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Boundedness of minimizers for spectral problems in R
N

Dario Mazzoleni (�)

Abstract – In [8] it was proved that any increasing functional of the �rst k eigenvalues of

the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of RN of

unit measure. In this paper we show that every minimizer is uniformly bounded by a

constant depending only on k; N .
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1. Introduction

This paper deals with the following minimization problem:

(1.1) min ¹F.�1.A/; : : : ; �k.A//W A � R
N ; quasi-open, with jAj D 1º;

where �i .A/ denotes the i-th eigenvalue of the Dirichlet-Laplacian. This spectral

problem is well studied, for instance when the functional reduces to the projection

on the last coordinate (see [3], [6], [7]).

Theorem A in [8] assures that, if F is increasing in each variable and lower

semicontinuous (l.s.c.), then problem (1.1) has at least a bounded minimizer,

where the boundedness constant depends only on k; N , but not on the functional.

Moreover, in [2], with completely di�erent techniques involving the regularity of

shape subsolutions of the torsion energy, Bucur was able to prove existence of an

optimal set in the case of F D �k and to show that all optimal sets in this case are

bounded and have �nite perimeter.
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The aim of this note is simply to show that every minimizer for problem (1.1) has

diameter uniformly bounded, depending only on k; N , up to assume the functional

F to be weakly strictly increasing, that is, increasing in each variable and such that

for every .x1; : : : ; xk/; .y1; : : : ; yk/ 2 R
k with xi < yi for i D 1; : : : ; k

F.x1; : : : ; xk/ < F.y1; : : : ; yk/:

The above assumption is necessary in order to avoid the trivial case of a constant

functional, for which every admissible set is a minimizer. We will use the same

notations as in [8] and very similar techniques. The basic idea is that, given a

sequence of admissible sets that -converges to a minimizer, either it is uniformly

bounded or it is possible to decrease all the �rst k eigenvalues of its sets by a

uniform strictly positive constant.

The main result is the following.

Theorem 1.1. Let k; N 2 N and FWRk ! R be weakly strictly increasing and

l.s.c.. Then every minimizer for problem (1.1) is contained in an N -cube QR with

edge of length R D R.k; N /.

It is important to highlight that a natural question about optimal sets for (1.1),

even if unrelated with the aim of this paper, is whether they are open and not only

quasi-open. The minimization for this kind of spectral optimization problems is

done among quasi-open sets because they form a class with good compactness

properties with respect to the -convergence (see [5]). This regularity issue for

minimizers is a very di�cult topic, due to the min-max structure of eigenvalues.

A partial answer to this question was given in [4], where it is proved that for

functionals F which are increasingly bi-Lipschitz in each variable, then every

solution is an open set up to measure zero. On the other hand, for the most

interesting functional F D �k , it is only possible to prove that every optimal set

admits an eigenfunction (corresponding to the k-th eigenvalue) which is Lipschitz

continuous in R
N .

The paper is organized as follows. In Section 2 we give some useful results

about capacity and quasi-open sets and we present the notations used throughout

the paper. Then in Section 3 we study the “tails” of the minimizing sequence,

while in Section 4 we deal with their “inner part”. At last in Section 5 we put data

together and we prove Theorem 1.1.

2. Notations and preliminary results

First of all we recall the de�nitions of capacity and of quasi-open sets. For a more

detailed treatment of those subjects, see [7].
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Definition 2.1. Let D be an open set and A �� D a compactly supported

subset. The capacity of A in D is de�ned as

(2.1) capD.A/ D inf

² Z

D

jDvj2W v 2 H 1
0 .D/; v � 1 in a neighborhood of A

³

:

Let then A � R
N be a bounded set and let D be an open set such that A �� D. The

set A is called quasi-open if for every " > 0 there exists an open set A � A" �� D

such that capD.A" n A/ < ". Clearly this de�nition does not depend on the choice

of D. A generic subset of RN is said to be quasi-open if its intersection with any

ball is a quasi-open bounded set.

For sake of completeness we state and prove here three lemmas dealing with

general properties of capacity.

