Mémoires de la S. M. F.

M. ORHON T. TERZIOGLU Diagonal operators on spaces of measurable functions

Mémoires de la S. M. F., tome 31-32 (1972), p. 265-270 http://www.numdam.org/item?id=MSMF1972 31-32 265 0>

© Mémoires de la S. M. F., 1972, tous droits réservés.

L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Colloque Anal. fonctionn.[1971, Bordeaux] Bull. Soc. math. France, Mémoire 31-32, 1972, p. 265-270

DIAGONAL OPERATORS ON SPACES OF MEASURABLE FUNCTIONS

by

M. ORHON and T. TERZIOGLU

1. Introduction.

We denote by L the set of equivalence classes of real-valued measurable functions on a fixed measure space (X, Σ, μ) . L is an algebra with unit and a vector lattice with respect to almost everywhere pointwise operations. The space of essentially bounded real-valued functions $L^{\tilde{\omega}} = L^{\tilde{\omega}}(\mu)$ is a normed subalgebra of L and L is a module over $L^{\tilde{\omega}}$ with respect to almost everywhere pointwise multiplication. A subspace M of L is a solid sublattice of L if and only if M is an L^{$\tilde{\omega}$}-submodule of L [4]. We will can an L^{$\tilde{\omega}$}-submodule M of L a <u>locally convex</u> L^{$\tilde{\omega}}-<u>module</u> if M is a locally convex vector space whose topology is$ given by a family of seminorms p satisfying</sup>

 $p(af) \leq ||a||_{m} p(f) \quad a \in L^{\infty}, f \in M$.

Such a seminorm is called a <u>scalar</u> L^{∞} -<u>seminorm</u> [7]. Since a scalar L^{∞} -seminorm defined on a solid sublattice of L is a lattice seminorm and vice versa, M is a locally convex L^{∞} -module if and only if it is a locally convex vector lattice and solid in L [4]. The Banach spaces $L^{p}(\mu)$, $l \leq p \leq \infty$, and Köthe spaces equipped with Köthe topologies [12] are examples of locally convex L^{∞} -modules.

A linear operator T mapping a subspace M of L into another subspace of L will be called <u>diagonal</u> if there is a locally measurable real-valued function g on X such that Tf = gf for every f in M. A linear operator T mapping an L^{∞}-submodule M into another L^{∞}-submodule of L will be called L^{∞}-<u>linear</u> if T(af) = a T(f) for every a in L^{∞} and f in M.

From now on \mathcal{M} and N will denote locally convex L^{∞} -modules (or equivalently, locally convex solid sublattices of L). Further N is assumed to be order complete. If A is a subset of L, then A^+ denotes the set of positive elements of A.

We present our results without proofs ; a full account will appear elsewhere. Finally, we wish to express our gratitude to the Scientific and Technical Research Council of Turkey for their support. 2. L[∞]-linear operators.

Let \mathcal{C} be the set of positive continuous linear operators from M into N. Then $\mathcal{L}(M,N) = \mathcal{C} - \mathcal{C}$ is a solid sublattice of the space $L^{b}(M,N)$ of order bounded linear operators from M into N. By $\#_{\infty}(M,N)$ we denote the space of continuous $L^{\tilde{\omega}}$ -linear operators from M into N.

LEMMA. - $H_{(M,N)}$ is a sublattice of L(M,N).

A locally convex L^{∞} -module M is said to have the <u>dominated convergence</u> <u>property</u> if for every sequence (f_n) in L with $|f_n| \leq g$ for some g in M and $\lim f_n(x) = f(x)$ on X, we have $\lim f_n = f$ in M.

PROPOSITION 1. - Let Λ be a Köthe space, T a Köthe topology on Λ and Λ^{\times} the α -dual of Λ . Consider the following conditions :

- a) T is compatible with the duality $(\Lambda, \Lambda^{\times})$.
- b) If $f_n \in \Lambda$ and $f_n(x) \neq 0$ on X then $\lim f_n = 0$ in $\Lambda(T)$
- c) $\Lambda(T)$ has the dominated convergence property.
- d) If p is one of the scalar L^{∞} -seminorms defining the topology T on A and f $\in \Lambda$, then for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ implies $p(\chi_E f) < \varepsilon$.

 $\frac{We have}{We will also consider the following condition.}$

(A) for every $f \in M^+$ there is an increasing sequence (s_n) of positive simple functions of bounded support such that $s_n(x) + f_n(x)$ on X and $\lim s_n = f$ in M.

The Banach spaces $L^{\mathbb{P}}(\mu)$, $l \leq p < \infty$, satisfy this condition.

PROPOSITION 2. - If a Köthe space $\Lambda(T)$ has the dominated convergence property, it satisfies (A).

From now on we assume $L^{1}(\mu)' = L^{\infty}(\mu)$.

A diagonal operator is certainly L^{\sim} -linear. Under certain assumptions the converse is also true.

PROPOSITION 3. - a) Let M satisfy condition (A). If for every set of finite measure B, the characteristic function $\chi_{B} \in M$, then every element of $\#_{\infty}(M, N)$ is a diagonal operator.

b) If M is a Köthe space which has the dominated convergence property, then every element of $\mathfrak{H}_{\infty}(M, N)$ is a diagonal operator.

