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On Kaplansky’s sixth conjecture
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Abstract – About 39 years ago, Kaplansky conjectured that the dimension of a semisimple

Hopf algebra over an algebraically closed �eld of characteristic zero is divisible by the

dimensions of its simple modules. Although it still remains open, some partial answers

to this conjecture play an important role in classifying semisimple Hopf algebras.

This paper focuses on the recent development of Kaplansky’s sixth conjecture and its

applications in classifying semisimple Hopf algebras.
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1. Introduction

Let H be a �nite-dimensional semisimple Hopf algebra over an algebraically

closed �eld k. Kaplansky conjectured that the dimension of every simple

H -module divides the dimension of H . This is the sixth of a list of ten conjec-

tures posed by Kaplansky in his lecture notes “Bialgebras” [24]. Unfortunately,

this conjecture is false even for group algebras, which was already known at that

time. For example, let G be the special linear group SL.2; p/ of 2 � 2-matrices

over a �eld with p elements, where p is an odd prime, and let kG be the group

algebra of G over an algebraically closed �eld of characteristic p. Then kG has

simple modules whose dimensions do not divide the order of G. See [6, Exam-

ple 17.17] for details. Of course the conjecture for group algebras holds true when

the characteristic of the �eld k is 0 (thanks to a well-known result of Frobenius).
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We therefore believe that Kaplansky had chark D 0 in mind, but the published

version missed it. So we can rewrite the conjecture as follows.

Let H be a �nite-dimensional semisimple Hopf algebra over an algebraically

closed �eld of characteristic 0. Then the dimension of a simple H -module divides

the dimension of H .

We say that a semisimple Hopf algebra is of Frobenius type if it satis�es the

conjecture above, in honour of Frobenius for his work.

The work toward solving Kaplansky’s sixth conjecture can be roughly divided

into two directions. The �rst direction is to consider semisimple Hopf algebras

with low-dimensional simple modules. The pioneering work in this direction was

made by Nichols and Richmond [45]. They proved, by analyzing the character

algebra of a semisimple Hopf algebra, that if a semisimple Hopf algebra has a

2-dimensional simple module then 2 divides the dimension of the Hopf algebra.

Their work has motivated great interest in this �eld which has produced many nice

results. For example, using a similar method, Burciu [4], Dong and Dai [9], and

Kashina et al [26] independently proved that if an odd-dimensional semisimple

Hopf algebra has a 3-dimensional simple module then 3 divides the dimension of

the Hopf algebra.

Their technique is also used to determine whether a low-dimensional semisim-

ple Hopf algebra is of Frobenius type, since such a Hopf algebra often has a simple

module of low dimension. For example, Natale [43] and Kashina [27] indepen-

dently proved that semisimple Hopf algebras of dimension less than 60 are of

Frobenius type.

The second direction is to think about semisimple Hopf algebras with par-

ticular properties. For example, Etingof and Gelaki proved that any quasitrian-

gular semisimple Hopf algebra satis�es Kaplansky’s sixth conjecture [15]. Some

other results in this direction were made by Zhu [55] for semisimple Hopf algebras

whose characters are central in H �, Zhu [58] for semisimple Hopf algebras with a

transitive module algebra, and Montgomery and Witherspoon [38] for semisolv-

able semisimple Hopf algebras.

This direction is also tightly related to the classi�cation of semisimple Hopf

algebras of a given dimension. As we will discuss in Section 3, semisimple

Hopf algebras of dimension pn; pq; pq2 and pqr , where p; q; r are distinct prime

numbers and n D 1; 2 or 3, have been completely classi�ed. All these semisimple

Hopf algebras are of Frobenius type. We will discuss in detail the recent work

made by Etingof, Nikshych and Ostrik [18] which covers all dimensions mentioned

above.
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Many examples show that a positive answer to Kaplansky’s sixth conjecture

would be very helpful in classifying semisimple Hopf algebras. For example, in

the case that H is a semisimple Hopf algebra of dimension pq, where p; q are

distinct prime numbers, Gelaki and Westreich [19] proved that if H and H � are

both of Frobenius type then H is trivial; that is, it is either a group algebra or a

dual group algebra. In a subsequent paper [16], Etingof and Gelaki proved that H

and H � are of Frobenius type, and hence completed the classi�cation of H . This

result was also obtained by Sommerhäuser [50] by di�erent methods. Another

example is taken from Natale’s work. Let H be a semisimple Hopf algebra of

dimension pq2, where p; q are distinct prime numbers. In [42], Natale completed

the classi�cation of H by assuming that H and H � are both of Frobenius type.

Some other applications of Kaplansky’s sixth conjecture may be found in the

authors’ recent work [7], [8], [9], [10].