Lemma 2.2. Let D � R be an open set and �1 � �2 �� D. Then

capD.�2/ � capD.�1/:

Proof. By de�nition,

(2.2)

capD.�2/ D inf

²Z

D

jDvj2W v 2 H 1
0 .D/; v � 1 in a neighborhood of �2

³

:

Since it is clear that the class of function

¹v 2 H 1
0 .D/; W v � 1 in a neighborhood of �2º

is included in

¹v 2 H 1
0 .D/W v � 1 in a neighborhood of �1º;

thus by de�nition of in�mum we have the thesis.

Lemma 2.3. Let D � R be an open set and A �� D. Suppose that A is

included in the union of two sets: A � A1 [ A2. Then, for all ˛ > 0 we have

capD.A1/ C capD.A2/ � ˛ H) capD.A/ � 2˛:
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Proof. Let � > 0. By the de�nition of capacity, it is possible to �nd two

functions vi 2 H 1
0 .D/, such that

Z

D

jDvi j
2 � capD.Ai / C �

and vi � 1 on a neighborhood of Ai , for i D 1; 2. The function v1 C v2 2 H 1
0 .D/

and v1 C v2 � 1 on a neighborhood of A1 [ A2, hence we can compute:

capD.A1 [ A2/ �

Z

D

jD.v1 C v2/j2

�

Z

D

jDv1j2 C

Z

D

jDv2j2 C 2

Z

D

Dv1 � Dv2

� 2

Z

D

jDv1j2 C 2

Z

D

jDv2j2

� 2.capD.A1/ C capD.A2// C 4�

� 2˛ C 4�:

In conclusion, by arbitrariness of �, we obtain

capD.A/ � capD.A1 [ A2/ � 2˛:

Remark 2.4. Throughout this paper, since we are working in a capacitary

setting, all the sets are de�ned up to zero capacity. This is stronger than working

up to zero Lebesgue measure: we remind that, given a set A � R
n, cap.A/ D 0

implies jAj D 0, but the vice versa is not true in general.

With this last Lemma we prove that a quasi-open set with zero Lebesgue

measure must also have zero capacity. This fact is well known among experts

of shape optimization, but we did not �nd any reference for it, so we present here

a simple proof.

Lemma 2.5. Let A � R
N a quasi-open set such that jAj D 0. Then A has zero

capacity.

Proof. First of all we suppose A to be bounded, and let D be an open set

such that A �� D. We �x " > 0 and we aim to prove that capD.A/ � 2".

By de�nition of quasi-open set (see De�nition 2.1), there exists an open set

A � A" �� D such that capD.A" nA/ < ". We can write A D .A\A"/[.AnA"/,

and clearly capD.A n A"/ D 0 since A � A". Moreover, by Lemma 2.2,
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capD.A \ A"/ � capD.A"/. Since jAj D 0 and A � A", we have that the fol-

lowing sets are equal:

¹v 2 H 1
0 .D/W v � 1 in a neighborhood of A"º

D ¹v 2 H 1
0 .D/W v � 1 in a neighborhood of A" n Aº:

In fact for all x 2 R
N and � > 0, dist.x; A"/ < � if and only if dist.x; A" nA/ < �.

At last, thanks to Lemma 2.3, we have

capD.A/ D capD..A \ A"/ [ .A n A"// � 2";

and by arbitrariness of " we conclude.

If A is not bounded, we consider for all R > 0, A\B.R/, where B.R/ denotes

the ball of radius R centered in the origin and we can prove, with the above

argument, that capB.2R/.A \ B.R// D 0 for all R > 0. Hence again A is a set

with zero capacity.

Throughout the paper we will not need advanced tools about -convergence

(for more details see [7]), we remind only that, given a sequence of open sets with

unit measure .�n/n such that

(2.3) �n


�! �; as n ! C1;

�i .�n/ �! �i .�/ as n ! 1 for all i 2 N.

It is well known (see [1]) that there exists a constant M D M.k; N / > 0

such that for all � � R
N , �k.�/

�1.�/
� M . Since we are interested in the mini-

mization problem (1.1), we de�ne K D M�k.BN / and we can consider sets with

�k.�/ � K, otherwise �1.�/ � �k.�/
M

� �k.BN /, hence F.�/ > F.BN /, where

BN denotes the unit ball in R
N . Note that the constant K depends only on k; N .

