection (if such a B exists, it is unique). We can then restrict the given
data to the fibre s′, yielding B′ ⊂ HomH0(Aperf )(M

′
0,M

′
1).

We say that B′ is obtained from B by parallel transport.

Obviously, this can’t be unique unless Proposition 1.21 applies to both objects Mk,
but in fact we will need more than that:

Assumption 1.23. — Both Mk satisfy Assumption 1.20, and the two following mul-
tiplication maps have the same image :

(1.91)

{B ⊗HomH0(Aperf )(M0,M0) −→ HomH0(Aperf )(M0,M1),

HomH0(Aperf )(M1,M1)⊗B −→ HomH0(Aperf )(M0,M1).
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Proposition 1.24. — Suppose that (M0,M1, B) satisfy Assumption 1.23, and
that parallel transport to s′ yields (M ′

0,M
′
1, B

′). Then, this is unique up to quasi-
isomorphism (independent of the choice of families, and of the relative connections).

We can apply some preliminary simplifications. One can change any of the fami-
lies M k by tensoring it with a line bundle Fk (equipped with a connection), and then
take the corresponding line bundle F1⊗F ∨

0 ⊗B ⊂ HomH0(Aperf )(F0 ⊗M 0,F1⊗M 1).
This does not affect the outcome of parallel transport. With this and the results
of the previous proof in mind, the choice of families is indeed irrelevant, so we can
consider some fixed choices M k.

Claim. — The two multiplication maps

(1.92)

{B ⊗HomH0(Aperf )(M 0,M 0) −→ HomH0(Aperf )(M 0,M 1),

HomH0(Aperf )(M 1,M 1)⊗ B −→ HomH0(Aperf )(M 0,M 1)

have the same image.

The proof is routine. We denote the image by J .

Claim. — The image J is preserved by the connection, and this remains true if we
change the relative connections on M k.

Proof. — The first statement is obvious from the definition and the corresponding
property of B . The second one follows from this and (1.65), because left and right
multiplication with endomorphisms of M k preserves J .

Now, suppose that we have made different choices of relative connections ∇M 0,±

and ∇M 1,±, leading to two different line bundles B±, and associated subbundles J±.

Claim. — In fact, J+ = J−.

Proof. — Choose one of the two connections on HomH0(Aperf )(M 0,M 1) arising from
our choices. Both J+ and J− are invariant under this connection, and they agree at
one point.

Specializing to the fibres at s′, this means that B′
− is contained in the image

of the multiplication map HomH0(Aperf )(M
′
1,M

′
1) ⊗ B′

+ → HomH0(Aperf )(M
′
0,M

′
1),

and vice versa. Hence, one can write B′
− = x′

−+B
′
+ and B′

+ = x′
+−B

′
− for some

x′
−+, x

′
+− ∈ HomH0(Aperf )(M

′
1,M

′
1). Since the endomorphism ring is commutative

and B′
+ = x′

+−x
′
−+B

′
+, none of the x′

−+, x
′
+− can be nilpotent. Arguing as in the

proof of Proposition 1.21, they must then be invertible. What we have shown is that
B′

− can be obtained from B′
+ by applying automorphisms of the M ′

k, which is indeed
what was claimed in Proposition 1.24.
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1.12. Periods

Fix a smooth elliptic curve S over R, together with a differential θ̄ ∈ H0(S ,Ω1
S
).

Given any nonempty affine open subset S ⊂ S , we consider the 1-form θ = θ̄ |S .

Working Definition 1.25. — A class [g] ∈ HH 1(A,A) is called periodic if the
following holds. For every X ∈ ObAperf there is a subset S as before, as well as a
perfect family M over S which follows [γ] = θ⊗[g], and whose fibre at some point s ∈ S
is quasi-isomorphic to X . Moreover, given any two objects (X0, X1), one can choose
families (M 0,M 1) as before with quasi-isomorphisms M k,s

∼= Xk, so that the bundle
of cohomology level morphisms is trivial:

(1.93) H0
(
homAperf (M 0,M 1)

) ∼= R ⊗R H0
(
homA(X0, X1)

)
.

In addition, one should be able to choose relative connections on the families so that
the induced connection is trivial, which means compatible with a trivialization (1.93).
The subset of periodic classes is denoted by

(1.94) Per(A, S , θ̄) ⊂ HH 1(A,A).

Note that this is really an invariant of Aperf up to quasi-isomorphism. By pulling
back a given family X by the n-th power map S → S (defined by taking s to be the
origin) for some n ∈ Z, one gets a family which follows the restriction of n[(θ̄ |S )⊗ g].
This proves that (1.94) is closed under multiplication by integers.

Remark 1.26. — The notion introduced above is called“working definition” in view
of its numerous shortcomings. These deserve some discussion, even though they do
not stand in the way of our immediate application.

The first and most obvious point is the object-by-object approach we’ve taken.
This violates categorical common sense and manners, and is likely to be the reason
why we can’t prove that the set of periodic classes is an abelian group. However, it
is not difficult to envisage a more universal approach, based on Corollary 1.19; it is
maybe more appropriate to think of it as an A∞-version of the derived Picard group
[109], [110], [55].

The next point is the use of a priori undetermined open affine subsets S ⊂ S , which
essentially means that we are working (Zariski) locally around the base point s. This
reflects the insufficient technical sophistication of our definitions of families, which are
not local over the base. This is a major inconvenience, but does not lead to a decisive
loss of information (see Lemma 1.5).

There is one more issue which is conceptually by far the most important one.
Asking for families parametrized by an elliptic curve amounts to a double periodicity
requirement, but single periodicity seems a more fundamental notion. Instead of a
“torus” one would then want a “thin annulus” as a parameter space. This makes
sense in analytic geometry, either over C or over a non-archimedean field. Such a
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1.13. RELAXING THE ASSUMPTIONS 33

theory would require extensive reworking of the foundations. On the other hand,
if successful, it might allow substantial simplifications and extensions of the main
arguments in this paper, bringing them in line with existing ideas about convergence
in Floer cohomology [33], [30].

The techniques from Section 1.10 can be used to show that a given Hochschild
class is periodic. On the other hand, if one wants to show that [g] is not periodic, the
arguments from Section 1.11, in combination with the following trick, can be useful.

Assumption 1.27. — Suppose that for some S ⊂ S we have a smooth affine curve S̃
together with a morphism S̃ → S , and two points s̃± ∈ S̃ whose image is the
same s ∈ S . Let θ̃ be the pullback of θ. Suppose also that we have perfect fam-
ilies M̃ 0, M̃ 1 on S̃ following θ̃ ⊗ [g]. Equip them with relative connections, and
suppose further that B̃ ⊂ HomH0(Aperf )(M̃ 0, M̃ 1) is a line bundle preserved by the
induced connection. By restriction to the fibres at s̃±, we get objects M0,± and M1,±,
as well as morphism subspaces B±. We require that (M0,+,M1,+, B+) should satisfy
Assumption 1.23.

Lemma 1.28. — In the situation above, assume additionally that (M0,+,M1,+, B+)
is not isomorphic to (M0,−,M1,−, B−). Then [g] is not periodic (for the original S
and θ̄ ).

Proof. — Assume that [g] is in fact periodic. Then we can find families M 0 and M 1

over some open subset S , whose fibre at some point s is M0,+ and M1,+, respectively.
A priori, the open subset and the point do not have to coincide with those that
appeared in the statement of the Lemma. However, that discrepancy can be removed
by using the group structure of the elliptic curve S (which yields translations acting
transitively on points, and preserving θ̄ ), and by making the open subsets smaller if
necessary. Having resolved that issue, we continue the discussion: by definition, the
families can be chosen so that HomH0(Aperf )(M 0,M 1) is the trivial bundle and carries
the trivial connection. This allows one to find a line bundle B inside that morphism
space, which is compatible with the connection and has fibre B+ at s. Now pull back
those families to S̃ . Comparison with (M̃ 0, M̃ 1, B̃ ) shows that Proposition 1.24 is
violated, since the two choices of families are isomorphic at s+ but not at s−.

1.13. Relaxing the assumptions

To conclude the abstract part of our discussion, we want to enlarge the existing
framework in two minor ways. The first one is to pass from Z-gradings to (Z/2)-
gradings. We then need a version of Lemma 1.6 for Z/2-graded complexes F0 and F1,
but that is unproblematic: the argument from [24] goes through as before, yielding
the required analogue of (1.34).
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34 CHAPTER 1. FAMILIES OF OBJECTS

The other generalization is to allow A∞-categories A which are only cohomologi-
cally unital (but still proper). The first effect of this is on twisted complexes, where
we have to prove:

Lemma 1.29. — Atw and Atw are cohomologically unital.

Proof. — Let X be a twisted complex written as in (1.1). There is a spectral sequence
(convergent after finitely many steps) which leads to H(homAtw(X,X)) and starts
with

(1.95) E1 =
⊕

ij

Hom
(
F i, F j)⊗H(homA(X

i, Xj)
)
[σi − σj ].

Moreover, this spectral sequence is multiplicative, which implies that the identity
element in the E1 page always survives. This yields a degree zero endomorphism [uX ],
with the property (by a spectral sequence comparison theorem) that the maps

(1.96)

{ [a] #−→ [uX ] · [a] : H
(
homAtw(Y,X)

)
−→ H

(
homAtw(Y,X)

)
,

[a] #−→ [a] · [uX ] : H
(
homAtw(X,Y )

)
−→ H

(
homAtw(X,Y )

)

are isomorphisms for any Y . In particular, there is an [eX ] which satisfies [eX ] · [uX ] =
[uX ], and then automatically also [uX ] · [eX ] = [uX ]. One easily checks that this is
the required cohomological identity. This argument extends to families without any
problems.

Remark 1.30. — In the case of families of twisted complexes,

µ2
Atw(. , eX ) : homAtw(X ,Y )→ homAtw(X ,Y )

induces the identity on cohomology, and is chain homotopic to its own square (by
the A∞-equations). Therefore, it is actually chain homotopic to the identity, by
Lemma 1.7, and the same holds on the other side. This is a slightly stronger prop-
erty than cohomological unitality, and generally more appropriate for A∞-categories
defined over a ring.

Unfortunately, the theory of pre-connections on twisted complexes does not gen-
eralize to the cohomologically unital context in an obvious way, so we’ll have to be
careful to use that only for strictly unital A∞-categories.

The situation for modules is slightly different, since unitality requirements enter
into the definition of the objects and morphisms themselves. Given a cohomologically
unital A, one defines Amod by taking cohomologically unital modules with finite co-
homology as objects, and arbitrary module homomorphisms as morphisms. If A was
strictly unital, this would yield a category quasi-equivalent to the previously consid-
ered version using strictly unital modules and homomorphisms [63, Section 3.3]. The
same construction for families defines Amod, and Lemma 1.10 still holds.
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Remark 1.31. — The cohomological unitality condition on a family of modules M
says that if eX ∈ hom0

A(X,X) is a representative for the cohomology unit in A, then
µ2

M (. , eX) : M (X) −→ M (X) induces the identity on cohomology. Arguing as in
Remark 1.30, one sees that this map is in fact chain homotopic to the identity, which
would again be the more natural condition in general (but as we’ve seen, turns out
to be equivalent in our context).

Lemma 1.32. — The Yoneda embeddings A → Amod and A → Amod are quasi-
isomorphisms.

Proof. — Take the same maps

(1.97) homA(Y0, Y1) −→ homAmod(Y yon
0 , Y yon

1 ) −→ homA(Y0, Y1)

as in Lemma 1.2, using any representative eY0 for the cohomological unit. Composition
in the given order is the endomorphism a $→ µ2

A(a, eY0), which by definition acts as
the identity on cohomology. Take the composition in the opposite order and add the
coboundary of the homotopy (1.6). The outcome is the map

k : homAmod(Y yon
0 , Y yon

1 ) −→ homAmod(Y yon
0 , Y yon

1 ),(1.98)

k(b)d(ad, . . . , a1) =
∑

i

(−1)|ai+1|+···+|ad|+d−i+1bi+1

(µd−i+1
A (eY0 , ad, . . . , ai+1), ai, . . . , a1).

By looking at the length filtration (1.39), one sees that this is a quasi-isomorphism.
The same thing applies to constant families.

Remark 1.33. — As before, for a strictly unital A we now have two versions of Amod,
one defined in a strictly unital context, and the other by treating A as cohomologically
unital. Unfortunately, the previously quoted result from [63] does not immediately
extend to this context, since it relies on minimal models for modules, which only
exist over a field (and the alternative approach from [93, Section 2] has not been
extended to modules so far). It seems highly plausible that the two versions are still
quasi-equivalent, but we will allow ourselves to sweep the issue under the rug. In fact,
in all our applications what counts are the subcategories of perfect families Aperf ,
where this problem does not arise (because in both contexts they are split-generated
by constant families).

Finally, in the cohomologically unital context, one similarly wants to adjust the
notion of bimodule, and use the full Hochschild complex instead of the reduced one.
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CHAPTER 2

THE TWO-TORUS

In this section we consider a specific finite-dimensional algebra, together with its
A∞-deformations. The algebra occurs geometrically in connection with degree 2 line
bundles on elliptic curves, and its A∞-deformations yield one possible model for the
derived category of coherent sheaves on such curves. In view of homological mirror
symmetry (see [58] for the general statement, and [85], [59], [31], [4], [65] for the case
relevant here), the same structure describes the Fukaya category of the two-torus.

Our aim is to construct a particular family of objects, which in terms of the elliptic
curve is the tautological family of structure sheaves of its points, and in terms of the
Fukaya category is a family of parallel lines on the torus (the connection between the
two could be made directly via SYZ transformations, as in [59], [33]). The point of
the exercise is to see how this fits in with the technical notions of family given in the
previous section. This is not entirely straightforward, since the K-theory class varies,
which precludes a description as family of twisted complexes.

Initially, we will work over an arbitrary field R of characteristic 0. Later on, when
considerations become more geometric, we will re-introduce the added assumption
that R be algebraically closed. In the last parts, we will specialize this further to the
simplest (one-variable) Novikov field from Floer theory, namely

(2.1) R =

{
u = c0!

m0 + c1!
m1 + · · · ,

where ck ∈ C, mk ∈ R, and lim
k→∞

mk = +∞

}
.

Note that, since the coefficient field C is algebraically closed, so is R [38, Appendix].
The sign conventions used in constructing the Fukaya category of the two-torus follow
[93, Section 13].

2.1. Koszul algebras

Let W be a finite-dimensional graded R-vector space. A quadratic algebra is an
associative unital graded R-algebra of the form A = TW/J , where TW is the tensor
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38 CHAPTER 2. THE TWO-TORUS

algebra, and J ⊂ W ⊗W is a graded linear subspace. Let J⊥ ⊂ W∨ ⊗W∨ be the
orthogonal complement of J with respect to the canonical pairing

(2.2)

{
W∨ ⊗W∨ ⊗W ⊗W −→ R,

w∨
2 ⊗ w∨

1 ⊗ w1 ⊗ w2 %−→ (−1)|w2|w∨
2 (w2)w

∨
1 (w1).

The quadratic dual of A is defined as

A! = T
(
W∨[−1]

)
/J⊥[−2].

The Koszul complex is the graded vector space A! ⊗A with differential

(2.3) x! ⊗ x %−→
∑

r

(−1)|x|x!w∨
r ⊗ wrx,

where {wr} is a basis of W , and {w∨
r } the dual basis.

One says that A is a Koszul algebra if the Koszul complex is acyclic.

There is also a more abstract formulation. Consider the abelian category of graded
left A-modules, and in it the simple module R. We then have a bigraded group
ExtiA(R,R[j]), where i is the cohomological grading and j the internal one, inherited
from the grading of A itself. For instance,

(2.4)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ext0A
(
R,R[j]

)
=
{
R j = 0,
0 otherwise,

Ext1A
(
R,R[j]

) ∼= (W∨)j ,

Ext2A
(
R,R[j]

) ∼= (J∨)j .

In our case A has an extra grading by pathlength, and this induces another grading on
each ExtiA(R,R[j]). For low values of i, one sees from (2.4) that Exti is concentrated
in path length i. Then, A is Koszul if and only if the same holds for all i (the original
reference is [87]; for more recent expositions in slightly varying degrees of generality,
see [9], [29], [1]).

Addendum 2.1. — Even though we have kept track of some signs arising from the
grading ofW , these are actually irrelevant for the purpose of determining whether A is
Koszul or not, as the following trick shows. Let Ã be the algebra obtained from A by
multiplying the given grading of W by 2. The category of graded A-modules embeds
fully and faithfully into that of graded Ã -modules in the same way, which we denote
by M %→ M̃ . This doubles the amount of shift,

(2.5) M̃ [j] ∼= M̃ [2j].

Using that and any projective resolution, one sees that

(2.6) Exti
Ã
(M̃, Ñ [j]) =

{
ExtiA(M,N [ 12j]) if j is even,

0 otherwise.
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2.2. A HOCHSCHILD COHOMOLOGY COMPUTATION 39

Moreover, the isomorphism is compatible with path length. Hence, A is Koszul if and
only if Ã is. Once one has done this change, it is clear that the same will hold even if
one changes the grading to be trivial (concentrated in degree zero), since the Koszul
complex is not affected by even changes in the grading.

The Hochschild cohomology of a Koszul algebra A can be computed [44] as the
cohomology of A! ⊗A with a modified differential

(2.7) x! ⊗ x "−→
∑

r

(−1)|x|x!w∨
r ⊗ wrx− (−1)(|wr|+1)(|x|+|x!|)w∨

r x
! ⊗ xwr .

More precisely, the Hochschild cohomology of any graded algebra A is a bigraded
vector space HH i(A,A[j]), where again i is the cohomological grading, and j the
internal one. For Koszul algebras, i+ j corresponds to the natural grading of A!⊗A,
whereas i measures path lengths in the A! factor of (2.7).

Example 2.2. — Take a free algebra A = R⟨w⟩, where w has odd degree d. The
Koszul dual is a truncated polynomial algebra A! = R[w∨]/(w∨)2, where w∨ has even
degree 1 − d. The Hochschild cohomology has a basis consisting of 1 ⊗ wi with i
even, and w∨ ⊗ wi with i odd. This contrasts with the case of even d, where the
differential (2.7) vanishes.

It is useful to consider this example in the context of Addendum 2.1. In the category
of graded A-bimodules, we have

(2.8) HH i
(
A,A[j]

)
= ExtiA⊗Aopp

(
A,A[j]

)

where the shifted space A[j] has the bimodule structure which is given by ordinary
multiplication on the left side, and twisted multiplication (−1)j|x|xy on the right side.
If we take A and double its given grading to Ã , the category of graded A-bimodules
embeds into that of Ã -bimodules in the obvious way. However, this embedding fails
to be compatible with shifts, so that the analogue of (2.5) for the groups (2.8) holds
only if j is even.

2.2. A Hochschild cohomology computation

Consider the graded path algebra associated to the quiver

(2.9)
1•

w1

!!w2
"" 2•

w3

##

w4

$$

where w1, w2 have degree 0, and w3, w4 degree 1. Composition of paths will be written
from right to left, so the path w3w1 means going first along w1 and then w3.
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40 CHAPTER 2. THE TWO-TORUS

Definition 2.3. — The graded algebra Q is the quotient of the path algebra of (2.9)
obtained by imposing the relations

(2.10) w3w2 + w4w1 = 0, w1w4 + w2w3 = 0, w3w1 = w4w2 = 0.

Here’s an alternative description. Let e1, e2 ∈ Q be the idempotents associated to
the length 0 paths. Take V = R2. One can identify

(2.11)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e2Qe1 = V using w1, w2 as a basis,

e1Qe2 = V using w3, w4 as a basis,

e1Qe1 = ΛevenV = Λ0V ⊕ Λ2V using e1, q1 = w3w2 as a basis,

e2Qe2 = ΛevenV = Λ0V ⊕ Λ2V using e2, q2 = w1w4 as a basis.

where of course Λ0V = R. With respect to these identifications, both nontrivial
multiplications

(2.12) e1Qe2 ⊗ e2Qe1 −→ e1Qe1, e2Qe1 ⊗ e1Qe2 −→ e2Qe2

equal the ordinary wedge product V ⊗ V → Λ2V .

The entire theory of Koszul algebras can be carried out over any semisimple base
algebra, such as R2 = Re1 ⊕ Re2 (as already noticed in [9]). With respect to the
exposition in Section 2.1, the main change needed is that all tensor products should
be taken over the base algebra. Our original description (2.10) shows that Q is
quadratic in these terms, and in fact:

Lemma 2.4. — The graded algebra Q is Koszul.

Proof. — Consider the Z/2 action on V , where the nontrivial element acts by −Id.
It follows from (2.12) that

(2.13) Q ∼= Λ(V )! Z/2

as an algebra over R[Z/2] ∼= R2. Of course, this isomorphism is not compatible
with the grading of Q and the natural grading of the exterior algebra. However,
by Addendum 2.1 the discrepancy is irrelevant for deciding whether Q is Koszul
or not. On the other hand, the Koszulness of Λ(V ) ! Z/2 is well-known, being a
minor variation on the basic case of the exterior algebra itself (for the dual case of
polynomial algebras twisted by finite groups, see [43, Section 2.7]).

The quadratic dual Q! of Q (again, taken over R2) is based on the quiver

(2.14)
1•

w∨
3

! !
w∨

4 "" 2•
w∨

1

##

w∨
2

$$
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where w∨
1 , w

∨
2 have degree 0, and w∨

3 , w
∨
4 degree 1. This is actually isomorphic to (2.9)

but we avoid making the identification, and in any case the relations defining Q! are
different:

(2.15) w∨
3w

∨
2 − w∨

4w
∨
1 = 0, w∨

1w
∨
4 − w∨

2w
∨
3 = 0.

As in (2.13), if one forgets the grading then Q! ∼= Sym(V ∨)! Z/2.

Lemma 2.5. — HH i(Q,Q[2− i]) vanishes for i ≥ 5, and HH i(Q,Q[3− i]) vanishes
for i ≥ 7.

Proof. — We need to adapt the previous discussion slightly to the framework overR2.
The relevant complex computing the Hochschild cohomology is now

(2.16) (Q! ⊗R2 Q)diag =
⊕

i,j=1,2

eiQ
!ej ⊗R ejQei,

where the differential (2.7) remains the same as before. If i is even, any path in Q! of
length i has degree 1

2 i, which implies that HH i(Q,Q[j]) = 0 for i+ j < 1
2 i. If i is odd,

the minimal degree of a path of length i in Q! is 1
2 (i − 1), but the paths having this

minimal degree all lie in e2Q!e1, whereas e1Qe2 is concentrated in degree 1. Therefore,
HH i(Q,Q[j]) = 0 for i+ j < 1

2 (i+ 1).

Lemma 2.6. — One has HH 3(Q,Q[−1]) = 0, and HH 4(Q,Q[−2]) ∼= Sym4(V ∨).

Proof. — The HH 3 case can be carried out by an explicit calculation, which we
omit (software for doing such calculations is available from the author’s homepage).
For HH 4 we can follow a more conceptual path. The argument from Example 2.2
shows that

(2.17) HH 4
(
Q,Q[−2]

) ∼= HH 4
(
Λ(V )! Z/2,Λ(V )! Z/2[−4]

)
.

The Hochschild cohomology of Λ(V )!Z/2 is isomorphic (with a suitable adjustment
in the bigrading) to that of its Koszul dual Sym(V ∨) ! Z/2. The particular group
(2.17) corresponds to the length 4 piece of the center of the Koszul dual, which is just
Sym4(V ∨).

2.3. Deformations

An A∞-deformation of Q is an A∞-structure {µ∗} which respects the grading and
R2-bimodule structure, and whose starting terms are

(2.18) µ1(x) = 0, µ2(x2, x1) = (−1)|x1|x2x1.

In particular, {µ∗} is necessarily cohomologically unital. As part of the higher order
product structure, we then have maps

(2.19)

{µ4
[12121] : e1Qe2 ⊗ e2Qe1 ⊗ e1Qe2 ⊗ e2Qe1 ∼= V ⊗4 → Re1 ∼= R,

µ4
[21212] : e2Qe1 ⊗ e1Qe2 ⊗ e2Qe1 ⊗ e1Qe2 ∼= V ⊗4 → Re2 ∼= R.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

47

47



42 CHAPTER 2. THE TWO-TORUS

where the identifications (2.11) have been applied. Suppose that µ3 = 0. In that
case, because of the A∞-equations, the two order 4 expressions in (2.19) must have
the same symmetric part, which we denote by

(2.20) p(v) = µ4
[12121](v, v, v, v) = µ4

[21212](v, v, v, v) ∈ Sym4(V ∨).

Proposition 2.7
(i) A∞-deformations of Q satisfying µ3 = 0 are classified up to isomorphism by

(2.20): any polynomial can occur, and it determines the isomorphism class of the
deformation.

(ii) Any A∞-deformation of Q is isomorphic to one which is strictly unital, and
has µ3 = 0, µ5 = 0.

Proof. — Most of this follows from Lemmas 2.5 and 2.6, together with the general
classification theory of A∞-deformations [53] (compare also the discussion in [89, Sec-
tion 3]). The vanishing of HH 3(Q,Q[−1]) tells us that any A∞-deformation is equiva-
lent to one with µ3 = 0. For general reasons, µ4 then defines a class in HH 4(Q,Q[−2]).
We know that this group is isomorphic to Sym4(V ∨), and one can check (by explic-
itly comparing the standard Hochschild complex with the one coming from Koszul
duality) that this isomorphism takes [µ4] to the polynomial p defined above. Since
HH i(Q,Q[2− i]) vanishes for all i > 4, [µ4] determines the isomorphism class of the
A∞-deformation completely. The obstructions to existence lie in HH i(Q,Q[3 − i])
for i ≥ 7, which vanish in our case. The last statement follows by inspection of the
inductive procedure in which the previously mentioned obstruction groups appear:
the first component beyond µ4 which appears is µ6, which is introduced to solve the
A∞-associativity equation

µ2
(
x7, µ

6(x6, . . . , x1)
)
+ (−1)|x1|−1µ2

(
µ6(x7, . . . , x2), x1

)
(2.21)

+ µ6
(
x7, . . . , x3, µ

2(x2, x1)
)

+ · · ·+ (−1)|x1|+···+|x5|−5µ6
(
µ2(x7, x6), . . . , x1

)

= −µ4
(
x7, . . . , x5, µ

4(x4, . . . , x1)
)

− · · ·− (−1)|x1|+|x2|+|x3|−3µ4
(
µ4(x7, . . . , x4), x3, . . . , x1)

)
.

Definition 2.8. — For a given p, we denote by Qp the A∞-structure obtained by
equipping Q with the higher order products from Proposition 2.7.

This Qp is an A∞-algebra over R2, or equivalently an A∞-category with two ob-
jects X1, X2. By construction, it is strictly unital and has µ3

Qp
= µ5

Qp
= 0. Of course,

it is unique only up to A∞-isomorphism.

Addendum 2.9. — There is also an A∞-isomorphism Qp
∼= Qγ2p for any γ ∈ R×,

obtained (for suitable choices on both sides) by multiplying the degree k part of the
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algebra with γk. In particular, if R is algebraically closed (or at least contains square
roots), knowing p up to nonzero multiples is sufficient to determine the A∞-algebra.

Let’s briefly consider the Hochschild cohomology HH ∗(Qp, Qp) (unlike that of a
graded algebra like Q, this carries a single grading). The length filtration of the
Hochschild complex yields a spectral sequence, starting with

Eij
2 = HH i

(
Q,Q[j]

)
.

Here is a picture of all the nonzero entries in the lines i + j = 1 and i + j = 2 of
the E2 page, obtained by the same techniques as Lemmas 2.5 and 2.6:

(2.22)

j = 2 0

j = 1 Λ2(V )⊕ Λ2(V ) 0

j = 0 End(V ) Sym2(V ∨)

j = −1 0 0

j = −2 0 Sym4(V ∨)

i = 0 i = 1 i = 2 i = 3 i = 4

Since µ3
Qp

vanishes, the first potentially nontrivial differential is d3 : Eij
1 → Ei+3,j−2

1 ,

which is the Gerstenhaber bracket with µ4
Qp

. In (2.22), this occurs as

d3 : End(V ) −→ Sym4(V ∨),

which can be interpreted as the action of linear vector fields on the polynomial p,
d3(Z) = LZp. Moreover, since µ5

Qp
= 0, the next nontrivial differential is d5, which

vanishes in (2.22) (this requires a bit of thought, since the higher differentials are
related to the µk

Qp
by a nonlinear “zigzagging”procedure: for instance, µ4 itself could

yield a nontrivial contribution to d5). One concludes in particular:

Lemma 2.10. — Suppose that there is no nontrivial linear vector field which acts
trivially on p. Then HH 1(Qp, Qp) ∼= Λ2(V )⊕ Λ2(V ) is two-dimensional.

Addendum 2.11. — Inspection of the argument above allows one to approximately
determine the form of two generators [g1], [g2] of HH

1(Qp, Qp). Each of them is rep-
resented by a Hochschild cochain whose leading order term g0k is a nontrivial element
of (ekQek)1 ∼= Λ2(V ), let’s say the standard elements q1 = w3w2 = −w4w1 (for k = 1)
and q2 = w1w4 = −w2w3 (for k = 2). Moreover, the next order term g1k can be chosen
to be zero.

2.4. Some twisted complexes

Q can be thought of as a linear graded category with two objects Xi corresponding
to the vertices of the quiver, so that for instance homQ(X1, X2) = e2Qe1 ∼= V . The
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44 CHAPTER 2. THE TWO-TORUS

A∞-deformation Qp can the be viewed as an A∞-category with the same objects.
The aim of the following discussion is to understand how the choice of p affects the
structure of the formal enlargementQtw

p (and Qperf
p ). For that, it is useful to require R

to be algebraically closed, which we will do from now on.
For any nonzero v ∈ V , consider the twisted complex Cv = Cone(v : X1 → X2).