There are three nice reviews related to our subject [5], [44], [49]. In [49],

Sommerhäuser reviewed all of Kaplansky’s ten conjectures. In [5, Section 1],

Burciu reviewed the results on Kaplansky’s sixth conjecture obtained until then,

and mainly focused on the development of semisimple Hopf algebras. In [44,

Section 6], Natale gave a brief review on Kaplansky’s sixth conjecture and mainly

paid attention to the representations of semisimple Hopf algebras.

In the fusion category setting, there is a similar question: is every fusion cate-

gory of Frobenius type? Here, a fusion category C is of Frobenius type if for every

simple object X of C, the Frobenius–Perron dimension FPdimX of X divides the

Frobenius–Perron dimension FPdimC of C; that is, the ratio FPdimC=FPdimX is

an algebraic integer. We will review in Subsection 2.2 and Subsection 3.5 some

recent developments in this direction.

In this article we shall review results and approaches so far in the study of

Kaplansky’s sixth conjecture, as well as its applications in classifying semisimple

Hopf algebras. In the last part of this article we shall also present our point of view

on solving this conjecture.

Throughout, we will work over an algebraically closed �eld k of characteris-

tic 0. Our references for the theory of Hopf algebras are [37] or [52].

2. Low-dimensional simple modules and semisimple Hopf algebras

2.1 – Semisimple Hopf algebras

A Hopf algebra is called semisimple (respectively, cosemisimple) if it is semisim-

ple as an algebra (respectively, if it is cosemisimple as a coalgebra). A semisimple

Hopf algebra is automatically �nite-dimensional by [51, Corollary 2.7]. By a result
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of Larson and Radford [28], [29], a �nite-dimensional Hopf algebra is semisimple

if and only if it is cosemisimple.

Let H be a semisimple Hopf algebra and let V be an H -module. The character

of V is the element �V 2 H � de�ned by h�V ; hi D TrV .h/ for all h 2 H .

The degree of �V is de�ned to be the integer deg �V D �V .1/ D dim V .

By a result of Zhu [56], the irreducible characters of H , namely, the characters

of the simple H -modules, span a semisimple subalgebra R.H/ of H �, which

is called the character algebra of H . The antipode S induces an anti-algebra

involution �W R.H/ ! R.H/, given by � 7! �� WD S.�/. We call �� the dual

of �. Let Irr.H/ denote the set of non-isomorphic irreducible characters of H .

Then Irr.H/ is a k-basis of R.H/.

Pioneers in solving Kaplansky’s sixth conjecture, Nichols and Richmond be-

gan their work by considering semisimple Hopf algebras with simple modules of

dimension 2. They proved [45, Theorem 11]:

Theorem 2.1. If a semisimple Hopf algebra H has a simple module of dimen-

sion 2 then the dimension of the semisimple Hopf algebra is even.

Besides the importance of the result itself, the technique used in [45] is also

important. To prove their main result, Nichols and Richmond analyzed the possible

decomposition of ���, where � is an irreducible character of degree 2, and tried

to look for standard subalgebras of R.H/. Here, a standard subalgebra of R.H/

is a subalgebra of R.H/ which is spanned by a subset of the basis Irr.H/. Their

main result then follows from the following theorem [45, Theorem 6]:

Theorem 2.2. There is a bijection between standard subalgebras of R.H/ and

quotient Hopf algebras of H .

They �nally proved that H admits certain quotient Hopf algebras of dimen-

sion 2, 12, 24 or 60. Therefore, the dimension of H is even, in the light of the

main theorem in [46].

About six years later, Kashina, Sommerhäuser, and Zhu generalized the above

result. They proved [25, Theorem 4.1, Theorem 5.1]:

Theorem 2.3. Let H be a semisimple Hopf algebra. Then

(1) if H has a non-trivial self-dual simple module, then the dimension of H is

even;

(2) if H has a simple module of even dimension, then the dimension of H is even.
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The proof of the �rst part is heavily dependent on the Frobenius-Schur theorem

for Hopf algebras [30] and the result on the exponent of a semisimple Hopf algebra

[25, Proposition 2.2], while the second part is based on the �rst part and an analysis

of the decomposition of the product of an irreducible character of even degree and

its dual.

Theorem 2.3 is also very important in studying Kaplansky’s sixth conjecture.

We shall discuss it at the end of this subsection.

Recently, Bichon and Natale gave a more precise description of the work of

Nichols and Richmond [3, Theorem 1.1]. They proved:

Theorem 2.4. Let H be a cosemisimple Hopf algebra. Suppose that H has an

irreducible cocharacter � of degree 2 and C is the simple subcoalgebra contain-

ing �. Then the subalgebra B D kŒCS.C /� is a commutative Hopf subalgebra of

H isomorphic to kG , where G is a non-cyclic �nite subgroup of PSL2.k/ of even

order.

