Characterizations of hypercyclically embedded subgroups of finite groups

YI, XIAOLAN (*)

ABSTRACT – A normal subgroup H of a finite group G is said to be *hypercyclically embedded in* G if every chief factor of G below H is cyclic. Our main goal here is to give new characterizations of hypercyclically embedded subgroups. In particular, we prove that a normal subgroup E of a finite group G is hypercyclically embedded in G if and only if for every different primes p and q and every p-element $a \in (G' \cap F^*(E))E'$, p'-element $b \in G$ and q-element $c \in G'$ we have $[a, b^{p-1}] = 1 = [a^{q-1}, c]$. Some known results are generalized.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20D10, 20D15, 20D20.

KEYWORDS. Finite group, supersoluble group, hypercyclically embedded subgroup, Sylow subgroup, generalized Fitting subgroup.

1. Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover *p* and *q* are always supposed to be primes and $\pi(G)$ denotes the set of all primes dividing |G|.

A normal subgroup A of G is said to be hypercentrally (respectively hypercyclically) embedded in G if either A = 1 or $A \neq 1$ and every chief factor of G below A is central (respectively cyclic) [18, p. 217].

The hypercentrally and hypercyclically embedded subgroups essentially influence on the structure of a group and they are useful for descriptions of some important classes of groups. For example, if all cyclic subgroups of G of prime order or order 4 are hypercentrally embedded in G, then G is nilpotent (N. Ito). If all these subgroups are hypercyclically embedded in *G*, then *G* is supersoluble (Huppert, Doerk). If all subgroups of *G* of prime order are normal in *G*, then *G* is soluble (Ito and Gaschütz [14, Chapter IV, 5.7]). A group *G* is quasinilpotent if and only if it has a normal hypercentrally embedded subgroup *E* such that G/E is semisimple [15, Chapter X, 13.6]. A group *G* is quasisupersoluble (i.e. for every non-cyclic chief factor H/K of *G*, every automorphism of H/K induced by an element of *G* is inner) if and only if it has a normal hypercyclically embedded subgroup *E* such that G/E is semisimple (Guo and Skiba [10]).

The study of hypercentrally embedded and hypercyclically embedded subgroups begins with the paper of Baer [2] and they have close relation to quasinormal subgroups. For instance, it was proved in [17] that if $A_G = 1$ and A is a quasinormal subgroup of G, then A is hypercentrally embedded in G; if $A_G = 1$ and A is a modular element (in the sense of Kurosh [18, p. 43]) of the subgroup lattice of G, then A is hypercyclically embedded in G [18, 5.2.5]). Some other results related to the hypercyclically embedded subgroups are discussed in the book [24] (see also the recent papers [20, 21, 22]).

In this paper we prove the following two results in this line research.

THEOREM 1.1. Let E be a normal subgroup of G. Then the following conditions are equivalent:

- (i) *E* is hypercyclically embedded in *G*;
- (ii) for every different primes p and q and every p-element $a \in (G' \cap F^*(E))E'$, p'-element $b \in G$ and q-element $c \in G'$ we have

(*)
$$[a, b^{p-1}] = 1 = [a^{q-1}, c];$$

(iii) for every different primes p and q, equalities (*) hold for every p-element $a \in (G' \cap F^*(E))E'$ of prime order or order 4 (if p = 2 and the Sylow 2-subgroups of E are non-abelian) and every p'-element $b \in G$ and q-element $c \in G'$.

A chief factor H/K of G is called *Frattini* if $H/K \le \Phi(G/K)$.

THEOREM 1.2. Let *E* be a normal subgroup of *G*. Then every non-Frattini chief factor of *G* below *E* is cyclic if and only if, for every maximal subgroup *M* of *G*, either $E \leq M$ or every non-Frattini chief factor of $G/E \cap M_G$ below $E/E \cap M_G$ is cyclic.