We have

(2.23) homQtw
p
(Cv, Cv) =

(Λ0(V )⊕ Λ2(V )[−1] V
V [−1] Λ0(V )⊕ Λ2(V )[−1]

)
.

The matrix notation here stands for taking the direct sum of the four graded vector
spaces involved. Taking into account the fact that µ1

Qp
and µ3

Qp
vanish, the differential

on (2.23) is

(2.24)
(x11 x12

x21 x22

) µ1
Qtw

p

%−−−−→
( x12 ∧ v 0
−v ∧ x11 − x22 ∧ v v ∧ x12

)

and the product is

(2.25)

(y11 y12
y21 y22

)
⊗
(x11 x12

x21 x22

) µ2
Qtw

p

%−−−−→
(
y11 ∧ x11 + y12 ∧ x21 y11 ∧ x12 + y12 ∧ x22

y21 ∧ x11 + y22 ∧ x21 y22 ∧ x22 + y21 ∧ x12

)

+

(
µ4
Qp

(y12, v, x12, v) µ4
Qp

(v, y12, v, x11)

µ4
Qp

(y22, v, x12, v) + µ4
Qp

(v, y12, x22, v) + µ4
Qp

(v, y11, x12, v) µ4
Qp

(v, y12, v, x12)

)

.

Representative cochains for a basis in the cohomology of µ1
Qtw

p
are

(2.26) e =
(−1 0
0 1

)
, t =

(0 v
0 0

)
, q =

(v ∧ v∗ 0
0 v ∧ v∗

)
, u =

( 0 0
v∗ 0

)
,

where v∗ ∈ V satisfies v∗ ∧ v ̸= 0. The first generator is the identity element, with
the sign due to convention. Some explicit products of the other generators are

(2.27)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ2
Qtw

p
(u, t) =

(−v ∧ v∗ 0
0 0

)
= 1

2µ
1
Qtw

p

(0 v∗

0 0

)
− 1

2q,

µ2
Qtw

p
(t, u) =

(0 0
0 v ∧ v∗

)
= 1

2µ
1
Qtw

p

(0 v∗

0 0

)
+ 1

2q,

µ2
Qtw

p
(u, u) = 0,

µ2
Qtw

p
(t, t) = p(v)e.

On the cohomology level, this implies that

(2.28) H0
(
homQtw

p
(Cv, Cv)

) ∼= R[t]/(t2 − p(v)).

We have therefore shown:
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Lemma 2.12. — Cv splits into two summands in Qperf
p if and only if p(v) ̸= 0.

This allows one to reconstruct p up to a scalar multiple from categorical data.

Addendum 2.13. — Just like the A∞-structure itself, a Hochschild cochain g
in CC (Qp, Qp) has components gd[id...i0] for d ≥ 0 and i0, . . . , id ∈ {1, 2}. The induced
cochain gtw as in (1.15) has in particular

(2.29) gtw,0 ∈ homQtw
p
(Cv, Cv), gtw,0 =

( −g0[1] 0

−g1[21](v) g0[2]

)
.

Suppose that p satisfies the assumptions of Lemma 2.10, and consider the genera-
tors g1, g2 from Addendum 2.11. The notation here is potentially confusing: gk is a
whole Hochschild cocycle, whose components would be written as (gk)d[id...i0]. Suppose

that v∗ is chosen in such a way that v∧v∗ = (gk)0[k]. By comparing (2.29) with (2.27),
one sees that

(2.30) (g1)
tw,0 = −(g2)tw,0 = µ2

Qtw
p
(u, t).

By carefully inspecting the argument leading to Lemma 2.12, we can sharpen it
to a criterion that determines p on the nose, and also works in slightly more general
circumstances. Suppose that Q̃ is an A∞-category with objects X̃1, X̃2, together
with a fixed isomorphism H(Q̃ ) ∼= Q on the cohomology level. We will use the
triangulated structure of H0(Q̃ tw), following [93, Section 3] for the sign conventions
used in establishing exact triangles.

Lemma 2.14. — Given v ∈ V ∼= HomH0(Q̃ tw)(X̃1, X̃2), complete it to an exact tri-
angle

(2.31) X̃1
v−→ X̃2 −→ C̃v −→ X̃1[1].

There is a unique (degree 0) endomorphism t̃ of C̃v with the following two properties.
The composition

(2.32) X̃2 −→ C̃v
t̃−→ C̃v −→ X̃1[1]

(where the first and last map are taken from the exact triangle) equals v; and t̃ 2 is a
multiple of the identity endomorphism. Moreover, that multiple is necessarily given
by t̃ 2 = p(v), where Qp is the A∞-deformation of Q quasi-isomorphic to Q̃ .

Proof. — The object C̃v is unique up to (non-canonical) isomorphisms which com-
mute with the maps from X̃2 and to X̃1[1]. Hence, the statement is independent of
the specific choice of C̃v. Without loss of generality, we can assume that Q̃ = Qp for
some p. By definition,

(2.33) X1
v−→ X2

(0,eX2 )−−−−−→ Cv
(−eX1 ,0)−−−−−−→ X1[1]

is an exact triangle. With this and (2.28), one checks easily that t is the unique
endomorphism satisfying (2.32).
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2.5. A perfect family

It is a natural next step to let the parameter v vary. For simplicity, we will use the
affine line (rather than the projective line) as a parameter space, setting v = (1, s2)
with s2 ∈ R. Take the double cover of the affine line ramified at the zero-locus
of p(1, s2), and then remove the branch points. The outcome is a smooth curve S
whose ring of functions is

(2.34) R = R[s1, s
−1
1 , s2]/(s

2
1 − p(1, s2)).

We equip this with the nowhere vanishing 1-form

(2.35) θ = − 1
2s

−1
1 ds2 ∈ Ω1

R .

Let Qp be the constant family of A∞-structures over S associated to Qp. Consider
the object of Q tw

p given by

C = Cone
(
(1, s2) : X1 → X2

)
.

By the same computation as in (2.28), taking the natural choice v∗ = (0, 1) of gener-
ator linearly independent of v, we have

(2.36) H
(
homQtw

p
(C ,C)

) ∼= R [t, u]/(t2 − s21).

After lifting the idempotent endomorphism

(2.37) 1
2 (1 + s−1

1 t) ∈ H0
(
homQtw

p
(C ,C)

)

to a homotopy idempotent, one associates to this a family M of perfect modules,
which is a direct summand of the Yoneda image of C . Use the generator g2 from
Addendum 2.11 to define a deformation field

(2.38) γ = −2θ ⊗ g2 ∈ HH 1(Q p,Ω
1
R ⊗ Q p).

Lemma 2.15. — The family M follows [γ] (in the sense of Definition 1.12).

Proof. — The deformation cocycle of C can be determined by applying (1.44) to
the trivial pre-connection. On the other hand, γtw,0 can be computed as in Adden-
dum 2.13. The result is

(2.39)

{def( C ) = −∂s2(δC )ds2 = 2θ ⊗ s1∂s2(δC ) = 2θ ⊗ s1u,

γtw,0 = 2θ ⊗ µ2
Qtw

p
(u, t).

The corresponding elements for M , at least on the cohomology level, can be computed
by applying the projection (2.37) (it doesn’t matter on which side, since there are no
Homs from one summand of C to the other), which indeed yields the same result in
both cases:

(2.40) 1
2 (1 + s−1

1 t)ut = 1
2 (s

−1
1 t2 + t)u = 1

2 (s1 + t)u = 1
2 (1 + s−1

1 t)s1u.

We could add any multiple of g1 + g2 to our deformation field and still obtain the
same result, in view of (2.30).
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2.6. Elliptic curves

The algebraQ from Definition 2.3 arises in the following algebro-geometric context.
Take some p ∈ Sym4(V ∨) which is simple, meaning that it has four distinct zeros. This
gives rise to a double branched cover π : Yp → P(V ), which is a smooth elliptic curve,
embedded into the total space of the bundle O P(V )(2). The sheaf π∗OYp decomposes
into ±1 eigenspaces for the action of the covering transformation. These can be
identified with

(π∗OYp)+1
∼= O P(V ),(2.41)

(π∗OYp)−1
∼= O P(V )(−2) ∼= Ω1

P(V ) ⊗ Λ2(V ),(2.42)

where the second part is obtained by taking functions linear on the fibres of O P(V )(2)
and restricting them to Yp. If E1, E2 are locally free sheaves on P(V ), we have
canonical isomorphisms

Ext∗Yp
(π∗E1,π

∗E2) ∼= H∗(Yp,π
∗E∨

1 ⊗ π∗E2)(2.43)

∼= H∗
(
Yp,π

∗(E∨
1 ⊗ E2)

)

∼= H∗
(
P(V ), (E∨

1 ⊗ E2)⊗ π∗OYp

)

∼= H∗(P(V ), E∨
1 ⊗ E2)⊕H∗

(
P(V ), E∨

1 ⊗ E2 ⊗ Ω1
P(V )

)
⊗ Λ2(V )

∼= Ext∗P(V )(E1, E2)⊕ Ext1−∗
P(V )(E2, E1)

∨ ⊗ Λ2(V ),

where the last isomorphism uses Serre duality on P(V ). Consider in particular

E1 = O P(V ), E2 = O P(V )(1)⊗ Λ2(V ),

which has HomP(V )(E1, E2) = V ∨⊗Λ2(V ) ∼= V by definition. The computation above
(with E1 and E2 exchanged) shows that

Ext1Yp
(π∗E2,π

∗E1) ∼= V ∨ ⊗ Λ2(V ) ∼= V

as well. Using this and similar arguments (compare [97, Section 3c]) one sees that:

Lemma 2.16. — We have an isomorphism of graded algebras,

Ext∗Yp
(π∗E1 ⊕ π∗E2,π

∗E1 ⊕ π∗E2) ∼= Q

(if one thinks of Q as defined in (2.11), the isomorphism is canonical).

Let DbCoh(Yp) be a suitable dg enhancement of the standard bounded derived
category of coherent sheaves on Yp. This category is closed under shifts, mapping
cones and direct summands (the last-mentioned fact follows from the characterization
of its objects as compact objects in a larger category [14, Thm 3.1.1]). Lemma 2.16
says that the subcategory of DbCoh(Yp) with objects π∗E1,π∗E2 is quasi-isomorphic
to an A∞-deformation of Q, which by Lemma 2.7 can be chosen to be Qp̃ for some
polynomial p̃. We then have a cohomologically full and faithful A∞-functor from Qp̃
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to DbCoh(Yp), taking Xi to π∗Ei. Moreover, since the π∗Ei are split-generators
of DbCoh(Yp), this functor extends to a quasi-equivalence

(2.44) Qperf
p̃

≃−→ DbCoh(Yp).

Unsurprisingly,

Lemma 2.17. — The polynomial p̃ in (2.44) is a nonzero constant multiple of p.

Proof. — Any A∞-functor take cones to cones, up to quasi-isomorphism. In partic-
ular, Cv maps to the cone of the morphism π∗E1 → π∗E2 corresponding to v. That
cone, which we denote by C̃v, is isomorphic to the structure sheaf of the scheme-
theoretic fibre π−1([v]); more canonically, it can be written as that structure sheaf
tensored with the one-dimensional vector space V/Rv. If p(v) ̸= 0, the fibre consists
of two closed points, hence has a nontrivial idempotent endomorphism. On the other
hand, there are four points for which p(v) = 0, and where the scheme-theoretic fibre
is a single fat point. Lemma 2.12 then yields the desired result.

We can refine this observation slightly. One can compute geometrically that

HomYp(C̃v, C̃v) ∼= R⊕ (Rv)⊗2,(2.45)

HomYp(π
∗E2, C̃v) ∼= R⊕ (Rv)⊗2,(2.46)

Ext1Yp
(C̃v,π

∗E1) ∼= (Rv)∨ ⊕Rv.(2.47)

In the ring structure of (2.45), the first summand is generated by the identity endomor-
phism, and the square of v⊗v in the second summand is exactly p(v) times the identity.
The action of v⊗ v on (2.46) by left multiplication is given by (1, 0) '→ (0, v⊗ v) (and
correspondingly (0, v⊗v) '→ (p(v), 0), so as to satisfy the given relation). Both groups
(2.46) and (2.47) contain canonical elements, which are parts of the obvious exact tri-
angle involving C̃v, and those are just the generators of the first summands (in the
case of (2.47), this is the generator of (Rv)∨ dual to v ∈ Rv). Finally, the composition

(2.48) Ext1Yp
(C̃v,π

∗E1)⊗HomYp(π
∗E2, C̃v) −→ Ext1Yp

(π∗E2,π
∗E1)

is given by the obvious maps (Rv)∨ ⊗ (Rv)⊗2 → Rv ⊂ V and Rv ⊗ R → Rv ⊂ V .
By putting together those facts, one sees that taking t̃ = v ⊗ v exactly satisfies
the assumptions of Lemma 2.14 (modulo tedious sign verifications, which we have
omitted), and therefore that:

Lemma 2.18. — The constant from Lemma 2.17 is trivial, meaning that p = p̃.

Remark 2.19. — This geometric interpretation also throws some light on Lemma 2.10.
In view of the derived invariance of Hochschild cohomology, one has

(2.49) HH d(Qp, Qp) ∼= HH d
(
DbCoh(Yp)

) ∼= HH d(Yp) ∼=
⊕

i+j=d

Hi(Yp,Λ
jTYp),

MÉMOIRES DE LA SMF 137

54

54
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where TYp is the tangent bundle. In particular, HH 1(Qp, Qp) ∼= H1(Yp,OYp) ⊕
H0(Yp, TYp) is indeed two-dimensional.

We make a slight digression, whose aim is to explain our original computations of
HH ∗(Q,Q) geometrically. One can associate to an arbitrary p ∈ Sym4(V ∨) a sub-
scheme Yp of the total space of O P(V )(2), and Lemma 2.16 still holds. So does (2.44),
once one replaces the derived category of coherent sheaves with its subcategory of per-
fect complexes. In particular, we can set p = 0, in which case the “double branched
cover”Y0 is the first order infinitesimal neighbourhood of the zero-section in O P(V )(2).
Using the action of R× by fibrewise rescaling, one can show that the resulting A∞-
structure on Q is formal (this is a well-known idea, in a sense going back to [22], see
[96, Remark 7.6] and [65] for recent occurrences). Hence,

(2.50)
⊕

i+j=d

HH i
(
Q,Q[j]

) ∼= HH d(Y0),

where the right hand side can be written as the hypercohomology of a complex of
sheaves on P(V ) (locally quasi-isomorphic to the Hochschild complex of the ring
R[t1, t2]/t22), making it easily amenable to computation. Moreover, the equivariant
version of the same Hochschild cohomology recovers the bigrading on the left hand
side of (2.50).

Identify V = R2 with coordinates (v1, v2). Consider the affine chart for the to-
tal space of O P(V )(2) with coordinates (s1, s2), which is such that s2 = v2/v1 for
the underlying point [v1 : v2] ∈ P(V ), and the section s1 = 1 corresponds to the
quadratic polynomial v21 . In this chart, Yp has equation s21 = p(1, s2). The object C̃v

constructed above, for v = (1, s2), is the structure sheaf of the ideal obtained by addi-
tionally setting s2 to a specific value, and its endomorphism t̃ is multiplication by s1.
If p(1, s2) ̸= 0, the idempotent endomorphism 1

2 (1 + s−1
1 t̃) of C̃v singles out a direct

summand, which is the structure sheaf of the point (s1, s2). Applying Lemma 2.15 to
this, we get a perfect family of sheaves on Yp parametrized by the curve S from (2.34),
which is itself an affine open part of Yp, and such that the fibre of the family at (s1, s2)
is isomorphic to the structure sheaf of that point. This justifies calling it a “tautolog-
ical family”.

Remark 2.20. — The canonical bundle of the total space of O P(V )(2) is the pullback
of O P(V )(−2)⊗Ω1

P(V )
∼= O P(V )(−4)⊗Λ2(V )∨. Hence, fixing a symplectic form on the

vector space V singles out a two-form with poles exactly along Yp, whose residue is
then a nowhere vanishing 1-form on Yp. Returning to the identification V = R2 and
taking the symplectic form to be the standard form dv1 ∧ dv2, one finds that the
restriction of the associated 1-form to S ⊂ Yp is precisely (2.35), since that satisfies
θ ∧ d(s21 − p(1, s2)) = ds1 ∧ ds2.
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2.7. A universal construction

We will now give an alternative construction of the tautological family (and re-
lated ones). Any N ∈ ObDbCoh(Yp × Yp) defines a Fourier-Mukai functor KN

from DbCoh(Yp) to itself. Its action on objects is KN(E) = (q2)∗(q∗1E ⊗ N), where
qk : Yp × Yp → Yp are the projections. To explain the interaction of this with the de-
scription (2.44) of the derived category, we find it convenient to reverse the directions
of the arrows, which means to consider the pullback functor

(2.51) DbCoh(Yp) −→ Qmod
p .

The image of an object F is a moduleM withH(M(Xi)) = Hom∗
Yp
(Ei, F ). One shows

easily that (2.51) is cohomologically full and faithful, and in fact a quasi-equivalence
to the subcategory Qperf

p of perfect modules, which is inverse to (2.44). There is a
similar pullback functor

(2.52) DbCoh(Yp × Yp) −→ (Qp, Qp)
mod.

This maps N to a bimodule P whose cohomology is

H
(
P (Xi, Xj)

)
= Hom∗

Yp×Yp
(E∨

j ! Ei, N) ∼= Hom∗
Yp

(
Ei, (q2)∗(q

∗
1Ej ⊗N)

)
.

For instance, the structure sheaf of the diagonal maps to the diagonal bimodule. Note
also that if we consider P (. , Xj) just as a right Qp-module, it is quasi-isomorphic to
the image of the sheaf (q2)∗(q∗1Ej ⊗ N) under (2.51). This implies that P is always
right perfect. Finally, the following diagram is commutative up to homotopy:

(2.53)

DbCoh(Yp)

!!

KN
"" DbCoh(Yp)

!!

Qmod
p

KP
"" Qmod

p .

In the top row of this, KN is the Fourier-Mukai functor, whereas on the bottom row we
have the tensor product functor KP . We will in fact only need to know commutativity
of this on the level of quasi-isomorphism classes of objects, which is somewhat easier
than the full statement.

The same observations hold for families. Let Qp be the constant family of A∞-
structures over S with fibre Qp. There are functors

DbCoh(S × Yp) −→ Q mod
p ,(2.54)

DbCoh(S × Yp × Yp) −→ (Qp,Qp)
mod,(2.55)

of which the first is an equivalence to the subcategory of perfect families, and the
second one at least lands in the subcategory of right perfect families of bimodules.
Any object N of DbCoh(S × Yp × Yp) defines a functor

KN : DbCoh(Yp) −→ DbCoh(S × Yp),
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which can be thought of as a family of Fourier-Mukai functors parametrized by S .
If P is the image of N under (2.55), we have a tensor product functor

KP : Qmod
p −→ Q mod

p ,

already considered (except for the notation) in Section 1.10. The analogue of (2.53)
is

(2.56)

DbCoh(Yp)

!!

KN
"" DbCoh(S × Yp)

!!

Qmod
p

KP
"" Q mod

p ,

where the vertical arrows are (2.54). So far the discussion has been essentially limited
to abstract nonsense, but now we want to draw some consequences more specific to
the case of elliptic curves.

Fix a point s ∈ S ⊂ Yp, and give Yp its unique structure of an elliptic curve with s
as the neutral element. The graph of the addition morphism Σ : Yp×Yp → Yp restricts
to a smooth subvariety {(s, y1, y2) ∈ S × Yp × Yp : y2 = Σ(s, y1)}. Let N be the
structure sheaf of that subvariety, and P its image under (2.55). This is a right perfect
family of Qp-bimodules parametrized by S , whose fibre at s is quasi-isomorphic to the
diagonal bimodule.

Lemma 2.21. — P follows the deformation field [γ] from (2.38).

Proof. — At any point s ∈ S , Ps is the graph of an autoequivalence of Qperf
p . This im-

plies that the maps HH ∗(Qp, Qp) → H∗(hom(Qp,Qp)mod(Ps,Ps)) considered in (1.29)
are both isomorphisms. The same then holds in the entire family, which means
that (1.83) is an isomorphism. By definition, we have therefore shown that P fol-
lows some deformation field [γ̃] ∈ HH 1(Qp,Ω1

R ⊗ Qp).
We will now argue indirectly, based on Corollary 1.19 and the Hochschild cohomol-

ogy computation in Lemma 2.10. The sheaf E1 = OYp is invariant under translations,
which means that its Fourier-Mukai convolution with N yields a constant family.
By (2.56), this implies that X1⊗Qp P is a constant family, hence that the component
γ̃0[1] ∈ e1Qpe1 must be zero. If we now take the skyscraper sheaf at the point s as our
starting object, the outcome of KN is again a “tautological” family, meaning that the
fibre at any point of S is isomorphic to the skyscraper sheaf at that point. Any two
such families are isomorphic up to tensoring with line bundles over S . By comparing
this with Lemma 2.15, one sees that γ̃0[2] ∈ e2Qpe2 must be equal to −2θ.

Corollary 2.22. — The category Qp has a nonempty set of periodic elements, in
the sense of Definition 1.25. More specifically, if [g2] ∈ HH 1(Qp, Qp) is as in Adden-
dum 2.11, then [−2g2] ∈ Per(Qp, S , θ̄). Here, S is the smooth closure of S (obviously
isomorphic to Yp), and θ̄ the extension of θ to that closure.
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This is a direct consequence of Lemma 2.21 and Corollary 1.19. Now recall that
the category Qperf

p ≃ DbCoh(Yp) carries an action of SL2(Z) (in a weak sense, and
ignoring even shifts) [75, Remark 3.15]. This acts on Hochschild cohomology and also
maps families to families. From this, one gets the following:

Corollary 2.23. — The set

Per(Qp, S , θ̄) ⊂ HH 1(Qp, Qp)

contains m1[g1] +m2[g2] for all m1 ∈ Z, m2 ∈ m1 + 2Z.

2.8. Theta functions

For the remainder of this section, we work exclusively over the field R from (2.1).
Elliptic curves over fields like R can be studied using methods of non-archimedean
analytic geometry. The comparison with ordinary algebraic geometry over R is pro-
vided by a suitable GAGA theorem (see [81], [20] for introductory accounts). We
will borrow the intuition from there, but otherwise proceed by direct computation,
avoiding abstract tools as much as possible.

Let F be the ring of Laurent series over R in one variable t, and which have“infinite
convergence radius” (the non-archimedean analogue of holomorphic functions on C∗).
Explicitly, this means that

(2.57) F =

⎧
⎪⎪⎨

⎪⎪⎩

f(t) = c0!
m0tn0 + c1!

m1tn1 + · · · ,
ck ∈ C, mk ∈ R, nk ∈ Z,

lim
k→∞

mk +Ank = +∞ for any A ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
.

We will be particularly interested in the theta-functions (a standard reference is [76],
but our notation is a little different)

(2.58) ϑn,k(t) =
∑

i∈nZ+k

!i
2/2nti,

where n is a positive integer, and k ∈ Z/nZ. These functions satisfy

ϑn,k(!t) = !−n/2t−nϑn,k(t) (periodicity),(2.59)

ϑn,k(!
1/nt) = !−1/2nt−1ϑn,k+1(t) (fractional periodicity),(2.60)

ϑn,k(t
−1) = ϑn,n−k(t) (symmetry).(2.61)

The simplest example, ϑ1,1(t) = ϑ(t), is the common or garden Jacobi theta function.
On the next level n = 2, one has two functions ϑ2,1(t) and ϑ2,2(t), which besides (2.60)
are related by the addition formula

(2.62) ϑ2,1(u)ϑ2,1(t) + ϑ2,2(u)ϑ2,2(t) = ϑ(ut)ϑ(u−1t).
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As a consequence of that formula, we have

(2.63)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϑ2,2(!
1
2 )ϑ2,1(t)− ϑ2,1(!

1
2 )ϑ2,2(t) = −!−1/4ϑ(−t)2,

ϑ2,2(−!
1
2 )ϑ2,1(t)− ϑ2,1(−!

1
2 )ϑ2,2(t) = !−1/4ϑ(t)2,

ϑ2,2(1)ϑ2,1(t)− ϑ2,1(1)ϑ2,2(t) = !1/4tϑ(−!
1
2 t)2,

ϑ2,2(−1)ϑ2,1(t)− ϑ2,1(−1)ϑ2,2(t) = !1/4tϑ(!
1
2 t)2.

We will need the duplication formula [108, p. 488]

ϑ(t)ϑ(−t)ϑ(!
1
2 t)ϑ(−!

1
2 t)(2.64)

= 1
2ϑ(1)ϑ(−1)ϑ(!

1
2 )ϑ(−!

1
2 t2)

= 1
2!

−1/8t−1 ϑ(1)ϑ(−1)ϑ(!
1
2 )
(
ϑ4,1(t)− ϑ4,3(t)

)
.

We will also need an identity for the derivatives (in t-direction),

t
(
ϑ′2,2(t)ϑ2,1(t)− ϑ′2,1(t)ϑ2,2(t)

)
= ϑ4,1(t)ϑ

′
4,3(1) + ϑ4,3(t)ϑ

′
4,1(1)(2.65)

= ϑ′4,3(1)
(
ϑ4,1(t)− ϑ4,3(t)

)
.

Definition 2.24. — The unit torus polynomial p ∈ R[v1, v2] is

p(v1, v2) = c
(
ϑ2,2(!

1
2 )v2 − ϑ2,1(!

1
2 )v1

)
(2.66)

×
(
ϑ2,2(−!

1
2 )v2 − ϑ2,1(−!

1
2 )v1

)

×
(
ϑ2,2(1)v2 − ϑ2,1(1)v1

)(
ϑ2,2(−1)v2 − ϑ2,1(−1)v1

)

= c
(
ϑ2,2(!

1
2 )2v22 − ϑ2,1(!

1
2 )2v21

)(
ϑ2,2(1)

2v22 − ϑ2,1(1)2v21
)
,

where

c = −!1/4ϑ(1)−2ϑ(−1)−2ϑ(!
1
2 )−2ϑ′4,3(1)

2.(2.67)

One can associate to this polynomial a smooth elliptic curve over R, by the double
branched cover method from Section 2.6. For the most part, we will only look at the
affine part S = Spec(R ) of that curve as in (2.34), and equip that with the 1-form θ
from (2.35) (this extends to a regular 1-form on the entire elliptic curve). We call this
the unit torus curve. Points of S have a transcendental parametrization by u ∈ R×,
called the theta parametrization:

(2.68)

⎧
⎪⎪⎨

⎪⎪⎩

s2 = ϑ2,1(u)ϑ2,2(u)
−1,

s1 = − 1
2us

′
2(u) =

1
2 uϑ2,2(u)

−2(ϑ′2,2(u)ϑ2,1(u)− ϑ′2,1(u)ϑ2,2(u)),

= 1
2ϑ2,2(u)

−2ϑ′4,3(1)(ϑ4,1(u)− ϑ4,3(u)).

The fact that these points satisfy the equation for S follows from the relations between
theta-functions listed above. Note that, due to the periodicity property, u and !ku
(k ∈ Z) describe the same point (if we had set up the general machinery properly,
this would yield the Tate uniformization of the closure of S , which of course is the
original Yp, as a quotient R×/!Z). To be precise, we have to exclude u = ±i!k+

1
2 ,
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which is where ϑ2,2 vanishes (these would be mapped to points at infinity) as well

as u = ±!
1
2k, which is where ϑ4,1 − ϑ4,3 vanishes, see (2.64) (those points would be

mapped to the branch points, which do not lie in S by definition). The involution
u "→ !

1
2u corresponds to (s1, s2) "→ (−s1s−2

2 , s−1
2 ), whereas u "→ u−1 corresponds to

(s1, s2) "→ (−s1, s2). Note also that in this parametrization, the 1-form is θ = u−1du.

Addendum 2.25. — Suppose that we change variables from ! to !2 (an automor-
phism of the field R). Apply this to the coefficients of p and denote the resulting
polynomial by p̃, with its associated curve S̃ and 1-form θ̃. Our claim is that then,
the projective closure of S̃ is an étale double cover of that of S , and that the given
1-forms are compatible with the covering map. In fact, the covering transforma-
tion is the abovementioned involution (s̃1, s̃2) "→ (−s̃1s̃−2

2 , s̃−1
2 ). This is obvious set-

theoretically by comparing the theta-parametrizations, and one can derive from the
abstract theory (or at least in principle, check by hand) that the resulting map is
indeed algebraic.

2.9. A nonarchimedean model

Nonarchimedean analytic geometry appears naturally in the context of mirror sym-
metry, as shown for torus fibrations in [59]. Here, we will spell out a version of their
construction for the case of elliptic curves. The ring F from (2.57) comes with an
action of Z, generated by the translation

(2.69) (Tf)(t) = f(!t).

We want to consider equivariant T -modules, or equivalently (right) modules over the
semidirect product algebra F " Z (whose generators are f(t) and τ , with relations
τf = T (f)τ). For any d ∈ Z one has the equivariant module F (d), which is F itself
with the twisted Z-action generated by

(2.70)
(
T (d)f

)
(t) = tdf(!t).

