On generalized П-property of subgroups of finite groups

Haoran Yu (*)

Abstract

Аbstract - In this note, we extend the concept of Π-property of subgroups of finite groups and generalize some recent results. In particular, we generalize the main results of Li and Miao, p-Hypercyclically embedding and $П$-property of subgroups of finite groups, Comm. Algebra 45 (2017), no. 8, pp. 3468-3474. and Miao, BallesterBolinches, Esteban-Romero, and Li, On the supersoluble hypercentre of a finite group, Monatsh. Math. 184 (2017), no. 4, pp. 641-648.

Mathematics Subject Classification (2010). 20D10.
Keywords. p-chief factor, p-supersolvable, Π-property.

1. Introduction

Suppose that G is a finite group and p is a prime. Let $\pi(G)$ be the set of all the prime divisors of $|G|$. Let $O^{p}(G)=\bigcap\{N \mid N \unlhd G$ and G / N is a p-group $\}$. To state our results, we need to recall some notation. According to Kegel (see [7]), let H be a subgroup of a finite group G; then H is called an S-permutable subgroup of G if H permutes with every Sylow subgroup of G. According to Chen (see [2]), let H be a subgroup of a finite group G; then H is said to be S-semipermutable in G if $H Q=Q H$ for all Sylow q-subgroups Q of G for all primes q not dividing $|H|$. Recently, in [8], Li introduced the concept of Π-property and Π-normality of subgroups of finite groups. Let H be a subgroup of a finite group G. We say that H satisfies Π-property in G if, for any chief factor K / L of $G,\left[G / L: N_{G / L}((H \cap K) L / L)\right]$ is a $\pi((H \cap K) L / L)$-number; we say that H is Π-normal in G if there exist a subnormal subgroup T of G and a subgroup I of G satisfying Π-property in G such that $G=H T$ and $H \cap T \leq I \leq H$.
(*) Indirizzo dell'A.: School of Mathematics, Jilin University, No. 2699 Qianjin Street, Changchun, China
E-mail: sylowtheorem@pku.edu.cn

It is not very difficult to prove that an S-semipermutable p-subgroup of a finite group G satisfies Π-property in G (see Lemma 2.9).

Following Berkovich and Isaacs (see [1]), if G is a finite group and p is a prime divisor of $|G|$, we write G_{p}^{*} to denote the unique smallest normal subgroup of G for which the corresponding factor group is abelian of exponent dividing $p-1$. It is well known that G is p-supersolvable if and only if G_{p}^{*} is p-nilpotent (see Lemma 3.6 of [1]).

In 2014, Berkovich and Isaacs proved the following theorem.
Theorem 1.1 (Berkovich and Isaacs). Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_{p}(G)$.
(a) [1, Lemma 3.8] If P is cyclic and some nonidentity subgroup $U \leq P$ is S-semipermutable in G, then G is p-supersolvable.
(b) [1, Theorem D] Fix an integer $e \geq 3$. If P is a noncyclic p-group with $|P| \geq p^{e+1}$ and every noncyclic subgroup of P with order p^{e} is S-semipermutable in G, then G is p-supersolvable.
(c) [1, Corollary E] If P is a noncyclic p-group with $|P| \geq p^{3}$ and every subgroup of P with order p^{2} is S-semipermutable in G, then G is p-supersolvable.

In 2017, Li and Miao [9] proved the following theorem.
Theorem 1.2. Let G be a finite group, M a normal subgroup of G, p a prime divisor of $|M|, X$ a normal subgroup of G with $F_{p}^{*}(M) \leq X \leq M$ and $P \in \operatorname{Syl}_{p}(X)$. Then every p-chief factor of G below M is cyclic if and only if P has a subgroup D such that $1<|D| \leq \max \{p,|P| / p\}$ and for any subgroup H of P with order $|D|$ (if P is a non-abelian 2-group and $|D|=2$, also for any cyclic subgroup H of P with order 4), $H \cap O^{p}(G)$ satisfies Π-property in G.

Here, as usual, $F_{p}^{*}(M)$ is the generalized p-Fitting subgroup of M, i.e., $F_{p}^{*}(M)$ is the normal subgroup of M such that $O_{p^{\prime}}(M) \leq F_{p}^{*}(M)$ and $F_{p}^{*}(M) / O_{p^{\prime}}(M)=$ $F^{*}\left(M / O_{p^{\prime}}(M)\right)$ (see [12]).

In this note, we extend the concept of Π-property and Π-normality of subgroups of finite groups and generalize the above results. At first, we introduce the following definition.

Definition 1.3. Let p be a prime dividing the order of a finite group G and $M \unlhd G$. Let $M_{G}^{* p}=\bigcap\{N \leq M$ and $N \unlhd G \mid$ every p-chief factor of G / N below M / N is cyclic\}. It is not very difficult to see that every p-chief factor of $G / M_{G}^{* p}$ below $M / M_{G}^{* p}$ is cyclic. And we have $M_{M}^{* p} \leq M_{G}^{* p} \leq M \cap G_{G}^{* p}$.

It is not very difficult to prove that $M_{G}^{* p}=O^{p^{\prime}}\left(\left[M_{p}^{*}, O^{p}\left(G_{p}^{*}\right)\right] O^{p}\left(M_{p}^{*}\right)\right)$. In particular, if M is a p-subgroup, then $M_{G}^{* p}=\left[M, O^{p}\left(G_{p}^{*}\right)\right]$.

Example 1.4. Let $G=A_{4}$ and M be the Sylow 2-subgroup of G. It is not very difficult to see that $M_{M}^{* 2}=1$ and $M_{G}^{* 2}=M$. Then $M_{M}^{* 2}<M_{G}^{* 2}$.

Example 1.5. Let $G=Q_{8} \rtimes \mathbb{Z}_{3}$ and M be the unique subgroup of G with order 2. It is not very difficult to see that $M_{G}^{* 2}=1$ and $G_{G}^{* 2}=Q_{8}$. Then $M_{G}^{* 2}=1<M=M \cap G_{G}^{* 2}$.

Now we introduce the following definition.

Definition 1.6. Let G be a finite group, $M \unlhd G$ and $H \leq G$. If for any chief factor K / L of G below M, we have $\left[G / L: N_{G / L}((H \cap K) L / L)\right]$ is a $\pi((H \cap K) L / L)$-number, then we say that H satisfies Π-property in G with respect to M. Let

$$
\Pi_{M}(G)=\{H \leq G \mid H \text { satisfies } \Pi \text {-property in } G \text { with respect to } M\}
$$

It is not very difficult to prove that H satisfies Π-property in G with respect to M if and only if $H \cap M$ satisfies Π-property in G.

Remark 1.7. Let $N \leq M$ be normal subgroups of a finite group G. It is not very difficult to see that $\Pi_{M}(G) \subseteq \Pi_{N}(G)$.

Remark 1.8. There exists a finite group G with p is a prime divisor of $|G|$ such that G has a p-subgroup P_{1} with $P_{1} \in \Pi_{G_{G}^{* p}}(G)$, but $P_{1} \notin \Pi_{O^{p}(G)}(G)$. See the following example.

Example 1.9. Let $p=5$ and $G=\langle a, b, d| a^{5}=b^{5}=d^{3}=1,[a, b]=1$, $\left.d^{-1} a d=b, d^{-1} b d=a^{-1} b^{-1}\right\rangle \times\left\langle c, f \mid c^{5}=f^{2}=1, f^{-1} c f=c^{-1}\right\rangle \cong$ $\left(\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right) \rtimes \mathbb{Z}_{3}\right) \times D_{10}$. By Fitting's Theorem (see Theorem 4.34 of [5]), it follows that $G_{G}^{* p}=\langle a\rangle \times\langle b\rangle$ and $O^{p}(G)=G$. Let $P_{1}=\langle a c\rangle$. Then $P_{1} \cap G_{G}^{* p}=1$, and thus $P_{1} \in \Pi_{G_{G}^{* p}}(G)$. Since $\langle a\rangle \nexists G$, it follows that $P_{1} \notin \Pi_{O^{p}(G)}(G)$.

Remark 1.10. There exists a finite group G with $M \unlhd G$ and p is a prime divisor of $|M|$ such that M has a p-subgroup P_{1} with $P_{1} \in \Pi_{M_{G}^{* p}}(G)$, but $P_{1} \notin \Pi_{G_{G}^{* p}}(G)$. See the following example.

Example 1.11. Let $p=5$. Consider $P=\langle a, b, c| a^{5}=b^{5}=c^{5}=1$, $\left.[a, b]=[a, c]=1, c^{-1} b c=a b\right\rangle$. Then $|P|=p^{3}$ and $\Phi(P)=\langle a\rangle$. There exists $d \in \operatorname{Aut}(P)$ such that $a^{d}=a, b^{d}=c^{-1} b^{-1}$ and $c^{d}=a b$. In $\operatorname{Aut}(P)$, we have $\circ(d)=3$. Consider the semidirect product $G_{1}=P \rtimes\langle d\rangle$. Consider $G_{2}=\left\langle f, g, h \mid f^{5}=g^{5}=h^{3}=1,[f, g]=1, h^{-1} f h=g, h^{-1} g h=f^{-1} g^{-1}\right\rangle$. Let $G=G_{1} \times G_{2}, M=\langle a\rangle \times\langle f\rangle \times\langle g\rangle$ and $P_{1}=\langle a f\rangle$. It is not very difficult to see that $M \unlhd G$. Note that $G_{p}^{*}=G$. By Fitting's Theorem, it is not very difficult to prove that $O^{p}\left(G_{p}^{*}\right)=G$. Hence $G_{G}^{* p}=P \times\langle f\rangle \times\langle g\rangle$. It is not very difficult to see that $M_{G}^{* p}=\langle f\rangle \times\langle g\rangle$. Since $P_{1} \cap M_{G}^{* p}=1$, it follows that $P_{1} \in \Pi_{M_{G}^{* p}}(G)$. Since $\langle f\rangle \nexists G$, we see that $P_{1} \notin \Pi_{G_{G}^{* p}}(G)$.