As applications of Theorem 1.1 we get

COROLLARY 1.3. *G* is supersoluble if and only if *G* has a normal subgroup *E* with supersoluble quotient G/E such that equalities (*) hold for every different primes *p* and *q* and every *p*-element $a \in (G' \cap F^*(E))E'$, *p'*-element $b \in G$ and *q*-element $c \in G'$.

Let $p_1 > \cdots > p_t$ be the set of all primes dividing |G|. Then G is called a Sylow tower group or dispersive in the sense of Ore if it has a normal series $1 = G_0 \le G_1 \le \cdots \le G_t = G$ such that G_i/G_{i-1} is a Sylow p_i -subgroup of G/G_{i-1} , for all $i = 1, \ldots, t$.

COROLLARY 1.4. Let \mathfrak{F} be one of the following classes:

- (1) the class of all metanilpotent groups;
- (2) the class of all nilpotent-by-abelian groups;
- (3) the class of all dispersive in the sense of Ore groups;
- (4) the class of all p-soluble groups G of p-length $l_p(G) \leq 1$.

Then $G \in \mathcal{F}$ if and only if G has a normal subgroup E with $G/E \in \mathfrak{F}$ such that equalities (*) hold for every different primes p and q and every p-element $a \in (G' \cap F^*(E))E'$, p'-element $b \in G$ and q-element $c \in G'$.

From Corollary 1.3 we get the following well-known Baer's result.

COROLLARY 1.5 ([24, Appendix 5.1]). G is supersoluble if and only if for for every prime p and every p-element $a \in G'$ and p'-element $b \in G$ we have $[a, b^{p-1}] = 1$.

From Theorem 1.1 we also get

COROLLARY 1.6 (Buckley [4]). Let G be a group of odd order. If all subgroups of G of prime order are normal in G, then G is supersoluble.

From Theorem 1.2 we get

COROLLARY 1.7. *G* is supersoluble if and only if *G* has a soluble normal subgroup *E* with supersoluble quotient G/E such that, for every maximal subgroup *M* of *G*, either $F(E) \leq M$ or $M \cap F(E)$ is a maximal subgroup of F(E).

COROLLARY 1.8. Let \mathfrak{F} be one of the following classes:

- (1) the class of all metanilpotent groups;
- (2) the class of all nilpotent-by-abelian groups;
- (3) the class of all dispersive in the sense of Ore groups;
- (4) the class of all p-soluble groups G of p-length $l_p(G) \leq 1$.

Then $G \in \mathcal{F}$ if and only if G has a soluble normal subgroup E with $G/E \in \mathfrak{F}$ such that, for every maximal subgroup M of G, either $F(E) \leq M$ or $M \cap F(E)$ is a maximal subgroup of F(E).

In the case when E = G from Corollary 1.7 we get the following well-known Kramer's result.

COROLLARY 1.9 ([16] or Theorem 3.3 in [24, Chapter 1]). Let G is soluble. Then G is supersoluble if and only if, for every maximal subgroup M of G, either $F(G) \leq M$ or $M \cap F(G)$ is a maximal subgroup of F(G).

All unexplained notation and terminology are standard. The reader is referred to [1], [6], or [11] if necessary.

2. Preliminaries

We use $G^{\mathcal{A}(p-1)}$ to denote the intersection of all normal subgroups *R* of *G* such that G/R is an abelian group of exponent dividing p-1.

LEMMA 2.1 (Lemma 2.2 in [21]). Let E be a normal p-subgroup of G. Then E is hypercyclically embedded in G if and only if

$$(G/C_G(E))^{\mathcal{A}(p-1)} \le O_p(G/C_G(E)).$$

LEMMA 2.2 (Lemma 2.2 in [19]). Let H be a non-identity normal subgroups of G. Let \mathcal{H}_1 and \mathcal{H}_2 be chief series of G below H. Then there exists a one-toone correspondence between the chief factors of \mathcal{H}_1 and those of \mathcal{H}_2 such that corresponding factors are G-isomorphic and such that the Frattini (in G) chief factors of \mathcal{H}_1 correspond to the Frattini (in G) chief factors of \mathcal{H}_2 .

