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DIAGONAL OPERATORS ON SPACES OF MEASURABLE FUNCTIONS

^y
M. ORHON and T. TERZIOGLU

1. Introduction.

We denote by L the set of equivalence classes of real-valued measurable

functions on a fixed measure space (X , E , p) . L is an algebra with unit and

a vector lattice "with respect to almost everywhere pointwise operations. The space

of essentially bounded real-valued functions L = L (p) is a normed subalgebra

of L and L is a module over L with respect to almost everywhere pointwise

multiplication. A subspace M of L is a solid sublattice of L if and only if

M is an L -submodule of L [U] . We will can an L -submodule M of L a lo-

cally convex L -module if M is a locally convex vector space whose topology is

given by a family of seminorms p satisfying

p ( a f ) ^ |[ a|[^ p ( f ) aeL°° , f^ M .

Such a seminorm is called a s c alar L -seminorm [T]« Since a scalar L -seminorm

defined on a solid sublattice of L is a lattice seminorm and vice versa, M is

a locally convex L -module if and only if it is a locally convex vector lattice

and solid in L [4]. The Banach spaces L^(p) , l<p<°° , and Kothe spaces equip-

ped with Kothe topologies [12] are examples of locally convex L -modules,

A linear operator T mapping a subspace M of L into another subspace

of L will be called diagonal if there is a locally measurable real-valued func-

tion g on X such that Tf = gf for every f in M . A linear operator T

mapping an L -submodule M into another L -submodule of L will be called

L -linear if T(af) = a T( f ) for every a in L and f in M .

From now on M and N will denote locally convex L°°-modules (or equi-

valently, locally convex solid sublattices of L). Further N is assumed to be

order complete. If A is a subset of L , then A denotes the set of positive

elements of A .

We present our results without proofs , a full account will appear else-

where. Finally, we wish to express our gratitude to the Scientific and Technical

Research Council of Turkey for their support.
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2. L -linear operators.

Let (3- be the set of positive continuous linear operators from M into
N . Then £ ( M , N ) = ^ - <3 is a solid sublattice of the space L^M^N) of order

bounded linear operators from M into N . By 34 (M,N) we denote the space of
continuous L -linear operators from M into N •

LEW1A. - ^(M,N) is a sublattice of £ ( M , N ) .

A locally convex L -module M is said to have the dominated convergence

property if for every sequence (f^) in L with |f |^g for some g in M and

lim f (x) = f (x ) on X , we have lim f = f in M .

PROPOSITION 1. - Let A be a Kothe space, T a Kothe topology on A and Ax

the a-dual of A . Consider the following conditions :

a) T is compatible with the duality (\ , \x) .

b) If f € ^ and f (x) 4- 0 on X then lim f = 0 in A ( T )——. Y\ ——— fi ~^~~~~ —^——— ^ _—_
c) A ( T ) has the dominated convergence property.

d) If p is one of the scalar L -seminorms defining the topology T on A

and f ^ A , then for every c>0 there exists 5>0 such that p ( E ) < 6 im-

plies p(xg f ) < e .

We have (a) ^ (b) » ( c ) ^ (d) .

We will also consider the following''condition*

(A) for every f€ M there is an increasing sequence (s ) of positive

simple functions of bounded support such that s (x) + f (x) on X and lim s = fn n n
in M .

The Banach spaces L^(p) , 1̂  p < °° , satisfy this condition.

PROPOSITION 2. - If a Kothe space A ( T ) has the dominated convergence property,
it satisfies (A) .

From now on we assume L ( p ) ' = L ( p ) •

A diagonal operator is certainly L -linear. Under certain assumptions

the converse is also true.

PROPOSITION 3. - a) Let M satisfy condition (A) . If for every set of finite

measure B , the characteristic function X - n € ^ » then every element of ^ (M , N)
- ^ ' • ±) • ' . 11 00

is a diagonal operator.

b) If M is a Kothe space which has the dominated convergence

property, then every element of ^(M » N) is a diagonal operator.
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Remark : The hypothesis of the proposition is satisfied, by L^d-i) , l^p < °° .
On the other hand, if T : L°° ->- N is L°°-linear, since T ( f ) = T(l)f for every

f € L , it is also diagonal.

The set of idempotents in L is denoted by 1̂  and non-negative finite

linear combinations of elements of I are dense in (L°°) . I f x € I i then
00 00

X * = 1-X €1^ also.

PROPOSITION 4. - There is a projection P ^ £(M,N) onto MjM,N) with

0<P^I .

The projection is constructed in successive steps. First, for T€(3- and

f ^ M -we define an element of N by

P ( T ) ( f ) - A (x T(xt ) + X ' T t x ^ ) } •
I

We prove that P(T) is additive on M and then extend it to a positive linear

operator on M . In the next step P is proved to be additive on C. and then ex-
tended to £ (M,N) .

Remark 1. If we define an L^-module structure on <£(M,N) by letting (a.T) ( f )=T(af )

for f in M and a in L , then P is also L -linear.