Let p be a prime and P be a nonidentity p-group with $|P|=p^{n}$. We define the set $\mathbb{L}_{1}(P)$. If $p=2$ and P is non-abelian, let $\mathbb{L}_{1}(P)=\left\{P_{1} \mid P_{1} \leq P\right.$ and $\left.\left|P_{1}\right|=2\right\} \cup\left\{P_{2} \mid P_{2} \leq P\right.$ and P_{2} is a cyclic subgroup of order 4\}. Otherwise, let $\mathbb{L}_{1}(P)=\left\{P_{1} \mid P_{1} \leq P\right.$ and $\left.\left|P_{1}\right|=p\right\}$.

In this note, we prove the following result.

Theorem 1.12. Let G be a finite group, $M \unlhd G, p$ be a prime divisor of $|M|$, $e \geq 2$ be an integer, and $P \in \operatorname{Syl}_{p}(M)$ with $|P| \geq p^{e+1}$ and P is noncyclic. Suppose that for any normal noncyclic subgroup P_{1} of P with order p^{e} (if P has such a subgroup $), P_{1} \in \Pi_{M_{G}^{* p}}(G)$. If $\left|P \cap M_{G}^{* p}\right| \leq p^{e}$ or $P \cap M_{G}^{* p}$ is cyclic, then every p-chieffactor of G below M is cyclic.

By Theorem 1.12, we obtain the following results.

Theorem 1.13. Let G be a finite group and $X \leq M$ be normal subgroups of G with $F_{2}^{*}(M) \leq X \leq M$. Suppose that $X_{G}^{* 2}$ has a cyclic Sylow 2-subgroup. Then every chief factor of $G / O_{2^{\prime}}(M)$ below $M / O_{2^{\prime}}(M)$ is cyclic. In particular, every 2-chief factor of G below M is cyclic.

Theorem 1.14. Let G be a finite group, $X \leq M$ be normal subgroups of G with $p>2$ is a prime divisor of $|M|$ and $F_{p}^{*}(M) \leq X \leq M$, and $P \in \operatorname{Syl}_{p}(X)$. Suppose that P is cyclic and there exists $1<P_{1} \leq P$ such that $P_{1} \in \Pi_{X_{G}^{* p}}(G)$. Then every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic. In particular, every p-chieffactor of G below M is cyclic.

Theorem 1.15. Let G be a finite group, $X \leq M$ be normal subgroups of G with p is a prime divisor of $|M|$ and $F_{p}^{*}(M) \leq X \leq M, e \geq 3$ be an integer, and $P \in \operatorname{Syl}_{p}(X)$ with $|P| \geq p^{e+1}$ and P is noncyclic. Suppose that for any noncyclic subgroup P_{1} of P with order $p^{e}, P_{1} \in \Pi_{X_{G}^{* p}}(G)$. Then every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic. In particular, every p-chieffactor of G below M is cyclic.

Theorem 1.16. Let G be a finite group, $X \leq M$ be normal subgroups of G with p is a prime divisor of $|M|$ and $F_{p}^{*}(M) \leq X \leq M$, and $P \in \operatorname{Syl}_{p}(X)$ with $|P| \geq p^{3}$ and P is noncyclic. Suppose that for any subgroup P_{1} of P with order $p^{2}, P_{1} \in \Pi_{X_{G}^{* p}}(G)$. Then every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic. In particular, every p-chieffactor of G below M is cyclic.

Theorem 1.17. Let G be a finite group, $X \leq M$ be normal subgroups of G with p is a prime divisor of $|M|$ and $F_{p}^{*}(M) \leq X \leq M$, and $P \in \operatorname{Syl}_{p}(X)$ with P is noncyclic. Suppose that for any subgroup $P_{1} \in \mathbb{L}_{1}(P), P_{1} \in \Pi_{X_{G}^{* p}}(G)$. Then every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic. In particular, every p-chief factor of G below M is cyclic.

We mention that Theorem 1.12-1.17 generalize the main results of [1], [3], [9], [10], and [12].

2. Preliminaries

Lemma 2.1 ([1, Lemma 2.1(b)]). Let p be a prime and P be a nonidentity finite p-group. Let A act on P via automorphisms. Assume that P has a cyclic maximal subgroup, and P is neither elementary abelian of order p^{2} nor isomorphic to Q_{8}. Then $O^{p}\left(A_{p}^{*}\right)$ acts trivially on P.

Lemma 2.2 ([1, Lemma 2.2]). Let S be a p-groupfor some odd prime $p, e \geq 2$ be an integer and $P \unlhd S$ with $|P| \geq p^{e}$. Suppose that every normal subgroup of S that has order p^{e} and is contained in P is cyclic. Then P is cyclic.

Lemma 2.3 ([1, Lemma 2.3]). Fix an integer $e \geq 3$, and let S be a p-group with $|S|>p^{e}$. The following then hold.
(1) If every subgroup of order p^{e} in S is cyclic, then S is cyclic.
(2) If S has exactly one noncyclic subgroup P with order p^{e}, then P is abelian and has a cyclic maximal subgroup.

By Problem 5C. 12 of [5], we have the following lemma.

Lemma 2.4. Let p be a prime dividing the order of a finite group $G, P \in$ $\operatorname{Syl}_{p}(G)$ and $N \unlhd G$. Assume that P is cyclic and $P \cap N<P$. Then N is p-nilpotent.

Lemma 2.5. Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_{p}(G)$. Suppose that P is cyclic and there exists $1<H \leq P$ such that H^{G} is p-solvable. Then G is p-supersolvable.

Proof. It is no loss to assume that $O_{p^{\prime}}(G)=1$ and $P \not \pm H^{G}$. By Lemma 2.4, it follows that H^{G} is p-nilpotent, and thus $H>1$ is a normal p-subgroup of G. Hence $C_{P}\left(G_{p}^{*}\right)>1$. Note that P is a cyclic p-subgroup, by Fitting's Theorem, it is not very difficult to see that G_{p}^{*} is p-nilpotent, i.e., G is p-supersolvable.

Lemma 2.6. Let p be a prime dividing the order of a finite group G, e be an integer, $N<M$ be normal subgroups of $G, S \in \operatorname{Syl}_{p}(G), P=S \cap M$, and $N=V \rtimes K$ with $V>1$ is the normal Sylow p-subgroup of N and $K>1$ is a Hall p^{\prime}-subgroup of N. Assume that $|P| \geq p^{e+1}$ and $|V| \leq p^{e}$. Let $V_{1}<V$ such that $V_{1} \unlhd G$ and V / V_{1} is a chief factor of G. Suppose that for any normal noncyclic subgroup P_{1} of S that has order p^{e} and is contained in P (if S has such a subgroup), $\left[G / V_{1}: N_{G / V_{1}}\left(\left(P_{1} \cap V\right) V_{1} / V_{1}\right)\right]$ is a p-number. If N / V_{1} is not p-nilpotent, then $\left|V / V_{1}\right|=p$.

Proof. Consider $\bar{G}=G / V_{1}$. By Frattini's argument, It follows that $\bar{G}=$ $N_{\bar{G}}(\bar{K}) \bar{V}$. Hence $\bar{S}=N_{\bar{S}}(\bar{K}) \bar{V}$. Since \bar{N} is not p-nilpotent, we see that $N_{\bar{S}}(\bar{K})<\bar{S}$. Hence S has a maximal subgroup T such that $V_{1} \leq T$ and $N_{\bar{S}}(\bar{K}) \leq \bar{T}$. Hence $\bar{S}=\bar{T} \bar{V}$ and $\bar{T}=N_{\bar{S}}(\bar{K}) \overline{V \cap T}$. It is not very difficult to see that $[\bar{V}: \overline{V \cap T}]=[\bar{S}: \bar{T}]=p$. Let $\left|V_{1}\right|=p^{f}$. Then $f<e$. Note that $|\overline{V \cap T}|<$ $|\bar{V}| \leq p^{e-f} \leq|\bar{P}| / p \leq|\overline{P \cap T}|$ and $V, P \cap T$ are normal subgroups of S. Hence there exists $V_{1}<P_{1}<S$ such that $P_{1} \unlhd S,\left|\overline{P_{1}}\right|=p^{e-f}$ and $\overline{V \cap T}<\overline{P_{1}} \leq \overline{P \cap T}$. Then $\overline{V \cap T}=\overline{V \cap P_{1}}$ and $\left|P_{1}\right|=p^{e}$.