Now we give some de�nitions, following [8]. First of all we �x a small positive

constant

ym D ym.k; N / 2 .0; 1=4/

such that .4 ym/
2
N

�1.BN /
K � 1

2
. Let � � R

N be an open set with unit measure and, for

every t 2 R,

�l
t WD ¹.x; y/ 2 �W x < tº;

�t WD ¹y 2 R
N �1W .t; y/ 2 �º;

�r
t WD ¹.x; y/ 2 �W x > tºI
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notice that �l
t and �r

t are subsets of RN , while �t is a subset of RN �1. On the

other hand, given 0 � m � j�j and 0 � m1 � m2 � j�j, we de�ne the level

�.�; m/ 2 xR and the width W.�; m1; m2/ as

�.�; m/ WD inf¹t 2 RW j�l
t j � mº;

W.�; m1; m2/ WD �.�; m2/ � �.�; m1/:

Observe that one surely has �1 < �.�; m/ < C1 whenever 0 < m < j�j,

as well as W.�; m1; m2/ < C1 if 0 < m1 � m2 < j�j. At last, we remark that,

even if we are working with sets de�ned up to sets of zero capacity, the de�nitions

above are stable up to sets of zero Lebesgue measure.

3. Boundedness of the “tails”

Throughout this Section and the next one we consider a generic open set with unit

measure � � R
N such that �k.�/ � K. We study the “tail” of the set �, i.e. the

set �l
�.�; ym/

. In particular we focus on the horizontal projection. We set for brevity

Nt D �.�; 2 ym/ and for every t � Nt we de�ne

(3.1) �C.t / D �r
t ; ��.t / D �l

t ; ".t / D H
N �1.�t /:

It is easy to see that

(3.2) m.t/ D j��.t /j D

Z t

�1

".s/ ds � 2 ym:

As usual, we call ¹u1; u2; : : : ; ukº an orthonormal set of eigenfunctions with unit

L2 norm and corresponding to the �rst k eigenvalues of �. Then we de�ne, for

every 1 � i � k and every t � Nt ,

(3.3)

ıi.t / D

Z

�t

jDui .t; y/j2 dHN �1.y/; ı.t / D

k
X

iD1

ıi .t /; �.t/ D

Z t

�1

ı.s/ ds:

Moreover, for any t � Nt , we de�ne the cylinder Q.t/, as

(3.4) Q.t/ WD ¹.x; y/ 2 R
N W t � �.t/ < x < t; .t; y/ 2 �º D .t � �.t/; t / � �t ;

where for any t � Nt we set

(3.5) �.t/ D ".t/
1

N�1 :
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We let also z�.t/ D �C.t / [ Q.t/, and we introduce Qui 2 W
1;2

0 . z�.t// as

(3.6) Qui .x; y/ WD

8

<

:

ui .x; y/ if .x; y/ 2 �C.t /;

x � t C �

�
ui .t; y/ if .x; y/ 2 Q.t/:

We restate here without proof some useful Lemmas from [8], which will be

essential for our analysis.

Lemma 3.1 ([8], Lemma 2.3). Let � be an open set of unit volume, with

�k.�/ � K. Then for all 1 � i � k and t � Nt , the following inequalities hold:

(3.7)

Z

��.t/

u2
i � C1".t/

1
N�1 ıi .t /;

Z

��.t/

jDui j
2 � C1".t/

1
N�1 ıi .t /;

for some C1 D C1.k; N /.

Lemma 3.2 ([8, Lemma 2.5]). For every t � Nt and 1 � i � k, one has

(3.8) R. Qui ; z�.t// � �i .�/ C C2".t/
1

N�1 ıi .t /:

Moreover, for every i 6D j 2 ¹1; 2 : : : ; kº; one has

(3.9)

ˇ

ˇ

ˇ

ˇ

Z

z�.t/

Qui Quj C D Qui � D Quj

ˇ

ˇ

ˇ

ˇ

� C2.".t/
3

N�1 C ".t/
1

N�1 /

q

ıi .t /ıj .t /;

for some C2 D C2.k; N /.