LEMMA 2.3 ([9, Chapter 5, 3.11]). Let P be a p-group and D a Thompson critical subgroup of P. Then D is of class at most 2 and D/Z(D) is elementary abelian. Moreover, D is characteristic in P and every non-trivial p'-automorphism of P induces a non-trivial automorphism of D.

Let *P* be a *p*-group. If *P* is not a non-abelian 2-group, then we use $\Omega(P)$ to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega(P) = \Omega_2(P)$.

LEMMA 2.4. Let P be a p-group of class at most 2. Suppose that exp(P/Z(P)) divides p.

- (1) If p > 2, then $\exp(\Omega(P)) = p$.
- (2) If *P* is a non-abelian 2-group, then $\exp(\Omega(P)) = 4$.

PROOF. See p. 3 in [3].

LEMMA 2.5 (Lemma 2.10 in [5]). Let P be a normal p-subgroup of G. Let D be a characteristic subgroup of P such that every non-trivial p'-automorphism of P induces a non-trivial automorphism of D. If D is hypercyclically embedded in G, then P is hypercyclically embedded in G.

LEMMA 2.6 (Lemma 2.12 in [5]). Let P be a normal p-subgroup of G, D a Thompson critical subgroup of P and $\Omega = \Omega(D)$. If Ω is hypercyclically embedded in G, then P is hypercyclically embedded in G.

Recall that G is said to be a *minimal non-supersoluble group* if G is not supersoluble but every its proper subgroup is supersoluble. We shall need the following result by Doerk and Huppert.

LEMMA 2.7. Let G be a minimal non-supersoluble group. The following hold:

- (1) *G* is soluble [13].
- (2) $G^{\mathfrak{U}}$ is the unique normal Sylow subgroup of G, see [13, 6];
- (3) $G^{\mathfrak{U}}$ is of exponent p or of exponent 4.

LEMMA 2.8 ([21, Theorem B]). Let E a normal subgroup of G. If each chief factor of G below $F^*(E)$ is hypercyclically embedded in G, then E is hypercyclically embedded in G.

Recall that a *formation* is a class \mathfrak{F} of groups with the following properties: (i) every homomorphic image of any group $G \in \mathfrak{F}$ belongs to \mathfrak{F} ; (ii) if G/M and G/N belong to \mathfrak{F} , then also $G/(M \cap N)$ belongs to \mathfrak{F} . The formation \mathfrak{F} is said to be *saturated* if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$.

LEMMA 2.9. Let \mathfrak{F} be a saturated formation containing all supersoluble groups and E a normal subgroup of G such that $G/E \in \mathfrak{F}$. If every non-Frattini chief factor of G below E is cyclic, then $G \in \mathfrak{F}$.

PROOF. Suppose that this lemma is false. Then $E \neq 1$. Let *R* be a minimal normal subgroup of *G* contained in *E*. The hypothesis holds for (G/R, E/R). Hence $G/R \in \mathfrak{F}$ by induction. Since \mathfrak{F} is saturated, $R \not\leq \Phi(G)$. Hence *R* is cyclic and so $G \in \mathfrak{F}$ by Lemma 2.16 in [23].

LEMMA 2.10 ([12, Theorem A]). Let E be a soluble normal subgroup of G. If every non-Frattini chief factor of G below F(E) is cyclic, then every non-Frattini chief factor of G below E is cyclic.

3. Proofs of the results

We use $G^{\mathfrak{U}}$ to denote the intersection of all normal subgroups N of G such that G/N is is supersoluble.