If $\overline{P_{1}}$ is noncyclic, then P_{1} is noncyclic, and thus P_{1} is a normal noncyclic subgroup of S that has order p^{e} and is contained in P. Hence $\left[\bar{G}: N_{\bar{G}}\left(\overline{V \cap P_{1}}\right)\right.$] is a p-number. Hence $\bar{G}=N_{\bar{G}}\left(\overline{V \cap P_{1}}\right) \bar{S}$. Note that $\overline{V \cap T}=\overline{V \cap P_{1}} \unlhd \bar{S}$. Then $\overline{V \cap T}=\overline{V \cap P_{1}} \unlhd \bar{G}$.

Assume that $\overline{P_{1}}$ is cyclic. Since $\bar{T}=N_{\bar{S}}(\bar{K}) \overline{V \cap T}$ and $\overline{V \cap T}<\overline{P_{1}}$, it follows that $\overline{P_{1}}=N_{\overline{P_{1}}}(\bar{K}) \overline{V \cap T}$. Hence $\overline{P_{1}}=N_{\overline{P_{1}}}(\bar{K})$. Hence $\overline{V \cap T}=\overline{V \cap P_{1}} \leq$ $N_{\bar{V}}(\bar{K})<\bar{V}$. Since $[\bar{V}: \overline{V \cap T}]=p$, it follows that $\overline{V \cap T}=N_{\bar{V}}(\bar{K})$. Hence $\overline{V \cap T} \unlhd N_{\bar{G}}(\bar{K})$. Note that $\overline{V \cap T} \unlhd \bar{V}$. Hence $\overline{V \cap T} \unlhd N_{\bar{G}}(\bar{K}) \bar{V}=\bar{G}$.

Since $[\bar{V}: \overline{V \cap T}]=p$ and \bar{V} is a minimal normal subgroup of \bar{G}, it follows that $\overline{V \cap T}=1$. Hence $|\bar{V}|=p$.

Lemma 2.7. Let p be a prime and P be a nonidentity finite p-group. Let $1<N \leq P$ be such that $N \cap \Phi(P)=1$. Then for any maximal subgroup N_{1} of N, there exists a maximal subgroup T of P such that $N_{1}=T \cap N$.

Proof. Consider $\bar{P}=P / \Phi(P)$. Since \bar{P} is an elementary abelian p-group, there exists $\Phi(P) \leq M \leq P$ such that $\bar{P}=\bar{N} \times \bar{M}$. Hence $M \unlhd P$, $P=(N \Phi(P)) M=N M$ and $(N \Phi(P)) \cap M=\Phi(P)$. Hence $N \cap M \leq$ $(N \Phi(P)) \cap M=\Phi(P)$, and thus $N \cap M=N \cap \Phi(P)=1$. Since $N>1$ and $N \cap M=1$, it follows that $P / M=N M / M \cong N>1$. Recall that N_{1} is a maximal subgroup of N, it is not very difficult to see that $N_{1} M$ is a maximal subgroup of P. Let $T=N_{1} M$. Then $N \cap T=N_{1}(N \cap M)=N_{1}$.

Lemma 2.8 ([1, Lemma 3.6]). Suppose that a finite group G acts irreducibly on an elementary abelian p-group V, and assume that $O^{p}\left(G_{p}^{*}\right)$ acts trivially on V. Then $|V|=p$.

Lemma 2.9. Let p be a prime dividing the order of a finite group G and H be an S-semipermutable p-subgroup of G. Then H satisfies Π-property in G.

Proof. Let K / L be a chief factor of G. Consider $\bar{G}=G / L$. We work to prove that $O^{p}(\bar{G})$ normalizes $\overline{H \cap K}$. It is no loss to assume that $\overline{H \cap K}>1$. Since H is an S-semipermutable p-subgroup of G, it is not very difficult to see that $\overline{H \cap K}=\bar{H} \cap \bar{K}$ is S-semipermutable in \bar{G}. By Theorem A of [6], it follows that $(\overline{H \cap K})^{\bar{G}}$ is solvable. Recall that $1<\overline{H \cap K} \leq \bar{K}$ and \bar{K} is a minimal normal subgroup of \bar{G}. Hence $\bar{K}=(\overline{H \cap K})^{\bar{G}}$ is solvable. Then \bar{K} is a p-subgroup. By Lemma 3.2 of [1], it follows that $O^{p}(\bar{G})$ normalizes $\overline{H \cap K}$. In particular, $\left[\bar{G}: N_{\bar{G}}(\overline{H \cap K})\right]$ is a p-number. By the definition of Π-property of subgroups of finite groups, we see that H satisfies Π-property in G.

Lemma 2.10 ([8, Theorem C]). Let G be a finite group and $1<M \unlhd G$. Suppose that every chief factor of G below $F^{*}(M)$ is cyclic. Then every chief factor of G below M is cyclic.

Lemma 2.11. Let p be a prime dividing the order of a finite group G and $1<M \unlhd G$. Suppose that $F^{*}(M)$ is p-solvable and $O_{p^{\prime}}(M)=1$. If every p-chief factor of G below $F^{*}(M)$ is cyclic, then every chieffactor of G below M is cyclic.

Proof. Assume that there exists $H \unlhd \unlhd M$ such that $H / Z(H)$ is a nonabelian simple group and $H^{\prime}=H$. Since $H \leq F^{*}(M)$ and $F^{*}(M)$ is p-solvable, it follows that $H / Z(H)$ is p-solvable. Recall that $H / Z(H)$ is a nonabelian simple group. Hence $H / Z(H)$ is a p^{\prime}-group. Let $P_{1} \in \operatorname{Syl}_{p}(H)$. Since $H / Z(H)$ is a p^{\prime}-group, it follows that $P_{1} \leq Z(H)$. By Burnside's Theorem (see Theorem 5.13 of [5]), it follows that H is p-nilpotent. Since $H \unlhd \unlhd M$ and $O_{p^{\prime}}(M)=1$, we have $O_{p^{\prime}}(H)=1$. Hence $H=P_{1}$ is a p-group. This is a contradiction since $H / Z(H)$ is a nonabelian simple group. Hence $F^{*}(M)=F(M)$. Recall that $O_{p^{\prime}}(M)=1$. Then $F^{*}(M)=O_{p}(M)$.

Since every p-chief factor of G below $F^{*}(M)=O_{p}(M)$ is cyclic, it follows that every chief factor of G below $F^{*}(M)$ is cyclic. By Lemma 2.10, every chief factor of G below M is cyclic.

3. Main Results

Theorem 3.1. Let G be a finite group and $M \unlhd G$. Suppose that $M_{G}^{* 2}$ has a cyclic Sylow 2-subgroup. Then every 2-chieffactor of G below M is cyclic.

Proof. Since $M_{G}^{* 2}$ has a cyclic Sylow 2-subgroup, by Corollary 5.14 of [5], it follows that $M_{G}^{* 2}$ is 2-nilpotent. Hence every 2-chief factor of G below $M_{G}^{* 2}$ is cyclic, and thus every 2 -chief factor of G below M is cyclic.

Theorem 3.2. Let G be a finite group, $M \unlhd G$ with $p>2$ is a prime divisor of $|M|, S \in \operatorname{Syl}_{p}(G)$ and $e \geq 2$ be an integer. Let $P=S \cap M$. Assume that $|P| \geq p^{e}$, P is noncyclic and $P \cap M_{G}^{* p}$ is cyclic. Suppose that for any normal noncyclic subgroup P_{1} of S that has order p^{e} and is contained in P (by Lemma 2.2, we see that S has such a subgroup), $P_{1} \in \Pi_{M_{G}^{* p}}(G)$. Then every p-chieffactor of G below M is cyclic.

Proof. Suppose that M is a counterexample with minimal order and we work to obtain a contradiction. Then $M_{G}^{* p}>1$.

It is no loss to assume that $O_{p^{\prime}}(M)=1$. To see this, assume that $O_{p^{\prime}}(M)>1$ and we work to obtain a contradiction. Consider $G / O_{p^{\prime}}(M)$. It is not very difficult to see that the hypotheses are inherited by $M / O_{p^{\prime}}(M)$. By induction, we see that every p-chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic, and thus every p-chief factor of G below M is cyclic. This is a contradiction.

Let $N>1$ be a minimal normal subgroup of G that is contained in $M_{G}^{* p}$. Since $O_{p^{\prime}}(M)=1$, it follows that $P \cap N>1$. We claim that S has a normal noncyclic subgroup P_{1} that has order p^{e} and is contained in P such that $(P \cap N) \cap P_{1}>1$.

By Lemma 2.2, we see that S has a normal noncyclic subgroup N_{1} that has order p^{e} and is contained in P. Assume that $(P \cap N) \cap N_{1}>1$. Let $P_{1}=N_{1}$. Then P_{1} is a normal noncyclic subgroup of S that has order p^{e} and is contained in P such that $(P \cap N) \cap P_{1}>1$. Assume that $(P \cap N) \cap N_{1}=1$. Let Z_{1} be the subgroup of $P \cap N$ with order p. Since $P \cap N$ is cyclic, we see that $Z_{1} \unlhd S$. Since $N_{1} \unlhd S$ and $N_{1}>1, N_{1}$ has a maximal subgroup Z_{2} such that $Z_{2} \unlhd S$. Then $\left|Z_{2}\right|=p^{e-1} \geq p$. From $(P \cap N) \cap N_{1}=1$, we see that $Z_{1} \cap Z_{2}=1$. Let $P_{1}=Z_{1} \times Z_{2}$. Then P_{1} is a normal noncyclic subgroup of S that has order p^{e} and is contained in P such that $(P \cap N) \cap P_{1}=Z_{1}>1$.