<u>Remark</u>: The hypothesis of the proposition is satisfied by $L^{p}(\mu)$, $l \leq p < \infty$. On the other hand, if $T : L^{\infty} \rightarrow N$ is L^{∞} -linear, since T(f) = T(1)f for every $f \in L^{\infty}$, it is also diagonal.

The set of idempotents in L^{∞} is denoted by I_{∞} and non-negative finite linear combinations of elements of I_{∞} are dense in $(L^{\infty})^+$. If $\chi \in I_{\infty}$, then $\chi' = 1-\chi \in I_{\infty}$ also.

PROPOSITION 4. - There is a projection P of $\mathcal{L}(M,N)$ onto $\mathcal{H}_{\infty}(M,N)$ with $0 \leq P \leq I$.

The projection is constructed in successive steps. First, for $T\in \mathcal{C}$ and $f\in M^+$ we define an element of N by

 $P(T)(f) = \bigwedge_{I} \{ \chi T(\chi f) + \chi'T(\chi'f) \}.$

We prove that P(T) is additive on M^+ and then extend it to a positive linear operator on M. In the next step P is proved to be additive on C and then extended to $\mathfrak{L}(M,N)$.

<u>Remark 1</u>. If we define an L^{∞} -module structure on $\mathfrak{L}(M,N)$ by letting (a.T)(f)=T(af) for f in M and a in L^{∞} , then P is also L^{∞} -linear.

<u>Remark 2</u>. If we take μ to be the counting measure on the set of positive integers, a Köthe space becomes a solid sequence space [5]. Certain operators on sequence spaces can be represented by infinite-matrices [8; p. 20]. If (t_{ij}) is the matrix which represents the operators T, then P(T) is the operator represented by the diagonal of the matrix (t_{ij}) .

Let M and N be Banach sublattices of L, and $\mathcal{N}(M,N)$ the space of nuclear operators from M into N with the nuclear norm r(.). Every nuclear operator can be written as the difference of two positive nuclear operators. If $u_i \in M'$ and $g_i \in N$, $i=1,\ldots, n$, by $\sum_{i=1}^{n} u_i \otimes g_i$ we denote the nuclear operator which sends each $f \in M$ to $\sum_{i=1}^{n} u_i(f) g_i$. We consider the following conditions on a Banach L^{∞} -module Q.

(B) Given $f\in Q$ and $\epsilon>0$, there is $\delta>0$ such that $\mu(E)<\delta$ implies $\|f\chi_{F}\|<\epsilon$.

(C) The support of each $f \in Q$ is σ -finite.

(D) Q has the dominated convergence property.

By $\eta_{\omega}(M,N)$ we will denote the space of nuclear $L^{\tilde{\omega}}$ -linear operators from M into N with the nuclear norm.

PROPOSITION 5. - Let M and N the Banach L^{∞} -modules. If M satisfies (B), N satisfies (C) and (D) and further for every finite family of atoms $\{\chi_1, \ldots, \chi_n\}$, $u \in M'$ and $g \in N$ we have

(*)
$$r(\overset{n}{\Sigma} \chi_{k} u \otimes \chi_{k} g) \leq \|(\overset{n}{\Sigma} \chi_{k}) u\| \|(\overset{n}{\Sigma} \chi_{k}) g\|$$

then the projection P maps $\eta(M,N)$ onto $\eta_{\infty}(M,N)$ such that $r(P(T)) \leq r(T)$ for each $T \in \eta(M,N)$.

<u>Remark</u>: If M' has property (B) instead of M , M has property (C) instead of N or if M' has property (D) instead of N , the result still holds.

3. Diagonal and nuclear diagonal operators on L^p-spaces.

Let M and N be two normed L^{∞} -modules and M \otimes N the complete projective tensor product as defined by Grothendieck [3]. Let K be the smallest closed subspace of M \otimes N containing all elements of the form (af \otimes g) - (f \otimes ag) for every a $\in L^{\infty}$, f \in M and g \in N. The quotient space M \otimes N/K with the quotient norm is called the <u>normed L^{\overlines}-tensor product</u> of M and N, and denoted by M \otimes_{∞} N. If f \otimes_{∞} g denotes f \otimes g mod K for each f \in M, g \in N, then for u \in M \otimes_{∞} N the norm is given by [4 and 9]

$$\gamma_{\infty}(u) = \inf\{\tilde{\Sigma} ||f_{i}|| ||g_{i}|| : u = \tilde{\Sigma} f_{i} \otimes_{\infty} g_{i}, f_{i} \in M, g_{i} \in \mathbb{N}\}.$$

With a measure space (X, Σ, μ) we associate for every real number s > oa <u>weighted counting measure space</u> as follows : ψ is the set of equivalence classes of atoms of μ together with the equivalence class of sets of μ -measure zero. We let $\mu_{\alpha} = \mu(A)$ for any $A \in \alpha$, where $\alpha \in \psi$. For any subset S of ψ we define

$$\widetilde{\mu}^{s}(s) = \Sigma \quad \mu_{\alpha}^{s}$$
.