Remark 2. If "we take p to be the counting measure on the set of positive inte-
gers, a Kothe space becomes a solid sequence space [51 . Certain operators on se-
quence spaces can be represented by infinite-matrices [8 ; p. 20] . I f ( t . . ) is

the matrix which represents the operators T , then P(T) is the operator repre-

sented by the diagonal of the matrix (t. .) .
ij

Let M and N be Banach sublattices of L , and ??(M,N) the space of
nuclear operators from M into N -with the nuclear norm r( . ) . Every nuclear

operator can be -written as the difference of two positive nuclear operators. If
n

u . € M * and g . € N , i=l,..., n , by E u .0g. -we denote the nuclear operator -which
n

sends each f € M to £ u . ( f ) g. • We consider the following conditions on a Banach

L - module Q .

(B) Given f € Q and e>0 , there is <S>0 such that p(E)«S implies

1 1 % 1 1 < -
( C ) The support of each f ^ Q is a-finite.
(D) Q has the dominated convergence property.

By ^(M,!^) we will denote the space of nuclear L -linear operators from

M into N with the nuclear norm.
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PROPOSITION 5. - Let M and N the Banach L°°- modules. ̂  M satisfies (B) ,
N satisfies (c) and (D) and further for every finite family of atoms

{ X i 9 . - . » X ^ 9 u^^^ and g € N we have

(;;) ^ ( ^ X ^ u ^ x ^ g ) ^ | [ ( Z x ^ ) u | | | | ( ? X ^ - ) g | |

then the projection P maps 7?(M,N) onto ^(M,N) such that r (P (T) ) ̂  r(T)
for each T C 7 ? ( M , N ) .

Remark : If M* has property (B) instead of M , M has property (c) instead

of N or if NT has property (D) instead of N , the result still holds.

3. Diagonal and nuclear diagonal operators on L--spaces.
00

Let M and N be two normed L - modules and M 0 N the complete pro-

jective tensor product as defined "by Grothendieck [3]« Let K be the smallest clo-

sed subspace of M® N containing all elements of the form (af<8> g) - (f(8> ag) for
every a € L°° , f 6 M and g^ N . The quotient space M® N/K -with the quotient norm
is called the normed L -tensor product of M and N , and denoted by M0 N •

If f 0 g denotes f ® g mod K for each f ^ M , g 6 N , then for u € M < 8 > ^ N the
norm is given by [h and 9]

yju) = inf[l ||fJ ||gj| : u = ^ f^ g^ , f^M , g^€N} .

With a measure space (X , Z , p ) we associate for every real number s>o

a weighted counting measure space as follows : ^ is the set of equivalence classes
of atoms of p together with the equivalence class of sets of p-measure zero. We
let p = p (A) for any A € a , where a € ^ ., For any subset S of ^ we define

^(S) = Z IIs .
a^ S a

PROPOSITION 6. - (Harte). Let 1/p + 1/q = l/r< 1 where l<p , q<°° . Then

L^d-i) ̂  L^Cp) is isometrically L^-isomorphic with L^p) .

In the result complementary to this we have to use the weighted counting

measure constructed above.

PROPOSITION T- - Let s = 1/p + 1/q > 1 where l^p , q^°° . Then L^y) (g)^ L^p)
is isometrically L^-isomorphic with L (p 3 ) .

This result can be found in [6]« Next we give characterizations of dia-

gonal operators between L -spaces as another L^-space. Again we have two cases, the
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first due to Harte [h] and the second to Orhon [6].

PROPOSITION 8. - Let 1/q - 1/p = 1/r where 1< p , q<~ . Then ^(L^p) ^(u))

is isometric ally L -isomorphic with L ( p ) .

In the result complementary to this we again need the weighted counting

measure.

PROPOSITION 9. - Let l^p< q<00 . Then ^(L^y) , L ^ p ) ) is isometrically

L -isomorphic with L ( p ) .

Remark ; Diagonal operators "between 1^-spaces were characterized by A. Tong [11].

G. Crofts [1] has considered diagonal operators between sequence spaces.
Using the projection constructed in proposition h and its properties dis-

cussed in proposition 5, we can define a continuous linear operator from

,lP ( y ) ^ L^-(p) onto the space ^ (L^ , L^) of diagonal nuclear operators. This

enables us to characterize 7^(L- , L^) by using propositions 6 and T •

PROPOSITION 10. - ^(L^p) , L^dj)) is isometrically isomorphic with

(i) L ^ y 1 - ) , if l^q<p<~ and 1/r = 1/q - 1/p .

(ii) 1 (ip ) , if 1^ p = q<°° where ^ denotes the set of equivalence classes
of atoms of p .

(iii) L^il1"8) , if l<p<°° and s = pq/pq - q + p .

(iv) L^ (p "^ ) , if l<p<°° and q = °° .

Remark : In proposition 10 the cases ^(L00, I^) , l<p^°o and 7?^(L , L°°)

are not covered. In the case ^ (L , L°°) our method breaks down, since in this case

the projection p (cap.)does not take nuclear operators to nuclear diagonal opera-

tors. Nuclear diagonal operators on 1^-spaces were characterized by A. Tong [11].
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