Let P_{1} be a normal noncyclic subgroup of S that has order p^{e} and is contained in P such that $(P \cap N) \cap P_{1}>1$. Note that N is a minimal normal subgroup of G. Since $P_{1} \in \Pi_{M_{G}^{* p}}(G)$, we see that $\left[G: N_{G}\left(P_{1} \cap N\right)\right]$ is a p-number. Hence $G=N_{G}\left(P_{1} \cap N\right) S$. Note that $P_{1} \cap N \unlhd S$. Hence $1<P_{1} \cap N \unlhd G$. By Lemma 2.5, it follows that $M_{G}^{* p}$ is p-supersolvable. Hence every p-chief factor of G below $M_{G}^{* p}$ is cyclic, and thus every p-chief factor of G below M is cyclic. This is a contradiction.

Theorem 3.3. Let G be a finite group, $M \unlhd G$ with $p>2$ is a prime divisor of $|M|$ and $P \in \operatorname{Syl}_{p}(M)$. Assume that P is cyclic and there exists $1<P_{1} \leq P$ such that $P_{1} \in \Pi_{M_{G}^{* p}}(G)$. Then every p-chief factor of G below M is cyclic.

Proof. Suppose that M is a counterexample with minimal order and we work to obtain a contradiction. Then $M_{G}^{* p}>1$. Let $S \in \operatorname{Syl}_{p}(G)$ such that $P \leq S$.

It is no loss to assume that $O_{p^{\prime}}(M)=1$. To see this, assume that $O_{p^{\prime}}(M)>1$ and we work to obtain a contradiction. Consider $G / O_{p^{\prime}}(M)$. It is not very difficult to see that the hypotheses are inherited by $M / O_{p^{\prime}}(M)$. By induction, we see that every p-chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic, and thus every p-chief factor of G below M is cyclic. This is a contradiction.

Let $N>1$ be a minimal normal subgroup of G that is contained in $M_{G}^{* p}$. Since $O_{p^{\prime}}(M)=1$, it follows that $P \cap N>1$. Note that P is a cyclic p-subgroup and $P \cap N, P_{1}$ are nontrivial subgroups of P. Hence $P_{1} \cap N=P_{1} \cap(P \cap N)>1$. Since $1<N \leq M_{G}^{* p}$ and N is a minimal normal subgroup of G, by $P_{1} \in \Pi_{M_{G}^{* p}}(G)$, it follows that $\left[G: N_{G}\left(P_{1} \cap N\right)\right]$ is a p-number. Hence $G=N_{G}\left(P_{1} \cap N\right) S$. Note that $P_{1} \cap N \unlhd S$. Hence $P_{1} \cap N \unlhd G$. By Lemma 2.5, it follows that $M_{G}^{* p}$ is p-supersolvable. Hence every p-chief factor of G below $M_{G}^{* p}$ is cyclic, and thus every p-chief factor of G below M is cyclic. This is a contradiction.

Theorem 3.4. Let p be a prime dividing the order of a finite group G and $1<P \unlhd G$ be a p-subgroup. Suppose that for any maximal subgroup P_{1} of P, $P_{1} \in \Pi_{P_{G}^{* p}}(G)$. Then every chief factor of G below P is cyclic.

Proof. Suppose that P is a counterexample with minimal order and we work to obtain a contradiction. Then $P_{G}^{* p}>1$. Let $N>1$ be a minimal normal subgroup of G that is contained in $P_{G}^{* p}$. We claim that $N=P_{G}^{* p}$. Assume that $N<P_{G}^{* p}$ and we work to obtain a contradiction. Consider G / N. It is not very difficult to see that the hypotheses are inherited by P / N. By induction, it follows that every chief factor of G / N below P / N is cyclic, and thus $P_{G}^{* p} \leq N$. This is a contradiction. Hence $P_{G}^{* p}=N$ is a minimal normal subgroup of G.

We claim that $P_{G}^{* p} \cap \Phi(P)=1$. Assume that $P_{G}^{* p} \cap \Phi(P)>1$ and we work to obtain a contradiction. Since $P_{G}^{* p}$ is a minimal normal subgroup of G, we see that $P_{G}^{* p} \leq \Phi(P)$. Note that every chief factor of $G / P_{G}^{* p}$ below $P / P_{G}^{* p}$ is cyclic, by Corollary 3.28 of [5], we see that $P / P_{G}^{* p}$ is centralized by $O^{p}\left(G_{p}^{*}\right)$. By Corollary 3.29 of [5], we see that P is centralized by $O^{p}\left(G_{p}^{*}\right)$. By Lemma 2.8, it follows that every chief factor of G below P is cyclic. This is a contradiction. Hence $P_{G}^{* p} \cap \Phi(P)=1$. Let $S \in \operatorname{Syl}_{p}(G)$. Then $P \leq S$. Since $1<P_{G}^{* p} \unlhd S$, $P_{G}^{* p}$ has a maximal subgroup N_{1} such that $N_{1} \unlhd S$. By Lemma 2.7, it follows that P has a maximal subgroup P_{1} such that $N_{1}=P_{1} \cap P_{G}^{* p}$. Since $P_{G}^{* p}$ is a minimal normal subgroup of G and $P_{1} \in \Pi_{P_{G}^{* p}}(G)$, it follows that $\left[G: N_{G}\left(N_{1}\right)\right]=\left[G: N_{G}\left(P_{1} \cap P_{G}^{* p}\right)\right]$ is a p-number. Hence $G=N_{G}\left(N_{1}\right) S$. Recall that $N_{1} \unlhd S$. Hence $N_{1} \unlhd G$. Since $P_{G}^{* p}$ is a minimal normal subgroup of G and $\left[P_{G}^{* p}: N_{1}\right]=p$, we see that $N_{1}=1$ and $\left|P_{G}^{* p}\right|=p$. Since every chief factor of $G / P_{G}^{* p}$ below $P / P_{G}^{* p}$ is cyclic, it follows that every chief factor of G below P is cyclic. This is a contradiction.

Theorem 3.5. Let p be a prime dividing the order of a finite group $G, e \geq 3$ be an integer, and $1<P \unlhd G$ be a p-subgroup with $|P| \geq p^{e+1}$ and P is noncyclic. Suppose that for any noncyclic subgroup P_{1} of P with order p^{e} (by Lemma 2.3(1), P has such a subgroup), $P_{1} \in \Pi_{P}(G)$. Then every chief factor of G below P is cyclic.

Proof. Suppose that P is a counterexample with minimal order and we work in the following steps to obtain a contradiction. Let $B=O^{p}\left(G_{p}^{*}\right)$ and $C=C_{P}(B)$. By Lemma 2.8, it follows that $C<P$. Let $S \in \operatorname{Syl}_{p}(G)$. Then $P \leq S$. Let $\Omega=\{H<P, H \unlhd G \mid P / H$ is a chief factor of $G\}$. Since $1<P \unlhd G$, it is not very difficult to see that Ω is not empty.

Step 1. $|P|>p^{e+1}$. Assume that $|P| \leq p^{e+1}$ and we work to obtain a contradiction. Recall that $|P| \geq p^{e+1}$. Hence $|P|=p^{e+1}$, and thus for any maximal subgroup P_{1} of $P,\left|P_{1}\right|=p^{e}$. If every maximal subgroup of P is noncyclic, by Theorem 3.4, it follows that every chief factor of G below P is
cyclic. This is a contradiction. Hence P has a cyclic maximal subgroup. Note that $|P|=p^{e+1} \geq p^{4}$, by Lemma 2.1, it follows that P is centralized by B, i.e., $P \leq C$. This is a contradiction.

Step 2. For any $H \in \Omega$, we have $H \leq C$. If H is cyclic, it is not very difficult to see that $H \leq C$.

Assume that H is noncyclic and $|H| \geq p^{e+1}$, it is not very difficult to see that the hypotheses are inherited by H. By induction, it follows that $H \leq C$.