More speci�cally, let GŒ�� � G.H/ be the stabilizer of � under the left

multiplication by G.H/, then the order of GŒ�� divides 4, and the following hold:

(1) if the order of GŒ�� is 4, then B Š kZ2�Z2 .

(2) if the order of GŒ�� is 2, then B Š kDn , where n � 3.

(3) if the order of GŒ�� is 1, then B Š kA4 ; kS4 , or kA5 .

They also studied the special case when the 2-dimensional simple comodule

is faithful, and more interesting results were obtained. They then applied their

results to the classi�cation of semisimple Hopf algebras of dimension 60 and of

semisimple Hopf algebras such that the dimensions of its simple comodules are

at most 2.

Motivated by the work of Nichols and Richmond, many algebraists intend

to consider semisimple Hopf algebras with a simple module of dimension 3.

Unfortunately, only partial answers have been obtained. For example, Burciu [4],

Dong and Dai [9] and Kashina et al [26] independently proved:

Theorem 2.5. If a semisimple Hopf algebra is of odd dimension and has a

simple module of dimension 3, then the dimension of the Hopf algebra is divisible

by 3.

All these three results are mainly based on a similar treatment as in [45], while

the last two articles also adopt the main result in [25] which greatly simpli�es the

proof.
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Besides the applications above, the technique used by Nichols and Richmond

is also very useful in determining whether a semisimple Hopf algebra of low

dimension satis�es Kaplansky’s sixth conjecture, because a semisimple Hopf

algebra of low dimension often admits a simple module of low dimension, such

as 2 or 3.

Following the technique in [45], Natale [43], and Kashina [27] independently

proved that semisimple Hopf algebras of dimension less than 60 satisfy Kaplan-

sky’s sixth conjecture. Moreover, Natale took a further step to prove that all these

Hopf algebras are either upper or lower semisolvable up to a cocycle twist. The

notion of semisolvability will be given in the next section. Therefore, Natale com-

pletes the classi�cation of all these Hopf algebras, to some degree.

Now we illustrate why Theorem 2.3 is important in studying Kaplansky’s sixth

conjecture. Let H be a semisimple Hopf algebra over k. As an algebra, H is

isomorphic to a direct product of full matrix algebras

H Š k.n1/ �

sY

iD2

Mdi
.k/.ni /;

where n1 D jG.H �/j. In this case, H is called of type .d1; n1I � � � I ds; ns/ as an

algebra, where d1 D 1. Obviously, H is of type .d1; n1I � � � I ds; ns/ as an algebra

if and only if H has n1 non-isomorphic irreducible characters of degree d1, n2

non-isomorphic irreducible characters of degree d2, and so on.

Suppose that the dimension of H is odd and H is of type .d1; n1I � � � I ds; ns/ as

an algebra. Then part (2) of Theorem 2.3 clearly shows that di is odd, and part (1)

of Theorem 2.3 shows that ni is even for all 2 � i � s. Indeed, if there exists

i 2 ¹2; : : : ; sº such that ni is odd, then there is at least one irreducible character of

degree di which is self-dual. This contradicts part (1) of Theorem 2.3. Therefore,

Theorem 2.3 is quite useful in excluding potential type .d1; n1I � � � I ds; ns/ for a

semisimple Hopf algebra. Using this observation, together with other techniques,

Dong and Dai [9] further extended the results of Natale [43] and Kashina [27].

That is, they proved that odd-dimensional semisimple Hopf algebras of dimension

less than 600 satisfy Kaplansky’s sixth conjecture.

We should remark that the technique used in [45] does not work well for simple

modules of higher dimension.

2.2 – Results from fusion categories

A fusion category over k is a k-linear semisimple rigid tensor category with

�nitely many isomorphism classes of simple objects, �nite-dimensional spaces of
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morphisms, and simple unit object. Let H be a semisimple Hopf algebra over k.

Then the category RepH of its �nite-dimensional representations is a fusion

category.

Recall that a fusion category is said to be weakly integral if its Frobenius–

Perron dimension is an integer. A fusion category is said to be integral if the

Frobenius–Perron dimension of every simple object is an integer.

Theorem 2.6. Let C be an integral fusion category. Suppose that the

Frobenius–Perron dimensions of its simple objects are 1; 2 or 3. Then C is of

Frobenius type.

The theorem above is the main result of [11]. Its proof relies on an analogue

of Theorem 2.2 in the fusion category setting. The proof of Theorem 2.2 only

makes use of properties of the Grothendieck ring of a semisimple Hopf algebra.