Lemma 3.3 ([8], Lemma 2.6). There exist a small constant � D �.k; N / < 1

and a constant C3 D C3.k; N / such that, if ".t/; ıi.t / � � for every i D 1; : : : ; k

and t � Nt , then

(3.10) �j . z�.t// � �j .�/ C C3".t/
1

N�1 ı.t/ for all 1 � j � k:

For our purposes, a slightly di�erent version of the above Lemma is pre-

ferrable.

Lemma 3.4. There exist a constant zC3 D zC3.k; N / such that, if t � Nt , then

(3.11) �j . z�.t// � �j .�/ C zC3.".t/
N

N�1 C ı.t/
N

N�1 / for all 1 � j � k:
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Proof. It is clear that, thanks to Lemma 3.3, whenever ".t/; ıi.t / � � for

all i D 1; : : : ; k, then the thesis is true with zC3 D C3, since ".t/
1

N�1 ı.t/ �

".t/
N

N�1 C ı.t/
N

N�1 .

We can now focus on the case when either ".t/ > � or ıi .t / > � for some i .

Then, we remind that, since the �rst eigenfunction has not orthogonality con-

straints, Lemma 3.2 assures:

�1. z�.t// � �1.�/ C C ".t/
1

N�1 ıi .t /:

It is well known (see [1] or the appendix of [8]) that there is a constant

M D M.k; N / > 0 such that �k.�/
�1.�/

� M for all � � R
N . Hence we can write,

for all 1 � j � k:

�j . z�.t// � M�1. z�.t// � M.�1.�/ C C ".t/
1

N�1 ı.t//:

Moreover it is possible to �nd a big constant A D A.k; N /, such that MK �

A�
N

N�1 , and then, de�ning zC3 D A C MC , we can conclude the computations

above:

�j . z�.t// � M.K C C ".t/
1

N�1 ı.t//

� A�
N

N�1 C MC ".t/
1

N�1 ı.t/

� �j .�/ C A�
N

N�1 C MC ".t/
1

N�1 ı.t/

� �j .�/ C zC3.".t/
N

N�1 C ı.t/
N

N�1 /:

We are now in position to state and prove the main Lemma of this section. For

sake of simplicity, we call y�.t/ D j z�.t/j�1=N z�.t/ the modi�ed set rescaled till

unit measure.

Lemma 3.5. Let � be an open set of unit volume, with �k.�/ � K and t � Nt .

Then there exists a constant C4 D C4.k; N / such that exactly one of the following

situations happens.

(1) m.t/ � C4.".t/
N

N�1 C ı.t/
N

N�1 /:

(2) Case (1) does not hold and for all 1 � i � k, �i . y�.t// < �i .�/. Moreover

for every zm > 0 such that m.t/ � zm, there exists an � D �.N; zm/ such that

for all 1 � i � k,

�i . y�.t// < �i .�/ � �:



Boundedness of minimizers for spectral problems in R
N 215

Proof. From Lemma 3.4 we have

�i . z�.t// � �i .�/ C zC3.".t/
N

N�1 C ı.t/
N

N�1 / for all 1 � i � k;

moreover, putting in account that j z�.t/j D j�C.t /jCjQ.t/j D 1�m.t/C".t/
N

N�1 ,

and the scaling of the eigenvalues, then for all 1 � i � k

�i . y�.t// � .1 � m.t/ C ".t/
N

N�1 /
2

N .�i.�/ C zC3.".t/
N

N�1 C ı.t/
N

N�1 //

� �i .�/ �
2

N
�1.BN /m.t/ C

2K

N
".t/

N

N�1 C zC3.".t/
N

N�1 C ı.t/
N

N�1 /

�
2

N
m.t/ zC3.".t/

N

N�1 C ı.t/
N

N�1 /

C
2

N
zC3".t/

N

N�1 .".t/
N

N�1 C ı.t/
N

N�1 /:

(3.12)

Then if m.t/ � C4.".t/
N

N�1 C ı.t/
N

N�1 /, condition .1/ holds true; otherwise

m.t/ > C4.".t/
N

N�1 Cı.t/
N

N�1 / and we can choose C4 � 1 so that m.t/ � ".t/
N

N�1 .

