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Colloque Anal. fonct ionn.[1971, Borde aux]
Bull. Soc. math. France,
Memoire 31-32, 1972, p. 335-3^1.

UNCONDITIONAL CONVERGENCE AND THE VITALI-HAHN-SAKS THEOREM

by
Alex. P. ROBERT SON

The notion of unconditional convergence appears in many contexts in func-

tional analysis. One of these is the theory of vector measures, where some of the

deeper results are largely transcriptions of properties of unconditionally conver-

gent series. Since vector measures have recently been attracting some interest, it

seems worth while to present a number of these properties in a simple and unified

manner.

1. - Basic properties.

Let E be a separated topological vector space. (Most of what follows

continues to be valid for a separated additive abelian topological group.) Also let

(x ) be a sequence of points of E • For each finite set ^ of positive integers,

put

s^ = z xn •n€ <p

The sets (p are directed under inclusion, so that ( s , ) is a net in E ; the se-
Y

ries Zx is called unconditionally convergent to an element s of E iff s ->• s,

i.e. to each neighbourhood U of the origin in E corresponds a finite set <p-

such that s , 6 s + U whenever (pp. c <p •
(p U

It is useful to consider also the corresponding Cauchy condition when

(s ) is a Cauchy net ; we shall then call Ex unconditionally Cauchy. This is(p n ————————'——-—————-—
equivalent to demanding that to each neighbourhood U of the origin in E corres-

ponds a finite set (p., such that s . ^ U whenever 6 and A,, are disjoint.u (p U

There are various equivalent definitions. For example, Zx is uncondi-

tionally convergent to s if and only if every rearrangement converges to s ; and

Zx is unconditionally Cauchy if and only if the partial sums of every subseries

form a Cauchy sequence. Also n may run through any index set, though here we shall

stick to the set N of positive integers for simplicity.

Investigation of the unconditional convergence of a series Ex involves

the study of the map (p ^ s , from the set H of all finite subsets of N , to E .

The aim is to extend this map to the set K of all subsets of N . Now K can be
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identified, with the product 2 of copies of the discrete space { 0 , 1} and, with
the product topology, is a compact space, with H a dense precompact subspace.
(A concrete representation of K , with its compact uniform structure, as Cantor's

ternary set, with the usual additive uniform structure, may be obtained by means of

the correspondence

a -> £ 2.3"11.)
n 60

Now suppose that <^> -^ s, is continuous at one point ^ of H . Then to each neigh-
bourhood U of the origin in E corresponds (^ in H such that s.- s , € Uu <p n)
whenever <j) n <^^ = ^ D ̂  , so that Ex is unconditionally Cauchy. Moreover this
last condition ensures that to U corresponds a (})- such that s,- s . ^ U tor all

U (p \y

(f) , ^ containing ^ , i.e. that ^ -> s is uniformly continuous on H . From

this we deduce at once that the set A of all s is precompact in E . In a to-

pological vector space, the converse holds (see [ 5 ] ) »

PROPOSITION 1. - The series Ex of points of a topological vector space E j_s_

unconditionally Cauchy if and only if the set A of all s for (f) 6 H is pre-
compact in E •

(This result can fail dramatically in a topological group ; for example
1 + 1 + 1 + ... has precompact set of partial sums in the discrete group { 0 , l}.)

Proposition 1 can be thought of as a generalisation of Riemann's theorem for condi-

tionally convergent series of scalars.

Next, suppose that Ex is unconditionally Cauchy and that A is con-

tained in a complete subspace of E • Then <^ -> s extends by uniform continuity

to a map o -^ s of K into E , and we have defined the sum of every infinite

subseries of Ex . Iff this can be done we call Ex subseries convergent. Sincen n ————————————B———
K is compact and H is dense in K we have proved that if Ex is subseries

convergent, the set of all infinite sums s is A and is compact in E • Along
with Proposition 1 this gives a more precise result.

PROPOSITION 2. - The series Ex of points of a topological vector space E is

subseries convergent if and only if A is relatively compact in E .

(This result remains valid in an additive topological group E if and
only if E has no non-trivial compact subgroup. Unfortunately, the corresponding

restriction does not rescue proposition 1 : there are additive topological groups

with no non-trivial precompact subgroups in which proposition 1 fails. See [5].)