Therefore its proof also works mutatis mutandis in the fusion category setting.

In [18], Etingof, Nikshych and Ostrik proved that any weakly integral fu-

sion category of Frobenius–Perron dimension less than 84 is of Frobenius type.

The following theorem [12, Theorem 1.1] extends this result.

Theorem 2.7. Let C be a weakly integral fusion category of Frobenius–Perron

dimension less than 120. Then C is of Frobenius type. Furthermore, if FPdimC > 1

and C © RepA5, then C has nontrivial invertible objects.

A fusion category is called simple if it has no nontrivial proper fusion subcate-

gories [18]. As a consequenceof Theorem 2.7, if FPdimC � 119 and FPdimC ¤ 60

or p, where p is a prime number, then C is not simple as a fusion category. Com-

bined with the results of the paper [18], the theorem above implies that the only

weakly integral simple fusion categories of Frobenius–Perron dimension � 119

are the categories RepA5 of �nite-dimensional representations of the alternat-

ing group A5 and the pointed fusion categories C.Zp; !/ of �nite-dimensional

Zp-graded vector spaces, where p is a prime number, with associativity constraint

determined by a 3-cocycle ! 2 H 3.Zp; k�/.

3. Semisimple Hopf algebras that satisfy Kaplansky’s sixth conjecture

3.1 – Semisimple Hopf algebras whose characters are central in H �

Before the work of Nichols and Richmond, Zhu had already proven the following

result on Kaplansky’s sixth conjecture in [55].
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Theorem 3.1. Let H be a semisimple Hopf algebra. If R.H/ is central in H �

then H satis�es Kaplansky’s sixth conjecture.

We refer to [31] for an alternate proof of this theorem. Although Zhu’s result

is interesting, except for dual group algebras, we do not yet know which Hopf

algebras satisfy the assumptions.

3.2 – Quasitriangular semisimple Hopf algebras

Let H be a semisimple Hopf algebra. We de�ne two actions of H � on H as

f * h D
X

f .h2/h1 and h ( f D
X

f .h1/h2; for all f 2 H �; h 2 H:

The Drinfeld double D.H/ of H has H � cop ˝H as its underlying vector space

with multiplication in D.H/ given by

.g ˝ h/.f ˝ l/ D
X

g.h1 * f ( S�1.h3// ˝ h2l:

D.H/ has the coalgebra structure of the usual tensor product of coalgebras.

It follows from [37] that D.H/ is also semisimple. Etingof and Gelaki proved

[15, Theorem 1.4]:

Theorem 3.2. If H is a semisimple Hopf algebra and V is a simple

D.H/-module, then the dimension of V divides the dimension of H .

This is a nice generalization of Zhu’s work [57] which states that the dimen-

sions of the simple D.H/-submodules of H divide the dimension H .

The proof of Theorem 3.2 uses the Verlinde formula from modular categories.

A modular category is a fusion category with nondegenerate S -matrix.

If H is a quasitriangular semisimple Hopf algebra then the universal R-matrix

provides a surjective Hopf algebra map from D.H/ to H . Therefore, every simple

H -module is also a simple D.H/-module via pull back, and hence the following

result [15] follows from Theorem 3.2:

Theorem 3.3. If H is a quasitriangular semisimple Hopf algebra then it

satis�es Kaplansky’s sixth conjecture.

Two alternate proofs of Theorem 3.2 were later o�ered in [47] and [53] which

both used the Class Equation [32], [56]. In addition, Schneider’s article [47]

generalizes Theorem 3.2 to factorizable Hopf algebras.
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Theorem 3.4 (class equation). Let H be a semisimple Hopf algebra and

R.H/ its character algebra. For every primitive idempotent e of R.H/, dim eH �

divides dim H . If e1; : : : ; en are the primitive idempotents of R.H/, then

dim H D 1 C

nX

iD2

dim eiH
�;

where e1 is the normalized integral in H �.

If H D kG is a group algebra then the elements in R.H/ are constant on

conjugacy classes C1; : : : ;Cn. Let G D ¹g1; : : : ; gsº and ¹pg1
� � � ; pgs

º be the

corresponding dual basis. Then ei D
P

g2Ci
pg , which implies that the size of

every conjugacy class divides the order of G. So Theorem 3.4 is the generalization

of the usual Class Equation for �nite groups.

If H D kG is a dual group algebra then R.H/ D kG. Hence, e1; : : : ; en are

the primitive idempotents of kG, and dim eiH
� D dim eikG is the dimension

of simple module associated to ei . This is a well known result due to Frobenius

which was mentioned in the introduction.