Thus from the two last terms of (3.12), we have

�
2

N
m.t/ zC3.".t/

N

N�1 C ı.t/
N

N�1 / C
2

N
zC3".t/

N

N�1 .".t/
N

N�1 C ı.t/
N

N�1 / � 0:

This allows us to conclude, choosing C4 � 2KCN zC3

�1.BN /
and obtaining

�i. y�.t// � �i .�/ � �
�1.BN /

N
m.t/ < 0;

that is condition .2/. Moreover if m.t/ � zm, then we can improve the above

estimate:

�i . y�.t// � �i .�/ � �
�1.BN /

N
zm D ��.N; zm/ < 0;

and the proof is concluded.

We introduce the following notations. Given an open set � as in the hypotheses

of Lemma 3.5, we set

(3.13) Ot D sup ¹t 2 .�1; Nt /W condition (2) of Lemma 3.5 holds for tº;

with the usual convention that Ot D �1 if condition .2/ is false for every t � Nt .

If Ot > �1, then m.Ot / > 0 and we choose some t? 2 ŒOt � 1; Ot � for which

condition .2/ holds. The following Lemma concludes this section.
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Lemma 3.6. Let .�n/n be as in the hypotheses of Lemma 3.5 and �n


! �.

(a) If there exists a subsequence (not relabeled) such that, for all n, one has

m.t?.n// � zm > 0 for some zm > 0, then � is not optimal for problem (1.1).

(b) If there exists a subsequence such that Ot .n/ D �1 for all n, then there exists

R1 D R1.k; N / > 0 such that W.�; 0; ym/ � R1.

(c) If there exists a subsequence such that m.t?.n// ! 0 as n ! 1, then we

have again W.�; 0; ym/ � R1.

Proof. We introduce the following subsets of .Ot .n/; Nt .n// for all n 2 N:

An
1 D ¹t 2 .Ot .n/; Nt .n//W ".t/ � ı.t/º;

An
2 D ¹t 2 .Ot .n/; Nt .n//W ".t/ < ı.t/º:

Then, using Lemma 3.5, it is clear that for all t 2 An
1 , m.t/ � 2C4".t/

N

N�1 , while

for all t 2 An
2 , thanks to Lemma 3.1 and reminding (3.3), �.t/ � 2C1ı.t/

N
N�1 .

Hence, since ".t/ D m0.t / and ı.t/ D �0.t /, we can work as in the proof of

Lemma 2.2 from [8] and deduce that jAn
1 [ An

2j � C5 D C5.k; N /.

If we are in case (b), since Ot .n/ D �1 for all n, then W.�n; 0; ym/ �

jAn
1 [ An

2j � C5 and the same is true for the -limit �.

On the other hand, if case (c) happens, in principle there could be some pieces

of the limit � outside the bounded strip, but Lemma 2.5 assures that � must have

zero capacity and not only zero Lebesgue measure outside the bounded strip. More

precisely, we can choose (up to translations) the origin such that m.0/ D ym. Since

� corresponds to a capacitary measure �, case (c) implies

� D 0 in ¹.x; y/ 2 R � R
N �1W x < �C5º:

Hence W.�; 0; ym/ � C5.

At last we consider case (a). Thanks to Lemma 3.5, we have that for all n and

for all 1 � i � k,

�i . y�.t?.n/// < �i.�/ � �:

Hence, since we are supposing F to be weakly strictly increasing, we have a

sequence . y�.t?.n///n such that

inf
n
F. y�.t?.n/// < F.�/;

thus � can not be optimal for (1.1).
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Remark 3.7. Applying Lemma 3.6 to a sequence of open sets .�n/n2N satis-

fying the hypotheses of Lemma 3.5 and which -converges to ��, since (a), (b)

and (c) cover all the possible situations, we deduce

W.��; 0; ym/ � R1.k; N /:

4. Boundedness of the “interior”

To start with, we give the analogous of the de�nitions (3.1), (3.2), and (3.3) of

Section 3 that we need now. More precisely, for every xm 2 . ym; 1 � ym
2

/, we set for

brevity

t0 WD
�.�; Nm C ym

2
/ C �.�; Nm � ym/

2
;