HomF!Z(F (d0), F (d1)) is isomorphic to the subspace of those elements of F which
are invariant under T (d1 − d0). Similarly, using the projective resolution (the map is
left multiplication)

(2.71) F̃ (d) =
{
F " Z

id−τt−d

−−−−−−→ F " Z
}

of F (d), one sees that Ext1F!Z(F (d0), F (d1)) is isomorphic to the space of coin-
variants for T (d1 − d0). In fact, we have a subcomplex of the chain complex
HomF!Z(F̃ (d0), F̃ (d1)) which is quasi-isomorphic to the whole thing, and that
subcomplex is of the form

(2.72)
{
F

id−T (d1−d0)−−−−−−−−−→ F
}

(concentrated in degrees 0 and 1).
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Consider Z1 = F and Z2 = F (2). Using the computational ideas which we have
just explained, one easily shows that

(2.73) Ext∗F!Z(Z1 ⊕ Z2, Z1 ⊕ Z2) ∼= Q

is the graded algebra from Definition 2.3. Hence, the underlying cochain level algebraic
structure is quasi-isomorphic toQp for some p. One can use the subcomplexes (2.72) to
write down a relatively simple (if still infinite-dimensional) dga model. In principle,
the Homological Perturbation Lemma could be applied to that, as in [84], which
would give a way of determining p directly. However, there is also a more categorical
approach, in parallel with that from Section 2.6. By (2.59), an explicit basis of
Ext∗F!Z(Z1, Z2) is given by the functions

(2.74) fk(t) = ϑ2,k(!
− 1

2 t) = t−1ϑ2,k+1(t),

(k = 1, 2). Given u ∈ R×, consider the linear combination

(2.75) ϑ2,2(u)f1 + ϑ2,1(u)f2 : Z1 −→ Z2.

This is always injective. If u /∈ {±!
1
2k : k ∈ Z}, its cokernel splits into a direct

sum of two nontrivial objects. This is a consequence of (2.62), which shows that
the map can be written as the product of two elements which generate distinct (and
Z-invariant) principal ideals. One can also check that this fails for the remaining
values of u, where the cokernel is indecomposable. By applying Lemma 2.12, it then
follows that the homogeneous polynomial p relevant to our situation must vanish at
the points (ϑ2,2(±!

1
2 ),ϑ2,1(±!

1
2 )) and (ϑ2,2(±1),ϑ2,1(±1)). Hence, it must be of the

form (2.66) for some nonzero constant c. One can adjust the isomorphism (2.73) to
make that constant equal to 1, which shows:

Lemma 2.26. — The full subcategory of the (chain level) derived category of modules
over F " Z with objects F (0), F (2) is quasi-isomorphic to Qp, where p is the unit
torus polynomial.

2.10. The two-torus

Take the unit area (symplectic) two-torus

(2.76) T = R2/Z2, ωT = dp ∧ dq

in coordinates (p, q); and equip it with the standard complex structure, as well as
the nonzero holomorphic 1-form dz = dp + idq. The Fukaya category Fuk(T ) is
a Z-graded, cohomological unitally A∞-category over the field R from (2.1). This
is related by mirror symmetry to the derived category of an elliptic curve over R,
see [85], [4]. More directly, [59] relates it to the ring F " Z described above. One
could use either of these theorems to derive the desired results, but we prefer to argue
by direct geometric computation. This means that our exposition is a little ad hoc,
which is hopefully forgivable in view of the relative simplicity of the target geometry
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(for more details of the approach to Fukaya categories used here, see Section 3.3 and
the references therein).

Objects of Fuk(T ) are simple closed curves L ⊂ T , equipped with a grading with
respect to the complex 1-form dz (this excludes contractible curves), and with a local
coefficient system ξ → L whose fibre is Rr for some r, and whose holonomy lies in
the subgroup

(2.77) GL0(r, R)
def
=
{
A = A0 +A1!

m1 + · · · , A0 ∈ GL(r,C),

Ai ∈Mat(r,C), mi > 0 for i ≥ 1
}
⊂ GL(r, R).

Remark 2.27. — The grading of L induces an orientation. In the general definition
of the Fukaya category, one requires an additional choice of Spin structure on L.
However, changing the Spin structure is the same as tensoring ξ with a line bundle
having holonomy {±1}. Hence, it is enough to consider curves L with the trivial Spin
structure (that which is compatible with the trivialization of TL; equivalently, it is
the one which is nontrivial in Spin bordism), which is why that structure does not
appear explicitly in our formulation.

The space of morphisms between two objects (L0, ξ0) and (L1, ξ1) is the Floer
cochain space CF ∗(L0, L1). In the case where L0 intersects L1 transversally, one
can set it up so that generators correspond bijectively to points x ∈ L0 ∩ L1. More
precisely, each such point has an absolute index deg(x) ∈ Z, which depends on the
gradings. This has the property that (−1)deg(x)+1 is the local intersection number.
Then, x contributes a copy of Hom(ξ0,x, ξ1,x) to CF ∗(L0, L1) in degree deg(x).

Remark 2.28. — The general theory dictates that the contribution of x is
Hom(ξ0,x, ξ1,x) ⊗ ox, where ox is the orientation space, a 1-dimensional R-vector
space which can be identified with R uniquely up to sign. However, in the specific
case where the symplectic manifold is a surface, we know [93, Eq. (13.6)] that ox ∼= R
canonically if deg(x) is even, and that otherwise, an orientation of (TL1)x determines
an isomorphism; in that case, we use the orientation of L1 given by the grading. This
is why orientation spaces do not appear explicitly here.

The first two objects relevant for our argument are

(2.78) L1 = {q = 0}, L2 = {q = −2p},

We equip them with gradings so that HF ∗(L1, L2) is concentrated in degree 0, and
so that the induced orientations are as shown in Figure 1. Both should carry trivial
local systems. Write w1,−w2 ∈ CF 0(L1, L2) for the generators coming from the
two intersection points (12 , 0) and (0, 0). We also write w4, w3 ∈ CF 1(L2, L1) for the
generators coming from the same two points. By introducing a perturbed version of
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Figure 1

one of our two Lk and counting triangles, one shows that each of the products

(2.79)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+ [w4] · [w1] ∈ HF 1(L1, L1) ∼= H1(L1;R),

+ [w1] · [w4] ∈ HF 1(L2, L2) ∼= H1(L2;R),

− [w2] · [w3] ∈ HF 1(L2, L2) ∼= H1(L2;R),

− [w3] · [w2] ∈ HF 1(L1, L1) ∼= H1(L1;R)

equals the generator of H1 given by our choice of orientations. Hence:

Lemma 2.29. — The cohomology level product satisfies the relations (2.10). This
means that as a graded algebra,

2⊕

i,j=1

HF ∗(Li, Lj) ∼= Q.

Take any u ∈ R×, written as u = !m0a for some m0 ∈ R and a ∈ GL0(1, R). We
associate to this another object of the Fukaya category, as follows. The underlying
curve is

(2.80) L3,u = {p = m0}.

It comes equipped with the grading such that HF ∗(L1, L3,u), and then also
HF ∗(L2, L3,u), is concentrated in degree 0 (the induced orientation is in nega-
tive q-direction). The rank 1 local system ξu on L3,u should have holonomy a
when going around the curve in positive q-direction. Both chain level morphism
spaces CF 0(L1, L3,u) and CF 0(L2, L3,u) are canonically isomorphic to the fibre of
this local system at the unique intersection points, which are (m0, 0) and (m0,−2m0),
respectively. We identify these with R as follows:

(2.81)

⎧
⎨

⎩

Pick an arbitrary isomorphism (ξu)(m0,0)
∼= R. Then, choose

(ξu)(m0,−2m0)
∼= R in such a way that parallel transport along

the path {(m0,−2m0t) : 0 ≤ t ≤ 1} is multiplication with !m
2
0 .
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Denote the resulting generators by z1,u ∈ CF 0(L1, L3,u) and z2,u ∈ CF 0(L2, L3,u).
A triangle count (compare [85, Section 4]) determines the product

(2.82)

{
HF 0(L2, L3,u)⊗HF 0(L1, L2) −→ HF 0(L1, L3,u),

[z2,u] · [w1] = ϑ2,1(u)[z1,u], [z2,u] · [w2] = −ϑ2,2(u)[z1,u],

where the negative sign comes from our choice of w2, rather than from any geometric
aspect of the computation.

The intersection point (m0, 0) contributes a copy of (ξ∨
u)(m0,0) to CF 1(L3,u, L1).

Take y1,u to be the generator dual to z1,u. In the same way, we define a generator
y2,u ∈ CF 1(L3,u, L2) dual to z2,u. Then, the cohomology level products

(2.83)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[y1,u] · [z1,u] ∈ HF 1(L1, L1) ∼= H1(L1;R),

[z1,u] · [y1,u] ∈ HF 1(L3,u, L3,u) ∼= H1(L3,u;R),

[y2,u] · [z2,u] ∈ HF 1(L2, L2) ∼= H1(L2;R),

[z2,u] · [y2,u] ∈ HF 1(L3,u, L3,u) ∼= H1(L3,u;R)

each equal the generator of H1 singled out by the given orientations. Using this,
(2.82), and the associativity of the product (on the cohomology level), one computes

(2.84)

{
HF 0(L1, L2)⊗HF 1(L3,u, L1) −→ HF 1(L3,u, L2),

[w1] · [y1,u] = ϑ2,1(u)[y2,u], [w2] · [y1,u] = −ϑ2,2(u)[y2,u],

and

(2.85)

{
HF 1(L3,u, L1)⊗HF 0(L2, L3,u) −→ HF 1(L2, L1),

[y1,u] · [z2,u] = ϑ2,2(u)[w3] + ϑ2,1(u)[w4].

From now on, assume that u /∈ {±!
1
2k : k ∈ Z}. Then L3,u and L3,u−1 are

mutually orthogonal objects (which means that the Floer cohomology from one to
the other is zero). The computations above, together with (2.61), show that the
composition of any two of the following morphisms vanishes:

(2.86) L1

ϑ2,2(u)[w1]+ϑ2,1(u)[w2]
ϑ′
4,3(1)(ϑ4,1(u)−ϑ4,3(u))

! ! L2

([z2,u], [z2,u−1 ])""❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

L3,u ⊕ L3,u−1

[1]

([y1,u],−[y1,u−1 ])

##❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

Lemma 2.30. — The diagram (2.86) is an exact triangle in the categoryH0(Fuk(T )tw).
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To prove this, we need one part of the higher order A∞-structure, namely:

(2.87)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µ3
Fuk(T ) : CF

0(L2, L3,u)⊗ CF 0(L1, L2)⊗ CF 1(L3,u, L1)

−→ CF 0(L3,u, L3,u),

µ3
Fuk(T )(z2,u, w1, y1,u) =

(
−uϑ′2,1(u) + bϑ2,1(u)

)
e3,u,

µ3
Fuk(T )(z2,u, w2, y1,u) =

(
uϑ′2,2(u)− bϑ2,2(u)

)
e3,u.

Here, we assume that CF ∗(L3,u, L3,u) is minimal (has vanishing differential). The
element e3,u ∈ CF 0(L3,u, L3,u) represents the unit element, ϑ′n,k(t) is the derivative
of ϑn,k(t) with respect to the t variable, and b ∈ R is a constant depending on exactly
how one defines CF ∗(L3,u, L3,u) and the A∞-multiplications involving it.

Remark 2.31. — It it maybe helpful to explain why, for general reasons, the ambi-
guity takes on the form described in (2.87). Different choices made in the setup of
the Fukaya category yield maps related by

µ̃3
Fuk(T )(z2,u, w1, y1,u)− µ3

Fuk(T )(z2,u, w1, y1,u)(2.88)

= φ2
(
µ2
Fuk(T )(z2,u, w1), y1,u

)
+ φ2

(
z2,u, µ

2
Fuk(T )(w1, y1,u)

)

= ϑ2,1(u)
(
φ2(z1,u, y1,u)− φ2(z2,u, y2,u)

)
,

respectively

µ̃3
Fuk(T )(z2,u, w2, y1,u)− µ3

Fuk(T )(z2,u, w2, y1,u)(2.89)

= φ2
(
µ2
Fuk(T )(z2,u, w2), y1,u

)
+ φ2

(
z2,u, µ

2
Fuk(T )(w2, y1,u)

)

= −ϑ2,2(u)
(
φ2(z1,u, y1,u)− φ2(z2,u, y2,u)

)
.

Here, φ2 are bilinear maps of degree −1, which appear as components of the A∞-
isomorphism relating the Fukaya categories for the two choices of construction. These
are unknown a priori, but crucially the same expressions involving them appear
in (2.88) and (2.89). To establish the connection with the notation in (2.87), one
would write

(2.90) (b̃ − b) e3,u = φ2(z1,u, y1,u)− φ2(z2,u, y2,u).

To check (2.87) concretely, one can adopt a Morse-Bott approach (see Section 3.2
below for more explanations and references), in which generators of CF ∗(L3,u, L3,u)
correspond to the unique minimum and maximum of a Morse function on L3,u. Then
(2.87) is determined by counting triangles with sides on (L3,u, L1, L2) and with an
additional marked boundary point which goes through the minimum point.

Figure 2 shows the universal cover T̃ = R2, with three triangles. If we choose the
minimum to be the white dot, the resulting coefficient in µ3

Fuk(T )(z2,u, w1, y1,u) is

(2.91) · · ·− !
1
4 u+ !

1
4 u−1 + 3!

9
4 u−3 + · · · = −uϑ′2,1(u).
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If we move the minimum to the black dot, the coefficient changes to

(2.92) · · ·− 2!
1
4u+ 0!

1
4 u−1 + 2!

9
4 u−2 + · · · = −uϑ′2,1(u)− ϑ2,1(u).

This ambiguity is of the form described in (2.87). One can check that the other µ3

computation behaves compatibly with that.

Figure 2.

Proof of Lemma 2.30. — Because the underlying chain complexes have trivial differ-
entials, one actually knows that the composition of any two maps in (2.86) is zero on
the chain level. Write v ∈ CF 0(L1, L2) for the morphism appearing in (2.86). Then
the maps

(2.93)

{ (0, z2,u) ∈ hom0
Fuk(T )tw(Cv, L3,u) = CF−1(L1, L3,u)⊕ CF 0(L2, L3,u),

(y1,u, 0) ∈ hom0
Fuk(T )tw(L3,u, Cv) = CF 1(L3,u, L1)⊕ CF 0(L3,u, L2)

are cocycles. From (2.87) and (2.65) one sees that their composition in one direction
is

(2.94) µ2
Fuk(T )tw

(
(0, z2,u), (y1,u, 0)

)
= µ3

Fuk(T )(z2,u, v, y1,u) = e3,u.

The analogous properties hold for the maps

(2.95)

{ (0, z2,u−1) ∈ hom0
Fuk(T )tw(Cv, L3,u−1),

(−y1,u−1 , 0) ∈ hom0
Fuk(T )tw(L3,u−1 , Cv).

This shows that L3,u ⊕ L3,u−1 is a direct summand of Cv, but then a comparison of
the sizes of the endomorphism rings, with one side computed as in (2.28), shows that
the two must actually be quasi-isomorphic. Moreover, these quasi-isomorphisms fit in
with (2.86).
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Remark 2.32. — Suppose that u = −!m0 for some m0 /∈ 1
2Z, which means

that L3,u±1 = L3,−!±m0 can be thought of as curves equipped with the nontrivial
Spin structure. From the well-known exact triangle associated to a Dehn twist, and
the Hamiltonian isotopy

(2.96) L2 ≃ τL3,−!
m0 τL3,−!

−m0
(L1),

one can derive the existence of a diagram involving the same objects as in (2.86).
This can be generalized as follows. For a ∈ GL0(1, R), let θa : Fuk(T )tw → Fuk(T )tw

be the functor obtained by tensoring all objects with a flat R-line bundle on M which
has monodromy a in q-direction (and trivial monodromy in p-direction). Supposing
that u = −a!m0 /∈ {±!Z/2}, we have quasi-isomorphisms in Fuk(T )tw,

L2 ≃ θa−1 τL3,−!
m0 θa2 τL

3,−!
−m0

(L1),(2.97)

≃ θa−1 τL3,−!
m0 θa2

(
Cone(L3,−!−m0 [−1]→ L1)

)

≃ θa−1τL3,−!
m0

(
Cone((L3,−a−2!−m0 )[−1]→ L1)

)

≃ θa−1

(
Cone(L3,−!m0 [−1]⊕ L3,−a−2!−m0 [−1]→ L1)

)

≃ Cone
(
L3,u[−1]⊕ L3,u−1 [−1]→ L1

)
.

However, from this point of view it is not straightforward to write down explicitly the
maps involved in the exact triangle, in particular the counterpart of the horizontal
one in (2.86) (which would be given by counting holomorphic sections of a Lefschetz
fibration).

Remark 2.33. — There is another geometric approach to Lemma 2.30. Instead of
Dehn twists, this (more direct) approach uses the relation between forming cones
in Fuk(T )tw and the connected sum of Lagrangian submanifolds intersecting at a
point (for proofs of that relationship, see [36] and [13, Section 6]; for a discussion of
the specific example relevant here, see [8, Lecture 23]; the extension to Lagrangian
submanifolds with local systems is quite natural in this context).

By Lemma 2.29, we know that Fuk(T ) induces an A∞-structure on Q, which is
necessarily quasi-isomorphic to Qp̃ for some p̃.

Lemma 2.34. — p̃ is a nonzero constant multiple of the unit torus polynomial p.

Proof. — The considerations above show that the cones Cv split into orthogonal
direct summands for all v = (ϑ2,2(u),ϑ2,1(u)) ∈ V , as long as u /∈ ±h

1
2k. Hence p̃ is

nonzero at all those points, by Lemma 2.12.
We can use a symmetry trick to derive a little bit of additional information from the

geometry. Consider translation by (12 , 0), which is a free symplectic involution of T
preserving dz. This maps each Li to itself, hence induces an action on HF∗(Li, Lj).
The action on HF ∗(Li, Li) ∼= H∗(Li;R) is trivial, whereas that on HF ∗(L1, L2) maps
w1 '→ −w2 and vice versa. It is not hard to lift this to an action on Fuk(T ), and
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there is an equivariant analogue of Proposition 2.7, which implies that p̃ must be
invariant under (v1, v2) !→ (−v2,−v1). Another automorphism of the Fukaya cate-
gory is the tensor product operation θ−1 which already appeared in Remark 2.32.
This preserves both our Li. The induced action on HF ∗(Li, Li) is trivial, whereas
that on HF ∗(L1, L2) preserves one of the two generators, and reverses the sign of the
other one (exactly which one this is depends on how one trivializes the restriction
of the line bundle to our Lagrangian submanifolds). In the same way as before, this
implies that p̃ is invariant under (v1, v2) !→ (−v1, v2). As a consequence, its order of
vanishing of at the four points (ϑ2,2(±1),ϑ2,1(±1)), (ϑ2,2(±!

1
2 ),ϑ2,2(±!

1
2 )) must be

the same. Since p̃ is nonzero everywhere else, it must have simple zeros at all the four
points, which implies the desired result.

Lemma 2.35. — The constant from Lemma 2.34 is trivial, meaning that p̃ = p.

Proof. — Consider the degree zero endomorphism of L3,u ⊕ L3,u−1 given by

t̃ =
[e3,u]⊕ [−e3,u−1 ]

2ϑ′4,3(1)(ϑ4,1(u)− ϑ4,3(u))
(2.98)

∈ HF 0(L3,u, L3,u)⊕HF 0(L3,u−1 , L3,u−1).

Its square is clearly a multiple of the identity, and by (2.85) we have

(2.99)
(
[y1,u], [−y1,u−1 ]

)
t̃
(
[z2,u], [z2,u−1 ]

)
=

ϑ2,2(u)[w3] + ϑ2,1(u)[w4]

ϑ′4,3(1)(ϑ4,1(u)− ϑ4,3(u))
,

which means that t̃ precisely satisfies the assumptions of Lemma 2.14. As a result,
we get the following information concerning p̃:

p̃
(
1,
ϑ2,1(u)

ϑ2,2(u)

)
=
ϑ′4,3(1)

4(ϑ4,1(u)− ϑ4,3(u))4

ϑ2,2(u)4
(2.100)

× p̃
( ϑ2,2(u)

ϑ′4,3(1)(ϑ4,1(u)− ϑ4,3(u))
, ϑ2,1(u)

ϑ′4,3(1)(ϑ4,1(u)− ϑ4,3(u))

)

=
ϑ′4,3(1)

4(ϑ4,1(u)− ϑ4,3(u))4

ϑ2,2(u)4
·

t̃2

[e3,u]⊕ [e3,u−1 ]

=
ϑ′4,3(1)

2(ϑ4,1(u)− ϑ4,3(u))2

4ϑ2,2(u)4
·

In terms of the parametrization (2.68), this shows that s21 = p̃(1, s2), which implies
that p̃ = p.

Remark 2.36. — What does this say about the actual A∞-products in the Fukaya
category? By definition, µ4

Qp
(w3, w1, w3, w1) is given by the coefficient of v41 in
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p(v1, v2), which is

− !
1
4ϑ(1)−2ϑ(−1)−2ϑ(!

1
2 )−2ϑ′4,3(1)

2ϑ2,1(!
1
2 )2ϑ2,1(1)

2(2.101)

= − 1
4!

1
4 ϑ(1)−2ϑ(−1)−2ϑ(!

1
2 )2ϑ′4,3(1)

2 = −! 1
2 − 4!

3
2 + · · ·

At least on the two leading orders we’ve written down, this agrees with the result of
counting holomorphic squares with vertices on (w3, w1, w3, w1) and which go through
an additional generic marked point of L1. However, a direct attempt to compute all
of µ4 directly in Fuk(T ) is tricky, because the moduli spaces of constant holomorphic
discs mapping to points of L1 ∩ L2 are not regular. This difficulty is avoided in the
approach we’ve chosen here.

Corollary 2.37. — Qperf
p is quasi-equivalent to Fuk(T )perf.

Proof. — From Lemma 2.35 we get a full and faithful functor Qperf
p → Fuk(T )perf .

The only additional fact needed is that the objects L1, L2 which are in the image
of this functor split-generate the Fukaya category. They clearly split-generate the
object L3,u for generic u, by the previous argument. On the other hand, one can use
[93, Cor. 5.8] (together with suitable tensor product functors) to show that L1, L3,u

split-generate the Fukaya category. For alternative approaches, see [4] or the review
in Section 3.6 below.

The Fukaya category comes with a canonical open-closed string map (which has a
long history going back to [58], see also Section 3.4 below)

(2.102) H∗(T ;R) −→ HH ∗
(
Fuk(T ),Fuk(T )

)
.

Corollary 2.38. — Let S = Spec(R ) be the affine curve associated to the unit
torus polynomial p, and θ its standard 1-form. There is a perfect family of modules
over Fuk(T ) parametrized by S , which follows the image of

(2.103) θ ⊗ [dq] ∈ H0(S ,Ω1
S)⊗H1(T ;R)

under the open-closed string map. The fibre of this family associated to a point
(s1, s2) ∈ S is isomorphic to L3,u, where u ∈ R×/!Z satisfies (2.68).

Proof. — The constant term of the open-closed string map, for any object L, is the
standard map H∗(T ;R)→ H∗(L;R). We restrict this to the subcategory consisting
of the objects L1, L2, so that it lands in HH ∗(Qp, Qp). With respect to the basis from
Addendum 2.11, [dp] ∈ H1(T ;R) maps to [g1] + [g2], and [dq] to −2[g2]. We take
the family M from Section 2.5 and carry it over to the Fukaya category through the
equivalence from Corollary 2.37. By construction this follows the deformation field [γ]
from (2.38), which is indeed the image of (2.103).

By definition, the object of this family associated to a point (s1, s2) is the direct
summand of C(1,s2) associated to the projection 1

2 (e+ s−1
1 t). Reversing the rescaling

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

69

69



64 CHAPTER 2. THE TWO-TORUS

applied in (2.100), one finds that this is quasi-isomorphic to the direct sumand of Cv

associated to the projection

1
2

(
e+ ϑ2,2(u)

−2ϑ′4,3(1)
2(ϑ4,1(u)− ϑ4,3(u))2s−1

1 t
)

(2.104)

= 1
2e+ ϑ′4,3(1)

(
ϑ4,1(u)− ϑ4,3(u)

)
t.

Under the isomorphism C(ϑ2,2(u),ϑ2,1(u))
∼= L3,u⊕L3,u−1 , t goes to the endomorphism t̃

from (2.98), so the corresponding projection is

(2.105) 1
2

(
[e3,u]⊕ [e3,u−1 ]

)
+ ϑ′4,3(1)

(
ϑ4,1(u)− ϑ4,3(u)

)
t̃ = [e3,u],

which indeed picks out the summand L3,u.
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CHAPTER 3

SYMPLECTIC AUTOMORPHISMS

The automorphism group of a symplectic manifold of dimension ≥ 4 often has
many connected components which map to the identity component of the diffeomor-
phism group (see for instance [90], [94]). One way to detect this phenomenon is by
using fixed point Floer cohomology. Through the connection with the Lagrangian
Floer cohomology of graphs, this also provides interesting examples of Lagrangian
submanifolds in products. In this section, we discuss both versions of Floer theory
(with emphasis on computational methods that will be useful later in the paper), and
then consider some specific examples of automorphisms obtained as compositions of
Dehn twists.

We will work in a “symplectic Calabi-Yau” context, in which Floer cohomology
groups are defined over the Novikov field R (2.1) and carry absolute Z-gradings.
As a side-effect, this makes the definition of fixed point Floer cohomology technically
simpler. We will impose additional restrictions on Lagrangian submanifolds, which
rule out bubbling of holomorphic discs, hence permit a similar simplification to take
place in the construction of Lagrangian Floer cohomology.

3.1. Fixed point Floer cohomology

Let M2n be a (connected) closed symplectic manifold, satisfying

Assumption 3.1. — c1(M) = 0. In fact, we want to fix a trivialization of the an-
ticanonical line bundle K−1

M = Λn
C
(TM) (for some compatible almost complex struc-

ture).

The choice of trivialization allows one to define the notion of graded symplectic
automorphism [91]. Fixed point Floer cohomology [25], [90], [94] associates to each
graded symplectic automorphism f a Z-graded R-vector space HF ∗(f), whose Euler
characteristic is the Lefschetz number of f (up to a sign which depends on the choice
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66 CHAPTER 3. SYMPLECTIC AUTOMORPHISMS

of grading). This invariant comes with a rich structure of operations, among which
we list the basic ones.

◃ The pair-of-pants product. — This is an associative multiplication

HF ∗(f2)⊗HF ∗(f1) −→ HF ∗(f2f1),

which comes with a two-sided unit element in HF ∗(id). The standard example is
f2 = f1 = id, where the canonical isomorphism [83]H∗(M ;R) = QH ∗(M) ∼= HF ∗(id)
identifies the pair-of-pants product with the small quantum product (in particular,
the unit is the standard one in H0(M ;R) = R). As a consequence, any fixed point
Floer cohomology group HF ∗(f) inherits the structure of a QH ∗(M)-module [28],
[88].

◃ Duality. — There is a distinguished co-unit HF 2n(id) → R (in terms of the
isomorphism with ordinary cohomology, it is the standard integration map). In com-
bination with the pair-of-pants product, the co-unit gives rise to a nondegenerate
pairing HF 2n−∗(f)⊗HF ∗(f−1)→ R.

◃ Continuation elements. — Let {ft} be a Hamiltonian isotopy of graded sym-
plectic automorphisms, with f0 = f and f1 = id. This determines an element
I{ft} ∈ HF ∗(f). The pair-of-pants product with such elements is used to prove
Hamiltonian isotopy invariance of general fixed point Floer cohomology groups.

◃ Conjugation isomorphisms. — These are canonical isomorphisms

Cf2,f1 : HF ∗(f1) −→ HF ∗(f2f1f
−1
2 ).

Besides their general functoriality properties, which say that Cf3,f2f1f
−1
2

Cf2,f1 =
Cf3f2,f1 and Cid,f = id, we have the self-conjugation identity

(3.1) Cf,f = id.

This implies that Cf,fm generates an action of Z/m on HF ∗(fm).

Remark 3.2. — All these operations have chain map realizations on the level of the
Floer complexes CF ∗(f), and the relations between them are given by appropriate
chain homotopies. Here is a more systematic way to approach the formal descrip-
tion of the theory [90], [94]. Write Autgr(M) for the group of graded symplectic
automorphisms, equipped with the Hamiltonian topology (in which only Hamiltonian
isotopies are continuous). Fixed point Floer cohomology can be viewed as a (1 + 1)-
dimensional TCFT (topological conformal field theory) with target space BAutgr(M),
which means a TCFT for surfaces equipped with graded Hamiltonian fibrations. In
this framework, we view a symplectic automorphism as giving rise to its mapping
torus

(3.2) Zf = R×M / (t, x) ∼ (t− 1, f(x)),
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which is an Autgr(M)-fibration over S1 = R/Z; the TCFT associates to that fibra-
tion a chain complex, which is CF ∗(f). The fibrewise action of f2 yields an isomor-
phism Zf1 → Zf2f1f

−1
2

, for which there is an associated chain map cf2,f1 inducing

the previously introduced conjugation maps. This for instance explains (3.1): even
though the fibrewise action of f on Zf itself is nontrivial, it can be deformed con-
tinuously to the identity through rotations of the base, and this gives rise to a chain
homotopy between cf,f and the identity. Similarly, cf,fm is chain homotopic to the
order m automorphism

(3.3) Zfm −→ Zfm , (t, x) #−→
(
t− 1

m , f(x)
)
.

The actual definition of fixed point Floer cohomology is a mild generalization of
the better-known Hamiltonian Floer cohomology. For simplicity, assume that f has
nondegenerate fixed points. The graded R-vector space CF ∗(f) is the direct sum of
one-dimensional spaces ox ∼= R associated to fixed points x. Each such point has an
absolute Conley-Zehnder index deg(x) ∈ Z, which determines the degree in which ox
is placed. Take a family Jf = (Jf,t) of almost complex structures, parametrized
by t ∈ R and satisfying

(3.4) Jf,t−1 = f∗(Jf,t).

The differential d : CF ∗(f)→ CF ∗+1(f) counts solutions of

(3.5) u : R× R −→M, u(s, t− 1) = f
(
u(s, t)

)
, ∂su+ Jf,t(u) ∂tu = 0

asymptotic to fixed points as s→ ±∞, with powers !E(u) given by their energies

E(u) =

∫

R×[0,1]
u∗ωM .