The Class Equation is also used in the classi�cation of semisimple Hopf alge-

bras. We will elaborate the work of Zhu [56] and Masuoka [35]. Zhu proved the

following theorem [56] which solves a conjecture of Kaplansky [24]. Similar ideas

were used by Kac to get an analogous result in the setting of C �-algebras [22].

Theorem 3.5. A Hopf algebra of prime dimension is necessarily semisimple

and isomorphic to the group algebra k.Z=pZ/, where p is a prime number.

Masuoka later proved the following theorem [35, Theorem 2] which was used

to prove that a semisimple Hopf algebra of dimension p2 is isomorphic to the

group algebra k.Z=p2
Z/ or k.Z=pZ/2, where p is a prime number.

Theorem 3.6. Suppose that the dimension of a semisimple Hopf algebra H

is pn, where p is a prime number and n is a positive integer. Then H has a non-

trivial central group-like element.

By the result of [33], Theorem 3.2 means that the dimensions of simple Yetter–

Drinfeld H -modules divide the dimension of H .

Note that a Yetter–Drinfeld submodule M � H is exactly a left coideal M of

H such that h1MS.h2/ � M for all h 2 H . So, a 1-dimensional Yetter–Drinfeld

submodule of H is exactly the span of a central group-like element of H . This

observation together with Theorem 3.2 can be used to determine the existence

of normal Hopf subalgebras (a Hopf subalgebra A � H is called normal if

h1AS.h2/ � A and S.h1/Ah2 � A for all h 2 H ) as follows.
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Let � W H ! B be a Hopf algebra map and

H co � D ¹h 2 H W .id ˝�/�.h/ D h ˝ 1º

be the coinvariant subspace of H . Then H co � is a left coideal subalgebra of H .

Moreover, H co � is stable under the left adjoint action of H [48]. It follows that

H co � is a Yetter–Drinfeld submodule of H . Therefore, H co � is a direct sum of

simple Yetter–Drinfeld submodules of H and the dimension of every such simple

module divides the dimension of H . By analyzing the possible decompositions of

H co � into simple Yetter–Drinfeld submodules of H , we can determine whether

H contains central group-like elements. This technique has been used in [7], [8],

[9], [10], [43].

3.3 – Semisolvable semisimple Hopf algebras

Let H be a Hopf algebra, and let A be an algebra. Suppose that � W H ˝ H ! A

is a convolution-invertible k-linear map and *W H ˝ A ! A is a k-linear map.

Suppose further that, for every h; l; m 2 H; a; b 2 A, they satisfy:

(1) h * .l * a/ D
P

�.h1; l1/.h2l2 * a/��1.h3; l3/;

(2) h * ab D
P

.h1 * a/.h2 ! b/; h * 1 D ".h/1, 1 * a D a;

(3)
P

.h1 * �.l1; m1//�.h2; l2m2/ D
P

�.h1; l1/�.h2l2; m/;

(4) �.h; 1/ D ".h/1 D �.1; h/.

Then the crossed product algebra A#� H is the vector space A ˝ H together

with unit 1 ˝ 1 and the multiplication

.a#�h/.b#� l/ D a.h1 * b/�.h2; l1/#� h3l2:

The notions of upper and lower semisolvability for �nite-dimensional Hopf

algebras were introduced in [38], as generalizations of the notion of solvability for

�nite groups. By de�nition, H is called lower semisolvable if there exists a chain

of Hopf subalgebras

HnC1 D k � Hn � � � � � H1 D H

such that HiC1 is a normal Hopf subalgebra of Hi , for all i , and all quotients

Hi=HiH
C

iC1 are commutative or cocommutative. Dually, H is called upper semi-

solvable if there exists a chain of quotient Hopf algebras

H.0/ D H
�1

�! H.1/

�2

�! � � �
�n

�! H.n/ D k

such that H
co �i

.i�1/
D ¹h 2 H.i�1/ j .id ˝�i/�.h/ D h ˝ 1º is a normal Hopf

subalgebra of H.i�1/, and all H
co �i

.i�1/
are commutative or cocommutative.
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The following conjecture can be viewed as a generalization of Kaplansky’s

sixth conjecture. When H is lower or upper semisolvable it was proved by Mont-

gomery and Witherspoon [38, Theorem 3.4].

Conjecture. If A is a �nite-dimensional semisimple algebra of Frobenius

type and H is a semisimple Hopf algebra then the crossed product A#�H is of

Frobenius type.