Nt WD
�.�; Nm C ym

2
/ � �.�; Nm � ym/

2
I

keep in mind that, since Nm 2 . ym; 1 � ym
2

/, then

�1 < �.�; Nm � ym/ < �
�

�; Nm C
ym

2

�

< C1:

For any 0 � t � Nt , we de�ne

�C.t / WD �l
t0�t [ �r

t0Ct ;

��.t / WD �r
t0�t \ �l

t0Ct D � n �C.t /;

".t / WD H
N �1.�t0�t / C H

N �1.�t0Ct /;

m.t/ WD j��.t /j D

Z t

0

".s/ ds �
3

2
ym:

Moreover, having �xed an orthonormal set ¹u1; u2; : : : ; ukº of eigenfunc-

tions with unit L2 norm corresponding to the �rst k eigenvalues of �, for every

1 � i � k and 0 � t � Nt we de�ne

ıi .t / WD

Z

�t0�t

jDui j
2 C

Z

�t0Ct

jDui j
2;

�i .t / WD

Z

�t0�t

u2
i C

Z

�t0Ct

u2
i :
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Then we de�ne again ı.t/ D
Pk

iD1 ıi .t /, and we set again

�.t/ WD

k
X

iD1

Z

��.t/

jDui j
2 D

Z t

0

ı.s/ ds:

Unluckily, it is not possible to prove the analogous of Lemma 3.1 in the very

same way, but a little modi�cation is needed.

Lemma 4.1 ([8], Lemma 2.9). There exists a small constant

N� D N�.k; K; N / < 1

such that, if � is as in Lemma 3.5, xm 2 . ym; 1 � ym
2

/ and 0 � t � Nt is such that

".t/; ı.t / � N�, then for every 1 � i � k one has
Z

��.t/

u2
i � C ".t/

1

N�1 ıi .t /;

Z

��.t/

jDui j
2 � C ".t/

1

N�1 ıi .t /:(4.1)

In analogy with Section 3, we give the following de�nitions. We consider the

“internal cylinders”

Q1 WD .t0 � t; t0 � t C �1/ � �t0�t ;

Q2 WD .t0 C t � �2; t0 C t / � �t0Ct ;

where

�1 D H
N �1.�t0�t /

1

N�1 ; �2 D H
N �1.�t0Ct /

1

N�1 :

The set z�.t/ is de�ned as

z�.t/ WD ¹.x; y/ 2 R
N W either x � t0; .x � t C �1; y/ 2 �C.t / [ Q1 ;

or x � t0; .x C t � �2; y/ 2 �C.t / [ Q2º:

Notice that
ˇ

ˇ z�.t/
ˇ

ˇ D j�C.t /
ˇ

ˇ C jQ1j C jQ2j

D 1 � m.t/ C H
N �1.�t0�t /

N

N�1 C H
N �1.�t0Ct /

N

N�1

� 1 � m.t/ C ".t/
N

N�1 :

Moreover, we de�ne again the rescaled set

y�.t/ WD
ˇ

ˇ z�.t/
ˇ

ˇ

� 1

N z�.t/ :

In analogy with Lemma 3.5 we can state the following. Unluckily we have to

keep in account also the case in which ".t/ or ı.t/ are greater than N�, but clearly

the proof is completely equal to Lemma 3.5.
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Lemma 4.2. Let � be a set as in Lemma 3.5 and let 1 � t � Nt . There exists

a constant C6 D C6.k; N / such that exactly one of the three following conditions

hold:

(1) max ¹".t/; ı.t /º > N�I

(2) Case (1) does not hold and m.t/ � C6.".t/
N

N�1 C ı.t/
N

N�1 /;

(3) Cases (1) and (2) do not hold and for every 1 � i � k, one has

�i. y�.t// < �i .�/. Moreover if m.t/ � zm for some zm > 0, then there

exists � D �.N; zm/ > 0 such that, for every 1 � i � k, one has

�i. y�.t// < �i .�/ � �.

In order to prove the last Lemma, analogous to Lemma 3.6, we de�ne Ot as

in (3.13) by setting

Ot WD sup¹1 � t � Nt W condition (3) of Lemma 4.2 holds for tº;

with the convention that, if condition (3) is false for every 1 � t � Nt; then Ot D 1.