Unconditional convergence 337

When E is a topological vector space, the convex envelope B of A is

readily identified to be the set of all sums of the form

Z X x , where 0^\ <1 for each n .
n 6 <() n n

Suppose that £x is unconditionally Cauchy, so that A is precompact. In a local-

ly convex space, the convex envelope of a precompact set is precompact, so that,

for every bounded sequence of scalars \ , ZX x is also unconditionally Cauchy.

It is interesting that this result continues to hold if E is semiconvex (i.e. has

a base of semiconvex neighbourhoods of the origin) even though in such a space the

convex envelope of a precompact set need not be precompact. This shows the special

nature of the precompact sets A that can be obtained from unconditionally Cauchy

series. There is a counter-example, due to Rolewicz and Ryll-Nardzewski, of an un-

conditionally convergent series Zx with a bounded sequence of scalars X , for

which EX x is not unconditionally Cauchy, that shows that the above result can-

not be extended to all topological vector spaces [6]•

2. - Series of functions.

As before, let E be a separated additive topological group. Also let T

be a subset of a metric sapce, with metric d , and let _ t ^ be a point in the clo-

sure of T . In this section we consider series of functions from T to E . Sup-

pose that, for each t in T, Zx (t) is subseries convergent, so thats- ' n

s ( t ) = Z x^(t)
nC a

is defined for each t in T and each o in K . Suppose also that, for each o

in K , s (t) converges to a limit as t ->- t^ in T , and denote this limit by

s (t/.) . Thus for each n , x (t) converges to a limit, denoted by x (t..) , as

t ->• t,. in T , but it is not obvious that s (t^) is the sum of the terms x (t--,)

with nC o , until this is proved below in corollary 1.

LEMMA. - Under the conditions described above, the convergence of s (t) t^o_

s (t,.) is uniform for o€ K .
0 0 ———————————————

Proof : Let U be any closed neighbourhood of the origin in E . For each positive

integer m , let K be the set of all a in K such that s (t)-s ( ! ' )€ U form o o
all t , t* C T with d(t, t^) < 1/m , d( t 1 , t^) < 1/m . By hypothesis, each o

belongs to K for all sufficiently large m , so that K is the union of the sets

K . Now for each t , t * , the map a -^ s (t) - s ( t T ) is continuous and U is
22
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closed ; thus

[a : s^(t) - s^t') €U}

is closed, and so K , an intersection of such sets, is also closed. Hence, by
Baire's category theorem,4the re is an m for which K contains an open subset
W of K .

There is therefore a (^ in H such that a 6 W whenever (^coC K and

for d(t , t.,) < 1/m we have

s^(t)- 3^(1^) = lim {s^(t)- s^ ( t ' ) } 6U" = U .
t1-^ IQ

Now there are only finitely many subsets of (()- and so there is a 6 with

0 < 5 <l/m such that s . ( t ) - s , ( t , j 6U for all ( f ) c ( f ) . and d(t , t/J < 5 . Also
(p (p U U U

any a in K is expressible in the form a = T \ ( ( ) where <^> c ^ c T-€ K , with the

corresponding formulae

s^(t) = s^(t)- s^(t) . s^(tQ) = s^)- 5^(1^) . Thus

^^^ ̂ O^ + u

for d(t, t ) < 6 , which proves the uniform convergence.

Thus to each neighbourhood U of the origin in E correspond a <^ in
H and a 6 > 0 such that s , ( t ) C U for all ((> disjoint from <f) and all t in

(p U

T distant less than 5 from t,. • This enables the next result to be proved

easily.

COROLLARY 1. - Under the conditions of the lemma, Zx (t,.) is sub series conver-

gent and, for each a in K ,

E ̂  = ̂ ^ •
n 6 o

We now vary the hypotheses slightly : instead of supposing that each.

s (t) -^ s (t^) , we assume that for each a in K the mapping t ^ s./t) ls con"
tinuous on T . Then we easily verify that the mapping (t, a ) -^ s^(t) is conti-

nuous on T x K . For

^^ ̂  ̂  = ^a^- ̂ W + ̂ a^- ̂  W •o °

By the lemma the first term is small, uniformly in a , for t near t,. , and the

second is small for a near a,. . It follows by a standard argument (or may be
proved directly from the remark after the lemma) that the mappings a -> s^(t) are
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equicontinuous on every compact subset -of T .. We note one consequence of this.

COROLLARY 2. - With the^ above hypotheses, if T is compact, to each neighbourhood

U of the origin corresponds a finite set (f) such that s ( t ) ^ U for all t in
T and all <j) disjoint from A- .————— ——»——————— y

This result can be used to give a rapid proof of the Orlicz-Pettis
theorem [3, U] .