PROOF OF THEOREM 1.1. First assume that *E* is hypercyclically embedded in *G*. Then *E* is supersoluble, so $F(E) = E^*(E)$ by [15, Chapter X, 13.6], and $E' \leq F(E)$ by [14, Chapter VI, 9.1]. Let *a* be any *p*-element in

$$(G' \cap F^*(E))E' = G' \cap F(E),$$

b any *p'*-element of *G* and *c* a *q*-element of *G'* $(q \neq p)$. Then $a \in O_p(E)$. Let $C = C_G(O_p(E))$ and $S/C = (G/C)^{\mathfrak{A}(p-1)}$. Then S/C is a *p*-group by Lemma 2.1, and $b^{p-1}C \in S/C$, which imply that $b^{p-1} \in C$ since (|S/C|, q) = 1. Therefore $[a, b^{p-1}] = 1$. Finally, since $c \in G' \leq S$ and $q \neq p, c \in C$ and so $[a, c] = [a^{q-1}, c] = 1$. Thus (i) \Longrightarrow (ii).

The implication (ii) \implies (iii) is evident.

(iii) \implies (i) Assume that this implication is false and let *G* be a counterexample with |G| + |E| minimal. Let $F^* = F^*(E)$, *p* divide $|F^*|$ and *P* be a Sylow *p*-subgroup of F^* .

(1) Case $E \neq P$

Assume that E = P. Then $G' \cap F^*(E)$ $E' = G' \cap P$. Let $C = C_G(G' \cap P)$ and $S/C = (G/C)^{\mathfrak{A}(p-1)}$. (a) G has a normal subgroup R ≤ P such that P/R is a non-cyclic chief factor of G, R is hypercyclically embedded in G and V ≤ R for any normal subgroup V ≠ P of G contained in P.

Indeed, let $V \neq P$ be a normal subgroup of G contained in P. Then

$$(G' \cap F^*(V))V' = G' \cap V \le G' \cap P$$

and hence the hypothesis holds for (G, V). Therefore V is hypercyclically embedded in G by the choice of (G, E) = (G, P). Now let P/R be a chief factor of G. Then R is hypercyclically embedded in G and so, in view of Lemma 2.2 and the choice of (G, P), P/R is non-cyclic. Now let $W \neq P$ be any normal subgroup of G contained in P. If $W \not\leq R$, then in view of the G-isomorphism

$$P/R = WR/R \simeq W/W \cap R$$

we have P/R is cyclic. This contradiction shows that $W \leq R$.

(b) $G' \cap P = P$.

Assume that $G' \cap P < P$. Then $G' \cap P \leq Z$ by Claim (a). On the other hand, in view of the *G*-isomorphism $P/P \cap G' \simeq G'P/G'$ we have

$$P/P \cap G' \le Z_{\infty}(G/P \cap G'),$$

so P is hypercyclically embedded in G. This contradiction shows that we have (b).

(c) *P* is of exponent *p* or exponent 4 (if p = 2 and *P* is a non-abelian 2-group).

Assume that this is false. Let *L* be a Thompson critical subgroup of *P* and $\Omega = \Omega(L)$. Then Ω is of exponent *p* or exponent 4 (if p = 2 and *L* is a non-abelian 2-group) by Lemmata 2.3 and 2.4. Hence $\Omega < P$, so Ω is hypercyclically embedded in *G* by Claim (a). Therefore *P* is hypercyclically embedded in *G* by Lemma 2.6, which contradicts the choice of (*G*, *E*). Hence $\Omega = P$, so *P* is of exponent *p* or exponent 4 (if p = 2 and *P* is a non-abelian 2-group).

(d) P is a minimal normal subgroup of G.

Assume that this is false. Since $P/R \leq (G/R)' = RG'/R$ by Claim (b), the hypothesis holds for (G/R, P/R) by Claim (c) and so the choice of (G, E) = (G, P) implies that P/R is cyclic, contrary to Claim (a). Hence we have (d).

(e) $O_{p'}(G) = 1.$

Assume that $D = O_{p'}(G) \neq 1$. Since the hypothesis holds for the couple (G/D, DP/D), the choice of *G* implies that DP/D is hypercyclically embedded in G/D and so from the *G*-isomorphism $DP/D \simeq P$ we conclude that *P* is hypercyclically embedded in *G*, a contradiction.

(f) S/CG' is a *p*-group.