The technical trick is to avoid bubbling off of holomorphic spheres, which can be
done by a dimension-counting argument as in [47]. The outcome is independent
of the choice of almost complex structure up to quasi-isomorphism. These quasi-
isomorphisms are defined through continuation maps, and are “essentially canonical”
(which means unique up to chain homotopies, which can be extended to a system
of higher homotopies; this is what makes it possible to omit the almost complex
structures from a formal description as in Remark 3.2).

One special application is loop rotation. Suppose that we have chosen a fam-
ily Jf,+ of almost complex structures as in (3.4). Fix some constant t0 ∈ R, and
set Jf,−(t) = Jf,+(t− t0). If u+(s, t) is a solution of (3.5) for Jf,+, then u−(s, t) =
u+(s, t − t0) is a solution of the corresponding equation for Jf,−. This implies that
the associated differentials d± agree. Note that on the other hand, we have a quasi-
isomorphism (

CF ∗(f), d+
)
−→

(
CF ∗(f), d−

)

defined through continuation maps, which means solutions of

(3.6) u : R× R −→M, u(s, t− 1) = f
(
u(s, t)

)
, ∂su+ Jcont,s,t(u) ∂tu = 0
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where Jcont = (Jcont,s,t) is a two-parameter family with the same periodicity (3.4)
in t-direction, and such that Jcont,s,t = Jf,±,t for ±s ≫ 0. There is a parametrized
moduli problem which involves varying t0 in an interval, and this yields a chain
homotopy showing that the continuation map is homotopic to the previously defined
isomorphism of Floer chain complexes. Suppose for instance that we take t0 = 1, in
which case Jf,− = f∗Jf,+. Then, the argument we have just outlined explains (3.1).

Another part of the theory for which we’ll need an explicit expression is the struc-
ture of HF ∗(f) as a module over QH ∗(M), sometimes called the quantum cap product.
Fix a Morse function h on M (whenever we do that, we also tacitly choose a Rie-
mannian metric, which is used to form ∇h), and let CM ∗(h) be the resulting Morse
cochain complex. Suppose that we have fixed the almost complex structure Jf defin-
ing the Floer differential. Then, choose a family Jcap in a similar way as for Jcont, but
where now the behaviour on both ends s→ ±∞ is given by Jf . Choose also a family
hcap,s, s ∈ [0,∞), of functions (with their associated metrics), such that hcap,s = h
for s≫ 0. Then, consider pairs (u1, u2) as follows:

(3.7)

⎧
⎪⎨

⎪⎩

u1 : R× R −→M, u2 : [0,∞) −→M,

u1(s, t− 1) = f
(
u1(s, t)

)
, ∂su1 + Jcap,s,t(u1) ∂tu1 = 0,

du2/ds+∇hcap,s(u2) = 0, u1(0, 0) = u2(0).

u1 should be asymptotic to fixed points of f at both ends, and u2 is asymptotic to
a critical point of h. A count of the number of solutions of (3.7) yields a chain map
representing the quantum cap product [88]:

(3.8) CM ∗(h)⊗ CF ∗(f) −→ CF ∗(f).

Remark 3.3. — It is in fact possible to choose Jcap,s,t = Jf,t and hcap,s = h, and
this leads to the more familiar picture of “cutting down moduli spaces”. However, the
greater freedom allowed above is more natural, and also technically useful.

3.2. Clean intersections

For M as before (Assumption 3.1), we will consider Lagrangian submanifolds with
the following added properties and structure.

Assumption 3.4. — Each Lagrangian submanifold L is equipped with a grading
(and hence an orientation), a Spin structure, as well as a local coefficient system
with holonomy in (2.77). Moreover, it comes with a compatible almost complex
structure JL with the following property. The subset of points of L which lie either
on a non-constant JL-holomorphic sphere CP 1 → M , or on the boundary of a non-
constant JL-holomorphic disc (D, ∂D)→ (M,L), has dimension ≤ n− 3.
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Here, by a subset of dimension ≤ k, we mean one that is contained in the image
of a smooth map from a (possibly noncompact and disconnected) manifold of dimen-
sion ≤ k to L. Note that the assumption on JL-holomorphic spheres is a generic
one (since the image of all such spheres is generically a subset of dimension ≤ 2n− 4
in M), but that on discs is not (assuming regularity, the boundary points of such discs
would be of dimension ≤ n− 2 in L, while we require one more dimension). Hence, in
order to check Assumption 3.4 in applications, one needs to know a JL for which the
pseudo-holomorphic discs can be controlled very specifically. An exception to this is
the low-dimensional situation n ≤ 2, where the moduli spaces of pseudo-holomorphic
discs are generically empty.

The Floer cohomology of two submanifolds satisfying Assumption 3.4 is fairly
straightforward to define. To make later computations easier, we adopt a Morse-
Bott approach [86], [16], [12], [11], [52], [99]. A small amount of technicalities will
be included, but without any attempt at completeness or full justification. Take
(L0, L1), each satisfying Assumption 3.4, and which have clean intersection [86]. We
also assume that L0 ∩L1 is in general position with respect to the subsets appearing
in Assumption 3.4. Choose a Morse function hL0,L1 on L0∩L1. The Morse-Bott type
Floer cochain complex is a modification of the Morse cochain space of that function,
more precisely:

(3.9) CF ∗(L0, L1)
def
=
⊕

C

CM ∗−deg(C)
(
hL0,L1 | C ; Hom(ξ0, ξ1) | C ⊗ oC

)
,

where the direct sum is over connected components C ⊂ L0∩L1; the dimension offset
deg(C) ∈ Z is an absolute Maslov index, which depends on the gradings; ξk are the
given local systems on Lk, which we restrict to L0∩L1; and there is an additional local
system oC → C with holonomy±1, which depends on the Spin structures. Choose also
a family JL0,L1 = (JL0,L1,t) of almost complex structures, parametrized by t ∈ [0, 1],
and such that JL0,L1,0 = JL0 , JL0,L1,1 = JL1 . To define the Floer differential, one
primarily considers holomorphic strips, which are non-constant solutions of

(3.10)

{u : R× [0, 1] −→M,

u(R× {0}) ⊂ L0, u(R× {1}) ⊂ L1, ∂su+ JL0,L1,t(u)∂tu = 0,

which are asymptotic to points of L0 ∩ L1 as s → ±∞. However, these have to be
combined with Morse theory in an appropriate way, which we now set out to describe
(see the references above, especially [11], for other accounts of this).

Definition 3.5. — A pearly chain T is a decorated graph of the following kind.
First, the graph itself has only two-valent vertices, and two ends, one of which is
singled out (and called the root, the other being the leaf ). This determines an ori-
entation of the graph (from the root to the leaf ). Each edge e is decorated with a
closed interval Ie ⊂ R. This is unbounded below if and only if the edge contains the
root, and unbounded above if and only if contains the other end. In the bounded case
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we allow the length to become zero, meaning that Ie is a point (while still thinking
of e combinatorially as an edge). Finally, each vertex v is equipped with the Riemann
surface Sv = R× [0, 1].

Note that we allow one slightly exceptional case: namely, that T has a single edge
which is infinite in both directions, with Ie = R, and no vertices. It is convenient to
associate to T a topological space ST , obtained by compactifying each Sv to

Sv = Sv ∪ {s = ±∞}

(the closed unit disc), then identifying the added points with the endpoints of the
intervals Ie (compatibly with the orientations), and finally adding two more points at
infinity to the ends of the non-compact intervals. The two points added in the last
step will be denoted by z̄0 (corresponding to the root) and z̄1.

Definition 3.6. — A perturbation datum on a pearly chain is given by a fam-
ily he = (he,s) of functions on L0 ∩ L1 (with their associated choices of metrics),
parametrized by s ∈ Ie, for each edge e, subject to the following additional conditions:

◃ If e is the edge containing the root, then he,s = hL0,L1 for s≪ 0.

◃ If e contains the other end, he,s = hL0,L1 for s≫ 0.

◃ In the exceptional case Ie = R, we ask that he,s = hL0,L1 for all s.

Given such a perturbation datum and a choice of critical points x0, x1 of hL0,L1 ,
one considers continuous maps

ū : ST →M with ū(z̄k) = xk,

which satisfy the following equations.

For any vertex v, the restriction of ū to Sv = R× [0, 1] yields a smooth non-constant
map uv which solves (3.10). On the other hand, restriction to an interval Ie yields

(3.11) ue : Ie −→ L0 ∩ L1, due/ds+∇he,s(ue) = 0.

Two maps which are related by a translation of the uv components are considered to
be the same. Similarly, in the exceptional case Ie = R, we divide out by translation
acting on ue (which is then also required to be non-constant).

To define the differential on CF ∗(L0, L1), one has to choose a perturbation datum
on every pearly chain, depending smoothly on the lengths. There are additional
consistency conditions beyond those in Definition 3.6, which appear in the limit when
the length of some edge goes to infinity. We will not formulate these in detail (but see
[93] for the general idea, and [99] for a case closer to the one discussed here). One
then considers the moduli space of solutions ū of the equations above, varying over
all pearly chains. For generic choice of perturbation data, a count of points in the
zero-dimensional strata, with appropriate signs and energies, defines the coefficient of
(x0, x1) in the differential. Assumption 3.4 allows us to avoid bubbling of holomorphic
discs.
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Remark 3.7. — One technical point deserves mention. Given connected compo-
nents C0, C1 ⊂ L0 ∩ L1, let

M (C0, C1) = space of solutions of (3.10) with limits in those components.

Standard transversality theory shows that for generic choice of JL0,L1 , this is smooth
of dimension deg(C0) − deg(C1) + dim(C0) − 1. In particular, for C0 = C1 the di-
mension is dim(C0)− 1, and by a further application of transversality theory one can
achieve that the asymptotic evaluation map M (C0, C0) → C2

0 avoids the diagonal.
This and similar arguments show that for generic choice of almost complex structures,
the fibre products M (C0, C1)×C1 M (C1, C2) are smooth of the expected dimension.
In particular, for C0 = C2 that dimension is dim(C0)− 2, and one can again arrange
that the asymptotic evaluation map M (C0, C1)×C1 M (C1, C0)→ C2

0 avoids the diag-
onal. One can iterate that idea to higher fibre products. This is important since those
products appear in our moduli spaces when the length of the intervals becomes zero
(transversality for positive lengths is much simpler, since one can choose the families
of functions he essentially freely). Interested readers may want to consult [11, Sec-
tion 3.1.1], where an argument in the same spirit is used to address the corresponding
problem for monotone Lagrangian submanifolds.

Example 3.8. — Take a graded symplectic automorphism f of M . Suppose that we
have chosen a family Jf as in (3.4). Write M− for the same manifold but with the
sign of the symplectic form reversed. The diagonal ∆ ⊂M−×M is Lagrangian, and
admits a distinguished grading. Set

J∆ = (−Jf, 12 )× Jf, 12 .

Then, holomorphic discs (D, ∂D)→ (M−×M,∆) correspond bijectively to holomor-
phic spheres CP 1 →M . Hence, the space of points of ∆ lying on a non-constant disc
is generically of dimension ≤ 2n− 4 (and the same holds for holomorphic spheres, for
even more trivial reasons). Similarly, the graph Γ = Γf = {y = f(x)} is a graded
Lagrangian submanifold, which we can equip with

JΓ = (−Jf,1)× f∗(Jf,1) = (−Jf,1)× Jf,0.

A holomorphic strip (ux, uy) : R × [0, 1] −→ M− ×M which satisfies (3.10) (with
L0 = Γ, L1 = ∆) for the family of almost complex structures

(3.12) JΓ,∆,t = (−Jf,1− 1
2 t
)× Jf, 12 t

gives rise to a solution of (3.5). Namely, consider first

(3.13) u : R× [0, 1] −→M, u(s, t) =

{
uy(2s, 2t) t ≤ 1

2 ,

ux(2s, 2− 2t) t ≥ 1
2 .

This satisfies ∂su + Jf,t(u)∂tu = 0, and has the boundary periodicity condition
u(s, 0) = f(u(s, 1)). By the removable singularity theorem, it extends to a solution
of (3.5). The same machinery runs (a little more easily) in reverse, producing (ux, uy)
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from u. Assuming that M is Spin so as to make the Lagrangian submanifolds fit into
our framework (one can avoid this assumption by being more careful about the role of
relative Spin structures in Fukaya categories, see [104]), and taking f to have nonde-
generate fixed points for simplicity, it is then easy to show that HF ∗(Γ,∆) ∼= HF ∗(f).

3.3. The A∞-structure

We will now carry out the corresponding construction of the A∞-structure on
Lagrangian Floer cochains. Fix, once and for all, a set of Lagrangian submanifolds
in M . Each of them should satisfy Assumption 3.4; and any two should have clean
intersection. All Lagrangian submanifolds appearing in the following discussion are
assumed to be taken from this set. We suppose that for any two (L0, L1), the Floer
complex CF ∗(L0, L1) with its differential µ1

Fuk(M) has already been defined, which
in particular means that functions hL0,L1 and almost complex structures JL0,L1 have
been chosen. Again, we refer to the previously quoted literature, in particular [99],
and additionally to [37], [95].

Definition 3.9. — Fix some d ≥ 1. A pearly tree with d leaves is a decorated graph
of the following kind.

◃ The underlying graph T is a ribbon tree with (d+1) ends, one of which is singled
out (and called the root, the others being the leaves). Moreover, it is assumed that all
vertices v of T have valence |v| ≥ 2. We orient the tree from the root to the leaves.

◃ Each edge e is decorated with a closed interval Ie ⊂ R, with the same properties
as in Definition 3.5.

◃ Each vertex |v| is decorated with a Riemann surface Sv = D\{z̄v,0, . . . , z̄v,|v|−1},
where D is the closed unit disc and the z̄v,i are cyclically ordered distinct boundary
points.

For d = 1 this reduces to a pearly chain, up to the irrelevant issue of choosing
identifications between a two-punctured disc and R×[0, 1]. Note that for each vertex v,
there is a preferred correspondence between ends of Sv and edges adjacent to v,
which is compatible with the cyclic ordering and assigns the point at infinity z̄v,0
to the edge oriented towards v (we call this end of Sv its negative end, and the
others positive ends). Using that, we can construct a compact topological space ST ,
obtained by compactifying each Sv to Sv = D, identifying the endpoints of Ie with
the z̄v,k, and then adding points at infinity to the noncompact intervals. We denote
by z̄0, . . . , z̄d ∈ ST the points added in the last step, starting with the root and
proceeding in the ordering given by a planar embedding of T .

Let’s clear up few more book-keeping matters. Supposing that T is embedded
properly in R2, we say that it is a labeled pearly tree if each component of R2 \ T
comes with a Lagrangian submanifold (taken from our collection).
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One can in fact number these components by {0, . . . , d}, compatibly with the cyclic
ordering and in such a way that the root separates the first and last component.
Therefore, a labeling of T just corresponds to a choice of Lagrangian submanifolds
(L0, . . . , Ld). Suppose from now on that such a labeling has been fixed. For any edge e
we then have a pair (Lie,0 , Lie,1), corresponding to the components of R2 \ T lying
to the left (ie,1) and right (ie,0) with respect to the orientation of e. By definition,
0 ≤ ie,0 < ie,1 ≤ d. Similarly, for any vertex v, there is a canonical correspondence
between the boundary components of Sv and connected components of R2\T adjacent
to v. If we label the boundary components by ∂0Sv, . . . , ∂|v|−1Sv, so that the negative
end separates the first and last one, then this leads to having associated Lagrangian
submanifolds (Liv,0 , . . . , Liv,|v|−1

) for 0 ≤ iv,0 < · · · < iv,|v|−1 ≤ d.

Definition 3.10. — A perturbation datum on a labeled pearly tree consists of the
following data.

◃ For each edge e, we want to have a family of functions he = (he,s) on Lie,0 ∩Lie,1

parametrized by s ∈ Ie. If Ie is noncompact, we ask that outside a compact subset,
he,s = hLie,0 ,Lie,1

is one of the previously chosen functions (and in the exceptional

case Ie = R, we impose the same additional condition as in Definition 3.6).

◃ Next, take a vertex of valence |v| ≥ 3. We then want to choose strip-like ends
on Sv, which means proper holomorphic embeddings

(3.14) ϵv,0 : (−∞, 0]× [0, 1] −→ Sv, ϵv,1, . . . , ϵv,|v|−1 : [0,∞)× [0, 1] −→ Sv

giving preferred coordinates on its ends.

◃ Given those, we want to have a family (Jv,z) of compatible almost complex struc-
tures parametrized by z ∈ Sv. If z ∈ ∂kSv, then Jv,z = JLiv,k

should be one of the
structures that come from Assumption 3.4. Moreover, on the strip-like ends

(3.15) Jv,ϵv,k(s,t) =

{
JLiv,0 ,Liv,k

,t k = 0 and s≪ 0,

JLiv,k−1
,Liv,k

,t k > 0 and s≫ 0.

◃ Additionally, we want to have a 1-form Kv on Sv with values in the
space C∞(M,R) (which means a section of the pullback bundle T ∗Sv → Sv ×M),
supported in a compact subset of the interior of Sv.

Given such a perturbation datum and critical points x0 ∈ Crit(hL0,Ld
),

xk ∈ Crit(hLk−1,Lk
) (1 ≤ k ≤ d), we can define an associated moduli space.

Points are (isomorphism classes of) continuous maps ū : ST → M , with ū(z̄k) = xk,
which satisfy the following equations. Let Sv be the Riemann surface associated to a
vertex with |v| ≥ 3. Restriction of ū to that surface yields a smooth map

(3.16)

⎧
⎪⎨

⎪⎩

uv : Sv −→M,

uv(∂kSv) ⊂ Liv,k for k = 0, . . . , |v|− 1,

(duv −Xv,z(uv)) ◦ i = Jv,z(uv) ◦ (duv −Xv,z(uv)).
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Here, we have Kv,z : TSz → C∞(M,R) and consider the associated Hamiltonian
vector field, Xv,z : TSz → C∞(M,TM), then evaluate that at the point u(z). We
extend that to |v| = 2 by identifying Sv

∼= R× [0, 1], and equipping that with Jv,s,t =
JLiv,0 ,Liv,1 ,t

as well as Kv = 0, which of course results in (3.16) being an equation of

the form (3.10) (in that case we again exclude constant solutions). Next, let Ie be the
interval associated to an edge. Restriction of ū to it yields a map

(3.17) ue : Ie −→ Lie,0 ∩ Lie,1 , due/ds+∇he,s(ue) = 0.

To define µd
Fuk(M), one has to choose perturbation data for all decorated pearly trees,

depending smoothly on the moduli and lengths, and related by other consistency
conditions.

Remark 3.11. — The addition of an inhomogeneous term Xv to (3.16) is necessary
to achieve transversality in general. Concretely, the problem with setting Kv = 0 is
that then, constant maps at points of Lv,iv,0∩· · ·∩Lv,iv,|v|−1

would always be solutions,
irrespective of the choice of Jv. The dimension of the moduli space of constant maps
is dim(Liv,0 ∩ · · · ∩ Liv,|v|−1

) + (|v|− 3), whereas its expected dimension is

dim(Liv,0 ∩ Liv,|v|−1
) + deg(Liv,0 ∩ Liv,|v|−1

)

− deg(Liv,0 ∩ Liv,1)− · · ·− deg(Liv,|v|−2
∩ Liv,|v|−1

) +
(
|v|− 3

)
.

Here, the dimensions and degrees really refer to the connected components to which
our constant map belongs. One can show that the moduli space is regular if and only
if those two numbers agree.

Example 3.12. — Consider a single L, and assume that there are no nonconstant
JL-holomorphic discs with boundary on L, and no non-constant JL-holomorphic
spheres intersecting L. To define the A∞-structure on CF ∗(L,L), one can take all
the almost complex structures to be JL, and all inhomogeneous terms to be zero. The
only solutions of (3.16) are constant maps at points of L, which are regular (Remark
3.11). The only contribution to 0-dimensional moduli spaces comes from trees T
with only trivalent vertices. Transversality can be achieved by varying the functions,
which recovers a version of the picture in [35]. In particular, if ξ is the local coefficient
system on L, we have an isomorphism of rings

(3.18) HF ∗(L,L) ∼= H∗(L; Hom(ξ, ξ)).

One can realize this more canonically by an open string analogue of the Piunikhin-
Salamon-Schwarz map [5].

3.4. The open-closed string map

We now want to give a similar description of the open-closed string map

(3.19) QH ∗(M) −→ HH ∗
(
Fuk(M),Fuk(M)

)
,
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or at least the part that lands in the subcategory consisting of Lagrangian subman-
ifolds in our fixed collection. Even though it would be possible (and maybe more
in tune with our general developments) to represent QH ∗(M) = H∗(M ;R) Morse-
theoretically, we prefer the simpler picture that comes from thinking of cohomology
classes as cycles. More specifically, fix a co-oriented submanifold G ⊂M , and consider
the Poincaré dual class [G] ∈ H∗(M ;Z).

Definition 3.13. — A pointed pearly tree with d ≥ 0 leaves is a decorated graph of
the following kind.
◃ The underlying graph T is a ribbon tree with (d + 1) ends, again with a distin-

guished root.
◃ Each edge e is decorated with a closed interval Ie ⊂ R, and each vertex |v| with

a Riemann surface Sv = D \ {z̄v,0, . . . , z̄v,|v|−1}, as before.

The new ingredient is that for exactly one vertex v∗, the surface Sv∗ carries an ad-
ditional interior marked point z∗. Moreover, this particular vertex can be univalent,
whereas for all others the condition |v| ≥ 2 still applies.

We define labelings, and other book-keeping devices, as before.

Definition 3.14. — A perturbation datum on a labeled pointed pearly tree consists
of the following data.
◃ For each edge e, we want to have a family of functions he = (he,s) on Lie,0 ∩Lie,1

as usual.
◃ Next, take a vertex, which either satisfies |v| ≥ 3 or is equal to v∗. We then

want to choose strip-like ends, a family Jv of almost complex structures, and a
1-form Kv as before.

Given this, we can define an associated moduli space which combines gradient flow
lines and perturbed pseudo-holomorphic maps, where the component uv∗ additionally
satisfies uv∗(z∗) ∈ G. Counting solutions of this moduli problem yields a Hochschild
cocycle g which represents the image of [G] under the open-closed string map.

Example 3.15. — Take a single Lagrangian submanifold L as in Example 3.12. As-
sume that G is transverse to L, and consider only the part of g involving only L,
which is an element of the Hochschild complex of the A∞-algebra CF ∗(L,L). Again,
one can take all almost complex structures equal to JL, and all inhomogeneous terms
to be zero, so g can be expressed in purely Morse-theoretic terms. In particular, the
linear part g0L ∈ CF ∗(L,L) = CM ∗(hL,L) is just given by counting gradient half-lines
which start in G∩L. This is the Morse-theoretic representative for [G] |L ∈ H∗(L;R).
As another consequence of the same observation, if L∩G = ∅, all the gdL,...,L vanish.

Example 3.16. — We can generalize the last-mentioned observation as follows. Sup-
pose that G has (real) codimension 1. Suppose also that every Lagrangian subman-
ifold L in our collection satisfies the condition from Example 3.12, and additionally
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is disjoint from G. Then, for a suitable choice, g is identically zero. Namely, given a
pointed pearly tree with d > 0 ends, one can forget z∗ and then collapse components
if necessary, so as to obtain an ordinary pearly tree. This allows one to lift the pertur-
bation data used to define the A∞-structures to pointed pearly trees, giving a picture
whereby g is obtained by cutting down moduli spaces by asking that the holomorphic
discs should go through G. However, because of the codimension and intersection
assumptions, this can never reduce the dimension to zero unless the moduli space is
empty.

3.5. Abelian coverings

The following material is not new (compare [89]) or difficult, but we will need the
statements in a specific form for later reference. The geometric situation is that we
have a finite covering of symplectic manifolds

(3.20) z : M̃ −→M,

with abelian covering group Γ. Both manifolds are supposed to come with trivial-
izations of their anticanonical bundles, related in the obvious way. We consider La-
grangian submanifolds L̃ ⊂ M̃ , equipped with additional structures which turn them
into objects of the Fukaya category, and also subject to the following conditions:

(3.21)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z |L̃ is itself a covering (for some subgroup of Γ) of a Lagrangian
submanifold L = z(L̃) ⊂ M . The grading of L̃ is then automatically
lifted from a grading of L. We impose the additional requirements
that the Spin structure on L̃ should be the lift of one on L, and the
same for the almost complex structure JL̃ .

As part of the data, L̃ carries a local system ξ̃, but we do not impose any additional
conditions on that. Let F̃ ⊂ Fuk(M̃) be the full A∞-subcategory whose objects are
Lagrangian submanifolds satisfying (3.21). When defining the A∞-structure, one can
similarly lift all choices of Morse functions, almost complex structures, and inhomoge-
neous terms from M . The result is that F̃ comes with a strict action of Γ by covering
transformations, as well as with a pushforward functor Z : F̃ → Fuk(M), which takes
L̃ to Z(L̃) = L with the local coefficient system ξ = z∗(ξ̃). The behaviour of this
functor can be fully described in terms of the Γ-action. We have

(3.22) CF ∗
(
Z(L̃0), Z(L̃1)

)
=
⊕

γ∈Γ

CF ∗
(
L̃0, γ(L̃1)

)
,
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and the A∞-structure maps µd
Fuk(M) are direct sums of

CF ∗
(
L̃d−1, γd(L̃d)

)
⊗ · · ·⊗ CF ∗

(
L̃1, γ2(L̃ 2)

)
⊗ CF ∗

(
L̃0, γ1(L̃ 1)

)
(3.23)

∼= CF ∗
(
γ1 . . . γd−1(L̃d−1), γ1 . . . γd(L̃d)

)

⊗ · · ·⊗ CF ∗
(
γ1(L̃1), γ1γ2(L̃ 2)

)
⊗ CF ∗

(
L̃0, γ1(L̃ 1)

)

µd

F̃−−−−−→ CF ∗
(
L̃0, γ1 · · · γd(L̃d)

)
.

Example 3.17. — Suppose that L̃ → L is a covering with group G ⊂ Γ. There
is an obvious isomorphism of local systems Hom(z∗ξ̃, z∗ξ̃) ∼= z∗ξ̃ ⊗Z Z[G], hence
HF ∗(Z(L̃), Z(L̃)) ∼= H∗(L; Hom(z∗ξ̃, z∗ξ̃)) ∼= H∗(L̃ ; ξ̃) ⊗Z Z[G]. This describes the
decomposition induced by (3.22) (the summands for elements of Γ \G are zero).

This has implications for the open-closed string map as well. Let F̃ be the diagonal
bimodule of Fuk(M̃). We can twist it by applying γ ∈ Γ to the left (but not the
right) actions, thereby obtaining another bimodule F̃ γ , which can be thought of as
the graph of γ−1. On the other hand, take the diagonal bimodule of Fuk(M) and pull
it back by Z (on both sides) to get a bimodule over Fuk(M̃). As a consequence of
the observations above, we have an isomorphism

(3.24) Z∗Fuk(M) ∼=
⊕

γ∈Γ

F̃ γ ,

and the canonical bimodule map F̃ → Z∗Fuk(M) is just the inclusion of the γ = e
summand. The open-closed string maps for M and M̃ (the latter restricted to the
category F̃ ) and the maps (1.14) associated to the functor Z fit into a commutative
diagram

(3.25)

QH ∗(M̃) !! HH ∗(Fuk(M̃),Fuk(M̃))

Z∗
""

HH ∗(Fuk(M̃), Z∗Fuk(M))

QH ∗(M) !!

z∗

##

HH ∗(Fuk(M),Fuk(M)),

Z∗
##

where the right column is as in (1.14) (with an unfortunate reversal of notation).

Addendum 3.18. — There is also a functor in opposite direction, which is better-
behaved since it is defined on the whole Fukaya category, Fuk(M)→ Fuk(M̃). It maps
any object L to its entire primage. As for morphisms, the Floer cochain complex
CF ∗(z−1(L0), z−1(L1)) comes with a natural action of Γ, and the invariant part is
the image of CF ∗(L0, L1) under pullback.
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3.6. Split-generators

Let O ⊂ Aperf be a full subcategory. One says that the objects of O split-generate
Aperf if the following holds: any object of Aperf up to quasi-isomorphism can be con-
structed by starting with objects of O and applying the following operations: shifts;
mapping cones; and taking direct summands with respect to idempotent endomor-
phisms. We will quote two abstract split-generation criteria for Fukaya categories
from the literature, the second stronger than the first. Both involve Hochschild co-
homology and the open-closed string map. More precisely, given O ⊂ Fuk(M), we
consider

(3.26) QH ∗(M) !! HH ∗
(
Fuk(M),Fuk(M)

)
!! HH ∗(O,O).

Theorem 3.19 (cf. [4, Thm 7.2]). — Suppose that O is smooth [59, Def. 8.1.12],
and that (3.26) is an isomorphism. Then the objects in O split-generate Fuk(M)perf.

The next result is an analogue of [2] for compact manifolds, to appear in [3]; see
also [98, Section 13] for the special case of monotone symplectic manifolds.

Theorem 3.20 (Abouzaid-Fukaya-Oh-Ohta-Ono). — Suppose that there is a linear
map HH 2n(O,O) → R whose composition with (3.26) yields the integration map
QH 2n(M)→ R. Then the objects in O split-generate Fuk(M)perf .

Because QH 2n(M) is one-dimensional, the condition in Theorem 3.20 is just
that (3.26) should be nonzero in degree 2n, but we prefer the formulation above,
which extends to non-Calabi-Yau cases and more accurately reflects the core of
the argument. Note that for a general M , there is no reason to suppose that the
conditions of either theorem above would hold even for O = Fuk(M) (no actual
counterexamples are known, but there are suggestions coming from mirror symmetry
for non-algebraic varieties). However, if they do hold for one set of split-generating
objects, then the same is true for any other such set.