The work of Montgomery and Witherspoon is very useful in determining

whether a non-simple semisimple Hopf algebra satis�es Kaplansky’s sixth conjec-

ture. Note that a Hopf algebra is called simple if it does not contain proper normal

Hopf subalgebras. Indeed, let A be a proper normal Hopf subalgebra of H . Then

by the result in [48], H Š A#�.H=HAC/ is a crossed product for some � . There-

fore, if A is of Frobenius type and H=HAC is lower or upper semisolvable then H

satis�es Kaplansky’s sixth conjecture. Using this observation, Montgomery and

Witherspoon proved [38, Theorem 3.5, Corollary 3.6]:

Theorem 3.7. Let H be a semisimple Hopf algebra of dimension pn, where p

is a prime number and n is an integer. Then H is upper and lower semisolvable

and therefore satis�es Kaplansky’s sixth conjecture.

In fact, when n D 1; 2; 3 Theorem 3.7 has been obtained in [35], [36], [56] as

a by-product of the classi�cation of semisimple Hopf algebras.

3.4 – Semisimple Hopf algebras with a transitive module algebra

Let H be a Hopf algebra. A module algebra of H is an associative algebra A on

which H acts via h � 1 D ".h/1 and h � .ab/ D
P

.h1 � a/.h2 � b/, where h 2 H and

a; b 2 A.

I � A is called a module ideal if I is a two-sided ideal and I is an

H -submodule of A. A module algebra A of H is called transitive if it satis�es

the following two conditions:

(1) AH D ¹a 2 Ajh � a D ".h/a; for all h 2 H º D k;

(2) A has no proper module ideals.

In [54], [58], Yan and Zhu tried to solve Kaplansky’s sixth conjecture by

considering semisimple Hopf algebras with a transitive module algebra. In fact,

every semisimple Hopf algebra has this property. For example, let V be a simple

H -module, and let ˛W H ! Endk.V / be the corresponding algebra morphism.
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Considering the conjugation action of H on Endk.V /: h�f D
P

˛.h1/f ˛.S.h2//,

Endk.V / becomes an H -module algebra. The simplicity of V shows that Endk.V /

is transitive. They proved [58]:

Theorem 3.8. Let H be a semisimple Hopf algebra. If A is a transitive H -mod-

ule algebra and V is a simple A-module, then dim A divides .dim V /2 dim H .

Although the theorem above can not solve the conjecture, it is very close to

that point. You may agree with this point of view by looking at the following

conjecture [58]:

Conjecture. Let H be a semisimple Hopf algebra and A be a transitive mod-

ule algebra of H . Then for each simple A-module V , dim A divides dim V dim H .

In fact, this conjecture truly implies Kaplansky’s sixth conjecture: Since the

simple H -module V is the unique simple Endk.V /-module, the conjecture above

means that dim V divides dim H .

3.5 – Weakly group-theoretical semisimple Hopf algebras

Let G be a �nite group, and let C be a fusion category. A G-grading of C is a direct

sum of full abelian subcategories C D
L

g2G Cg , where the tensor product of C

maps Cg �Ch ! Cgh and .Cg/� D Cg�1 . The grading is called faithful if Cg ¤ 0,

for all g 2 G. In this case, C is called a G-extension of Ce , where Ce is the neutral

component of C.

A fusion category C is said to be (cyclically) nilpotent if there is a sequence

of fusion categories C0 D Vec;C1; � � � ;Cn D C and a sequence of �nite (cyclic)

groups G1; : : : ; Gn such that Ci is obtained from Ci�1 by a Gi -extension.

Let G be a �nite group and C be a fusion category. Let G denote the monoidal

category whose objects are elements of G, morphisms are identities and the ten-

sor product is given by the multiplication in G. Let Aut
˝
C denote the monoidal

category whose objects are tensor autoequivalences of C, morphisms are isomor-

phisms of tensor functors and the tensor product is given by the composition of

functors.

An action of G on C is a monoidal functor

T W G �! Aut
˝
C; g 7�! Tg

with the isomorphism f V
g;h

Š Tg.Th.V // Š Tgh.V /, for every V in C.

Let C be a fusion category with an action of G. Then the fusion category C
G ,

called the G-equivariantization of C, is de�ned as follows.
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(1) An object in C
G is a pair .V; .uV

g /g2G/, where V is an object of C and

uV
g W Tg.V / ! V is an isomorphism such that,

uV
g Tg.uV

h / D uV
ghf V

g;h; for all g; h 2 G:

(2) A morphism �W .U; uU
g / ! .V; uV

g / in C
G is a morphism �W U ! V in C such

that �uU
g D uV

g Tg.�/, for all g 2 G.