Assume that H is noncyclic and $|H| \leq p^{e}$. Since H, P are normal subgroups of S and $|H| \leq p^{e}<p^{e+1} \leq|P|$, we see that S has a normal subgroup P_{1} with order p^{e} and a normal subgroup P_{2} with order p^{e+1} such that $H \leq P_{1}<P_{2} \leq P$. Since H is noncyclic, we see that P_{1} is noncyclic. Since $P_{1} \in \Pi_{P}(G)$ and P / H is a chief factor of G, it follows that $\left[G / H: N_{G / H}\left(P_{1} / H\right)\right]$ is a p-number. Hence $G / H=N_{G / H}\left(P_{1} / H\right) S / H$. Recall that $P_{1} \unlhd S$. Hence $P_{1} / H \unlhd G / H$, and thus $P_{1} \unlhd G$. Note that $H \leq P_{1}<P$ and P / H is a chief factor of G. Hence $H=P_{1}$, and thus $|H|=p^{e}$. Hence $H=P_{1}$ is a noncyclic maximal subgroup of P_{2}. We claim that H is the unique noncyclic maximal subgroup of P_{2}. Assume that P_{2} has another noncyclic maximal subgroup P_{3} and we work to obtain a contradiction. Then $P_{2}=P_{3} H$. Since $P_{3} \in \Pi_{P}(G)$ and P / H is a chief factor of G, it follows that $\left[G / H: N_{G / H}\left(P_{2} / H\right)\right]=\left[G / H: N_{G / H}\left(P_{3} H / H\right)\right]$ is a p number. Hence $G / H=N_{G / H}\left(P_{2} / H\right) S / H$. Recall that $P_{2} \unlhd S$. Hence $P_{2} / H \unlhd$ G / H, and thus $P_{2} \unlhd G$. By Step 1, we see that $H<P_{2}<P$. Recall that P / H is a chief factor G. Hence we obtain a contradiction. Hence H is the unique noncyclic maximal subgroup of P_{2}. Note that $e \geq 3$ and $|H|=p^{e}<p^{e+1}=\left|P_{2}\right|$, by Lemma 2.3(2), it follows that H is abelian and H has a cyclic maximal subgroup. Note that $|H|=p^{e} \geq p^{3}$. By Lemma 2.1, we see that $H \leq C$.

Step 3. $\Omega=\{C\}$, AND if $N<P$ such that $N \unlhd G$, then $N \leq C$. For any $H \in \Omega$, by Step 2, it follows that $H \leq C$. Since $H \leq C<P, C \unlhd G$ and P / H is a chief factor of G, we see that $C=H$. Hence $\Omega=\{C\}$.

If $N<P$ such that $N \unlhd G$, then there exists $T \in \Omega$ such that $N \leq T$. Since $\Omega=\{C\}$, we see that $N \leq C$.

Step 4. $P=\left\{x \in P \mid x^{p^{2}}=1\right\}$. Hence every subgroup of P with order p^{e} is noncyclic. Note that $\Phi(P)<P$ and $\Phi(P) \unlhd G$, by Step 3, we see that $\Phi(P) \leq C$. Note that $[P, B] \leq P$ and $[P, B] \unlhd G$. If $[P, B]<P$, by Step 3 , we see that $[P, B] \leq C$, i.e., $[P, B, B]=1$. By Lemma 4.29 of $[5]$, we see that $[P, B]=1$, i.e., $P \leq C$. This is a contradiction. Hence $[P, B]=P$. Since $[\Phi(P), B, P]=1$
and $[P, \Phi(P), B]=1$, by Hall's three-subgroups Lemma (see Lemma 4.9 of [5]), we see that $[P, \Phi(P)]=[B, P, \Phi(P)]=1$, i.e., $\Phi(P) \leq Z(P)$. Let $U=\{x \in P \mid$ $\left.x^{p^{2}}=1\right\}$. Since $\Phi(P) \leq Z(P)$, it is not very difficult to prove that U is a subgroup of P. To see this, for any $x, y \in U$, by $P^{\prime} \leq \Phi(P) \leq Z(P)$, we see that $(x y)^{p^{2}}=$ $x^{p^{2}} y^{p^{2}}[y, x]^{p^{2}\left(p^{2}-1\right) / 2}=\left[y^{p^{2}\left(p^{2}-1\right) / 2}, x\right]$. Since p divides $p^{2}\left(p^{2}-1\right) / 2$, we see that $y^{p^{2}\left(p^{2}-1\right) / 2} \in \Phi(P) \leq Z(P)$. Hence $(x y)^{p^{2}}=\left[y^{p^{2}\left(p^{2}-1\right) / 2}, x\right]=1$, and thus $x y \in U$. Hence $U \leq P$. Furthermore, we have $U \unlhd G$. If $U<P$, by Step 3, we see that $U \leq C$. By Satz IV.5.12 of [4], it follows that P is centralized by B, i.e., $P \leq C$. This is a contradiction. Hence $P=U$. Note that $e \geq 3$. Hence every subgroup of P with order p^{e} is noncyclic.

Step 5. $|C| \geq p^{e}$. Assume that $|C|<p^{e}$ and we work to obtain a contradiction. Since $C, P \unlhd S$ and $|C|<p^{e}<|P|, S$ has a normal subgroup P_{4} with order p^{e} such that $C<P_{4}<P$. By Step 4, it follows that P_{4} is noncyclic, and thus $P_{4} \in \Pi_{P}(G)$. By Step 3, we see that $\left[G / C: N_{G / C}\left(P_{4} / C\right)\right]$ is a p-number. Hence $G / C=N_{G / C}\left(P_{4} / C\right) S / C$. Recall that $P_{4} \unlhd S$. Hence $P_{4} / C \unlhd G / C$, and thus $P_{4} \unlhd G$. Note that $C<P_{4}<P$ and P / C is a chief factor of G. This is a contradiction. Hence $|C| \geq p^{e}$.

Step 6. The final contradiction. Since $C, P \unlhd S$ and $C<P, S$ has a normal subgroup C_{1} such that $C<C_{1} \leq P$ and $\left|C_{1} / C\right|=p$. For any $x \in C_{1} \backslash C$, by $\left|C_{1} / C\right|=p$, it follows that $C_{1}=\langle x\rangle C$. By Step 4 , we see that $|\langle x\rangle| \leq p^{2}$. By Step 5, it follows that $|\langle x\rangle| \leq p^{2}<p^{e} \leq|C|<|\langle x\rangle C|=\left|C_{1}\right|$. Hence P has a subgroup P_{5} with order p^{e} such that $\langle x\rangle<P_{5}<C_{1}$. Hence $C_{1}=P_{5} C$. By Step 4, we see that P_{5} is noncyclic, and thus $P_{5} \in \Pi_{P}(G)$. Hence $\left[G / C: N_{G / C}\left(C_{1} / C\right)\right]=\left[G / C: N_{G / C}\left(P_{5} C / C\right)\right]$ is a p-number. Hence $G / C=N_{G / C}\left(C_{1} / C\right) S / C$. Recall that $C_{1} \unlhd S$. Hence $C_{1} / C \unlhd G / C$, and thus $C_{1} \unlhd G$. Note that $C<C_{1} \leq P$ and P / C is a chief factor of G. Then $P=C_{1}$, and thus $|P / C|=p$. Hence P / C is centralized by B. By Corollary 3.28 of [5], it follows that P is centralized by B, i.e., $P \leq C$. This is the final contradiction.

Mimic the proof of Theorem 3.5, we can prove the following two results.
Theorem 3.6. Let p be a prime dividing the order of a finite group G and $1<P \unlhd G$ be a p-subgroup with $|P| \geq p^{3}$ and P is noncyclic. Suppose that for any subgroup P_{1} of P with order $p^{2}, P_{1} \in \Pi_{P}(G)$. Then every chieffactor of G below P is cyclic.

Theorem 3.7. Let p be a prime dividing the order of a finite group G and $1<$ $P \unlhd G$ be a p-subgroup with P is noncyclic. Suppose that for any $P_{1} \in \mathbb{L}_{1}(P)$, $P_{1} \in \Pi_{P}(G)$. Then every chief factor of G below P is cyclic.

Theorem 3.8. Let G be a finite group, $M \unlhd G$ with p is a prime divisor of $|M|, e \geq 3$ be an integer, and $P \in \operatorname{Syl}_{p}(M)$ with $|P| \geq p^{e+1}$ and P is noncyclic. Suppose that for any noncyclic subgroup P_{1} of P with order p^{e} (by Lemma 2.3(1), P has such a subgroup), $P_{1} \in \Pi_{M}(G)$. Then every p-chieffactor of G below M is cyclic.

Proof. Suppose that M is a counterexample with minimal order and we work in the following steps to obtain a contradiction. Then $M_{G}^{* p}>1$. Let $S \in \operatorname{Syl}_{p}(G)$ such that $P \leq S$. Let $\Omega=\{H<M, H \unlhd G \mid M / H$ is a chief factor of $G\}$. Since $1<M \unlhd G$, we see that Ω is not empty.

Step 1. $O_{p^{\prime}}(M)=1$ and $O^{p^{\prime}}(M)=M$. Assume that $O_{p^{\prime}}(M)>1$ and we work to obtain a contradiction. Consider $G / O_{p^{\prime}}(M)$. It is not very difficult to see that the hypotheses are inherited by $M / O_{p^{\prime}}(M)$. By induction, we see that every p-chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic, and thus every p-chief factor of G below M is cyclic. This is a contradiction.

Assume that $O^{p^{\prime}}(M)<M$ and we work to obtain a contradiction. It is not very difficult to see that the hypotheses are inherited by $O^{p^{\prime}}(M)$. By induction, we see that every p-chief factor of G below $O^{p^{\prime}}(M)$ is cyclic, and thus every p-chief factor of G below M is cyclic. This is a contradiction.

Step 2. For any $H \in \Omega, H$ is p-solvable. If $P \cap H$ is noncyclic and $|P \cap H| \geq p^{e+1}$, it is not very difficult to see that the hypotheses are inherited by H. By induction, we see that every p-chief factor of G below H is cyclic. In particular, H is p-solvable.