Example 3.21. — Take for instance the two-torus T . As discussed in [4], two curves
intersecting in a point satisfy the criterion of Theorem 3.19, hence split-generate the
Fukaya category. As already pointed out in Remark 2.37, it then follows that the
same holds for the two curves from Figure 1, page 57.

Example 3.22. — Let K ⊂ CP 3 be a smooth quartic surface, equipped with the
restriction of the Fubini-Study form. Classical Picard-Lefschetz theory shows that
the orthogonal complement [ωK ]⊥ ⊂ H2(K;Q) is spanned by Lagrangian spheres.
For completeness, we describe the argument briefly: let (Kz)z∈C∪{∞} be a Lefschetz
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pencil of quartic surfaces, with K∞ = K. We have

(3.27) H∗(CP
3 \K;Q) ∼= H6−∗(CP 3,K;Q) ∼=

⎧
⎪⎨

⎪⎩

Q ∗ = 0,

[ωK ]⊥ ∗ = 3,

0 in other degrees.

The base of the pencil, C = K0 ∩ K∞, is a smooth Riemann surface of genus 33
representing a multiple of [ωK ], and we have

(3.28) H∗(K \C) ∼= H4−∗(K,C) ∼=

⎧
⎪⎨

⎪⎩

Q ∗ = 0,

[ωK ]⊥ ⊕H1(C;Q) ∗ = 2,

0 in other degrees.

In particular, the image of H2(K \ C;Q) → H2(K;Q) is [ωK ]⊥. Up to homotopy
equivalence, CP 3 \ K is obtained from K \ C by attaching 3-handles along a col-
lection of Lagrangian spheres in K \ C (a basis of vanishing cycles of the pencil:
there are 108 of them, as an Euler characteristic computation shows). The fact
that H2 (CP3 \K ;Q) = 0 shows that the homology classes of these spheres span all
of H2(K \ B;Q). Hence, in K the same spheres span [ωK ]⊥. Choose Lagrangian
spheres (L1, . . . , L21) whose homology classes form a basis for [ωK ]⊥.

Homological mirror symmetry [89] says that Fuk(K)perf is quasi-equivalent to
DbCoh(X), where the mirror X is a smooth K3 surface over R. We have

HH 4(X,X) ∼= H2(X,K−1
X ) ∼= R,

and the product HH 2(X,X)⊗2 → HH 4(X,X) is a nondegenerate quadratic form
(nondegeneracy is a consequence of Serre duality, thinking of HH ∗(X,X) ∼=
Ext∗X×X(O∆,O∆) as the endomorphism ring of the diagonal). The Hochschild-
Kostant-Rosenberg theorem implies that

dimHH 2(X,X) = dim
(
H2(X,OX)⊕H1(X,TX)⊕H0(X,K−1

X )
)

(3.29)

= 22 = dimH2(K).

By combining these two facts, one sees that any isotropic subspace of HH 2(X,X) is
at most of dimension 11. The same must then hold for the Hochschild cohomology
of Fuk(K).

Take the collection of spheres introduced above, and consider

H2(K;R) = QH 2(K) −→ HH 2
(
Fuk(K),Fuk(K)

)
(3.30)

−→
⊕

i

HF 2(Li, Li) ∼=
⊕

i

H2(Li;R),

where the first arrow is the open-closed string map, and the second one the standard
map from Hochschild cohomology to the endomorphism ring of any object. Because of
the absence of holomorphic discs, (3.30) just consists of the ordinary restriction maps
on cohomology, hence is surjective (compare Example 3.15). This shows that the open-
closed string map in degree 2 is of rank 21 or 22; therefore, its image is not an isotropic
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subspace. Since the open-closed string map is a ring homomorphism, it follows that
QH 4(K) → HH 4(Fuk(K),Fuk(K)) must be nonzero, hence an isomorphism. This
implies that for any set of split-generating objects, the requirement of Theorem 3.20
is satisfied.

In fact, our previous argument shows that the kernel of the open-closed string map
in degree 2 is either zero or else spanned by [ωK ]. But the second case is impossible
since [ωK ]2 is nontrivial, so the open-closed string map must be an isomorphism.
Since DbCoh(X) is smooth, so is Fuk(K), and the assumption of Theorem 3.19 holds
as well, allowing one to avoid Theorem 3.20.

Example 3.23. — Again following [4], we point out that this strategy extends well
to products. For instance, take M = T ×K to be the product of the two-torus and
the quartic surface. Consider the A∞-subcategory O ⊂ Fuk(M) of objects which
are themselves products. It turns out that O is quasi-isomorphic to the A∞-tensor
product Fuk(T ) ⊗ Fuk(K). We will not enter into a full discussion of this fact here,
but there are several strategies of proof:

◃ A direct proof, which involves deforming the diagonals for the associahedra to
the boundary (matching the definition of the tensor product of A∞-structures, see [68]
and references therein).

◃ Using quilted Floer cohomology [106], one can define an A∞-functor

(3.31) Fuk(M) −→
(
Fuk(T−),Fuk(K)

)mod
.

One compares this to the image of the (algebraically defined) Yoneda-type embedding

(3.32) Fuk(T )⊗ Fuk(K) ∼= Fuk(T−)opp ⊗ Fuk(K) −→
(
Fuk(T−),Fuk(K)

)mod
.

The outcome is that the restriction of (3.31) to O is a cohomologically full and faithful
A∞-functor, whose image is quasi-equivalent to Fuk(T )⊗ Fuk(K).

◃ The version closest to [4] would replace (3.31) with

(3.33) Fuk(M) −→ fun
(
Fuk(T−),Fuk#(K)

)

where fun(. , .) is the A∞-category of A∞-functors, and Fuk#(K) the extended Fukaya
category [71]. The rest of the argument would be structured as before. If one
wishes, one can avoid A∞-tensor products, and instead work with suitable full A∞-
subcategories of the categories on the right hand sides of (3.31) or (3.33) (which are
quasi-equivalent to the A∞-tensor product; the difference is purely one of language).

As a consequence of this computation, O is again smooth; moreover, the associ-
ated open-closed string map is an isomorphism, which shows that O split-generates
Fuk(M). This can be used to prove homological mirror symmetry for the product (in
the parallel case of T × T , this is the main result of [4]).
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3.7. Products of Dehn twists

We will now concentrate on constructing specific examples of automorphisms f
where the Z/m-action on HF ∗(fm) is nontrivial. The symplectic manifold M should
still satisfy Assumption 3.1. For technical simplicity, we assume that it is a four-
manifold (n = 2; higher-dimensional generalizations would have to use more advanced
methods, as in [78]). Take Lagrangian spheres L1, . . . , Lr ⊂ M , equipped with an
arbitrary choice of grading, the unique Spin structure, and the trivial local coefficient
system. Because of our dimensional restriction, generically chosen almost complex
structures then satisfy Assumption 3.1. Consider the composition of Dehn twists

(3.34) f = τL1τL2 · · · τLr ,

which is naturally a graded symplectic automorphism of M .

Proposition 3.24 (Perutz). — There is a spectral sequence converging to HF ∗(f),
with

(3.35) Ep∗
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

QH ∗(M) ∼= H∗(M ;R) p = 0,
⊕

iHF
∗(Li, Li) ∼=

⊕
i H

∗(Li;R) p = 1,
⊕

i1>···>ip
HF ∗(Lip , Li1)⊗HF ∗(Lip−1 , Lip) 1 < p ≤ r,

⊗ · · ·⊗ HF ∗(Li1 , Li2)[n(p− 1)],

0 otherwise.

In fact, Perutz’s work [82] yields an explicit chain complex which computes HF ∗(f)
in terms of the Fukaya A∞-structure and open-closed string map. An appropriate
filtration of that chain complex then gives rise to (3.35) (for which an alternative
approach is due to Ma’u [70]). One can rewrite the nontrivial columns Ep∗

1 , p > 0, in
a way that highlights the cyclic symmetry:

Ep∗
1 =

( ⊕

i1,...,ip

HF ∗(Lip , Li1)⊗HF ∗(Lip−1 , Lip)(3.36)

⊗ · · ·⊗HF ∗(Li1 , Li2)
)Z/p[

n(p− 1)
]
,

where the direct sum is over cyclically decreasingly ordered p-tuples, and Z/p acts
by cyclically permuting these p-tuples (with additional signs). This point of view is
particularly convenient for considering conjugation invariance. Namely, the spectral
sequences computing HF ∗(f) and HF ∗(τLrfτ

−1
Lr

) are related by an automorphism,
which converges to CτLr ,f . On the E1 level, that automorphism is just the obvious
relation between the expressions (3.36).

The class of examples of interest to us is where r = 2m and L1 = L3 = · · · = L2m−1,
L2 = L4 = · · · = L2m, so that f = (τL1τL2)

m. Additionally, we ask that:

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

87

87



82 CHAPTER 3. SYMPLECTIC AUTOMORPHISMS

Assumption 3.25. — HF ∗(L1, L2) is concentrated in degrees [ 12n − k, 1
2n + k] for

some k ≥ 1
2n. Moreover, both HFn/2−k(L1, L2) and HFn/2+k(L1, L2) are nonzero,

and at least one of those spaces has dimension > 1.

The argument outlined above shows how the conjugation isomorphisms

(3.37)

{CτL2 ,f
: HF ∗(f) −→ HF ∗(τL2fτ

−1
L2

),

CτL1 ,τL2fτ
−1
L2

: HF ∗(τL2fτ
−1
L2

) −→ HF∗(τL1τL2fτ
−1
L2
τ−1
L1

) = HF ∗(f)

act on the E1 pages of the respective spectral sequences. The composition of these
two isomorphisms defines the standard Z/m-action. In particular, this acts on the
last column

E2m,∗
1 = HF ∗(L1, L2m)⊗HF ∗(L2, L1)(3.38)

⊗ · · ·⊗HF ∗(L2m, L2m−1)
[
n(2m− 1)

]

∼=
(
HF ∗(L1, L2)⊗HF ∗(L2, L1)

)⊗m[
n(2m− 1)

]

by cyclically permuting the m tensor factors, up to (degree-dependent) signs. The
signs could in principle be determined by a more careful argument, but they turn out
to be irrelevant for our purpose.

Lemma 3.26. — HF 2m(1−k−n/2)+n((τL1τL2)
m) contains a copy of the regular repre-

sentation of Z/m, for any m ≥ 1.

Proof. — The E0∗
1 column contributes only in total degrees ≥ 0, the E1∗

1 columns
contribute in total degrees ≥ 1, and the Ep∗

1 (1 < p < 2m) columns contributes in
total degrees ≥ p(1− k − 1

2n) + n. This means that the following piece, whose total
degree is 2m(1− k − 1

2n) + n, survives to E∞:

(3.39)
(
HF

1
2n−k(L1, L2)⊗HF

1
2n−k(L2, L1)

)⊗m ⊂ E
2m,2m(−k− 1

2n)+n
1 .

By assumption, HF
1
2n−k(L1, L2) ⊗ HF

1
2n−k(L2, L1) is at least two-dimensional.

If a1, a2 are linearly independent elements in it, then a1 ⊗ a⊗m−1
2 and its images

under the Z/m-action are all linearly independent elements of (3.39), which proves
the claim.

3.8. The quartic surface

Before continuing on to our concrete example, we have to agree on criteria for a
symplectic automorphism to be trivial from a topological viewpoint.

Definition 3.27. — Let f be a symplectic automorphism of a closed symplectic man-
ifold M . We say that f is undistinguishable from the identity by topological means
if there is an isotopy from the identity to f inside the diffeomorphism group, with the
following additional properties.
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◃ First, by starting with Df and deforming it along the isotopy, we get an auto-
morphism of the symplectic vector bundle TM (taking each fibre to itself), and we ask
that this should be homotopic to the identity in the group of such automorphisms.

◃ Secondly, integrating ωM along the isotopy yields a flux-type class in H1(M ;R),
and we also require that this should vanish.

For the rest of this discussion, we concentrate on the case of smooth quartic surface,
as in Example 3.22. There are quartic surfaces with a rational (Kleinian or du Val)
singularity of type (A3). By smoothing out such a singularity and using Moser’s
theorem, we see that K contains an (A3) chain of Lagrangian spheres, which we
denote by (V1, V2, V3). Consider the spheres

(3.40) L1 = τV1τV3(V2) = τV3τV1(V2), L2 = τ−1
V1
τ−1
V3

(V2) = τ−1
V3
τ−1
V1

(V2).

Figure 3 shows a schematic picture of these Lagrangian submanifolds, in the style
of [57].

Figure 3

Lemma 3.28. — τL1τL2 is indistinguishable from the identity by topological means.

Proof. — For any Lagrangian two-sphere, the Dehn twist and its inverse are isotopic
as diffeomorphisms, hence so are τL1 = τV1τV3τV2τ

−1
V3
τ−1
V1

and τ−1
L2

= τ−1
V1
τ−1
V3
τ−1
V2
τV3τV1 .

From an analysis of the simultaneous resolution of the (A3) singularity as in [57, 94],
one obtains the following stronger fragility statement. Take a closed two-form β such
that

∫
Vk
β ̸= 0 for k = 1, 2, 3. Then, there is a family of diffeomorphisms fr, defined

for small r ≥ 0 and starting with f0 = f , such that:

◃ fr preserves ωK + rβ;

◃ for any r > 0, fr is isotopic to the identity in the symplectic automorphism group
of (K,ωK+rβ). Moreover, the isotopies can be chosen to depend smoothly on r.

Using such an isotopy from fr to the identity, one shows that the second part of
Definition 3.27 holds, and the third part is trivial since H1(K;R) = 0.

A straightforward computation using the relation between Dehn twists and alge-
braic twists [93, Cor. 17.17] shows that (for suitable choices of gradings)

(3.41) HF ∗(L1, L2) =

⎧
⎪⎪⎨

⎪⎪⎩

R2 ∗ = 0,

R ∗ = 1, 2,

0 otherwise.
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This yields a concrete example where Lemma 3.26 applies. In particular, one sees that
τL1τL2 has infinite order up to symplectic isotopy (a known result, compare [97]).
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CHAPTER 4

SYMPLECTIC MAPPING TORI

The symplectic mapping torus construction provides a way of obtaining interesting
examples of symplectic manifolds from automorphisms. A complete description of the
Fukaya categories of symplectic mapping tori is beyond the aim of this paper (but
see Section 4.6 for some conjectural discussion). Instead, we focus on a particular
class of mapping tori, and consider only the most obvious Lagrangian submanifolds,
which are fibered over circles in the (two-torus) base. For those submanifolds, ad hoc
methods parallel to those in Section 2.6 are sufficient to carry out the necessary Floer
cohomology computations. Under suitable additional assumptions, this will allow us
to show that the Lagrangian isotopy obtained by moving the circle around the base
can be encoded into a perfect family.

Concretely, the starting point for our considerations will always be a symplectic K3
surfaceK, by which we mean a closed symplectic four-manifold diffeomorphic to a K3
surface. Recall that this is simply connected, admits a perfect Morse function (one
without critical points of index 1 or 3) [46], and is Spin. The symplectic structure
necessarily has c1(K) = 0 [102], and we choose a trivialization of the anticanoni-
cal line bundle in the unique homotopy class. We also suppose that a symplectic
automorphism f ∈ Aut(K) is given which has nondegenerate fixed points as well
as nondegenerate 2-periodic points, and which is indistinguishable from the identity
by topological means (Definition 3.27). As part of the last-mentioned condition, f is
isotopic to the identity in Diff(K), and we fix such an isotopy, as well as a grading of f .

4.1. Basic geometry

Consider K− ×K, where the sign of the symplectic form is reversed on the first
factor, as in Example 3.8. The symplectic mapping torus of f × f ∈ Aut(K− ×K),
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which we denote by E = Ef , is

(4.1)

{E = R× R×K ×K / (p, q, x, y) ∼ (p, q − 1, x, y) ∼ (p− 1, q, f(x), f(y)),

ωE = dp ∧ dq − ωK(x) + ωK(y).

By definition, projection π : E → T = R2/Z2 is a locally trivial Hamiltonian fibration,
with monodromy f × f in p-direction, and trivial monodromy in q-direction. Our
assumptions on f ensure that E is diffeomorphic to T × K × K, in a way which
is compatible with the homotopy classes of almost complex structures, and which
maps [ωE ] to [dp∧ dq]×1+1× [ωK−×K ] ∈ H2(T ×K×K;R). Moreover, the grading
of f yields a trivialization of the anticanonical line bundle of E.

Remark 4.1. — As a symplectic fibration over a surface, E is an object of the TCFT
with target space K− × K discussed in Remark 3.2. Hence, there is an associated
numerical invariant (a priori an element of R, but which will actually turn out to be
an integer) counting its pseudo-holomorphic sections. This can be computed in two
different ways. On one hand, in terms of (3.2), E is obtained by gluing together the
two boundary components of Zf×f × [0, 1] in the trivial way, which means that the
numerical invariant is the Euler characteristic of HF ∗(f ×f). On the other hand, one
can think it as [0, 1]× S1 ×K− ×K with both ends glued together using a twist by
f × f , in which case the numerical invariant is the supertrace of the action of f × f
on H∗(K− ×K;R). Both ways of course yield the same result, namely the square of
the Lefschetz fixed point number of f .

Consider the following Lagrangian submanifolds in E:

(4.2)

⎧
⎪⎨

⎪⎩

∆1 = {q = 0, y = x},
∆2 = {q = −2p, y = x},
∆3,u = {p = m0, y = x}.

In the last line, the parameter u ∈ R× is written as u = !m0a with a ∈ GL0(1, R). All
Lagrangian submanifolds in (4.2) fibre over loops in T , with fibre K. These fibrations
are actually trivial (tautologically so for ∆3,u, and by using the isotopy f ≃ id in the
other cases). In particular, we can choose the product of the trivial Spin structures on
the underlying loop and the unique Spin structure on K. Moreover, our Lagrangian
submanifolds also admit gradings (we make a particular choice of gradings, which will
become clear in the Floer cohomology formulas below). On ∆3,u we use the local
system ξu, pulled back from the underlying loop {m0} × S1 ⊂ T , which has fibre R
and holonomy a in positive q-direction. The other two submanifolds carry trivial local
systems. The last ingredient needed in order to turn them into objects of the Fukaya
category is a choice of almost complex structures as in Assumption 3.4. Choose a
one-parameter family (Jf,t) of almost complex structures on K as in (3.4), with the
additional (generic, for dimension reasons) property that there are no non-constant
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Jf,t-holomorphic spheres for any t. We will use the same almost complex structure
on E for all three Lagrangian submanifolds (4.2):

(4.3) (J∆)p,q,x,y = i× (−Jf,p+ 1
2 ,x

)× Jf,p+ 1
2 ,y

.

Projection to T is (J∆, i)-holomorphic, hence there are no non-constant J∆-
holomorphic spheres. Similarly,

Lemma 4.2. — There are no non-constant J∆-holomorphic discs with boundary on
any one of the submanifolds (4.2).

Proof. — By projecting to T , one sees that any disc must be contained in a fibre.
There, it is a map (D, ∂D) → K ×K which is holomorphic for (−Jf,p+ 1

2
) × Jf,p+ 1

2
,

and has boundary on the diagonal. By the doubling trick already mentioned in
Example 3.8, such discs correspond to Jf,p+ 1

2
-holomorphic spheres in K.

As a consequence, the Floer cohomology of each of our submanifolds with itself
is canonically isomorphic to its ordinary cohomology. The other Floer cohomology
groups are:

HF ∗(∆1,∆2) ∼= H∗(K;R)⊕H∗(K;R),(4.4)

HF ∗(∆2,∆3,u) ∼= (ξu)(m0,−2m0) ⊗H∗(K;R),(4.5)

HF ∗(∆1,∆3,u) ∼= (ξu)(m0,0) ⊗H∗(K;R).(4.6)

Dually, one can write

HF ∗(∆2,∆1) ∼= H∗(K;R)[−1]⊕H∗(K;R)[−1],(4.7)

HF ∗(∆3,u,∆2) ∼= (ξu)
∨

(m0,−2m0)
⊗H∗(K;R)[−1],(4.8)

HF ∗(∆3,u,∆1) ∼= (ξu)
∨

(m0,0)
⊗H∗(K;R)[−1].(4.9)

The proofs of these isomorphisms are straightforward in the Morse-Bott formalism
from Section 3.2. For instance, consider (4.4). One takes

(4.10) J∆1,∆2,t = J∆

to be the constant family, in which case the same argument as in Lemma 4.2 shows
that there are no non-constant holomorphic strips, immediately reducing the situation
to ordinary Morse theory on ∆1 ∩∆2 (to be precise, one has to check that the local
coefficient system oC on each component C ⊂ ∆1∩∆2 is trivial; but that is clear since
locally near C, the geometry splits as a product of base and fibre). The remaining
isomorphisms are proved in exactly the same way.

Remark 4.3. — Generalizing (4.3), consider almost complex structures on E of the
form

(4.11) (J∆,θ)p,q,x,y = i× (−Jf,θ(p,q),x)× Jf,θ(p,q),y,

where θ : R × S1 → R satisfies θ(p + 1, q) = θ(p, q) + 1. If we take any one of the
Lagrangian submanifolds introduced above and equip it with some Jθ, it becomes an
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object of Fuk(E). Different choices of θ lead to canonically quasi-isomorphic objects:
one sees this by constructing Piunikhin-Salamon-Schwarz (PSS) elements in Floer
cohomology [89, Lemma 8.11]. The key ingredient is the fact that the space of
functions θ parametrizing the almost complex structure (4.11) is connected.

For concreteness, consider the pair (∆1,∆2) and, instead of (4.10), equip it with
the constant family of almost complex structures

(4.12) J∆1,∆2,θ,t = J∆,θ.

This is leads to a Floer cohomology group which we temporarily denote by
HF ∗(∆1,∆2)θ. There are no nontrivial holomorphic strips for (4.12), hence the
Morse-Bott approach yields an isomorphism parallel to (4.4):

(4.13) HF ∗(∆1,∆2)θ ∼= H∗(K;R)⊕H∗(K;R).

On the other hand, the previous PSS argument yields a canonical isomorphism
HF ∗(∆1,∆2)θ ∼= HF ∗(∆1,∆2). Moreover, a parametrized moduli space argument
shows that this isomorphism, (4.4), and (4.13) form a commutative diagram. In a
little less precise language, one can summarize this by saying that the isomor-
phism (4.13) is independent of θ. The same applies to the other Floer cohomology
groups computed above.

Some of the products on Floer cohomology are also elementary, meaning that they
involve no actual count of nontrivial holomorphic maps. For instance, consider

(4.14)

{HF ∗(∆2,∆2)⊗HF ∗(∆1,∆2) −→ HF ∗(∆1,∆2),

HF ∗(∆1,∆1)⊗HF ∗(∆1,∆2) −→ HF ∗(∆1,∆2).

Each of these turns out to be the action ofH∗(∆k;R) onH∗(∆1∩∆2;R) by restriction
and cup-product. The proof again uses a constant family of almost complex structures
equal to J∆, a suitable choice of Morse functions on ∆k, and the arguments from
Lemma 4.2; we omit the details. Note that by the cyclic symmetry of the product,
this also determines

HF ∗(∆1,∆1)⊗HF ∗(∆2,∆1) −→ HF ∗(∆2,∆1),(4.15)

HF ∗(∆2,∆1)⊗HF ∗(∆2,∆2) −→ HF ∗(∆2,∆1),(4.16)

HF ∗(∆2,∆1)⊗HF ∗(∆1,∆2) −→ HF ∗(∆1,∆1),(4.17)

HF ∗(∆1,∆2)⊗HF ∗(∆2,∆1) −→ HF ∗(∆2,∆2).(4.18)

We conclude this preliminary discussion by introducing low-degree generators anal-
ogous to those in Section 2.10, namely

(4.19)

⎧
⎪⎪⎨

⎪⎪⎩

HF 0(∆1,∆2) = R · [w1]⊕R · [w2], HF 1(∆2,∆1) = R · [w3]⊕R · [w4],

HF 0(∆1,∆3,u) = R · [z1,u], HF 1(∆3,u,∆1) = R · [y1,u],

HF 0(∆2,∆3,u) = R · [z2,u], HF 1(∆3,u,∆2) = R · [y2,u]
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(the notation [w1] indicates the cohomology class for some underlying choice of w1,
and we’ve inserted the dots to avoid confusion with polynomial rings). As before,
[w1] and [−w2] correspond to the class 1 ∈ H0(K;R) under (4.4), for the components
lying over (12 , 0) and (0, 0), respectively; [z1,u] and [z2,u] are defined using (2.81); and
the other generators are fixed in such a way that the products

(4.20)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+ [w4] · [w1] ∈ HF 1(∆1,∆1),

+ [w1] · [w4] ∈ HF 1(∆2,∆2),

− [w2] · [w3] ∈ HF 1(∆2,∆2),

− [w3] · [w2] ∈ HF 1(∆1,∆1),

[y1,u] · [z1,u] ∈ HF 1(∆1,∆1),

[z1,u] · [y1,u] ∈ HF 1(∆3,u,∆3,u),

[y2,u] · [z2,u] ∈ HF 1(∆2,∆2),

[z2,u] · [y2,u] ∈ HF 1(∆3,u,∆3,u)

all yield the generator of H1(S1 × K;R) ∼= H1(S1;R) obtained by orienting the
underlying loops in T 2 as in Section 2.10. Moreover, from our computation of (4.14)
it follows that [w1] · [w3], [w3] · [w1], [w2] · [w4] and [w4] · [w2] vanish. Hence,

Lemma 4.4. — The subspace of
⊕2

i,j=1 HF
∗(∆i,∆j) consisting of elements of degree

≤ 1 is a subalgebra, and in fact isomorphic to the algebra Q from Definition 2.3.

4.2. Counting triangles

In parallel with our original discussion of the two-torus, we will also need to deter-
mine parts of the A∞-structure which do involve counting holomorphic curves. First
of all, we need the counterpart of (2.82), which computes the product

(4.21)

{
HF 0(∆2,∆3,u)⊗HF 0(∆1,∆2) −→ HF 0(∆1,∆3,u),

[z2,u] · [w1] = ϑ2,1(u)[z1,u], [z2,u] · [w2] = −ϑ2,2(u)[z1,u].

One can use associativity and (4.20) to derive two more products from this, namely

(4.22)

{
HF 0(∆1,∆2)⊗HF 1(∆3,u,∆1) −→ HF 1(∆3,u,∆2),

[w1] · [y1,u] = ϑ2,1(u)[y2,u], [w2] · [y1,u] = −ϑ2,2(u)[y2,u],

and

(4.23)

{
HF 1(∆3,u,∆1)⊗HF 0(∆2,∆3,u) −→ HF 1(∆2,∆1),

[y1,u] · [z2,u] = ϑ2,2(u)[w3] + ϑ2,1(u)[w4],

which are the analogues of (2.84) and (2.85), respectively. Next consider

(4.24) x = ϑ2,2(u)[w1] + ϑ2,1(u)[w2] ∈ HF 0(∆1,∆2).

We know from (4.21) that [z2,u] · x = 0, and from (4.22) that x · [y1,u] = 0. There-
fore one can form the Massey product ⟨[z2,u], x, [y1,u]⟩ (see [93, Remark 1.2] for the
sign conventions in effect here). Generally speaking, such a product takes values
in the quotient of HF 0(∆3,u,∆3,u) by the two subspaces [z2,u] · HF 0(∆3,u,∆2) and
HF−1(∆1,∆3,u) · [y1,u], but both vanish in our case, leading to a strictly well-defined
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Massey product, which we will show to be the following multiple of the identity
class [e3,u]:

(4.25)
〈
[z2,u], x, [y1,u]

〉
= u

(
ϑ′2,2(u)ϑ2,1(u)− ϑ′2,1(u)ϑ2,2(u)

)
[e3,u].

To simplify the computation, one can arrange things so that that different homo-
topy classes of holomorphic triangles can be counted separately.

Let’s introduce a new formal variable ϵ, which means that we use a version Rϵ
of (2.1) where the coefficients ck are allowed to lie in C[ϵ]. Mark a point ∗ ∈ T 2 such
that the fibre π−1(∗) is disjoint from the Lagrangian submanifolds under considera-
tion. We can then construct a version of the Fukaya category relative to that fibre,
where the ϵr term in µd comes from pseudo-holomorphic maps which have intersec-
tion number r with π−1(∗). In order for this to be always ≥ 0, the almost complex
structures have to be such that π−1(∗) is an almost complex submanifold, and the in-
homogeneous terms should vanish quadratically near that fibre; both assumptions are
unproblematic as far as transversality is concerned. The outcome is an A∞-category
over Rϵ, whose specialization to ϵ = 1 recovers the relevant part of the Fukaya cate-
gory. Note that the choices we have used to define Floer cohomology groups already
satisfy those assumptions; hence, (4.4)–(4.9) remain valid for the larger coefficient
field. The same applies to more generally to the almost complex structures (4.11).

Figure 4

Suppose for concreteness that − 1
2 < m0 < 1

2 (the remaining case can be dealt
with in a similar way), and choose ∗ = (12 ,

1
2 ). To define the product (4.21) one

should choose a family of almost complex structures (Jz), where the parameter z is
in the three-punctured disc, as well as an inhomogeneous term. Suppose that we
set the inhomogeneous term to zero, and use a family almost complex structures in
the class (4.11), which is locally constant outside a compact subset of the parame-
ter space z. In addition, we want our family to have the following property: if we
trivialize the part of π lying over the triangle in Figure 4, then in that trivialization
Jz = i× (−Jf,θ∗)× Jf,θ∗ , where θ∗ is constant (independent of z and of the point
(p, q) in the triangle).
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Let’s consider only the ϵ0 term of (the Rϵ-linear counterpart of) the second line
in (4.21). Because π is pseudo-holomorphic, all contributions come from pseudo-
holomorphic maps which project to the triangle from Figure 4. Those correspond
bijectively to (−Jf,θ∗)×Jf,θ∗ -holomorphic maps from a three-punctured disc toK×K,
with boundary on the diagonal. But by the same argument as in Lemma 4.2, such
maps are necessarily constant. This determines the moduli space, and simultaneously
shows that it is regular, yielding a contribution of −1 = −!0ϵ0 to the product (the
sign is a consequence of the convention used when defining w2). This contribution
then remains the same under small perturbations of the auxiliary choices , so the
potential lack of regularity of the higher ϵk spaces is not an issue.