Since CG'/C = (G/C)', it is enough to show that every p'-element bCG' of S/CG' has order dividing p - 1. Without loss of generality we may assume that b is a p'-element of G and that $b \notin C$. Let $V = P\langle b \rangle$. It is cleat that the hypothesis holds for (V, P). So in the case when $V \neq G$, the choice of G implies that P is hypercyclically embedded in V and so $V/C_V(P)$ is an abelian group of exponent dividing p - 1 by Lemma 2.1. Hence $b^{p-1} \in C_V(P) = C \cap V$, which implies that |bCG'| divides p - 1.

Now assume that V = G. Then, in view of Claim (e), $P = C_V(P)$ by the Hall–Higman lemma. Therefore, in view of Claims (b) and (d), for any element $a \in P$ we have $[a, b^{p-1}] = 1$, so $b^{p-1} \in C$ and so we again conclude that |bCG'| divides p - 1.

FINAL CONTRADICTION FOR (1). In view of Claim (f) and Lemma 2.1, G'C/C is not a *p*-group. Let *c* be a *q*-element of *G'* such that $q \neq p$ and $c \notin C$. Then $[a, c^{p-1}] = 1 = [a^{q-1}, c]$ for every *p*-element $a \in P$ by Claims (b) and (d). If q > p, then (p - 1, q) = 1 and so $\langle c^{p-1} \rangle = \langle c \rangle$. Thus $c \in C$. Similarly, if p > q we get $[a^{q-1}, c] = 1 = [a, c]$. Thus again we have $c \in C$. This contradiction completes the proof of (1).

(2) Case $F^* = E = G$. Hence G is not soluble

Assume that $F^* \neq E$. Since F^* is characteristic in E, it is normal in G. Moreover, since $(F^*)' \leq E' \leq G'$, the hypothesis holds for (G, F^*) and for (E, F^*) , so the choice of (G, E) implies that F^* is hypercyclically embedded in G. Hence E is hypercyclically embedded in G by Lemma 2.6, a contradiction. Thus $F^*(E) = E$. Finally, suppose that $E \neq G$. Then the choice of (G, E) implies that E is supersoluble, so E is nilpotent by [15, Chapter X, 13.6]. Since by (1) for any Sylow subgroup P of E we have $P \neq E$, the choice of (G, E) implies that P is hypercyclically embedded in G. Then E is hypercyclically embedded in G, a contradiction.

Final contradiction for the implication (iii) \implies (i). In view of Claim (2), *G'* is not supersoluble. Let *H* be a minimal non-supersoluble of *G'*. By Lemma 2.7, *H* is soluble, $Q = H^{\mathfrak{U}}$ is a Sylow *q*-subgroup of *H* for some prime *q* dividing

|H| and P is of exponent p or exponent 4 (if Q is a non-abelian 2-group). Hence $H \neq G$ by Claim (2). Moreover, Claim (2) implies that

$$Q \le H \le G' = (G' \cap F^*(E))E'.$$

Hence the hypothesis holds for (H, P), so the choice of (G, E) implies that P is hypercyclically embedded in H and so H is supersoluble since H/Q is supersoluble. This contradiction completes the proof of the implication (iii) \implies (i). The theorem is proved.

PROOF OF THEOREM 1.2. First assume that, for every maximal subgroup M of G, either $E \leq M$ or every non-Frattini chief factor of $G/E \cap M_G$ below $E/E \cap M_G$ is cyclic. We shall show that in this case every non-Frattini chief factor of G below E is cyclic. Suppose that this is false and let G be a counterexample with |G| + |E| minimal. Let N be a minimal normal subgroup of G contained in E and M/N a maximal subgroup of G/N such that $E/N \leq M/N$. Then