(3) The tensor product in C
G is de�ned as

.U; uU
g / ˝ .V; uV

g / D .U ˝ V; .uU
g ˝ uV

g /jg jU;V /;

where jg jU;V W Tg.U ˝ V / ! Tg.U / ˝ Tg.V / is the isomorphism giving the

monoidal structure of Tg .

Let C;D be fusion categories, and M be an indecomposable left C-module

category. Then C and D are Morita equivalent if D is equivalent to C
�

M
which is

the category of C-module endofunctors of M.

As an analogue of the classical approach for algebras, we use Morita equiva-

lence to classify fusion categories.

A fusion category is called pointed if all of its simple objects are invertible.

A fusion category is called group-theoretical if it is Morita equivalent to a pointed

fusion category. A weakly group-theoretical fusion category is a fusion category

which is Morita equivalent to a nilpotent fusion category.

Definition 3.9. A fusion category C is called solvable if it satis�es one of the

following equivalent conditions:

(1) C is Morita equivalent to a cyclically nilpotent fusion category;

(2) There is a sequence of fusion categories C0 D Vec;C1; � � � ;Cn D C and a

sequence of cyclic groups G1; : : : ; Gn of prime order such that Ci is obtained

from Ci�1 either by a Gi -equivariantization or by a Gi -extension.

A semisimple Hopf algebra is called weakly group-theoretical (respectively,

solvable) if RepH is weakly group-theoretical (respectively, solvable). We refer

the reader to [17], [18] for further de�nitions and results about fusion categories.

We remark that solvability for semisimple Hopf algebras can also be viewed as

a generalization of the notion of solvability for �nite groups. But the interrelations

between solvability and semisolvability for semisimple Hopf algebras are still not

clear. The reader can �nd an explanation in [18, Remark 4.6].
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A fusion category C has the strong Frobenius property if for every indecom-

posable C-module category M and any simple object X in M the number FPdim.C/
FPdim.X/

is an algebraic integer, where the Frobenius–Perron dimension of M is normal-

ized in such a way that FPdim.M/ D FPdim.C/. The strong Frobenius property

of a fusion category is a strong form of Kaplansky’s sixth conjecture. To see this,

it su�ces to take M D C the category of �nite-dimensional representations of a

semisimple Hopf algebra.

Etingof, Nikshych and Ostrik proved the following theorem [18, Theorem 1.5]:

Theorem 3.10. Any weakly group-theoretical fusion category has the strong

Frobenius property.

From the de�nitions above, we know that the class of weakly group-theoretical

fusion categories covers the classes of solvable and group-theoretical fusion cate-

gories. Moreover, the class of weakly group-theoretical fusion categories actually

covers all known fusion categories which are weakly integral.

The following two theorems [18, Theorem 1.6, Theorem 9.2] are more concrete,

and the �rst one is an analogue of Burnside’s theorem for fusion categories

(Compare the question on semisolvability for semisimple Hopf algebras posed

by Montgomery (2000), see [2, Question 4.17]).

Theorem 3.11. (1) Any integral fusion category of Frobenius–Perron dimen-

sion paqb is solvable, where p; q are prime numbers and a; b are non-negative

integers.

(2) Any integral fusion category of Frobenius–Perron dimension pqr is group-

theoretical, where p < q < r are distinct prime numbers.

Based on this theorem, Etingof et al then completed the classi�cation of

semisimple Hopf algebras of dimension pqr and pq2. They �rst proved the

following lemma [18, Lemma 9.5].

Lemma 3.12. Let H be a group-theoretical semisimple Hopf algebra of

square-free dimension. Then H �ts into a split Abelian extension of the form

H.G; K; L; 1; 1; 1/.

The de�nition and basic results on extensions of Hopf algebras can be easily

found in the literature, e. g. [41], [34], [44].

Let p < q < r be prime numbers and H be a semisimple Hopf algebra of

dimension pqr . By the lemma above and Theorem 3.11, we have the following

corollary [18, Corollary 9.4].
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Corollary 3.13. There exists a �nite group G of order pqr and an exact

factorization G D KL of G into a product of subgroups, such that H is the

split Abelian extension H.G; K; L; 1; 1; 1/ D kŒK� Ë Fun.L/ associated to this

factorization.

In [39, Theorem 4.6], Natale classi�ed semisimple Hopf algebras of dimension

pqr which �t into Abelian extensions. Therefore, the corollary above gives a

complete classi�cation of semisimple Hopf algebras of dimension pqr .

Let p; q be distinct prime numbers and H be a semisimple Hopf algebra of

dimension pq2. By Theorem 3.11(1), the category RepH of �nite-dimensional

representations of H is solvable. By De�nition 3.9, RepH is either an extension

or an equivariantization of a fusion category of smaller dimension. Etingof et al

then proved that RepH is group-theoretical by considering these two possibilities

[18, Proposition 9.6]. Consequently, they got the classi�cation of semisimple Hopf

algebras of dimension pq2 as follows.