On the face of it, this argument would seem to fail in general, since it relied
on the fact that the triangle in T was embedded in order to construct the desired
almost complex structure. However, one can reduce the computation for any power ϵr

to the same kind of situation, by passing to a sufficiently large finite cover of E
(which depends on r) and using the additional freedom to change the almost complex
structure there, breaking its symmetry under the covering group. Formally, this
means we are using an ϵ-enhanced version of the pullback from Addendum 3.18, but
remaining on the cohomology level. This allows us to easily compute the following
products in the ϵ-enhanced framework:

(4.26) [z2,u] · [w1] = ϵ−
1
4 ϑ2,1(u)! "→!ϵ [z1,u], [z2,u] · [w2] = −ϑ2,2(u)! "→!ϵ [z1,u],

where ! #→ !ϵ is a substitution of variables, and dividing by ϵ
1
4 in the first line keeps

the powers of ϵ integral. On the other hand, setting ϵ = 1 recovers our previous
situation by definition, which concludes our proof of (4.21). The strategy for (4.25)
is similar. One first passes to the ϵ-analogue

〈
[z2,u],ϑ2,2(u)! "→!ϵ[w1] + ϵ−

1
4ϑ2,1(u)! "→!ϵ[w2], [y1,u]

〉
,

which is well-defined as a consequence of (4.26). For any power ϵr, only finitely many
homotopy classes can contribute, and after passing to a suitable finite cover one again
has only constant maps in fibre direction, which means that the answer is the same
as for the two-torus itself, where one can derive it from (2.87).

Suppose now that u /∈ {±!
1
2k : k ∈ Z}. The computations above imply that the

following is an exact triangle in H0(Fuk(E)tw):

(4.27) ∆1

ϑ2,2(u)[w1]+ϑ2,1(u)[w2]
ϑ′
4,3(1)(ϑ4,1(u)−ϑ4,3(u))

! ! ∆2

([z2,u], [z2,u−1 ])""❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

∆3,u ⊕∆3,u−1

[1]

([y1,u],−[y1,u−1 ])

##❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

To spell this out a little more, one first proceeds as in Lemma 2.30 to show
that ∆3,u ⊕∆3,u−1 is a direct summand of the mapping cone of the horizontal
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map in (4.27). Temporarily denote that cone by C̃ . There is a spectral sequence
converging to H∗(homFuk(E)tw(C̃ , C̃ )), whose starting page is

(4.28) Epq
1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

HF q(∆2,∆1) p = −1,
HF q(∆1,∆1)⊕HF q(∆2,∆2) p = 0,

HF q(∆1,∆2) p = 1,

0 otherwise.

The differential d1 : Epq
1 → Ep+1,q

1 is given by multiplying by the morphism used to
form the cone, with suitable signs. In particular, the subspace of elements in (4.28)
of total degree p + q = 0 is four-dimensional; and the differentials E−1,1

1 → E0,1
1 ,

E0,0
1 → E1,0

1 are both nonzero. This shows that H0(homFuk(E)tw(C̃ , C̃ )) is of dimen-

sion ≤ 2, which implies that C̃ must be quasi-isomorphic to ∆3,u ⊕∆3,u−1 .

Lemma 4.5. — For a suitable choice of auxiliary data, the differential on

2⊕

i,j=1

CF ∗(∆i,∆j)

vanishes, and moreover, the subspace of elements of degree ≤ 1 is an A∞-subalgebra.

Proof. — Choose a perfect Morse function hK on K. Choose also a perfect Morse
function hS1 on the circle S1 = R/Z, with minimum at p0 = 1

4 and maximum
at p1 = 3

4 . When defining CF ∗(∆1,∆1) in the Morse-Bott formalism from Section 3.2,
take the Morse function on ∆1

∼= S1 ×K given by

(4.29) h∆1,∆1(p, x) = hS1(p) + constant · hK(x),

where the constant is small and positive (and correspondingly, we choose the product
Riemannian metric). The differential is obviously trivial. Moreover, we have that

(4.30) ∂ph∆1,∆1 > 0 along { 1
2}×K, ∂ph∆1,∆1 < 0 along {0}×K.

When defining the higher order A∞-structure on CF ∗(∆1,∆1) = CM ∗(h∆1,∆1), we
proceed as in Remark 3.12, but take care that all the auxiliary families of Morse
functions appearing in the process still satisfy (4.30) (this is an open condition, hence
does not stand in the way of transversality arguments). As a result, if a1, . . . , ad are
generators corresponding to critical points, at least one of which lies in { 3

4}×K,
then µd

Fuk(E)(ad, . . . , a1) must be a linear combination of critical points also ly-

ing in { 3
4}×K. In particular, take a to be the unique generator corresponding

to a critical point of index 1, which is the minimum of hK placed in { 3
4}×K.

Then µd
Fuk(E)(a, . . . , a) is a linear combination of critical points of index 2, which

moreover lie in { 3
4} × K. But there are no such points, hence we have proved that

these particular A∞-products must vanish. Of course, all these considerations can be
applied to ∆2 as well.
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Similarly, when defining CF ∗(∆1,∆2) and CF ∗(∆2,∆1), we choose minimal Morse
functions, so that µ1 = 0. Because of this minimality property, the product µ2 is
determined entirely by Lemma 4.4, which shows in particular that the product of
any two elements of degree 1 vanishes. Consider a higher product of elements of
degree ≤ 1,

(4.31) µd
Fuk(E) : CF

≤1(∆id−1 ,∆id)⊗ · · ·⊗ CF≤1(∆i0 ,∆i1) −→ CF≤2(∆i0 ,∆id)

for some d > 2 and i0, . . . , id ∈ {1, 2}, and where the ik are not all equal (since
that case has been dealt with before). If one of the inputs has degree 0, the output
automatically has degree ≤ 1. The only remaining case is when all the inputs have
degree 1, which forces (i0, . . . , id) = (2, . . . , 2, 1, . . . , 1), but then the output would lie
in CF 2(∆2,∆1), which vanishes by minimality and (4.7).

We have now obtained an embedding G1 : Q→ Fuk(E) which is compatible with
the multiplication µ2, and which extends to an A∞-functor G : Qp̃ → Fuk(E) for
some a priori unknown polynomial p̃.

Lemma 4.6. — p̃ = p is the unit torus polynomial.

Proof. — Fix some u /∈ {±h
1
2k : k ∈ Z}, and consider the morphism v ∈ e2Qe1 =

homQp̃
(X1, X2) given by the same formula as the horizontal arrow in (4.27). Denote by

Cv the cone of that morphism in Qtw
p̃ . Because A∞-functors preserve exact triangles,

we have a commutative diagram in the category H0(Fuk(E)tw),

(4.32)

· · · ! ! G(X2) !! Gtw(Cv) ! !

∼=
""
✤

✤

✤

G(X1)[1] !! · · ·

· · · !! ∆2
!! ∆3,u ⊕∆3,u−1 !! ∆1[1] !! · · ·

where the top row is the obvious exact triangle, the bottom one is (4.27), and the
dotted isomorphism is the only new ingredient. It follows from our previous analysis
of (4.28) that G induces an isomorphism

(4.33) H0
(
homQtw

p̃
(Cv, Cv)

)
−→ HF 0(∆3,u,∆3,u)⊕HF 0(∆3,u−1 ,∆3,u−1) = R2.

Consider the endomorphism t̃ of ∆3,u ⊕∆3,u−1 given by the same linear combination
of identity elements as in (2.98). Using (4.23) one sees that this satisfies the analogue
of (2.99). Hence, its preimage under (4.33) satisfies the criteria from Lemma 2.14,
which shows that p̃(v1, v2) = p(v1, v2), exactly as in Lemma 2.35.

We conclude this discussion by looking at the maps (1.14) on Hochschild cohomol-
ogy induced by G, and how they relate to the open-closed string map.

Lemma 4.7. — The map

(4.34) H(G∗) : HH
∗(Qp, Qp) −→ HH ∗

(
Qp, G

∗Fuk(E)
)
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is an isomorphism in degrees ≤ 1.

Proof. — It is convenient to replace Qp by its quasi-isomorphic image in Fuk(E) de-

scribed in Lemma 4.5. Denoting that by Q̃ , what we then have to look at is the effect
of the inclusion Q̃ ↪→ Fuk(E). Any Hochschild cochain g ∈ CC≤1(Q̃ ,Fuk(E)) neces-
sarily takes values in the subspace of morphisms of degree ≤ 1, which is precisely Q̃ ,
so we have CC≤1(Q̃ ,Q̃) = CC≤1(Q̃ ,Fuk(E)). This fails in degree 2, but at least we
have an injective map of cochains there, which is precisely what’s needed to prove the
desired statement.

Recall that HH 1(Qp, Qp) is two-dimensional, with generators [g1], [g2] which were
(partially) described in Addendum 2.11.

Lemma 4.8. — The composition

(4.35) QH ∗(E) −→ HH ∗
(
Fuk(E),Fuk(E)

) H(G∗)−−−−→ HH ∗
(
Qp, G

∗Fuk(E)
)

sends [dp] ∈ H1(E;R) to H(G∗)([g1] + [g2]), and [dq] to H(G∗)(−2[g2]).

Proof. — By construction, we have a commutative diagram

(4.36)

HH ∗(Qp, Qp)
G∗

!!

""

HH ∗
(
Qp,Fuk(E)

)

""

HH ∗
(
Fuk(E),Fuk(E)

)G∗
##

$$❤❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤
❤❤

e1Qpe1 ⊕ e2Qpe2
H(G)

!! HF ∗(∆1,∆1)⊕HF ∗(∆2,∆2)

The vertical arrow on the left is an isomorphism in degree 1 (by Addendum 2.11), and
hence so is the one in the middle (using Lemma 4.7). On the other hand, composition
of the open-closed string map with the diagonal arrow in (4.36) just yields the ordinary
restriction map QH ∗(E)→ H∗(∆1;R)⊕H∗(∆2;R). The rest is diagram-chasing.

We now consider the analogue of Corollary 2.38. Let S = Spec(R ) be the affine
curve associated to the unit torus polynomial p, and θ its standard 1-form. The image
of

(4.37) θ ⊗ [dq] ∈ H0(S ,Ω1
S )⊗QH 1(E)

under the open-closed string map is a deformation field, which we denote by [γ], for
the constant family Fuk (E) of Fukaya categories over S .

Corollary 4.9. — There is a perfect family of modules D3 which follows [γ], and
whose fibre at a point (s1, s2) ∈ S is isomorphic to ∆3,u, where u ∈ R×/!Z satis-
fies (2.68).

Proof. — Take the family from Corollary 2.38 and map it to Fuk(E) using G. As
a consequence of the general discussion of functoriality in Section 1.9, the image
family indeed follows (4.37) (the equality of Hochschild cohomology classes required
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in Assumption 1.17 comes from Lemma 4.8). By construction, the object of the family
at any point is a direct summand of a mapping cone. The triangle (4.27) identifies
that mapping cone with ∆3,u ⊕∆3,u−1 , and one can follow the same computation as
in the case of the two-torus to show that the summand picked out by the projection
is indeed ∆3,u.

4.3. More Lagrangian submanifolds

E admits a (graded) symplectic automorphism F which is trivial on the base T ,
and equals id× f in each fibre (this makes sense since it commutes with f × f). By
applying that automorphism to our given Lagrangian submanifolds, we get another
collection

(4.38)

⎧
⎪⎨

⎪⎩

Γ1 = F (∆1) = {q = 0, y = f(x)},
Γ2 = F (∆2) = {q = −2p, y = f(x)},
Γ3,u = F (∆3,u) = {p = m0, y = f(x)},

These come with induced gradings and Spin structures. We equip each of these
Lagrangian submanifolds with the almost complex structure

JΓ,p,q,x,y = i× (−Jf,p+1,x)× Jf,p,y.

Since that is the image under F of i×(−Jf,p+1,x)×Jf,p+1,y, the previous computations
of Floer cohomology and its product structure carry over to (4.38). We will also need
to know how (4.38) and (4.2) interact. Unsurprisingly, the answers involve the fixed
point Floer cohomology of f :

HF ∗(Γ1,∆1) ∼= H∗(S1;R)⊗HF ∗(f),(4.39)

HF ∗(Γ1,∆2) ∼= HF ∗(f)⊕HF ∗(f),(4.40)

HF ∗(Γ1,∆3,u) ∼= (ξu)(m0,0) ⊗HF ∗(f),(4.41)

HF ∗(Γ2,∆1) ∼= HF ∗(f)[−1]⊕HF ∗(f)[−1],(4.42)

HF ∗(Γ2,∆2) ∼= H∗(S1;R)⊗HF ∗(f),(4.43)

HF ∗(Γ2,∆3) ∼= (ξu)(m0,−2m0) ⊗HF ∗(f),(4.44)

HF ∗(Γ3,u,∆2) ∼= (ξu)
∨

(m0,−2m0)
⊗HF∗(f)[−1],(4.45)

HF ∗(Γ3,u,∆1) ∼= (ξu)
∨

(m0,0)
⊗HF ∗(f)[−1],(4.46)

HF ∗(Γ3,u,∆3,u) ∼= H∗(S1;R)⊗HF ∗(f).(4.47)

For each of these, we adopt a variant of the strategy in Example 3.8, which means
that we use the family of almost complex structures on E given by

(4.48) (JΓ,∆,t)p,q,x,y = i× (−Jf,p+1− 1
2 t,x

)× Jf,p+ 1
2 t,y

.
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In all cases listed above, pseudo-holomorphic strips must be contained in a fibre. We
take such a strip (ux, uy) : R× [0, 1]→ π−1(p, q) ∼= K ×K and transform it to a map
u as in (3.13), which then satisfies u(s, t− 1) = f(u(s, t)) and ∂su+Jf,p+t(u)∂tu = 0.
This makes the isomorphisms above obvious, with (4.39) and (4.43) requiring a little
thought (the case of (4.47) is much simpler, since π has trivial monodromy in q-
direction). Let’s consider briefly the first of the two. The intersection Γ1∩∆1 consists
of a circle Cx for each fixed point x of f . The Maslov index of Cx equals the Conley-
Zehnder index of x. The local coefficient system oCx has fibre ox, and its monodromy
is given by the natural action of Dfx on ox. It is a nontrivial observation, but one
which is well-known as part of the mechanism underlying (3.1), that this action is
trivial. If we then choose hΓ1,∆1 to be the same Morse function hS1 on each circle,
we get an isomorphism of graded vector spaces

(4.49) CF ∗(Γ1,∆1) ∼= CM ∗(hS1)⊗ CF ∗(f).

Using the previous observation about pseudo-holomorphic strips, it is not hard to see
that this is compatible with the Floer differential. The other case (4.43) is parallel.

Remark 4.10. — Another way to see where the potential difficulty in (4.39) lies is
to consider for a moment a more general family of Lagrangian submanifolds fibred
over the same base circle, namely

(4.50) Γm
1 = {q = 0, y = fm(x)}

for some m ≥ 1. The intersection points of Γm
1 ∩ ∆1 in each fibre π−1(p, 0) corre-

spond to fixed points of fm (which we assume to be nondegenerate). However, this
correspondence depends on p ∈ R, rather than only on its image in R/Z: as we move
around the circle, there is nontrivial monodromy which acts by f on the set of these
points. Moreover, even for points which are fixed by fp for some p|m, the induced
action on ox (where x is considered as an m-periodic point) can be nontrivial; this is
the same phenomenon as the “bad orbits” in Symplectic Field Theory. Finally, while
the moduli spaces of holomorphic strips fibre over S1 × {0}, that fibration can also
be nontrivial. In fact, what one gets is a chain homotopy

(4.51) CF ∗(Γm
1 ,∆1) ≃ Cone

(
id− cf,fm : CF ∗(fm)→ CF ∗(fm)

)
,

where cf,fm is the chain map underlying the generator of the Z/m-action on HF ∗(fm).

We will also need to know two related products, namely

HF ∗(∆1,∆3,u)⊗HF ∗(Γ1,∆1) −→ HF∗(Γ1,∆3,u),(4.52)

HF ∗(Γ1,∆3,u)⊗HF ∗(Γ3,u,Γ1) −→ HF ∗(Γ3,u,∆3,u).(4.53)

MÉMOIRES DE LA SMF 137

102

102



4.3. MORE LAGRANGIAN SUBMANIFOLDS 97

After using (4.6), the analogue of (4.9) for the Γ Lagrangian submanifolds, as well as
(4.39), (4.41), (4.47), and cancelling the ξu factors, these maps can be written as

H∗(K;R)⊗H∗(S1;R)⊗HF ∗(f) −→ HF ∗(f),(4.54)

HF ∗(f)⊗H∗(K;R)[−1] −→ H∗(S1;R)⊗HF ∗(f).(4.55)

Lemma 4.11. — The first map (4.54) vanishes on the H1(S1;R) summand, and on
the H0(S1;R) summand it reproduces the quantum cap module structure of HF ∗(f).
The second map (4.55) takes values in the H1(S1;R) summand, and again reproduces
the quantum cap structure.

Proof. — To keep the notation simple, we consider only the first product (4.54) and
the case u = 1 (so m0 = 0 and ξu is trivial). Define CF ∗(Γ1,∆1) as in (4.49), taking
care that hS1 has a single minimum at (0, 0) (and a single maximum elsewhere), and
using the family of almost complex structures JΓ,∆ from (4.48). Next, the intersection
∆1 ∩ ∆3,u

∼= K is the diagonal in the fibre at (0, 0). We choose a Morse function
h∆1,∆3,u = hK on K in order to define CF ∗(∆1,∆3,u), and use the constant family of
almost complex structures J∆. Finally, the intersection Γ1 ∩∆3,u is transverse, and
we use the same family JΓ,∆ for it as before. To form the quantum cap product (3.8),
we use the same Morse function hK , as well as a two-parameter family of almost
complex structures of the form

(4.56) Jcap,s,t = Jf,ψ(s,t),

where ψ : R2 → R is a function satisfying ψ(s, t + 1) = ψ(s, t) + 1 for all (s, t),
ψ(s, t) = t for |s| ≫ 0, and ψ(s, t) = 0 for (s, t) close to (0, 1

2 ). This leaves enough
freedom to achieve the required transversality properties.

Figure 5.

The pearly trees that can, in principle, contribute to the product are shown
in Figure 5. Consider for a moment the simplest such tree, which has just one
trivalent vertex. The Riemann surface associated to that vertex can be written as
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Sv = (R × [0, 1]) \ {(0, 1)}. We choose the perturbation datum on Sv to have trivial
inhomogeneous term, and the following family Jv of almost complex structures:

(4.57) (Jv,s,t)p,q,x,y = i× (−Jf,p+ψ( 1
2 s,1−

1
2 t),x

)× Jf,p+ψ( 1
2 s,

1
2 t),y

.

Importantly, near (s, t) = (0, 1) this reduces to J∆. Solutions of the associated equa-
tion (3.16) are all contained in the fibre over (0, 0). Moreover, in analogy with (3.13),
they correspond bijectively to maps uv : R2 → K solving the pseudo-holomorphic
part of (3.7). Choose the families of Morse functions on the two semi-infinite edges
of our pearly tree to be constant equal to hΓ1,∆1 and h∆1,∆3,u, respectively. The
associated gradient (half-)flow line of hΓ1,∆1 must necessarily be constant, whereas
the other one yields the Morse-theoretic part of (3.7). Regularity is easy to check.

It remains to exclude contributions from more complicated pearly trees. The maps
associated to the two-valent vertices in the upper branch of Figure 5 are Floer dif-
ferentials for the pair (∆1,∆3,u), but as we have seen before there are none, since
they would correspond to non-constant Jf, 12 -holomorphic spheres in K. On the lower
branch we equip all the finite length edges with the same constant family of Morse
functions. But then, all the associated gradient flow lines are necessarily constant,
which means that the length of the edge is a free parameter. After a necessary but
easy regularity consideration, it follows that this cannot occur in zero-dimensional
moduli spaces.

4.4. More families

We now return to the situation from Corollary 4.9. By exactly the same argument
(or otherwise by using the functoriality under F ), one has a family G3 with fibres
Γ3,u, and which otherwise has the same properties as D3.

Lemma 4.12. — The constant families D1 = R ⊗R∆1, G1 = R ⊗RΓ1 also follow [γ].
Moreover, one can choose relative connections on them in such a way that the induced
connection on

(4.58) H∗(homFuk (E)

(
G1,D1)

) ∼= R ⊗R HF ∗(Γ1,∆1)

is trivial.

Proof. — The class [dq] is dual to the hypersurface {q = 1
2}, which is disjoint from

both ∆1 and Γ1. As an instance of Example 3.16, it follows that [g] vanishes on the
subcategory with these two objects. If we then choose trivial relative connections, the
result is obviously true.

Without changing the notation, we will now apply the Yoneda embedding and
consider D1 and G1 as objects of Fuk (E)perf . Lemma 4.12 still holds in this context.
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Corollary 4.13. — Fix a one-dimensional subspace B0 ⊂ HF d−1(f). Then, for
suitable choices of relative connections, there is a line bundle

B ⊂ H0
(
homFuk (E)perf (G3,D3[d])

)

invariant under the induced connection, whose restriction to any fibre agrees with
B = H1(S1;R)⊗B0 under the isomorphism (4.47).

Proof. — Consider the double product (composition of two ordinary products in the
Fukaya category; the ordering is irrelevant by associativity)

H0
(
homFuk (E)perf (D1,D3)

)
⊗H∗

(
homFuk (E)perf (G1,D1)

)
(4.59)

⊗H1
(
homFuk (E)perf (G3,G1)

)

−→ H∗
(
homFuk (E)perf (G3,D3)

)
[1].

We choose relative connections on G1 and D1 as in Lemma 4.12. Consider the subbun-
dle R ⊗H0(S1;R)⊗B0 of H∗(homFuk (E)perf (G1,D1)) ∼= R ⊗H∗(S1)⊗HF∗(f), which
is of course preserved by the connection. The leftmost and rightmost factors on the
LHS of (4.59) are line bundles. Hence, the image of our subbundle under (4.59) yields
a subbundle B ⊂ Hd(homFuk (E)perf (G3,D3)) which, because of the compatibility of
the product with the connections (1.62), is itself preserved by the connection. At any
point of S , (4.59) can be written as a map

(4.60) H∗(S1;R)⊗HF ∗(f) −→ H∗(S1;R)⊗HF ∗(f)[1].

From our computation of (4.52) and (4.53), we know that this is the identity on
HF ∗(f) times the cup-product with a nonzero class in H1(S1;R). This shows that B
has the desired property.

This allows one to apply parallel transport at least to a certain part of
HF d(Γ3,u,∆3,u) (probably, the same holds for the entire Floer group, but we
will not consider this point here). The next issue is uniqueness, which can be dealt
with by using Proposition 1.24 based on the following observation:

Lemma 4.14. — Any 1-dimensional subspace

B ⊂ HF0
(
Γ3,u,∆3,u[d]

)
= HF d(Γ3,u,∆3,u)

satisfies Assumption 1.23.

Proof. — Assumption 1.20 for each object is obvious, since HF ∗(∆3,u,∆3,u) ∼=
H∗(∆3,u;R) as a ring, and the same for Γ3,u. The products in (1.91) are part of the
Floer product structure

(4.61)

{HF ∗(Γ3,u,∆3,u)⊗HF ∗(Γ3,u,Γ3,u) −→ HF ∗(Γ3,u,∆3,u),

HF ∗(∆3,u,∆3,u)⊗HF ∗(Γ3,u,∆3,u) −→ HF ∗(Γ3,u,∆3,u).

One can determine this explicitly in the manner of Lemma 4.11, but we prefer to
take a shortcut which bypasses computation. Namely, as part of the open-closed
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string map we have a map QH ∗(E) → HF∗(∆3,u,∆3,u), which in this case agrees
with the ordinary restriction map (in particular is surjective; compare Examples 3.15
and 3.22), and the same for Γ3,u. In fact, by assumption on f our two Lagrangian
submanifolds are diffeomorphic, and the restriction maps are the same. One combines
this restriction map with (4.61) to yield both a left and a right action of QH ∗(E) on
HF ∗(Γ3,u,∆3,u). One can prove geometrically as in [96, Fig. 1] (or alternatively,
derive from the fact that this is part of a map landing in Hochschild cohomology)
that these two actions coincide up to Koszul signs. This leads directly to the required
property.

Addendum 4.15. — The reader may have noticed that, in view of Assumption 1.23
as originally stated, we only needed to prove the required properties for the degree 0
parts of HF ∗(∆3,u,∆3,u) and HF ∗(Γ3,u,Γ3,u), which is much easier. The real point
of the argument above, which will become relevant only later, is that it still yields the
desired result if we reduce the grading of the Fukaya category to Z/2.

4.5. A double covering trick

Let z : Ẽ → E be the double cover associated to (1, 0) ∈ H1(T ;Z/2) ∼= H1(E;Z/2).
Concretely,

(4.62) Ẽ = R× R×K ×K / (p, q, x, y) ∼ (p, q − 1, x, y) ∼ (p− 2, q, f2(x), f2(y)),

with the symplectic form ωẼ pulled back fromE. This is the mapping torus of f2 × f2,
except that the area of the base T has been multiplied by 2. Fukaya category com-
putations for Ẽ largely follow those for E, so we will only summarize the results.
We have Lagrangian submanifolds ∆̃1, ∆̃2, ∆̃3,u (fibrewise equal to the diagonal) and

Γ̃1, Γ̃2, Γ̃3,u (fibrewise equal to the graph of f2) defined analogously to (4.2), (4.38).

To clarify, ∆̃2 is now fibered over the path {q = −p} in T̃ , hence does not project
to ∆2 (and the same holds for Γ̃2). On the other hand, for u = !m0a we still take ∆3,u

to be fibered over {p = m0} (and correspondingly for Γ̃3,u).

As in (4.47) there are canonical isomorphisms

(4.63) HF ∗(Γ̃3,u, ∆̃3,u) ∼= H∗(S1;R)⊗HF ∗(f2).

Recall from Section 3.5 that z gives rise to a functor Z, defined on a full subcategory
F̃ ⊂ Fuk(Ẽ ) (that contains all the Lagrangian submanifolds occurring in our discus-
sion), and which lands in Fuk(E). In particular, Z(∆̃3,u) = ∆3,u, whereas Z(Γ̃3,u) is
the analogue of Γ3,u defined using the graph of f2 in each fibre. Our functor gives an
isomorphism

(4.64) HF ∗
(
Z(Γ̃3,u), Z(∆̃3,u)

) ∼= HF ∗(Γ̃3,u, ∆̃3,u) ∼= H∗(S1;R)⊗HF ∗(f2).

Note that Z(Γ̃3,u) and Z(∆̃3,u) only depend on the class of u in R×/!Z. However:
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Lemma 4.16. — Passing from u to !u changes the second isomorphism in (4.64) by
composition with the involution Cf,f2 .

Proof. — Consider the diagram of isomorphisms

(4.65) HF ∗
(
Z(Γ̃3,u), Z(∆̃3,u)

)

HF ∗(Γ̃3,u, ∆̃3,u)

Z
!!
❧❧❧❧❧❧❧❧❧❧❧

""

##

HF ∗(Γ̃3,!u, ∆̃3,!u)

Z
$$❘❘❘❘❘❘❘❘❘❘❘

##

H∗(S1;R)⊗HF ∗(Γf2 ,∆) ""

##

H∗(S1;R)⊗HF ∗(Γf2 ,∆)

##

H∗(S1;R)⊗HF ∗(f2)
Cf,f2

"" H∗(S1;R)⊗HF ∗(f2)

The top horizontal arrow is the action of the covering transformation for z : Ẽ → E,

(4.66) (p, q, x, y) #−→
(
p− 1, q, f(x), f(y)

)
.

The commutativity of the top triangle follows from the definition of Z. The top down-
wards pointing arrows, on the left and right, are isomorphisms (4.64). The middle
horizontal arrow is the identity onH∗(S1;R), combined with the action of f×f on La-
grangian Floer cohomology in K×K. The commutativity of the square in the middle
of the triangle then follows by comparing (4.66) and (4.64). The bottom downwards
pointing arrows, on the left and right, are the isomorphisms between Lagrangian Floer
cohomology and fixed point Floer cohomology from Example 3.8. Inspection of that
isomorphism shows that the bottom square in the diagram commutes.

To take into account the difference in the areas of the base T , we take the square
unit polynomial p and make a substitution ! #→ !2. This yields a new polynomial p̃
and associated algebraic curve S̃ = Spec(R̃ ), with its 1-form θ̃. In fact, we had already
considered these in Addendum 2.25, where it was pointed out that (after removing
finitely many points) S̃ is an étale double cover of S , and θ̃ the pullback of θ. We
consider the parametrization of the set of points of S̃ by u ∈ R×/!2Z which under the
covering map induces (2.68). With these slight modifications, the previous argument
goes through, yielding perfect families D̃ 3 and G̃ 3 over F̃ ⊂ Fuk(Ẽ ) which follow the
image of θ̃ ⊗ [dq] under the open-closed string map, and whose fibres at any point u
are isomorphic to ∆̃3,u and Γ̃3,u, respectively. We now use (3.25), as well as the
discussion of functoriality from Section 1.9, to push these families down to E. The
outcome are perfect families Z(D̃ 3) and Z(G̃ 3) over Fuk(E) which follow θ ⊗ [dq],
and whose fibres at u are isomorphic to Z(∆̃3,u) and Z(Γ̃3,u).