Moreover if Ot > 1, then we choose some t? 2 .Ot � 1; Ot � for which condition .3/

holds.

Lemma 4.3. Let .�n/n be as in the hypotheses of Lemma 3.5, �n


! � and

xm 2 . ym; 1 � ym
2

/.

(a) If there exists a subsequence (not relabeled) such that, for all n, one has

m.t?.n// � zm > 0 for some zm, then � can not be optimal for problem (1.1).

(b) If there exists a subsequence such that Ot .n/ D 1 for all n, then there esists

R2 D R2.k; N / > 0 such that W.�; xm � ym; xm/ � R2.

(c) If there exists a subsequence such that m.t?.n// ! 0 as n ! 1, then we

have again W.�; xm � ym; xm/ � R2.

Proof. First of all (see [8, Lemma 2.8]) it is admissible to assume

m.t/ > 0 for all t > 0:(4.2)

We de�ne A and B as

An W D ¹t 2 .Ot .n/; Nt .n//W condition (1) of Lemma 4.2 holds for tº;

Bn W D ¹t 2 .Ot .n/; Nt .n//W condition (2) of Lemma 4.2 holds for t and m.t/ > 0º:

The same argument of the proof of Lemma 2.8 in [8] gives then

(4.3)
ˇ

ˇAn
ˇ

ˇ C
ˇ

ˇBn
ˇ

ˇ � C7 D C7.k; K; N /; for all n:
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Then it is possible to conclude as in Lemma 3.6. If we are in case (b), since

Ot .n/ D 1 for all n, then W.�n; xm � ym; xm/ � jAn [ Bnj � C7 C 2 and the same is

true for the -limit �.

On the other hand, if case (c) happens, in principle there could be some pieces

of the limit � outside the bounded strip, but Lemma 2.5 assures that � must have

zero capacity and not only zero Lebesgue measure outside the bounded strip. More

precisely, we know that � corresponds to a capacitary measure � and we call

Q� WD �x.�.�; xm � ym/; �.�; xm//;

in order to restrict ourselves to the strip we are interested in. In the hypothesis of

case (c) we have that

Q� D 0 in ¹.x; y/ 2 R � R
N �1W �.�; xm � ym/ < x < C7 C 2º:

Hence W.�; xm � ym; xm/ � C7 C 2.

At last we consider case (a). Analogously to Lemma 3.5, we have that for all n

and for all 1 � i � k,

�i . y�.t?.n/// < �i.�/ � �:

Hence, since we are supposing F to be weakly strictly increasing, we have a

sequence . y�.t?.n///n such that

inf
n
F. y�.t?.n/// < F.�/;

so � can not be optimal for (1.1).

5. Proof of the main theorem

We are now in position to prove the main theorem.

Proof of Theorem 1.1. Let �� be a minimizer for problem (1.1); we aim to

show that it is contained in an N -cube QR with edge of length R D R.k; N /.

We consider a sequence .�n/n of open sets with unit measure and such that

�k.�n/ � K for all n, which -converges to the set ��.

First of all we apply Lemma 3.6 and we have that W.��; 0; ym/ � R1, otherwise

we contradict the optimality of ��.

Then we apply Lemma 4.3 with xm D 2 ym and we have W.��; ym; 2 ym/ � R2.

We can iterate the application of Lemma (4.3) with xm D l ym (l � 3) till l ym � 1� ym
2

,

thus obtaining, with a possible last application when xm D 1 � ym:

W.��; 0; 1 � ym/ � R1 C lR2:
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Now we can apply the above estimate to the symmetric of the set �� with respect

to the plane ¹x D 0º, thus obtaining:

W.��; ym; 1/ � R1 C lR2:

In conclusion we proved that W.��; 0; 1/ � 2R1C2lR2. Now we repeat the whole

construction for all the other coordinates (e2; : : : ; eN ) instead of the �rst one. At

the end, we have proved that the set �� must be contained in an N -cube QR with

edge of length R D 2R1 C 2lR2, thus the theorem is proved.
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