PROPOSITION 6. - (<u>Harte</u>). Let $1/p + 1/q = 1/r \le 1$ where $1 \le p$, $q \le \infty$. Then $L^{p}(\mu) \otimes_{m} L^{q}(\mu)$ is isometrically L^{∞} -isomorphic with $L^{r}(\mu)$.

In the result complementary to this we have to use the weighted counting measure constructed above.

PROPOSITION 7. - Let s = 1/p + 1/q > 1 where $l \leq p$, $q \leq \infty$. Then $L^{p}(\mu) \otimes_{\infty} L^{q}(\mu)$ is isometrically L^{∞} -isomorphic with $L^{1}(\tilde{\mu}^{S})$.

This result can be found in [6]. Next we give characterizations of diagonal operators between L^P-spaces as another L^P-space. Again we have two cases, the

268

first due to Harte [4] and the second to Orhon [6].

PROPOSITION 8. - Let 1/q - 1/p = 1/r where $l \leq p$, $q \leq \infty$. Then $\nexists_{\infty}(L^{p}(\mu), L^{q}(\mu))$ is isometrically L^{∞} -isomorphic with $L^{r}(\mu)$.

In the result complementary to this we again need the weighted counting measure.

PROPOSITION 9. - Let $l \leq p < q \leq \infty$. Then $\nexists_{\infty}(L^{p}(\mu), L^{q}(\mu))$ is isometrically $L^{\tilde{\omega}}$ -isomorphic with $L^{\tilde{\omega}}(\tilde{\mu})$.

<u>Remark</u>: Diagonal operators between 1^p-spaces were characterized by A. Tong [11]. G. Crofts [1] has considered diagonal operators between sequence spaces.

Using the projection constructed in proposition 4 and its properties discussed in proposition 5, we can define a continuous linear operator from $L^{p'}(\mu) \otimes_{\infty} L^{q}(\mu)$ onto the space $\mathcal{N}_{\infty}(L^{p}, L^{q})$ of diagonal nuclear operators. This enables us to characterize $\mathcal{N}_{\infty}(L^{p}, L^{q})$ by using propositions 6 and 7.

PROPOSITION 10. - $\mathcal{N}(L^{p}(\mu), L^{q}(\mu))$ is isometrically isomorphic with

- (i) $L^{1}(\tilde{\mu}^{1/r})$, if $l \leq q and <math>1/r = 1/q 1/p$.
- (ii) $l^{1}(\psi_{o})$, if $l \leq p = q^{\infty}$ where ψ_{o} denotes the set of equivalence classes of atoms of μ .
- (iii) $\texttt{L}^\texttt{S}(\tilde{\mu}^{\texttt{l}-\texttt{S}})$, if $\texttt{l} \leqslant \texttt{p}^{<\infty}$ and s = pq/pq q + p .
- (iv) $L^{p'}(\tilde{\mu}^{1-p'})$, if $l and <math>q = \infty$.

<u>Remark</u>: In proposition 10 the cases $\eta_{\infty}(L^{\infty}, L^{p})$, $l \leq p \leq \infty$ and $\eta_{\infty}(L^{1}, L^{\infty})$ are not covered. In the case $\eta_{\infty}(L^{1}, L^{\infty})$ our method breaks down, since in this case the projection p (cap.)does not take nuclear operators to nuclear diagonal operators. Nuclear diagonal operators on 1^{p} -spaces were characterized by A. Tong [11].

BIBLIOGRAPHIE

- CROFTS (G.). Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67-76, (1969).
- [2] DIEUDONNÉ (J.). Sur les espaces de Köthe. J. Analyse Math. 1, 81-115, (1951).

- [3] GROTHENDIECK (A.). Produits tensoriels topologiques et espaces nucléaires. Mém. Amer. Math. Soc., N° 16 (1955).
- [4] HARTE (R. E.). Modules over a Banach algebra. Ph. D. thesis. Cambridge, 1964.
- [5] KOTHE (G.). Topologische lineare Räume I. Springer-Verlag, 1960.
- [6] ORHON (M.). Vector semi-norms on modules. Ph. D. thesis, University of Wales, 1969.
- ORHON (M.). On the Hahn-Banach theorem for modules over C(S). J. London Math. Soc. (2), 1, 363-368 (1969).
- [8] PERESSINI (A. L.). Ordered topological vector spaces. Harper and Row. 1967.
- [9] RIEFFEL (M. A.). Induced Banach representations of Banach algebras and locally compact groups. J. Func. Anal. 1, 443-491, (1967).
- [10] SCHAEFER (H. H.). Topological vector spaces. Macmillan 1966.
- [11] TONG (A.). Diagonal nuclear operators on l -spaces. Trans. Amer. Math. Soc., 143, 237-247, (1969).
- [12] WELLAND (R.). On Köthe spaces. Trans. Amer. Math. Soc., 112, 267-277, (1964).
- [13] ZAANEN (A. C.). Integration. North-Holland 1967.

Mathematics Department Middle East Technical University ANKARA (Turquie)