$$(E/N)/(E/N) \cap (M/N)_{G/N} = (E/N)/(E/N) \cap (M_G/N)$$

and so from the G-isomorphism

$$(E/N)/((E \cap M_G)N/N) \simeq E/E \cap M_G$$

we get that every non-Frattini chief factor of $(G/N)/(E/N \cap (M/N)_{G/N})$ below $(E/N)/(E/N) \cap (M/N)_{G/N}$ is cyclic. Therefore the hypothesis holds for (G/N, E/N), so every non-Frattini chief factor of G/N below E/N is cyclic by the choice of G. Therefore, Lemma 2.2 and the choice of G imply that $N \not\leq \Phi(G)$. Let M be a maximal subgroup of G such that $N \not\leq M$. Then from

$$N(E \cap M_G)/(E \cap M_G) \le E/E \cap M_G$$

and the *G*-isomorphism $N(E \cap M_G)/(E \cap M_G) \simeq N$ we get that *N* is cyclic. But then every non-Frattini chief factor of *G* below *E* is cyclic by Lemma 2.2.

Finally, suppose that every non-Frattini chief factor of *G* below *E* is cyclic. And let *M* be any maximal subgroup of *G* such that $E \not\leq M$. We shall show that every non-Frattini chief factor of $G/E \cap M_G$ below $E/E \cap M_G$ is cyclic. Suppose that this is false and let *G* be a counterexample with |G| + |E| minimal. Then $E \cap M_G \neq 1$. Moreover, if *N* a minimal normal subgroup of *G* contained in $E \cap M_G$, then the hypothesis holds for (G/N, E/N) and $E/N \not\leq M/N$. Therefore every non-Frattini chief factor of $(G/N)/(E/N \cap (M/N)_{G/N})$ below $(E/N)/(E/N) \cap (M/N)_{G/N}$ is cyclic by the choice of (G, E). Thus every non-Frattini chief factor of $G/E \cap M_G$ below $E/E \cap M_G$ is cyclic. The theorem is proved.

PROOF OF COROLLARY 1.4. It is well known that the classes of all metanilpotent groups, of all nilpotent-by-abelian groups, of all dispersive in the sense of Ore groups and of all *p*-soluble groups of *p*-length ≤ 1 are saturated formations (see for example [7, Chapter IV]). Moreover, each of these classes contains all supersoluble groups. Therefore Corollary 1.4 follows from Theorem 1.1 and Lemma 2.9.

PROOF OF COROLLARY 1.5. If G is supersoluble, then $G' \leq F(G) = F^*(G)$ and so, by Theorem 1.1, for every prime p and for every p-element

$$a \in G' = (G' \cap F^*(G))G'$$

and every p'-element element b of G we have $[a, b^{p-1}] = 1$.

Finally, if for every *p*-element $a \in G'$ and every *p'*-element element $b \in G$ we have $[a, b^{p-1}] = 1$, then for every different primes *p* and *q* and for every *p*-element $a \in (G' \cap F^*(G))G'$, *p'*-element element $b \in G$ and *q*-element $c \in G'$ we have $[a, b^{p-1}] = 1 = [a^{q-1}, c]$. Hence *G* is supersoluble by Theorem 1.1. \Box

PROOF OF COROLLARY 1.7. First assume that G is supersoluble. Take a maximal subgroup M of G such that $F(E) \not\leq M$. Then

$$|G:M| = |F(E):F(E) \cap M| = p$$

for some prime p, and so $M \cap F(E)$ is a maximal subgroup of F(E).

Finally, assume that *G* has a soluble normal subgroup *E* with supersoluble quotient G/E such that for every maximal subgroup *M* of *G* either $F(E) \leq M$ or $M \cap F(E)$ is a maximal subgroup of F(E). If $F(E) \not\leq M$, then G = F(E)M. On the other hand,

$$F(E) \cap M < N_{F(E)}(F(E) \cap M)$$

since F(E) is nilpotent. Hence $F(E) \cap M$ is normal in G and so

$$F(E)/F(E) \cap M = F(E)/F(E) \cap M_G$$

is cyclic. Applying Theorem 1.2, we get that every non-Frattini chief factor of *G* below F(E) is cyclic. Therefore every non-Frattini chief factor of *G* below *E* is cyclic by Lemma 2.10, so *G* is supersoluble by Lemma 2.9 since G/E is supersoluble by hypothesis.