If $P \cap H$ is noncyclic and $|P \cap H| \leq p^{e}$. Note that $|P \cap H| \leq p^{e}<|P|$. Then P has a subgroup P_{1} with order p^{e} such that $P \cap H \leq P_{1}<P$. Since $P \cap H$ is noncyclic, it follows that P_{1} is noncyclic, and thus $P_{1} \in \Pi_{M}(G)$. For any chief factor K / L of G below $H,\left(P_{1} \cap K\right) L / L=(P \cap K) L / L \in \operatorname{Syl}_{p}(K / L)$. Hence $\left[G / L: N_{G / L}((P \cap K) L / L)\right]$ is a p-number. Hence $\left[K / L: N_{K / L}((P \cap K) L / L)\right]$ is a p-number, and thus $(P \cap K) L / L \unlhd K / L$. Hence K / L is p-solvable. Then H is p-solvable.

Assume that $P \cap H$ is cyclic. It is no loss to assume that $H>1$. Let $N>1$ be a minimal normal subgroup of G that is contained in H. By Step 1, we have $P \cap N>1$. We claim that P has a noncyclic subgroup P_{1} with order p^{e} such that $(P \cap N) \cap P_{1}>1$. Note that $e \geq 3$ and $|P| \geq p^{e+1}>p^{e}$. By Lemma 2.3(1), P has a noncyclic subgroup N_{1} with order p^{e}. Assume that $(P \cap N) \cap N_{1}>1$. Let $P_{1}=N_{1}$. Then P_{1} is a noncyclic subgroup of P with order p^{e} such that
$(P \cap N) \cap P_{1}>1$. Assume that $(P \cap N) \cap N_{1}=1$. Let Z_{1} be the subgroup of $P \cap N>1$ with order p. Since $P \cap N$ is cyclic, we see that $Z_{1} \unlhd P$, and thus $Z_{1} \leq Z(P)$. Note that $N_{1}>1$. Let Z_{2} be a maximal subgroup of N_{1}. Then $\left|Z_{2}\right|=p^{e-1} \geq p^{2}$. Note that $\left[Z_{1}, Z_{2}\right]=1$. From $(P \cap N) \cap N_{1}=1$, we see that $Z_{1} \cap Z_{2}=1$. Let $P_{1}=Z_{1} \times Z_{2}$. Then P_{1} is a noncyclic subgroup of P with order p^{e} and $(P \cap N) \cap P_{1}=Z_{1}>1$. Let P_{1} be a noncyclic subgroup of P with order p^{e} such that $(P \cap N) \cap P_{1}>1$. Note that $N<M$ and N is a minimal normal subgroup of G. Then $\left[G: N_{G}\left(P_{1} \cap N\right)\right]$ is a p-number. Hence $G=N_{G}\left(P_{1} \cap N\right) S$, and thus $1<\left(P_{1} \cap N\right)^{G} \leq S$ is a p-subgroup. By Lemma 2.5, we see that H is p-supersolvable.

Step 3. For any noncyclic subgroup P_{1} of P with order p^{e}, P_{1}^{G} is p-solvable. Let $H \in \Omega$. We consider $\bar{G}=G / H$. Since $P_{1} \in \Pi_{M}(G)$ and M / H is a chief factor of G, we have that $\left[\bar{G}: N_{\bar{G}}\left(\overline{P_{1}}\right)\right]$ is a p-number. Then $\bar{G}=N_{\bar{G}}\left(\overline{P_{1}}\right) \bar{S}$. Hence $\overline{P_{1}^{G}}=\left(\overline{P_{1}}\right)^{\bar{G}} \leq \bar{S}$ is a p-subgroup. By Step 2, it follows that P_{1}^{G} is p-solvable.

STEP 4. Let $\Delta=\left\{P_{1} \leq P \mid P_{1}\right.$ is a noncyclic subgroup with order $\left.p^{e}\right\}$ (by Lemma 2.3(1), Δ is not empty). Let

$$
W=\prod_{P_{1} \in \Delta} P_{1}^{G} .
$$

Then W is not a p-subgroup and $\left|O_{p}(W)\right| \leq p^{e}$.
By Step 3, we see that W is p-solvable and $|W| \geq p^{e}$. Note that $W \leq M$ and $W \unlhd G$. By Step 1, it follows that $O_{p^{\prime}}(W)=1$. Recall that $W>1$ and W is p-solvable. Hence $O_{p}(W)>1$.

Assume that W is a p-subgroup and we work to obtain a contradiction. We claim that W is centralized by $O^{p}(M)$. If W is a cyclic p-subgroup, it is not very difficult to see that W is centralized by $O^{p}\left(G_{p}^{*}\right)$. By Step 1 , we have $M_{p}^{*}=M$, and thus W is centralized by $O^{p}(M)$. If W is a noncyclic p-subgoup and $|W| \geq p^{e+1}$, by Theorem 3.5, W is centralized by $O^{p}\left(G_{p}^{*}\right)$, and thus W is centralized by $O^{p}(M)$. If W is a noncyclic p-subgroup and $|W| \leq p^{e}$, since $|W| \geq p^{e}$, it follows that $|W|=p^{e}$. Hence W is the unique noncyclic subgroup of P with order p^{e}. Recall that $e \geq 3$ and $|P| \geq p^{e+1}$, by Lemma 2.3(2), we see that W is abelian and W has a cyclic maximal subgroup. Recall that $|W|=p^{e}>p^{2}$. We see that W is neither elementary abelian of order p^{2} nor isomorphic to Q_{8}, and thus W is centralized by $O^{p}\left(G_{p}^{*}\right)$. Then W is centralized by $O^{p}(M)$. Now we claim that for any subgroup X of P with $|X|<p^{e}$, we have $X \leq W$. Let $X \leq P$ with $|X|<p^{e}$.

Then $|X|<p^{e} \leq|W| \leq|W X|$. Hence there exists $Y \leq P$ such that $|Y|=p^{e}$ and $X<Y \leq W X$. Then $Y=(Y \cap W) X$. If Y is cyclic, since $X<Y$, we see that $Y=Y \cap W \leq W$, and thus $X<Y \leq W$. If Y is noncyclic, then $X<Y \leq W$. Recall that $e \geq 3$. Then for any $x \in P$ such that the order of x divides p^{2}, we have $\langle x\rangle \leq W$. Hence $\langle x\rangle$ is centralized by $O^{p}(M)$. By Frobenius' Theorem (see Theorem 5.26 of [5]) and Satz IV.5.12 of [4], it follows that M is p-nilpotent. By Step 1, we have $M=P$. By Theorem 3.5, it follows that every p-chief factor of G below $M=P$ is cyclic. This is a contradiction.

Assume that $\left|O_{p}(W)\right| \geq p^{e+1}$ and we work to obtain a contradiction. If $O_{p}(W)$ is cyclic, we see that $O_{p}(W)$ is centralized by $O^{p}\left(G_{p}^{*}\right)$. If $O_{p}(W)$ is noncyclic, by Theorem 3.5, we see that $O_{p}(W)$ is centralized by $O^{p}\left(G_{p}^{*}\right)$. Hence $O_{p}(W)$ is centralized by $O^{p}(M)$, and thus $O_{p}(W)$ is centralized by $O^{p}(W)$. Since W is p-solvable and $O_{p^{\prime}}(W)=1$, by Hall-Higman's Lemma (see Theorem 3.21 of [5]), we see that $O^{p}(W) \leq C_{W}\left(O_{p}(W)\right) \leq O_{p}(W)$. Hence $O^{p}(W)=1$, i.e., W is a p-subgroup. This is a contradiction.

Step 5. Let $O_{p, p^{\prime}}(W)$ be the subgroup such that $O_{p}(W) \leq O_{p, p^{\prime}}(W)$ and $O_{p, p^{\prime}}(W) / O_{p}(W)=O_{p^{\prime}}\left(W / O_{p}(W)\right)$. Let $R=O^{p}\left(O_{p, p^{\prime}}(W)\right)$. Then $R=V \rtimes K$ with $V>1$ is the normal Sylow p-subgroup of $R,|V| \leq p^{e}$ and $K>1$ is a Hall p^{\prime}-subgroup of R.

By Step 4, we see that $O_{p}(W)<W$. Recall that W is p-solvable and $O_{p}(W)<$ W, we see that $O_{p}(W)<O_{p, p^{\prime}}(W)$. Let $K>1$ be a Hall p^{\prime}-subgroup of $O_{p, p^{\prime}}(W)$. Then $O_{p, p^{\prime}}(W)=O_{p}(W) \rtimes K$. Let $V=O_{p}(W) \cap R$. Then V is the normal Sylow p-subgroup of R and $R=V \rtimes K$. By Step 4, we see that $|V| \leq\left|O_{p}(W)\right| \leq p^{e}$. Since $O_{p^{\prime}}(M)=1$ (Step 1) and $O_{p, p^{\prime}}(W)$ is not a p subgroup, it follows that $O_{p, p^{\prime}}(W)$ is not p-nilpotent, i.e., R is not a p^{\prime}-subgroup. Hence $V>1$.