Corollary 3.14. A semisimple Hopf algebra of dimension pq2 is either a

Kac algebra, or a twisted group algebra (by a twist corresponding to the subgroup

.Z=qZ/2), or the dual of a twisted group algebra.

Remark 3.15. Jordan and Larson [21] also proved, by di�erent methods, that

any semisimple Hopf algebra of dimension pq2 is group-theoretical.

In a series of papers [39], [40], [42], Natale studied the classi�cation of

semisimple Hopf algebras of dimension pq2. In particular, she [42] completed

the classi�cation of semisimple Hopf algebras H of dimension pq2 such that H

and H � are both of Frobenius type. Therefore, Theorem 3.10, Theorem 3.11 and

Natale’s results can also give the classi�cation of semisimple Hopf algebras of

dimension pq2.

Besides these applications, part (1) of Theorem 3.11 also provides a powerful

method in classifying other semisimple Hopf algebras whose dimensions consist

of two prime divisors. For example, let H be a semisimple Hopf algebra of

dimension p2q2, where p; q are distinct prime numbers with p4 < q. Part (1) of

Theorem 3.11 shows that the dimension of a simple H -module can only be 1; p; p2

or q. It follows that we have an equation

p2q2 D jG.H �/j C ap2 C bp4 C cq2;
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where a; b; c is the number of non-isomorphic simple H -modules of dimension

p; p2 and q, respectively. By analyzing the order of G.H �/ and standard subal-

gebras of R.H/, we can determine the possible quotient Hopf algebras of H , and

then obtain the classi�cation of H . See [7] for details.

4. Further discussions

To conclude this paper, we would like to discuss three questions which are tightly

connected to Kaplansky’s sixth conjecture.

As we have seen in the previous section, fusion category theory is a powerful

tool in the work toward solving Kaplansky’s sixth conjecture. The Morita equiv-

alence method seems especially e�ective in this direction. This is usually accom-

plished by analyzing the Drinfeld center of a fusion category and then studying

its Tannakian subcategories.

The following question is the second question in [18]. An negative answer to

this question will solve Kaplansky’s sixth conjecture, in view of Theorem 3.10.

Question 1. Does there exist a weakly integral fusion category which is not

weakly group-theoretical?

Although the theory of Hopf algebras has developed for about 70 years, we

know little about the interrelations between Hopf algebras and their duals. Let

H be a semisimple Hopf algebra over k, RepH and RepH � be the category of

�nite-dimensional representations of H and H �, respectively. The knowledge of

interrelations between RepH and RepH � can greatly help us in solving Kaplan-

sky’s sixth conjecture.

Question 2. For any semisimple Hopf algebra H , if H satis�es Kaplansky’s

sixth conjecture, does H � satisfy Kaplansky’s sixth conjecture?

If H � also satis�es Kaplansky’s sixth conjecture then we can get closer to

solving the conjecture. Since, by Theorem 3.2, D.H/ satis�es Kaplansky’s con-

jecture. Hence, by the assumption, D.H/� also satis�es Kaplansky’s sixth con-

jecture. Therefore, the dimension of every simple H -module divides the square

of the dimension of H , since D.H/� D H op ˝ H � as an algebra.

Let H be a semisimple Hopf algebra and � W H � H ! k be a normalized

2-cocycle that is convolution-invertible, that is,

�.x1; y1/�.x2y2; z/ D �.y1; z1/�.x; y2z2/ and �.1; 1/ D 1;

where x; y; z 2 H .
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Let H� D H as a coalgebra, but with the multiplication :� twisted by � :

x:� y D �.x1; y1/x2y2��1.x3; y3/:

Then H� is again a semisimple Hopf algebra. Moreover, .H�/��1 D H . We call

H� the twisting of H .

We do not know whether the class of �nite-dimensional semisimple Hopf

algebras is closed under twisting, in the positive characteristic setting. The reader

is directed to [1, Corollary 3.6 and Remark 3.9] for reference.

The above procedure is the dual version of twisting of coproduct which was

introduced by Drinfeld [14]. The reader can �nd a detailed exposition about these

two twistings in [13].

Question 3. For any semisimple Hopf algebra H , if H satis�es Kaplansky’s

sixth conjecture, does H� satisfy Kaplansky’s sixth conjecture?

If H� also satis�es Kaplansky’s sixth conjecture then the dimension of every

simple H -module divides the square of the dimension of H , because the Drinfeld

double D.H/ is the twisting of H � cop ˝ H [13].
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