THEOREM 1. - Let F be a locally convex space with dual F' . If Zx is subse-——— ——————————n—————————c-———————————— —— ^ —————————

ries convergent for the weak topology o(F, F 1 ) , it is also subseries convergent
for the initial topology on F .

Proof : Without loss of generality, -we may assume that the subspace generated by

(x } is dense in F ; then if V is any closed absolutely convex neighbourhood of

the origin, its polar V° is compact metrisable for o ( F ' , F) , and may be taken
as T in corollary 2. With E the scalar field of F , all the conditions are sa-

tisfied and so there is a finite set (f) such that | ^ s , x'V | <1 for all

x1 €V° and all <j) disjoint from ^ . Thus, for all such ^ , s . ^ V and so Zxu (p n
is unconditionally Cauchy for the initial topology. But { s : o€ K) is o(F, F^-

compact and so complete for the initial topology, so that Zx is subseries conver-
gent (see proposition 2).

3. - Vector measures.

Let (S, TT[ ) be a measurable space ; also let E be a separated topolo-

gical vector space (or topological group), as before. A vector measure on S with
values in E is a mapping p of TT[ into E such that, for all sequences of
disjoint sets X in 1T[ ,

oo oo

p( U x^) = z p (x ) .
n=l n=l

Clearly the convergence on the right is to be interpreted as unconditional conver-
gence .

The theorems of Nikodym and Vitali-Hahn-Saks are concerned with a sequence

(p^) of vector measures on S to E such that, for each X in ^ , p (X)

converges to a limit as k -^ °o ; we denote this limit by p ( x ) . See e.g. [1,2,7].
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THEOREM 2. - Under the above conditions, p is a vector measure and the countable
additivity of the p is uniform in k .

Proof : Take any disjoint sequence of sets X in r^ and put x (l/k)= p (X ) ,n n k n
T = {1, 1/2, 1/3, ...} , IQ = 0 , y (X^) = x^(0) . Then the theorem is a transcrip-
tion of corollary 2 and the remark preceding it.

From this theorem we deduce that, if (Y ) is a decreasing sequence of
sets of ^ with empty intersection, then as n -^ °° p , ( Y ) - > - 0 uniformly in k ;
we simply consider the disjoint sets X = Y \ Y

Now suppose that each p is absolutely continuous with respect to a po-
sitive measure \) on (S,TT[ ) . (This means that as \;(x) ^ 0 , p (x) ^ 0 for
each k) . If (Y ) is decreasing as before but now ^(Y,J = 0 for the in-

tersection Y of the sets Y , then we still have v (Y ) ^ 0 as n -^ °° uni-

formly in k . For P^(YQ) = 0 for each k and so we can ignore Y,. and apply the
previous result. This takes us part way through the proof of the Vitali-Hahn-Saks
theorem.

THEOREM 3. - If, in addition to the hypotheses of theorem 2, each p is absolu-k ' - -
tely continuous with respect to a positive measure \) , then the p are equi-ab-
solutely continuous (and p is also absolutely continuous with respect to \)) .

Proof ; The part in parentheses is an easy consequence of the rest, which we now

prove by contradiction. Suppose this false ; then there exists a neighbourhood U
of the origin in E such that, however small 5 > 0 is, there exist positive in-

teger k and- set Z CTTT with \W 9 U T^ut \ ^ ( z ) < 6 . Let V be a neighbour-
hood of the origin with V + Ve U .

Starting off with 5^ = 1, k(0) = 1 we can now define sequences of sets

^ ^ » ^f positive integers k ( r ) and of positive numbers 5 such that•L r

^) < ̂  , k ( r ) > k(r-l) . P^)(Z^.) ^ U ,

^ < '2 ^r-l and ^(r)^6 v ^enever \ ; (Z) < 6

Put Y^ = U z^. . Then

v(Y^)^(Y^)< Z ^) < E 6 < 6 ,
r>n r>n

so that ^(n^n^ ̂  € v • But since



Unconditional convergence 3^1

^(n)^ -Mn)^ - ^(n) ̂  ̂  ? u '

we must have p. , ^ ( Y ) ^ V .k ^n; n

Thus, although the sets (Y ) are decreasing and \>{Y ) ^ 0 , we do not

have ^(Y^) ^ ° uniformly in k , which contradicts the result immediately pre-

ceding the statement of the theorem.
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