Step 6. The final contradiction. Let $V_{1}<V$ be a normal subgroup of G such that V / V_{1} is a chief factor of G. Since $R=O^{p}\left(O_{p, p^{\prime}}(W)\right)$, we have $O^{p}(R)=R$, and thus R / V_{1} is not p-nilpotent. For any noncyclic subgroup P_{1} of P with order p^{e}, we have $P_{1} \in \Pi_{M}(G)$. Note that V / V_{1} is a chief factor of G below M. Then $\left[G / V_{1}: N_{G / V_{1}}\left(\left(P_{1} \cap V\right) V_{1} / V_{1}\right)\right]$ is a p-number. By Lemma 2.6, we see that $\left|V / V_{1}\right|=p$. Hence V / V_{1} is centralized by G_{p}^{*}. By Step 1, we see that $M_{p}^{*}=M$. Hence V / V_{1} is centralized by M, and thus V / V_{1} is centralized by R. Hence $V / V_{1} \leq Z\left(R / V_{1}\right)$. By Burnside's Theorem (see Theorem 5.13 of [5]), it follows that R / V_{1} is p-nilpotent. Recall that R / V_{1} is not p-nilpotent. This is the final contradiction.

Mimic the proof of Theorem 3.8, we can prove the following two results.

Theorem 3.9. Let G be a finite group, $M \unlhd G$ with p is a prime divisor of $|M|$, and $P \in \operatorname{Syl}_{p}(M)$ with $|P| \geq p^{3}$ and P is noncyclic. Suppose that for any subgroup P_{1} of P with order $p^{2}, P_{1} \in \Pi_{M}(G)$. Then every p-chief factor of G below M is cyclic.

Theorem 3.10. Let G be a finite group, $M \unlhd G$ with p is a prime divisor of $|M|$, and $P \in \operatorname{Syl}_{p}(M)$ with P is noncyclic. Suppose that for any $P_{1} \in \mathbb{L}_{1}(P)$, $P_{1} \in \Pi_{M}(G)$. Then every p-chief factor of G below M is cyclic.

Proof of Theorem 1.12. Suppose that M is a counterexample with minimal order and we work in the following steps to obtain a contradiction. Then $M_{G}^{* p}>1$.

Step 1. $O_{p^{\prime}}(M)=1$. Assume that $O_{p^{\prime}}(M)>1$ and we work to obtain a contradiction. Consider $G / O_{p^{\prime}}(M)$. It is not very difficult to see that the hypotheses are inherited by $M / O_{p^{\prime}}(M)$. By induction, we see that every p-chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic, and thus every p-chief factor of G below M is cyclic. This is a contradiction.

Step 2. $P \cap M_{G}^{* p}$ is noncyclic. Assume that $P \cap M_{G}^{* p}$ is cyclic, by Theorem 3.1 and Theorem 3.2, we see that every p-chief factor of G below M is cyclic. This is a contradiction.

Step 3. $M_{G}^{* p}$ is a minimal normal subgroup of G and $M_{G}^{* p}$ is an elementary abelian p-Group. At first, we work to prove that $M_{G}^{* p}$ is p-solvable. Since $\left|P \cap M_{G}^{* p}\right| \leq p^{e}<|P|, P$ has a normal subgroup P_{1} with order p^{e} such that $P \cap M_{G}^{* p} \leq P_{1}<P$. Then $P_{1} \cap M_{G}^{* p}=P \cap M_{G}^{* p}$. By Step 2, we see that P_{1} is noncyclic. Then $P_{1} \in \Pi_{M_{G}^{* p}}(G)$. For any chief factor K / L of G below $M_{G}^{* p}$, we have $\left(P_{1} \cap K\right) L / L=(P \cap K) L / L \in \operatorname{Syl}_{p}(K / L)$. Hence $\left[G / L: N_{G / L}((P \cap K) L / L)\right]$ is a p-number. Then $\left[K / L: N_{K / L}((P \cap K) L / L)\right]$ is a p-number, and thus $(P \cap K) L / L \unlhd K / L$. Hence K / L is p-solvable. Then $M_{G}^{* p}$ is p-solvable.

Let $N>1$ be a minimal normal subgroup of G that is contained in $M_{G}^{* p}$. Since $M_{G}^{* p}>1$ is p-solvable and $O_{p^{\prime}}(M)=1$, we see that N is an elementary abelian p-subgroup. Let $|N|=p^{f}$. Then $1 \leq f \leq e$. Consider $\bar{G}=G / N$. Then $|\bar{P}| \geq p^{e-f+1}$ and $\left|\bar{P} \cap \bar{M}_{\bar{G}}^{* p}\right|=\left|\overline{P \cap M_{G}^{* \bar{p}}}\right| \leq p^{e-f}$. If $\overline{P \cap M_{G}^{* p}}$ is cyclic, since $M_{G}^{* p}$ is p-solvable, it follows that $\bar{M}_{\bar{G}}^{* p}$ is p-supersolvable. Then
every p-chief factor of \bar{G} below $\bar{M}_{\bar{G}}^{* p}$ is cyclic. Hence every p-chief factor of \bar{G} below \bar{M} is cyclic, and thus $M_{G}^{* p} \leq N$. If $\overline{P \cap M_{G}^{* p}}$ is noncyclic, then $e-f \geq 2$. For any normal noncyclic subgroup $\overline{P_{2}}\left(N<P_{2}\right)$ of \bar{P} with order p^{e-f} (\bar{P} has such a subgroup), we have $\left|P_{2}\right|=p^{e}, P_{2} \unlhd P$ and P_{2} is noncyclic. Then $P_{2} \in \Pi_{M_{G}^{* p}}(G)$. It is not very difficult to see that $\overline{P_{2}} \in \Pi_{\bar{M}_{\bar{G}}^{* p}}(\bar{G})$. Hence the hypotheses are inherited by \bar{M}. By induction, we see that every p-chief factor of \bar{G} below \bar{M} is cyclic, and thus $M_{G}^{* p} \leq N$. Recall that $N \leq M_{G}^{* p}$. Then $M_{G}^{* p}=N$ is a minimal normal subgroup of G.

Step 4. $\left|M_{G}^{* p}\right| \geq p^{2}$. Assume that $\left|M_{G}^{* p}\right|<p^{2}$. By Step 3, it follows that $\left|M_{G}^{* p}\right|=p$. Hence every p-chief factor of G below M is cyclic. This is a contradiction.

Step 5. $P \unlhd G$. Let $T / M_{G}^{* p}=O_{p^{\prime}}\left(M / M_{G}^{* p}\right)$, where $M_{G}^{* p} \leq T \leq M$. Let K be a Hall p^{\prime}-subgroup of T. We claim that $K=1$, i.e., $O_{p^{\prime}}\left(M / M_{G}^{* p}\right)=1$. Assume that $K>1$ and we work to obtain a contradiction. By Step 1 and $K>1$, we see that T is not p-nilpotent. Recall that $M_{G}^{* p}$ is a minimal normal subgroup of G and $M_{G}^{* p}$ is an elementary abelian p-subgroup (Step 3). By Lemma 2.6, it follows that $\left|M_{G}^{* p}\right|=p$. This contradicts to Step 4. Hence $O_{p^{\prime}}\left(M / M_{G}^{* p}\right)=1$. Note that $M / M_{G}^{* p}$ is p-supersolvable. Hence $M / M_{G}^{* p}$ is p-solvable with p-length 1 . Since $O_{p^{\prime}}\left(M / M_{G}^{* p}\right)=1$, we see that $P / M_{G}^{* p} \unlhd G / M_{G}^{* p}$, and thus $P \unlhd G$.

Step 6. The final contradiction. Since $M_{G}^{* p}, P \unlhd G$ (Step 5), $\left|M_{G}^{* p}\right| \leq$ $p^{e}<p^{e+1} \leq|P|$ and every chief factor of $G / M_{G}^{* p}$ below $P / M_{G}^{* p}$ is cyclic, we see that P has a subgroup U with order p^{e+1} such that $M_{G}^{* p}<U \leq P$ and $U \unlhd G$. It is not very difficult to see that $U_{G}^{* p}=P_{G}^{* p}=M_{G}^{* p}$.

We claim that $M_{G}^{* p} \cap \Phi(P)=1$. Assume that $M_{G}^{* p} \cap \Phi(P)>1$ and we work to obtain a contradiction. Since $M_{G}^{* p}$ is a minimal normal subgroup of G, we see that $M_{G}^{* p} \leq \Phi(P)$. Since every chief factor of $G / M_{G}^{* p}$ below $P / M_{G}^{* p}$ is cyclic, by Corollary 3.28 of [5], $P / M_{G}^{* p}$ is centralized by $O^{p}\left(G_{p}^{*}\right)$. By Corollary 3.29 of [5], we see that P is centralized by $O^{p}\left(G_{p}^{*}\right)$. By Lemma 2.8 , we see that every chief factor of G below P is cyclic, and thus $M_{G}^{* p}=P_{G}^{* p}=1$. This is a contradiction.