Assumption 4.17. — For some d ∈ Z, Cf,f2 : HF d−1(f2)→ HFd−1(f2) is not ±Id.
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Supposing from now on that this is the case, we can choose a one-dimensional
subspace B0 ⊂ HFd−1(f2) which is not preserved by Cf,f2 . Let’s temporarily go
back to Ẽ . The analogue of Lemma 4.13 says that there is a line bundle B̃ con-
tained in H0(homFuk (Ẽ )perf (G̃ 3, D̃ 3[d])) invariant under the induced connection on

that space, whose restriction to any fibre agrees with B = H1(S1;R) ⊗ B0 under
isomorphism (4.63). Applying Z to this, and using the compatibility of induced con-
nections with functors shown in (1.78), we find that the image line bundle Z(B̃ ) is
still invariant under the induced connection.

Lemma 4.18. — Take two points s̃± ∈ S̃ corresponding to u and !u (for any u such
that both make sense, which means excluding the finitely many branch points). Then,
the triples

(4.67)
(
Z(G̃ 3)s̃± , Z(D̃ 3[d])s̃± , Z(B̃ )s̃±

)

are not mutually isomorphic in H0(Fuk(E)perf).

Proof. — At s̃+, the relevant triple consists of the objects z(Γ̃3,u) and z(∆̃3,u)[d]

together with the subspace of HF d(z(Γ̃3,u), z(∆̃3,u)) corresponding to B under the
isomorphism (4.63). The same holds at s̃− but where the isomorphism is twisted
by Cf,f2 , as a consequence of Lemma 4.16. Hence, our statement reduces to the
following:

Claim. — There do not exist invertible elements

(4.68)

{ γ ∈ HF 0(z(Γ̃3,u), z(Γ̃3,u)) ∼= H0(z(Γ̃3,u);R) ∼= H0(S1 ×K;R),

δ ∈ HF 0(z(∆̃3,u), z(∆̃3,u)) ∼= H0(z(∆̃3,u);R) ∼= H0(S1 ×K;R),

satisfying δBγ = Cf,f2(B).

But that is obvious because both HF 0 groups only contain multiples of the identity.

Addendum 4.19. — The Claim above, and therefore Lemma 4.18, continues to hold
even if we allow δ and γ to have additional terms of higher even degree. This is because
the subspace B itself is concentrated in a single degree.

Both points s̃± ∈ S̃ map to the same point s ∈ S . This, together with the analogue
of Lemma 4.14, triggers Lemma 1.28, which shows that:

Corollary 4.20. — If Assumption 4.17 is satisfied, the image of [dq] in

HH 1
(
Fuk(E),Fuk(E)

)

is not a periodic element (for the elliptic curve with 1-form obtained as the closure
of S and θ).
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Let’s have a brief “straight man”counterpart of the previous discussion, concerning
the case where the symplectic automorphism is the identity, giving rise to the trivial
mapping torus Etriv = T ×K−×K. Arguing as in Example 3.23, one finds that there
are quasi-equivalences

Fuk(Etriv)perf ∼=
(
Fuk(T )⊗ Fuk(K−)⊗ Fuk(K)

)perf
(4.69)

∼=
(
DbCoh(Yp)⊗DbCoh(X)⊗DbCoh(X)

)perf

∼= DbCoh(Yp ×X ×X),

where Yp and X are the mirrors of T and K, respectively (the fact that one of the
copies of K has reversed sign of the symplectic form does not affect the statement,
since ωK and −ωK are related by an involution, as one can see by taking K a real
quartic). One can construct a family of bimodules exactly as in Section 2.7, and use
that to derive the following analogue of Corollary 2.23: for m1 ∈ Z, m2 ∈ m1 + 2Z,

(4.70) m1[g1] +m2[g2] ∈ Per(DbCoh(Yp ×X ×X), S , θ̄),

where [g1], [g2] are the classes pulled back from HH ∗(Yp, Yp) ∼= HH ∗(Qp, Qp). Under
mirror symmetry, the generators [g1]+[g2] and 2[g2] of the lattice in (4.70) correspond
to [dp] and [−dq] (compare Lemma 4.8), hence:

Corollary 4.21. — Any element in the image of

H1(Etriv;Z) ∼= Z2 −→ HH 1
(
Fuk(Etriv),Fuk(Etriv)

)

is periodic (for the same elliptic curve as in Corollary 4.20).

As a consequence, we see that if f satisfies Assumption 4.17, then E is not symplec-
tically isomorphic to Etriv. Of course, this is by no means the most direct argument
available (see the Introduction), but it has the advantage of belonging to the general
framework of Fukaya categories.

4.6. An algebraic viewpoint

Let A be a proper A∞-category over R, together with a functor G : A → A. The
naive mapping torus category Atorus is defined as follows. Objects are of the form
X(d), where X is an object of A strictly fixed by G, meaning that G(X) = X , and
d ∈ Z an integer. The definition of the morphism space comes from (2.72):

(4.71) homAtorus

(
X0(d0), X1(d1)

)
= homA(X0, X1)⊗ F ⊕ homA(X0, X1)⊗ F [−1],

where F is as in (2.57), and the tensor product is over R. It may be more intuitive
to (arbitrarily) choose a basis and write homA(X0, X1) = C(X0, X1) ⊗C R. Then,
elements of homA(X0, X1)⊗F can be thought of as series a(t) = c0!m0tn0 + · · · , with
the same convergence condition as in (2.57), but coefficients ck ∈ C(X0, X1).
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Remark 4.22. — Because of the definition as a tensor product, we have the addi-
tional condition that for any a(t), the coefficients ck which occur may span only a
finite-dimensional subspace of C(X0, X1). This is somewhat unnatural in terms of
the topological nature of the ring F . However, if A is strictly proper (has finite-
dimensional morphism spaces), this point is obviously irrelevant, and of course any
proper A∞-category is quasi-isomorphic to a strictly proper one.

Elements of (4.71) can be written as pairs (a(t), b(t)), where |b(t)| = |a(t)|−1. The
differential is

µ1
Atorus

(
a(t), b(t)

)
(4.72)

=
(
µ1
A(a(t)), µ

1
A(b(t)) + (−1)|a|−1a(t) + (−1)|a|td1−d0G1(a(!t))

)
.

Example 4.23. — Consider a single object X fixed by G. There is an obvious long
exact sequence

· · ·→ H
(
homAtorus(X(d), X(d))

)
−→ H

(
homA(X,X)

)
⊗ F(4.73)

id−H(G1)⊗T−−−−−−−−−−→ H
(
homA(X,X)

)
⊗ F → · · ·

where T is as in (2.69). If we restrict the second map in (4.73) to series in t with
vanishing constant term (in t), it is actually an isomorphism. Hence, we have the
simpler long exact sequence

· · ·→ H
(
homAtorus (X(d), X(d))

)
(4.74)

−→ H(homA(X,X))
id−H(G1)−−−−−−−−→ H

(
homA(X,X)

)
→ · · ·

The composition of (ak(t), bk(t)) ∈ homAtorus (Xk−1(dk−1), Xk(dk)) (k = 1, 2) is
given by

µ2
Atorus

(
(a2(t), b2(t)), (a1(t), b1(t))

)
(4.75)

=
(
µ2
A(a2(t), a1(t)), (−1)|a2|−1µ2

A(a2(t), b1(t))

+ µ2
A(b2(t), t

d1−d0G1(a1(!t))) + (−1)|a2|+|a1|td2−d0G2(a2(!t), a1(!t))
)
;

and similarly for the higher order structure maps.

Lemma 4.24. — Suppose that X ∈ ObA is fixed by G. Let Qp be the A∞-category
associated to the unit torus polynomial. Then there is an A∞-functor Qp → Atorus

which maps the two objects of Qp to X(0) and X(2), respectively.

Proof. — After replacing our original category and functor by quasi-isomorphic ones,
one can assume that both are strictly unital (with the functor still acting in the same
way on objects). Think of R itself as an A∞-category with a single object Z. The
embedding R → A mapping Z to X induces one Rtorus → Atorus. Consider the full
subcategory of Rtorus with objects Z(0), Z(2). This is a dg model (actually the one
mentioned in Section 2.9) for the full subcategory of the derived category of modules
over F " Z with objects F (0), F (2). Lemma 2.26 then completes the proof.
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The proposed correspondence with geometry goes as follows. If A is the Fukaya
category of some compact manifold, and G is given by the action of a (graded) sym-
plectic automorphism, then Atorus should conjecturally be quasi-isomorphic to a full
subcategory of the Fukaya category of the associated symplectic mapping torus. Ob-
jects X(d) correspond to Lagrangian submanifolds in the mapping torus obtained by
taking an invariant Lagrangian submanifold in the fibre and moving it along a line
in the base which goes through (0, 0) and has slope −d. Looking back to our pre-
vious discussion, ∆1 and ∆2 from (4.2) as well as Γ1 and Γ2 from (4.38) are of this
type. Example 4.23 shows that the algebraic model correctly computes the self-Floer
cohomology. Lemma 4.24 would be the algebraic counterpart of the Fukaya category
computations in Section 4.2.

Remark 4.25. — The framework introduced above is naive, since it asks for strictly
fixed objects. To make it more flexible, one could consider A∞-modules over A ⊗ F
which are equivariant with respect to G ⊗ T (this would also allow one to include
objects corresponding to Lagrangian submanifolds such as ∆3,u and Γ3,u).
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CHAPTER 5

BLOWING UP

The topic of this section, namely the behaviour of Fukaya categories under blowups,
is of interest from many perspectives, among which our intended application plays only
a minor role. Interested readers are referred to [100], from which we have stolen as
much as we could (concretely, Sections 5.3–5.5 follow [100, Section 4.5] closely). On
a technical level, we will freely use and combine a wide range of results, notably:
the full-fledged construction of Fukaya categories [39], and split-generation results
in that context [3]; degeneration techniques [51], [67]; Lagrangian correspondences
[105], [71]; and the h-principle [45]. Necessarily, the exposition can’t be self-contained
to any extent.

Generally speaking, the passage to Z/2-graded Fukaya categories and the intro-
duction of bounding cochains allows us to include many more objects than in the
approach from Chapter 3 (see Remark 5.2 for a precise statement of the relation-
ship). There will be a temporary departure from this framework in Section 5.3, when
we consider the toy model of blowing up a point in flat space (which happens to be
monotone, allowing us to retreat to a simpler version of Floer theory).

5.1. Fukaya categories

Fix a closed symplectic manifold M . Let R≥0 ⊂ R be the subalgebra of formal
series involving only nonnegative powers of !. This comes with a homomorphism
R≥0 → C extracting the constant term, and we write R>0 for its kernel. For any
λ ∈ R>0 there is an associated Fukaya category Fuk(M)λ, which is a proper Z/2-
graded A∞-category. We will give an impressionistic sketch of the construction, which
is due to [39] (see [79], [34] for more thorough expository accounts).

One first associates to M a filtered curved A∞-category FO(M). Objects of FO(M)
are Lagrangian submanifolds L ⊂ M equipped with a Spin structure and a local
coefficient system ξ with structure group GLr(C), for some r. The morphism space
between any two objects is a finitely generated free Z/2-graded module over R≥0.
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If we consider a single object, then

(5.1) homFO(M)(L,L)⊗R≥0 C

is an A∞-algebra (the curvature vanishes since it has no !0 term) quasi-isomorphic to
the standard one underlying the cohomology with local coefficients H∗(L; Hom(ξ, ξ)).
For simplicity we will assume that FO(M) is strictly unital.

Remark 5.1. — The finite-dimensionality of morphism spaces is convenient for ex-
pository reasons, since it allows one to worry less about convergence and complete-
ness (in the !-adic topology). A Morse theory model as in Section 3.2 naturally
yields finite-dimensional morphism spaces. On the other hand, one can start with
an infinite-dimensional space of cochains (like the singular cochains used in [39]) and
then obtain finite-dimensional models a posteriori by applying a version of the Ho-
mological Perturbation Lemma [39, Thm W]. Strict units are not an a priori feature
of either approach, but can be added by first introducing a homotopy unit through
additional moduli spaces [39, Section 7.3], and then constructing a strict unit from
that [39, Section 3.3]. We should point out that from a more abstract viewpoint,
unitality is not really the crucial ingredient (see Remark 5.3 below).

Objects of Fuk(M)λ are weakly unobstructed Lagrangian submanifolds. By this
we mean objects of FO(M) together with a bounding cochain α ∈ hom1

FO(M)(L,L),
which vanishes if we tensor with C, and which satisfies the following inhomogeneous
Maurer-Cartan equation:

(5.2) µ0
FO(M) + µ1

FO(M)(α) + µ2
FO(M )(α,α) + · · · = λeL ∈ hom0

FO(M)(L,L)

(in the terminology of [39, Section 3.6], this would be a “weak bounding cochain”).
The morphism spaces, also called Floer cochain groups following the traditional ter-
minology, are defined by

(5.3) CF ∗(L0, L1) = homFuk(M)λ(L0, L1) = homFO(M)(L0, L1)⊗R≥0 R.

The A∞-structure is obtained by deforming that on FO(M), as in the construction
of twisted complexes. For instance, the differential on (5.3) is

µ1
Fuk(M)λ

(a) = µ1
FO(M)(a) + µ2

FO(M)(α1, a)(5.4)

+ µ2
FO(M)(a,α0) + µ3

FO(M)(α1,α1, a)

+ µ3
FO(M)(α1, a,α0) + µ3

FO(M)(a,α0,α0) + · · ·

Remark 5.2. — Consider the situation where c1(M) = 0 and λ = 0. Let L be
a Lagrangian submanifold satisfying Assumption 3.4. Then the A∞-structure on
homFO(M)(L,L) is a trivial deformation of that on (5.1) (the technical details of
this are subtle, but our applications only really involve the simpler case when JL
has no holomorphic spheres or discs). If we restrict (5.2) to α which have degree 1,
it reduces to a version of the Maurer-Cartan equation governing the deformation
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theory of the local coefficient system ξ [42]. Hence, any deformation of ξ to a local
coefficient system with structure group (2.77) gives rise to a solution (unique up to
gauge equivalence), hence produces an object of Fuk(M)0. These observations have
the following noteworthy consequence.

Let Fuk(M) be the Fukaya category according to the more restricted definition
used in Chapter 3. Then, after reducing the grading of Fuk(M) to Z/2, there is a
cohomologically full and faithful A∞-functor Fuk(M)→ Fuk(M)0.

Even though FO(M) has curvature, its Hochschild cohomology is still well-defined
as usual, and we have a canonical open-closed string map

(5.5) H∗(M ;R≥0) −→ HH ∗
(
FO(M),FO(M)

)
.

From this one derives, in a way similar to (1.15), maps

(5.6) QH ∗(M) −→ HH ∗
(
Fuk(M)λ,Fuk(M)λ

)
.

Concretely, fix some class in H∗(M ;R≥0), and let gFO ∈ CC ∗(FO(M),FO(M)) be
a Hochschild cocycle representing its image under (5.5) (this cochain is defined by a
generalization of the procedure sketched in Section 3.4). Then, the image of the same
class under (5.6) is represented by a cochain g whose constant term is

(5.7) g0 = g0FO + g1FO(α) + g2FO(α,α) + · · · ∈ CF ∗(L,L).

Remark 5.3. — For (5.4) to square to zero, we do not really need the fact that the
left hand side of (5.2) is a multiple of the unit, but only that it is strictly central. More
generally, one can associate a Fukaya category to any λ ∈ Heven(M ;R>0) (called“bulk
deformations”in [39, Section 3.8]; the special case ofH0 corresponds to the previously
discussed construction). We will not pursue this further.

Remark 5.4. — There are partial results about what kinds of Lagrangian subman-
ifolds can occur as objects of Fuk(M)λ for different values of λ. Let’s temporarily
restrict to a symplectic manifold M which is monotone (and monotone Lagrangian
submanifolds L, with trivial bounding cochains α = 0). This allows one to work
over C instead of R (and therefore to take λ ∈ C). In this context, Auroux, Kontse-
vich and the author [7, Thm 6.1] showed that c1(M)− λ · 1 ∈ QH ∗(M) = H∗(M ;C)
maps to zero in HF ∗(L,L) under the open-closed string map. Therefore,

(5.8)
{ One has Fuk(M)λ = 0 unless λ is an eigenvalue of quantum multipli-
cation with c1(M).

There is a consequence of this, which is weaker but of independent interest. Take
the dual open-closed string map HF ∗(L,L) → QH ∗+n(M), which is such that the
composition

(5.9) QH ∗(M) −→ HF∗(L,L) −→ QH ∗+n(M)
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is small quantum multiplication with the Poincaré dual class PD([L]) ∈ QH n(M).
The previous statement implies that

(5.10)
∑

A

〈
c1(M),PD([L]), x

〉M
A

= λ

∫

M
PD
(
[L]
)
∪ x

for all x (here, ⟨x1, . . . , xn⟩MA is our notation for the n-point genus zero Gromov-Witten
invariant: A ∈ H2(M ;Z), and the xi are cohomology classes). One can separate the
left hand side of (5.10) into pieces which each sum over classes A with c1(M)(A) = k
a fixed integer. Then, for degree reasons, only the k = 1 summand can be nontrivial.
Using the divisor axiom and the fact that c1(M) ∪ PD([L]) = 0, one can therefore
rewrite (5.10) as

(5.11)
∑

A

〈
PD([L]), x

〉M
A

= λ

∫

M
PD
(
[L]
)
∪ x.

Equivalently, the two-point Gromov-Witten invariants define an endomorphism Φ
of QH ∗(M) by Poincaré duality, and then (5.11) says that

(5.12) Φ
(
PD([L])

)
= λPD

(
[L]
)
.

Note that (5.13), unlike (5.8), imposes a restriction on λ only if L is nontrivial in
homology. This limitation can’t be removed: even in a simple example such as
M = CP 1 × CP 1, the map Φ is degree-decreasing and hence nilpotent, while the
quantum product with c1(M) has eigenvalues {±4, 0}. Indeed, Fuk(M)0 contains the
antidiagonal, whose homology class is nonzero, but Fuk(M)±4 are also nontrivial, and
contain nullhomologous Lagrangian tori.

It should be mentioned that (5.12) is known to generalize. Namely, given a gen-
eral (not necessarily monotone) M , consider the endomorphism Φ of QH ∗(M) =
H∗(M ;R) defined by

(5.13)

∫

M
Φ(x1) ∪ x2 =

∑

A

!ωM (A)⟨x1, x2⟩MA .

Then, a special case of [39, Thm 3.8.11] says that if L is an object of Fuk(M)λ, the
analogue of (5.12) holds for (5.13). However, the corresponding generalisation of (5.8)
is unknown. Rather than trying to address that question, we’ll allow arbitrary λ and
then formally cut down the resulting category.

5.2. Projections

Let A be an A∞-category (Z/2-graded and cohomologically unital), and Q+ ∈
HH 0(A,A) a Hochschild cohomology class which is idempotent with respect to the
natural ring structure. We want to project the category A accordingly, which will give
rise to a new category A+. The simplest way to go about that is as follows. Q+ de-
termines, for any X ∈ ObA, an idempotent endomorphism Q0

+ ∈ H0(homA(X,X)).
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After lifting that to a homotopy idempotent p+ (compare Section 1.2), one gets a
(perfect) module (X, p+)yon. Choose one such p+ for each X , and define A+ to be
the full A∞-subcategory of the module category of A with objects (X, p+)yon.

Here is another approach, which turns out to be equivalent but yields additional
properties. Let Q− be the complementary idempotent. Fix modules (X, p+)yon and
their complementary counterparts (X, p−)yon, and consider those as well as the stan-
dard Yoneda images Xyon. Let A± be the full subcategory of the module category
of A containing all those objects, and then pass to the quotient category A±/A− in
the sense of [26], in which all the objects (X, p−)yon become quasi-isomorphic to zero.
This comes with a canonical quotient functor A± → A±/A−.

Lemma 5.5. — The quotient functor restricts to a quasi-equivalence

(5.14) A+ −→ A±/A−.

Proof. — Since Xyon ∼= (X, p+)yon ⊕ (X, p−)yon by construction, the objects Xyon

and Xyon
+ become quasi-isomorphic in the quotient, so (5.14) is essentially onto. Note

that for any two objects X0, X1 we have

(5.15)

{H(homA±((X0, p0,+)
yon, (X1, p1,−)

yon)) = 0,

H(homA±((X0, p0,−)
yon, (X1, p1,+)

yon)) = 0.

By general nonsense [26, Thm 1.6.2 (ii)], this implies that (5.14) is cohomologically
full and faithful.

So far, it may not have been evident why we have included the Yoneda images
themselves in A±. The point is that we can combine the Yoneda embedding and the
quotient functor to get a canonical functor A→ A±/A−. From the proof of Lemma 5.5
it follows that on the cohomological level, this is projection to the part of the morphism
space singled out by Q+:

H
(
homA±/A−

(Xyon
0 , Xyon

1 )
) ∼= Q0

+H
(
homA(X0, X1)

)
(5.16)

= H
(
homA(X0, X1)

)
Q0

+.

Here is an even simpler way to describe the resulting situation. Let Ã be the category
with the same objects as A, but where

(5.17) homÃ (X0, X1) = homA±/A−
(Xyon

0 , Xyon
1 )⊕ homA±/A+

(Xyon
0 , Xyon

1 ),

with the obvious choice of A∞-structure. Then, the functor A→ A±/A− and its ana-
logue for the complementary quotient combine to yield a quasi-isomorphism A→ Ã .
If we allow ourselves to replace A by Ã , the situation is that we have a category whose
morphism spaces are split into two parts compatibly with all compositions, and the
projection just throws away one of those parts. In particular, there are canonical
isomorphism

(5.18) HH ∗(A,A) ∼= HH ∗(Ã , Ã ) ∼= HH ∗(A+, A+)⊕HH ∗(A−, A−).
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We will now apply this to Fukaya categories, with modified notation. Take an
idempotent q ∈ QH 0(M). Its image under (5.6) is an idempotent in Hochschild
cohomology, and we denote the outcome of the resulting projection by Fuk(M)λ,q.
The following result is a modified version of Theorem 3.20, and can be proved by
adapting arguments from [3] (for a more detailed exposition in the monotone case,
see [98, Cor. 3.7]).

Theorem 5.6. — Let O ⊂ Fuk(M)λ,q be a full A∞-subcategory. Suppose that there
is a linear map HH 0(O,O)→ R such that the following diagram commutes:

(5.19) QH 0(M)q !!

∫
M

""◗
◗
◗
◗◗

◗
◗

HH 0(O,O)

##♠♠
♠♠
♠♠
♠♠

R

Then the objects in O split-generate Fuk(M)perfλ,q .

5.3. A toy model

Consider CP r blown up at a point as a toric symplectic (and Kähler) manifold.
We denote this by B toy. It is characterized symplectically by its moment polytope,
which is

(5.20)
{
t ∈ Rr : t1, . . . , tr ≥ 0, δ ≤ t1 + · · ·+ tr ≤ ϵ

}

for some 0 < δ < ϵ. The preimage of {t1+ · · ·+ tr = ϵ} under the moment map is the
hyperplane at infinity, denoted by Htoy. The preimage of {t1 + · · · + tr = δ} is the
exceptional divisor, denoted by Dtoy. In particular,

(5.21) c1(B
toy) = −(r − 1)PD

(
[Dtoy]

)
+ (r + 1)PD

(
[Htoy]

)
.

Write

Btoy = B toy \Htoy.

This is non-compact, but because the divisor we remove has positive normal bun-
dle, doing pseudo-holomorphic curve theory in its complement is unproblematic. We
denote by Z ∈ H2(Btoy) the class of a line lying in Dtoy, and by

u = −PD
(
[Dtoy]

)
∈ H2

cpt(B
toy)

the negative Poincaré dual of the exceptional divisor. With this sign convention,

u(Z) = 1,(5.22)

c1(Btoy) = (r − 1)u,(5.23)

[ωBtoy ] = 2πδ u,(5.24)

ur = −PD([point]),(5.25)
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where in (5.23) and (5.24) we’ve mapped u to H2(Btoy). It follows that Btoy is
monotone:

(5.26) c1(B
toy) =

(r − 1)

2πδ
[ωBtoy ] ∈ H2(Btoy;R).

We will take advantage of the resulting possible simplification and omit the formal pa-
rameter !, which means working with quantum cohomology and Floer theory over C.

Let’s first look at the small quantum product. Btoy is a line bundle over Dtoy, and
the fibres are Poincaré dual to ur−1 ∈ H2r−2(Btoy), as one can see from (5.25). The
contribution of lines lying inside the exceptional divisor is

(5.27)

∫

Btoy

(ur−1 ∗Z u)ur−1 = ⟨ur−1, u, ur−1⟩B
toy

Z = ⟨ur−1, ur−1⟩B
toy

Z = 1.

Comparison with (5.25) yields

(5.28) ur−1 ∗Z u = −u.

In principle, the multiples dZ, d > 1, could also contribute to the quantum product.
But the virtual dimension of the associated moduli space of three-pointed holomorphic
spheres is 2r + (2r − 2)d = (2 + 2d)r − 2d, while the image of the evaluation map
is contained in a subspace (CP r−1)3 of smaller dimension 6r − 6. Hence the virtual
fundamental cycle maps to zero under evaluation.

Suppose from now that ϵ > r
r−1δ, and consider the Lagrangian torus Ctoy ⊂ Btoy

which is the fibre of the moment map over the point (δ/(r−1), . . . , δ/(r−1)) in (5.20).
For another description, recall that Btoy \Dtoy is U(1)r-equivariantly symplectically
isomorphic to the open subset

(5.29)
{
z ∈ Cr : δ < 1

2∥z∥
2 < ϵ

}

with the standard (constant) symplectic form. In this isomorphism, Ctoy corresponds
to the Clifford torus with all radii equal to

√
2δ/(r − 1). We can use areas of discs

in (5.29) to show that Ctoy is monotone as well, meaning that the analogue of (5.26)
holds in H2(Btoy, Ctoy;R).

Following [19] (see [48] for physics motivation, [7, §4] for an exposition, and [38]
for generalizations), it is convenient to formulate results about the Floer cohomology
of Ctoy in terms of the superpotential

(5.30) W : H1(Ctoy;C∗) −→ C, z )−→
∑

A

nA z∂A.

Here, the sum is over A ∈ H2(Btoy, Ctoy); nA ∈ Z is the number of pseudo-
holomorphic discs in classA going through a generic point of Ctoy; and z∂A ∈ C∗ is the
pairing of the cohomology class z with the boundary homology class ∂A ∈ H1(Ctoy).
To fix the signs, we equip Ctoy with the trivial Spin structure (the one compatible
with the rotation-invariant framing; or equivalently, the unique one which is invariant
under the action of SLr(Z)). The domain of W should be thought of as the moduli
space of flat C∗-bundles on Ctoy, and the superpotential is obtained by counting discs
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weighted with their boundary holonomy. Equip Ctoy with the bundle ξ correspond-
ing to some point z, and consider the spectral sequence [77] going from H∗(Ctoy;C)
to HF ∗(Ctoy, Ctoy). Part of the differential of this sequence is the map

(5.31) H1(Ctoy;C) −→ H0(Ctoy;C) = C, w #−→ dWz(zw) =
∑

A

nAw(∂A)z∂A.

Because the spectral sequence is multiplicative [17], there are only two possible out-
comes. Either (5.31) is nonzero, in which case the Floer cohomology vanishes. Or else
it is zero, in which case the spectral sequence degenerates. From now on let’s focus
exclusively on the second case, which happens exactly when z is a critical point of W .
In that situation, we have an isomorphism H∗(Ctoy;C) ∼= HF ∗(Ctoy, Ctoy), which is
canonical up to composition with automorphisms of H∗(Ctoy;C) of the form Id +R,
where R decreases degrees by at least 2. In particular, the degree 0 and 1 parts

H0(Ctoy;C) −→ HF 0(Ctoy, Ctoy),(5.32)

H1(Ctoy;C) −→ HF 1(Ctoy, Ctoy),(5.33)

are strictly canonical. The multiplicative nature of the spectral sequence ensures that
(5.32) yields the unit e in Floer cohomology, and (5.33) generates Floer cohomology
as a ring. The relations between these generators are determined by the Hessian of
W at z:

(5.34) w · w = (D2W )z(zw, zw) e =
∑

A

nAw(∂A)
2z∂A e.

Being a toric fibre, Ctoy is contractible in Btoy, hence the restriction map in ordi-
nary cohomology vanishes. However, the specialization of the open-closed string map
H ∗(Btoy;C) −→ HF ∗(Ctoy, Ctoy) has quantum corrections [40]. In degree 2, the
outcome is as follows:

(5.35) H2(Btoy;C) −→ HF0(Ctoy, Ctoy), v #−→
∑

A

nA v(A)z∂Ae,

where we have chosen an arbitrary lift of v to H2(Btoy, Ctoy) to define the pair-
ings v(A) (vanishing of (5.31) ensures that the choice of lift doesn’t matter).

It remains to spell out the data in our particular case, again following [19]. Think-
ing of Ctoy as a torus orbit yields an identification H1(Ctoy) ∼= Zr. The numbers nA

are +1 for unit vectors A = (0, . . . , 1, . . . , 0) as well as for A = (1, . . . , 1), and vanish
otherwise, yielding the Hori-Vafa mirror superpotential

(5.36) W (z1, . . . , zr) = z1 + · · ·+ zr + z1 · · · zr.