Π

PROOF OF COROLLARY 1.8. See the proof of Corollary 1.4.

Acknowledgements. The author is supported by a NNSF grant of China (Grant # 111471055). The author would like to thank the referee for the useful comments.

References

- [1] A. BALLESTER-BOLINCHES L. M. EZQUERRO, *Classes of finite groups*, Mathematics and Its Applications (Springer), 584, Springer, Dordrecht, 2006.
- [2] R. BAER, Supersoluble immersion, Canad. J. Math. 11 (1959), pp. 353–369.
- [3] Y. BERCOVICH L. KAZARIN, Indices of elements and normal structure of finite groups, J. Algebra 283 (2005), pp. 564–583.
- [4] J. BUCKLEY, *Finite groups whose minimal subgroups are normal*, Math. Z. 15 (1970), pp. 15–17.
- [5] X. CHEN W. GUO A. N. SKIBA, Some conditions under which a finite group belongs to a Baer-local formation, Comm. Algebra 42 (2014), pp. 4188–4203.
- [6] K. DOERK, Minimal nicht uberauflösbarer endliche Gruppen, Math. Z. 91 (1966), pp. 198–205.
- [7] K. DOERK T. HAWKES, *Finite soluble groups*, Walter de Gruyter & Co., Berlin and New York, 1992.
- [8] T. M. GAGEN, *Topics in finite groups*, Cambridge University Press, London Mathematical Society Lecture Note Series, 16, Cambridge, 1976.
- [9] D. GORENSTEIN, Finite groups, Harper & Row, New York etc., 1968.
- [10] W. GUO A. N. SKIBA, On some classes of finite quasi-F-groups, J. Group Theory 12 (2009), pp. 407–417.
- [11] W. Guo, *The theory of classes of groups*, Translated from the 1997 Chinese original. Mathematics and its Applications, 505. Kluwer Academic Publishers Group, Dordrecht, and Science Press, Beijing, 2000.
- [12] W. GUO A. N. SKIBA, On FΦ*-hypercentral subgroups of finite groups, J. Algebra 372 (2012), pp. 285–292.
- [13] B. HUPPERT, Normalteiler and maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), pp. 409–434.
- [14] B. HUPPERT, *Endliche Gruppen* I, Die Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin and New York, 1967.
- [15] B. HUPPERT N. BLACKBURN, *Finite groups* III, Grundlehren der Mathematischen Wissenschaften, 242. AMD, 44. Springer-Verlag, Berlin and New York, 1982.
- [16] O. U. KRAMER, Über Durchschnitte von Untergruppen endlicher auflöbarer Gruppen, Math. Z. 148 (1976), pp. 88–97.
- [17] R. MAIER P. SCHMID, The embedding of permutable subgroups in finite groups, Z. Math. 131 (1973), pp. 269–272.

- [18] R. SCHMIDT, *Subgroup lattices of groups*, de Gruyter Expositions in Mathematics, 14. Walter de Gruyter & Co., Berlin, 1994.
- [19] L. A. SHEMETKOV A. N. SKIBA, On the XΦ-hypercentre of finite groups, J. Algebra 322 (2009), pp. 2106–2117.
- [20] A. N. SKIBA, On two questions of L.A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory 13 (2010), pp. 841–850.
- [21] A. N. SKIBA, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure and Appl. Algebra 215 (2011), pp. 257–261.
- [22] A. N. SKIBA, Cyclicity conditions for G-chief factors of normal subgroups of a group G, Siberian Math. J. 52 (2011), pp. 127–130.
- [23] A. N. SKIBA, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007), pp. 192–209.
- [24] M. WEINSTEIN (ed.), Between nilpotent and solvable, Polygonal Publishing House, Washington, N.J., 1982.

Manoscritto pervenuto in redazione il 20 maggio 2014.