Let $S \in \operatorname{Syl}_{p}(G)$. Then $P \leq S$. Note that $1<M_{G}^{* p} \unlhd S$. Then $M_{G}^{* p}$ has a maximal subgroup N_{1} such that $N_{1} \unlhd S$. By Lemma 2.7, P has a maximal subgroup P_{1} such that $N_{1}=P_{1} \cap M_{G}^{* p}$. Note that [$U: U \cap P_{1}$] divides p. It is not very difficult to see that $U \cap P_{1}$ is a maximal subgroup of U (otherwise, we have $U \cap P_{1}=U$, and thus $P_{1} \cap M_{G}^{* p}=\left(P_{1} \cap U\right) \cap M_{G}^{* p}=M_{G}^{* p}>N_{1}$. This is a contradiction). Hence $U \cap P_{1}$ is a normal subgroup of P with order p^{e} and
$\left(U \cap P_{1}\right) \cap M_{G}^{* p}=N_{1}$. If $U \cap P_{1}$ is noncyclic, then $U \cap P_{1} \in \Pi_{M_{G}^{* p}}(G)$. Hence [$\left.G: N_{G}\left(N_{1}\right)\right]$ is a p-number, and thus $G=N_{G}\left(N_{1}\right) S$. Recall that $N_{1} \unlhd S$. Then $N_{1} \unlhd G$. Recall that $M_{G}^{* p}$ is a minimal normal subgroup of G and N_{1} is a maximal subgroup of $M_{G}^{* p}$. Then $N_{1}=1$ and $\left|M_{G}^{* p}\right|=p$. This contradicts to Step 4. If $U \cap P_{1}$ is cyclic, then U has a cyclic maximal subgroup. Since $e \geq 2$, we see that $|U|=p^{e+1} \geq p^{3}$. By Step 4, it follows that $U_{G}^{* p}=M_{G}^{* p}$ is an elementary abelian p-subgroup with order exceeding p. Note that Q_{8} has exactly one subgroup with order 2. Hence U is neither elementary abelian of order p^{2} nor isomorphic to Q_{8}. By Lemma 2.1, we see that U is centralized by $O^{p}\left(G_{p}^{*}\right)$. By Lemma 2.8, we see that every chief factor of G below U is cyclic, and thus $M_{G}^{* p}=U_{G}^{* p}=1$. This is the final contradiction.

Theorem 1.12 has the following three corollaries.

Corollary 3.11. Let G be a finite group, $M \unlhd G, p$ be a prime divisor of $|M|$ and $P \in \operatorname{Syl}_{p}(M)$. Suppose that for any maximal subgroup P_{1} of P, $P_{1} \in \Pi_{M_{G}^{* p}}(G)$. If $P \cap M_{G}^{* p}<P$, then every p-chief factor of G below M is cyclic.

Corollary 3.12. Let G be a finite group, $M \unlhd G, p$ be a prime divisor of $|M|$, e be an integer, and $P \in \operatorname{Syl}_{p}(M)$ with $|P| \geq p^{e+1}$. Suppose that for any normal subgroup P_{1} of P with order $p^{e}, P_{1} \in \Pi_{M_{G}^{* p}}(G)$. If $\left|P \cap M_{G}^{* p}\right| \leq p^{e}$, then every p-chieffactor of G below M is cyclic.

Corollary 3.13. Let G be a finite group, $M \unlhd G, p$ be a prime divisor of $|M|, e \geq 2$ be an integer, and $P \in \operatorname{Syl}_{p}(M)$ with $|P| \geq p^{e+1}$. Suppose that for any normal noncyclic subgroup P_{1} of P with order p^{e} (if P has such a subgroup), $P_{1} \in \Pi_{M_{G}^{* p}}(G)$. If $\left|P \cap M_{G}^{* p}\right| \leq p^{e}$, then every p-chief factor of G below M is cyclic.

Proof of Theorem 1.13. By Theorem 3.1, it follows that every 2-chief factor of G below X is cyclic. Hence every 2-chief factor of G below $F_{2}^{*}(M)$ is cyclic. In particular, $F_{2}^{*}(M)$ is 2-nilpotent. Recall that $O_{2^{\prime}}(M) \leq F_{2}^{*}(M)$ and $F_{2}^{*}(M) / O_{2^{\prime}}(M)=F^{*}\left(M / O_{2^{\prime}}(M)\right)$. It is not very difficult to see that $F^{*}\left(M / O_{2^{\prime}}(M)\right)$ is a 2-subgroup. Then every chief factor of $G / O_{2^{\prime}}(M)$ below $F^{*}\left(M / O_{2^{\prime}}(M)\right)$ is cyclic. By Lemma 2.10, it follows that every chief factor of $G / O_{2^{\prime}}(M)$ below $M / O_{2^{\prime}}(M)$ is cyclic. This completes the proof.

Proof of Theorem 1.14. By Theorem 3.3, it follows that every p-chief factor of G below X is cyclic. Hence every p-chief factor of G below $F_{p}^{*}(M)$ is cyclic. In particular, $F_{p}^{*}(M)$ is p-supersovable. Recall that $O_{p^{\prime}}(M) \leq F_{p}^{*}(M)$ and $F_{p}^{*}(M) / O_{p^{\prime}}(M)=F^{*}\left(M / O_{p^{\prime}}(M)\right)$. Hence every p-chief factor of $G / O_{p^{\prime}}(M)$ below $F^{*}\left(M / O_{p^{\prime}}(M)\right)$ is cyclic. Since $M / O_{p^{\prime}}(M)$ is a normal subgroup of $G / O_{p^{\prime}}(M), F^{*}\left(M / O_{p^{\prime}}(M)\right)$ is p-solvable, $O_{p^{\prime}}\left(M / O_{p^{\prime}}(M)\right)=1$ and every p chief factor of $G / O_{p^{\prime}}(M)$ below $F^{*}\left(M / O_{p^{\prime}}(M)\right)$ is cyclic, by Lemma 2.11, it follows that every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic. This completes the proof.

Proof of Theorem 1.15. At first, we work to prove that every p-chief factor of G below X is cyclic. If $\left|P \cap X_{G}^{* p}\right| \leq p^{e}$ or $P \cap X_{G}^{* p}$ is cyclic, by Theorem 1.12, it follows that every p-chief factor of G below X is cyclic. If $\left|P \cap X_{G}^{* p}\right| \geq p^{e+1}$ and $P \cap X_{G}^{* p}$ is noncyclic, by Theorem 3.8, we see that every p-chief factor of G below $X_{G}^{* p}$ is cyclic, and thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic.

Proof of Theorem 1.16. At first, we work to prove that every p-chief factor of G below X is cyclic. If $\left|P \cap X_{G}^{* p}\right| \leq p^{2}$ or $P \cap X_{G}^{* p}$ is cyclic, by Theorem 1.12, it follows that every p-chief factor of G below X is cyclic. If $\left|P \cap X_{G}^{* p}\right| \geq p^{3}$ and $P \cap X_{G}^{* p}$ is noncyclic, by Theorem 3.9, we see that every p-chief factor of G below $X_{G}^{* p}$ is cyclic, and thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic.

Proof of Theorem 1.17. At first, we work to prove that every p-chief factor of G below X is cyclic. If $P \cap X_{G}^{* p}=1$, it is not very difficult to see that every p-chief factor of G below X is cyclic. If $P \cap X_{G}^{* p}>1$ is cyclic, by Theorem 3.1 and Theorem 3.3, we see that every p-chief factor of G below $X_{G}^{* p}$ is cyclic, and thus every p-chief factor of G below X is cyclic. If $P \cap X_{G}^{* p}>1$ is noncyclic, by Theorem 3.10, we see that every p-chief factor of G below $X_{G}^{* p}$ is cyclic, and thus every p-chief factor of G below X is cyclic.

Using the same arguments in the proof of Theorem 1.14, it follows that every chief factor of $G / O_{p^{\prime}}(M)$ below $M / O_{p^{\prime}}(M)$ is cyclic.

Acknowledgment. The author thanks the referee who provided his/her valuable suggestions.

References

[1] Y. Berkovich - I. M. Isaacs, p-supersolvability and actions on p-groups stabilizing certain subgroups, J. Algebra 414 (2014), pp. 82-94.
[2] Z. M. Chen, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci. 12(1) (1987), pp. 1-4.
[3] X. Guo - B. Zhang, Conditions on p-subgroups implying p-supersolvability, J. Algebra Appl. 16 (2017), no. 10, 1750196, 9 pp.
[4] B. Huppert, Endliche Gruppen I., Grundlehren der Mathematischen Wissenschaften 134, Springer-Verlag, Berlin etc., 1967.
[5] I. M. Isaacs, Finite group theory, Graduate Studies in Mathematics 92. American Mathematical Society, Providence, R.I., 2008.
[6] I. M. Isaacs, Semipermutable π-subgroups, Arch. Math. (Basel) 102 (2014), no. 1, pp. 1-6.
[7] O. H. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), pp. 205-221.
[8] B. Li, On П-property and П-normality of subgroups of finite groups, J. Algebra 334 (2011), pp. 321-337.
[9] Y. Li - L. Miao, p-Hypercyclically embedding and $П$-property of subgroups of finite groups, Comm. Algebra 45 (2017), no. 8, pp. 3468-3474.
[10] L. Miao - A. Ballester-Bolinches - R. Esteban-Romero - Y. Li, On the supersoluble hypercentre of a finite group, Monatsh. Math. 184 (2017), no. 4, pp. 641-648.
[11] A. N. Skiba, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra 215 (2011), no. 3, pp. 257-261.
[12] N. Su - Y. Li - Y. WANG, A criterion of p-hypercyclically embedded subgroups of finite groups, J. Algebra 400 (2014), pp. 82-93.

Manoscritto pervenuto in redazione il 20 agosto 2017.