There are (r − 1) critical points (z1, . . . , zr) = (λ, . . . ,λ), where λr−1 = −1. Each
of them is nondegenerate, which in view of (5.34) means that the Floer cohomology
rings are complex Clifford algebras. More precisely, using the generators (5.33) one
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gets a canonical isomorphism

C⟨w1, . . . , wr⟩/{w2
i for all i, wiwj + wjwi + 2λ for all i ̸= j}(5.37)

−→ HF ∗(Ctoy, Ctoy),

where C⟨w1, . . . , wr⟩ is the free Z/2-graded algebra with the wi as odd generators.
Finally, the open-closed string map (5.35) is given by

(5.38) u &−→ −z1 · · · zr = λ e.

One checks that this is compatible with the ring structure (5.28). It also agrees with
the general statement from [7, Thm 6.1] (see also Remark 5.4), which says that the
critical value of the superpotential, in our case (r − 1)λ, must be an eigenvalue of
quantum multiplication with the first Chern class.

Addendum 5.7. — Suppose that r is even. Then the Clifford algebra (5.37) can
be (non-canonically) thought of as the total endomorphism algebra of a Z/2-graded
category with 2

1
2 r objects, any two of which are isomorphic up to a shift. It is

convenient to first diagonalize the underlying quadratic form by using the modified
basis elements

(5.39) w̃i = wi +
(
−

1

r
+

1

r
√
1− r

)
(w1 + · · ·+ wr),

which satisfy w̃2
i = λ and w̃i w̃j+w̃j w̃i = 0 (i ̸= j). Then the identity endomorphisms

of our objects can be taken to be the minimal idempotents

(5.40) p =
1

2
(1 ±

√
−1
λ

w̃1 w̃2) · · ·
1

2

(
1±
√
−1
λ

w̃r−1 w̃r

)
.

5.4. The blowup

Let M be a symplectic manifold, and i : N ↪→ M a symplectic submanifold (as
usual, both are assumed to be connected) of codimension 2r. Let B be the result
of blowing up that submanifold, with size δ > 0. We will always suppose that δ is
sufficiently small, making the existence and uniqueness of B unproblematic. Write
D ⊂ B for the exceptional divisor, and u = −PD([D]) ∈ H2(B) for its negative
Poincaré dual. The pushforward H∗(D) → H∗+2(B) and the pullback H∗(M) →
H∗(B) are both injective, their images are disjoint, and together they span H∗(B).
Using Leray-Hirsch one then writes

(5.41) H∗(B) ∼= H∗(M)⊕H∗(D)[−2] ∼= H∗(M)⊕ uH∗(N)⊕ · · ·⊕ ur−1H∗(N).

With respect to this decomposition,

[ωB] = [ωM ] + 2πδ u,(5.42)

c1(B) = c1(M) + (r − 1)u.(5.43)
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Assumption 5.8. — Both M and N have zero first Chern class, and N has trivial
(as a symplectic vector bundle) normal bundle. The (real) dimensions satisfy

dim(M) ≥ 2 dim(N),(5.44)

dim(M)− dim(N) ≡ 0 mod 4.(5.45)

N admits a compatible almost complex structure for which there are no non-constant
pseudo-holomorphic spheres. For B we require a weaker kind of condition, namely
that the Gromov-Witten invariants ⟨x1, . . . , xn⟩BA for genus 0 curves in any homology
class A ∈ H2(B) should vanish, unless A is a multiple of the class of a line in the fibre
of the projective bundle D → N .

The aim of these restrictions is to simplify (drastically) the analysis of the topology
and Gromov-Witten theory of the blowup. The exception is (4.45), which is there
only so that we can apply (a generalization of) Addendum 5.7 later on.

As a consequence of the assumptions, D is diffeomorphic to CP r−1 × N , and the
local structure near it is described by Btoy×N . This first of all simplifies the structure
of the cohomology ring of B somewhat. Take the given ring structures on H∗(M) and
H∗(N), and the restriction map i∗ : H∗(M)→ H∗(N). These define a ring structure
on H∗(M)⊕uH∗(N)[u]. To get the ring structure on (5.41) one imposes the relations

(5.46) urv = −i!(v) ∈ H2r+|v|(M)

for v ∈ H∗(N). This is easily seen by arguing Poincaré dually in terms of intersec-
tions. Note that since i∗i! vanishes, multiplying (5.46) by u yields ur+1 = 0 (for a
discussion of cohomology rings of blowups going beyond the case of trivial normal
bundle, see [41], [62]).

Lemma 5.9. — In terms of (5.41), the (small) quantum product x∗y can be described
as follows. If x or y lie in H∗(M ;R), the product agrees with the classical cup product.
The same is true if x ∈ ujH∗(N ;R), y ∈ ukH∗(N ;R) with j + k < r. Finally, we
have a modified version of (5.46):

(5.47) u ∗ ur−1v = −i!(v)− !2πδuv.

Proof. — Take an almost complex structure which, near D, is the product of the
standard (toric Kähler) structure on Btoy and a compatible almost complex structure
on N with no pseudo-holomorphic spheres in it.

Let A be a multiple of the class of a line in the fibre of D → N . Suppose that A is
represented by a stable genus zero pseudo-holomorphic curve in B, whose irreducible
components represent classes A′

1, . . . , A
′
r, A

′′
1 , . . . , A

′′
s . The notation is such that the

components representing A′
i are those which lie inside D, and therefore inside a fibre

of D → N . Hence, they satisfy [ωM ](A′
i) = 0. The remaining components are not

contained in D, hence satisfy

A′′
i ·D = −u(A′′

i ) > 0 and [ωM ](A′′
i ) = [ωB](A

′′
i )− 2πδ u(A′′

i ) > 0.
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If we assume that s > 0, this is a contradiction to [ωM ](A) = 0. Hence, when com-
puting Gromov-Witten invariants for a class like A (which are the only nonvanishing
ones, by assumption), all the relevant stable pseudo-holomorphic spheres are those
contained in fibres of D → N . But their contribution is as in the previously discussed
toy model case (5.28), with the formal parameter !ωB(Z) re-inserted.

Multiplying (5.47) by u, but this time with respect to the quantum product, yields
the counterpart of (5.28):

(5.48)

r+1︷ ︸︸ ︷
u ∗ · · · ∗ u = u ∗ (u ∗ ur−1) = −!2πδu2 = −!2πδu ∗ u.

Hence, the operator of quantum multiplication with u has eigenvalues 0 as well as λ,
where

(5.49) λr−1 = −!2πδ.

The generalized eigenspaces are

E0 = ker(u ∗ u ∗ ·) =
{
v + !−2πδur−1i∗(v) : v ∈ H ∗(M ;R)

}
,(5.50)

Eλ = ker(λ− u ∗ ·)(5.51)

=
{
− i!(v) + λr−1uv + λr−2u2v + · · ·+ λur−1v : v ∈ H∗(N ;R)

}
.

Each of these is a subalgebra. In particular, (5.51) is isomorphic to H∗(N ;R) as a
ring, with the unit element being the idempotent

(5.52) q =
1

(1 − r)λ!2πδ
(
− i!(1) + λr−1u+ λr−2u2 + · · ·+ λur−1

)
.

We also need to consider the (genus zero, with no descendants) relative Gromov-
Witten invariants of the pair (B,D). In general, such invariants have the form

(5.53)
〈
(µ1, w1), . . . , (µm, wm), v1, . . . , vn

〉(B,D)

A
∈ Q

where m > 0, µ1, . . . , µm > 0 are the intersection multiplicities with D at the marked
points, w1, . . . , wm ∈ H∗(D;Q), v1, . . . , vn ∈ H∗(B;Q), and A ∈ H2(B) is a class
such that A · D = µ1 + · · · + µm. The virtual dimension formula says that in order
for (5.53) to be nonzero, we must have

(5.54) dim(B) + 2c1(A) + 2(m+ n)− 6 =
∑

i

|vi|+
∑

j

(
|wj |+ 2µj

)
,

where the 2µj term takes into account the constraint imposed by having intersections
with D of multiplicity µj . Equivalently, (5.54) can be written as

(5.55) dim(B) + 2c1(A)− 6 =
∑

i

(
|vi|− 2

)
+
∑

j

(
|wj |+ 2µj − 2

)
.

The divisor axiom shows that (5.53) vanishes if |vi| < 2 for any i, so we exclude that
situation from now on, which means that the right hand side of (5.55) is nonnegative.
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In our case, because of (5.43) and Assumption 5.8, we have

dim(B) + 2c1(A)− 6(5.56)

= (dim(N)− 2) + (2r − 2)(1−A ·D)− 2 ≤ (2r − 2)(2−A ·D)− 2.

By comparing this with (5.55), one sees that the only possibly nontrivial invariants
(5.53) have A ·D = 1, hence m = 1 and µ1 = 1.

Lemma 5.10. —
∑

A !ωB(A)⟨(1, w)⟩(B,D)
A = 0 for any w.

Proof. — The proof follows the strategy of [72] (see also [49] for similar arguments
in a symplectic setting), which is to compare the relative invariants of (B,D) with
the absolute invariants of B through degeneration to the normal cone and defor-
mation. A symplectic cut [66] allows us to write B as the symplectic sum of two
pieces (Bleft, Dleft) and (Bright, Dright). The first of these is symplectically deforma-
tion equivalent to (B,D) itself, but with the cohomology class of the symplectic form
changed to

(5.57) [ωBleft ] = [ωB] + 2π(ϵ− δ)u.

The other piece is Bright = B toy ×N containing Dright = Htoy ×N .
To keep the notation compact, we will mostly omit the homology classes of pseudo-

holomorphic curves. In that case, the convention is that we sum over all classes with !
weights given by symplectic areas. Choose a basis {wi} of H∗(Dright;Q) and the
corresponding Poincaré dual basis {w∗

i } , so that
∑

iwi ⊗w∗
i represents the Poincaré

dual of the diagonal. In view of the restrictions on relative Gromov-Witten invariants
observed above, the symplectic sum formula [51], [67] takes on the form

⟨uw⟩B −
∑

Aright·Dright=0

!ωBright(A
right)⟨uw⟩B

right

Aright(5.58)

=
∑

i

〈
(1, wi)

〉(Bleft,Dleft)〈
(1, w∗

i ), uw
〉(Bright,Dright)

+
∑

i1,i2

⟨(1, wi1)⟩(B
left,Dleft)⟨(1, wi2 )⟩(B

left,Dleft)⟨(1, w∗
i1), (1, w

∗
i2 ), uw⟩

(Bright,Dright)

+ · · ·

Here, we think of uw as being represented by (minus) the Poincaré dual of w inside D.
Degeneration moves such a cycle into Bright \Dright, and therefore the simplest term
corresponds to curves in Bright which do not intersectDright. The other terms measure
configurations consisting of a curve inBright with an arbitrary number of“tails”in Bleft

(see Figure 6).
Assumption 5.8 ensures that the left hand side of (5.58) vanishes, since it implies

that only curves lying inside D contribute to ⟨uw⟩B , and the contribution there is the

same as to ⟨uw⟩Bright
.
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Figure 6.

It is unproblematic to assume that ϵ = (r + 1)/(r − 1)δ, which slightly simplifies
the situation since B toy becomes monotone. The lowest energy contribution to the
relative invariants of (Bright, Dright) comes from rational curves which are lines in the
ruling of B̄toy. Denoting the class of those lines by Aright, one finds that

(5.59)
〈
(1, w∗

i ), uwj

〉(Bright,Dright)

Aright = δij .

Using that one rewrites (5.58) as

(5.60) 0 =
〈
(1, w)

〉(Bleft,Dleft)
+

⎧
⎨

⎩

series whose terms are monomials of degree > 0
in the ⟨(1, wi)⟩(B

left,Dleft), with coefficients con-
taining only > 0 powers of !

⎫
⎬

⎭.

If we assume that (1, .)(B
left,Dleft) is nonzero, this immediately leads to a contradiction

by looking at the lowest possible power of ! which occurs. Deformation invariance
shows that the relative Gromov-Witten invariants of (B,D) and (Bleft, Dleft) agree.
Of course, the symplectic areas change, but because of (5.57) they change in the
same way for all the homology classes of curves involved in ⟨(1, w)⟩(B,D) (in fact,
the last step is not even needed for our applications, since the relative invariants
of (Bleft, Dleft) is what will really be relevant).

Remark 5.11. — Readers familiar with the general symplectic sum formula
from [51] will recall that in the general formulation given there, there is a mid-
dle term (the S-matrix). However, it is known [51, Prop. 14.10] that this is trivial
in genus 0, which is the only case considered here. In fact, an alternative proof of
Lemma 5.10 could be given using the equality between relative and absolute genus 0
Gromov-Witten invariants from [51, Prop. 14.9].

From now on, we will assume for technical convenience that N is Spin (the reason is
the same as in Example 3.8). Using the local model Btoy×N ⊂ B, we now introduce
a Lagrangian correspondence

(5.61) C = Ctoy ×∆N ⊂ Btoy ×N ×N− ⊂ B ×N−.
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Lemma 5.12. — Take λ as in (5.49). By a suitable choice of local coefficient system
and bounding cocycle, C can be made into an object of Fuk(B × N−)(r−1)λ, in such
a way that the following holds. We have a canonical ring isomorphism

HF ∗(C,C) ∼= HF ∗(Ctoy, Ctoy)⊗H∗(N ;R)(5.62)

∼= R⟨w1, . . . , wr⟩/{w2
i for all i, wiwj + wjwi + 2λ for all i ̸= j}⊗H∗(N ;R).

Moreover, specializing the open-closed string map yields a ring homomorphism

(5.63) QH ∗(B)⊗QH ∗(N) −→ HF ∗(C,C),

which can be partially described as follows. On the factor QH ∗(N) = H∗(N ;R) we
just have the obvious inclusion; and elements of the form uv ∈ uH∗(N ;R) ⊂ QH ∗(B)
are mapped to λv.

Proof. — Recall that, up to a suitable notion of homotopy [39, Chap. 4], the curved
A∞-algebra

(5.64) homFO(B×N−)(C,C)

is independent of auxiliary choices (like almost complex structures) made in defin-
ing FO(B × N−). This is proved in [39, Section 4.6] by using parametrized
moduli spaces, and the same argument allows one to degenerate B × N− to
(Bleft ×N−) ∪ (Bright ×N−), where C goes to

Ctoy ×∆N ⊂ (Bright ×N−) = B toy ×N ×N−.

In parallel with (5.58), The resulting curved A∞-structure consists of that inherited
from Ctoy ⊂ Btoy and correction terms involving relative Gromov-Witten invariants
of (Bleft, Dleft). To be precise, the A∞-structure involves actual cycles representing
the invariants from Lemma 5.10. However, again up to homotopy, the specific choice
of cycles is irrelevant, so one can take them to be empty. The structure of (5.64) up
to homotopy determines the possible bounding cycles, as well as the endomorphism
algebras of the resulting objects of the actual (unobstructed) Fukaya category [39,
Thm 4.1.3]. With that in mind, (5.62) follows from the computations in the model
case (5.37) (one uses the same flat C∗-bundles).

The same argument applies to the first order infinitesimal “bulk” deformations
induced by cycles in B, as long as those cycles can be moved entirely into Bright ×N
when degenerating, which is true for all the elements considered in the statement of
the lemma. The resulting computation is simple, and we leave it to the reader.

Addendum 5.13. — Consider again just the part of (5.63) concerning QH ∗(B). Us-
ing the ring structure we deduce that

(5.65) i!(1) = −
r︷ ︸︸ ︷

u ∗ · · · ∗ u−!2πδu -−→ −λr − !2πδλ = 0.

Furthermore, the image of the idempotent q from (5.52) is the identity element
in HF 0(C,C).
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5.5. A correspondence functor

Pick some λ as in (5.49), and suppose that C has been made into an object of
Fuk(B ×N−)(r−1)λ following Lemma 5.12. Take the idempotent q ∈ QH 0(B) which
defines the projection to the corresponding eigenspace (5.52), and let p ∈ HF ∗(C,C)
be one of the idempotents from (5.40).

Lemma 5.14. — The formal direct summand of C associated to p gives rise to a
cohomologically full and faitful functor

(5.66) Fuk(N)perf0 −→ Fuk(B)perf(r−1)λ,q.

For brevity, denote these two categories by AN and AB. The induced maps on
Hochschild cohomology and open-closed string maps fit into a commutative diagram

(5.67)

QH ∗(N) !!

""

pHF ∗(C,C)p

""

QH ∗(B)q##

""

HH ∗(AN , AN ) !! HH ∗(AN , AB) HH ∗(AB, AB)##

where the maps in the top row come from (5.63).

Proof. — Parts of this statement come from the general theory of Fukaya categories
and Lagrangian correspondences, and do not need specific proofs. Given that q maps
to the identity in HF ∗(C,C), the correspondence C gives rise to a functor taking
values in a module category:

(5.68) Fuk(N)0 −→ Fuk(B)mod
λ,q ,

and this fits into a commutative diagram analogous to (5.67). As pointed out in [100],
any decomposition of C into formal direct summands, such as the one provided
by p, yields a corresponding decomposition of this functor. The two additional facts
that need to be proved are first of all that the functor takes values in the subcate-
gory Fuk(B)perfλ,q , and that it is full and faithful. There are general results which ensure
that the first property holds under suitable assumptions [107], [64], and which also
make it easy to determine the action of the functor on Floer cohomology groups.
However, they do not apply exactly to the situation under discussion, and we will
instead argue as in Lemma 5.12.

It is convenient to introduce a quilted version Fuk♯(B)(r−1)λ of the Fukaya category,
as in [71] but tailored to our specific application. As objects, this admits objects
of Fuk(B)(r−1)λ as well as generalized Lagrangian submanifolds of a specific kind,
namely pairs consisting of our fixed Lagrangian correspondence C and an object
of Fuk(N)0. Morphisms are defined by (chain complexes underlying) quilted Floer
cohomology [106]. We can again use q to project to a piece of the quilted category,
and denote the result by Fuk♯(B)(r−1)λ,q. By construction, (5.68) can be factored as
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follows:

(5.69) Fuk(N)0 −→ Fuk♯(B)(r−1)λ,q −→ Fuk(B)mod
(r−1)λ,q.

The second arrow is a Yoneda-type functor, which is full and faithful when restricted
to the subcategory Fuk(B)(r−1)λ,q ⊂ Fuk♯(B)(r−1)λ,q. What we want to show is that
the first arrow takes any Lagrangian submanifold to an object that’s quasi-isomorphic
to one in Fuk(B)(r−1)λ,q.

Let’s temporarily turn to a simpler geometric situation, which is

Ctoy ×∆N ⊂ Btoy ×N ×N−.

We have an analogue of (5.69), and the first part of it maps any object L0 of Fuk(N)0
to the generalized Lagrangian submanifold (Ctoy×∆N , L0) in Fuk♯(Btoy×N)(r−1)λ,q.
In particular, if L1 is any object of Fuk(Btoy × N)(r−1)λ, then the quilted Floer
cohomology can be expressed in terms of ordinary Floer cohomology as

(5.70) H
(
homFuk♯(Btoy×N)(r−1)λ

(
L1, (C

toy ×∆N , L0)
)) ∼= HF∗(L1, C

toy × L0).

This is fairly straightforward, involving only re-folding strips and changing their
widths (but not the deeper analytic degeneration arguments from [107]); see Figure 7
on the next page. The same thing holds for morphisms in the other direction, and
these isomorphisms are compatible with products. From this, one easily concludes
that (Ctoy ×∆N , L0) is quasi-isomorphic to Ctoy × L0.

If one now looks at the original picture (5.69) and applies the degeneration ar-
gument from Lemma 5.12, the outcome is that the computations carried out inside
Btoy×N could in principle be deformed by contributions lying in Bleft, but that these
in fact vanish, ensuring that the argument above remains valid. If instead of C one
now uses its direct summand defined by p, the resulting functor no longer lands in the
actual Fukaya category, but in its idempotent completion, which then allows a formal
extension as in (5.66).

The proof that the resulting functor is cohomologically full and faithful uses the
same kind of argument, the concrete input being that pHF ∗(Ctoy, Ctoy)p ∼= R.

Addendum 5.15. — Suppose that we have a full A∞-subcategory ON ⊂ Fuk(N)0
which satisfies the assumptions of Theorem 5.6, meaning that there is a linear map

(5.71) HH ∗(ON , ON ) −→ R

whose composition with the open-closed string map yields
∫
N . Let

OB ⊂ Fuk(B)perf(r−1)λ,q
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Figure 7.

be its image under the functor induced by (C, p). By restricting (5.67) we get a
commutative diagram

(5.72)

QH ∗(N) !!

""

pHF ∗(C,C)p

""

QH ∗(B)q##

""

HH ∗(ON , ON )
∼=

!! HH ∗(ON , OB) HH ∗(OB , OB).
∼=

##

Take V ∈ QH ∗(N), and associate to it x ∈ QH ∗(B)q = Eλ, as in (5.51) but addition-
ally dividing by the nonzero constant (1 − r)λr!2πδ. Crucially, x has a nonzero top
degree component (with respect to the ordinary grading of cohomology) if and only
if v does. Lemma 5.12 (see also Addendum 5.13) shows that v and x have the same
image in HF ∗(C,C). Hence, if we combine (5.71) with the maps in (5.72) to define a
map

(5.73) HH ∗(OB , OB) −→ R,
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the assumptions of Theorem 5.6 are satisfied. This shows that the image of our functor
split-generates, which means that the functor induces a quasi-equivalence

Fuk(N)perf0
∼= Fuk(B)perf(r−1)λ,q.

5.6. The examples

Let K ⊂ CP 3 be a quartic surface, containing a smooth elliptic curve T ⊂ K.
We equip K with the Fubini-Study form rescaled in such a way that T has area 1.
Take a symplectic automorphism f of K as in Lemma 3.28, and form the symplectic
mapping torus of f × f as in (4.1), calling the result E. We will compare this to the
same process applied to the identity map, which gives Etriv ∼= T × K2 (the sign of
the symplectic form does not matter, see the discussion at the end of Section 4.5).
Define N = T × E and N triv = T × Etriv = T 2 ×K2, with the product symplectic
structures as usual. Lemma 3.28 implies that N and N triv are diffeomorphic, and
that the diffeomorphism preserves the cohomology classes of symplectic forms as well
as the homotopy classes of almost complex structures. In fact, inspection of the proof
of that lemma shows that the following more precise result holds:

Lemma 5.16. — There are closed 2-forms γ ∈ Ω2(N), γtriv ∈ Ω2(N triv), as well as
a family of diffeomorphism gr : N → N triv, defined for small r > 0, such that

g∗r (ω
triv
N + rγtriv) = ωN + rγ

(on the level of cohomology, this implies that our diffeomorphisms map [ωtriv
N ] to [ωN ],

and [γtriv] to [γ]).

In fact, γtriv is pulled back from projection N triv → Etriv (and correspondingly
for γ). Embed N triv symplectically into M = K7 by identifying it with

T 2 ×K2 × {point}3.

Denote that embedding by itriv. Since T ⊂ K represents a nonzero homology class,
[γtriv] is in the image of itriv,∗. Fix a closed two-form δ on M such that

itriv,∗[δ] = [γtriv].

Lemma 5.17. — There is a symplectic embedding i : N → M which (as a smooth
embedding) is isotopic to itriv ◦ g. In fact, the embedding has the following sharper
property. There are isotopies

(5.74)

{
φtrivr : N triv −→ N triv, φtriv,∗r (ωtriv

N + r itriv,∗δ) = ωtriv
N + r γtriv,

φr : N −→ N, φ∗r(ωN + ri∗δ) = ωN + rγ

defined for small r ≥ 0, and starting at the identity for r = 0; such that for any r > 0,
the two embeddings

(5.75) i ◦ φr, itriv ◦ φtrivr ◦ gr : (N,ωN + rγ) −→ (M,ωM + rδ)
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are isotopic (through symplectic embeddings for these forms).

Proof. — Consider first the map

(5.76) itriv ◦ gr : N −→M,

for some r > 0. This satisfies (itriv ◦ gr)∗[ωM ] = [ωN ]. Moreover, the symplectic form

(itriv ◦ gr)∗ωM = g∗rωNtriv

can be deformed (through symplectic forms) to

g∗r(ω
triv
N + rγtriv) = ωN + rγ,

and from there back to ωN . Hence, the derivative of (5.76) can be deformed (through
injective vector bundle map) to an embedding of symplectic vector bundles. In other
words, the map (5.76) is formally symplectic. Applying the h-principle for symplec-
tic immersions [45, (3.4.2.A)] (see also [27, (16.4.3)]) then yields symplectic immer-
sion i : N →M . Since dim(M) > 2 dim(N), one can assume (after a generic pertur-
bation) that i is actually an embedding.

The existence of φr and φtrivr follows fromMoser’s argument (restricting to small r).
For any given r > 0, we now have the two symplectic embeddings (5.75). By construc-
tion, these are isotopic in the formally symplectic sense. The parametrized version of
the previously used h-principle (see the references above, or [21] for a more specific
exposition) shows that they can be deformed into each other through symplectic im-
mersions. As before, since dim(M) > 2 dim(N) + 1, a small perturbation will turn
these immersions into embeddings.

Let B be the result of blowing up M along N (embedded through the map i we
have just constructed) with small parameter δ > 0, and Btriv the same with N triv.
Lemma 5.17 implies that B is symplectically deformation equivalent to Btriv.

Lemma 5.18. — Both blowups B and Btriv satisfy Assumption 5.8.

Proof. — Let J int
K be the given (integrable) complex structure on K, for which T ⊂ K

is a holomorphic curve. By standard transversality methods, we can find another
compatible almost complex structure JK which agrees with J int

K in a neighbourhood
of T , and which has no non-constant JK-holomorphic spheres. Equip K5 with the
product structure induced by JK . Then T 2× {point}3 is a complex submanifold, and
if we choose the point to lie on T as well, then JK is integrable near that submanifold.
We can therefore carry out the blowup process following the local algebro-geometric
model. Having done that, take the product with two more copies of K equipped
with JK . The outcome is that we get an almost complex structure JBtriv on the blowup
and a pseudo-holomorphic blowdown map (Btriv, JBtriv ) → (K, JK)7. Hence, all the
pseudo-holomorphic spheres must be contained in the fibres of this map, which means
that they lie in multiples of the homology class Z of a line in the exceptional divisor.
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This implies the vanishing of Gromov-Witten invariants as required in Assumption 5.8.
The rest of the requirements for Btriv are obvious.

Because of the deformation linking it to itriv, i inherits the property that the
normal bundle is trivial. Since B is deformation equivalent to Btriv, it has the same
Gromov-Witten invariants. The absence of pseudo-holomorphic spheres in N is easy
to arrange, see Section 4.1.

Choose some λ as in (5.49). The subspace Eλ ⊂ QH ∗(B) has an intrinsic charac-
terization as the eigenspace of (r−1)λ for quantum multiplication by c1(B). It is also
an algebra with identity element q as in (5.52). Take λ−1H3(B;Z) = λ−1uH1(N ;Z),
project it to Eλ by taking its quantum multiplication with q, and denote the out-
come by

Γλ ⊂ QH 1(B).

Consider the associated Fukaya category Fuk(B)(r−1)λ,q. Let S = Spec(R ) be the
curve associated to the unit torus polynomial, with its standard 1-form θ. We also
have their closures S and θ̄.

Proposition 5.19. — The image of Γλ under the open-closed string map is not
contained in the set Per(Fuk(B)(r−1)λ,q, S , θ̄ ) of periodic elements.

Proof. — Corollary 4.20 implies that there is a class in H1(N ;Z) whose image is
not contained in Per(Fuk(N)0, S , θ̄). More precisely, this is not quite the result as
originally stated, but has the following minor differences. First of all, the grading of
the Fukaya category has been reduced to Z/2, which means that we have to check
whether the uniqueness results from Section 1.11 are applicable. However, that was
already taken care of in Addenda 4.15 and 4.19. The second difference is that we
are considering the product of the symplectic mapping torus with an additional copy
of T , which correspondingly means that we have to take the product of the Lagrangian
submanifolds under consideration with a fixed circle in T .

This requires the same kind of check, but the argument from Lemma 4.14 goes
through as before, and similarly for Addendum 4.19. The third difference is that the
Fukaya category Fuk(N)0 contains more objects than our original version Fuk(N)
(see Remark 5.2), but that is clearly irrelevant for this argument.

We can now use the full and faithful functor from Lemma 5.14 to transfer this re-
sult to B. By our computation of (5.63), any class v ∈ H1(N ;Z) ⊂ QH 1(N) and its
counterpart λ−1uv ∗ q ∈ Γλ have the same image in HH ∗(Fuk(N)0,Fuk(B)(r−1)λ,q).
As explained in Section 1.9, this allows one to map families that follow a given defor-
mation field. The rest of the argument carries over without any changes.

We now consider the analogous construction for Btriv, defining the idempotent
qtriv ∈ QH 0(Btriv) and subgroup Γtriv

λ ⊂ QH 1(Btriv) as before.
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Proposition 5.20. — The image of Γtriv
λ under the open-closed string map is con-

tained in the set Per(Fuk(Btriv)(r−1)λ,qtriv , S , θ̄ ).

Proof. — As before, the first step is to establish a version of Corollary 4.21 for
Fuk(N triv)0, the key additional consideration being that we are now working with
a larger Fukaya category than before. However, one can use Theorem 5.6 and the
argument from Example 3.23 to show that Fuk(N triv)0 is split-generated by the sub-
category Fuk(N triv) (with its grading reduced to Z/2). One takes the family of bimod-
ules used in the proof of Corollary 4.21, reduces its grading to Z/2 as well, and then
extends it to a family of bimodules over Fuk(N triv)0. When carrying over the results
to Btriv, one uses Addendum 5.15 for split-generation, and the same computation as
in Proposition 5.19.

We explained the intrinsic characterization of Eλ and q above, and that also yields
an intrinsic characterization of Γλ. Comparing the two Propositions above shows
that, as announced in the Introduction,

Corollary 5.21. — B and Btriv are not symplectically isomorphic.
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