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On the intersection of annihilator

of the Valabrega–Valla module

Tony J. Puthenpurakal (�)

Abstract – Let .A;m/ be a Cohen–Macaulay local ring with an in�nite residue �eld and let
I be an m-primary ideal. Let x D x1; : : : ; xr be a A-super�cial sequence with respect
to I . Set

VI .x/ D
M

n�1

InC1 \ .x/

xIn
:

A consequence of a theorem due to Valabrega and Valla is that VI .x/ D 0 if and only if
the initial forms x�

1
; : : : ; x�

r is a GI .A/ regular sequence. Furthermore this holds if and
only if depthGI .A/ � r . We show that if depthGI .A/ < r then

ar .I / D
\

x D x1; : : : ; xr is a
A-super�cial sequence with respect to I

annA VI .x/ is m-primary:

Suprisingly we also prove that under the same hypotheses,
\

n�1

ar .I
n/ is also m-primary:
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Introduction

Let .A;m/ be a Noetherian local ring with an in�nite residue �eld. The notion of
minimal reduction of an ideal I in A was discovered more than �fty years ago by
Northcott and Rees; [13]. It plays an essential role in the study of blow-up algebras.
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Nevertheless minimal reductions are highly non-unique. The intersection of all
minimal reductions is called the core of I and denoted by core.I /. This was
introduced by Rees and Sally in [14]. It has been extensively investigated in [4],[5]
and [12]. When A is Cohen–Macaulay and I is m-primary; Rees and Sally proved
that core.I / is again m-primary and so is a �nite intersection. In this paper we
study a di�erent intersection of ideals.

Let .A;m/ be a Cohen–Macaulay local ring of dimension d with an in�-
nite residue �eld and let I be an m-primary ideal. Let x D x1; : : : ; xr be an
A-super�cial sequence with respect to I . Set

VI .x/ D
M

n�1

I nC1 \ .x/

xI n
:

We call VI .x/ the Valabrega–Valla module of I with respect to x. A consequence
of a theorem due to Valabrega and Valla, [16, 2.3] is that VI .x/ D 0 if and only if
the initial forms x�

1 ; : : : ; x
�
r form a GI .A/ regular sequence. Furthermore this

holds if and only if depthGI .A/ � r , see [10, 2.1]. When r D d D dimA

there has been a lot of research relating depthGI .A/ and ` .VI .x//. Here `.�/
denotes length as an A-module. For instance Guerrieri in her thesis proved that if
` .VI .x// D 1 then depthGI .A/ D d�1; see [7]. For other results in this direction
see [8], [9], and [17].

In general notice each VI .x/ has �nite length and so annA VI .x/ is m-primary.
We prove, see Theorem 5.3, that

ar .I / D
\

x D x1; : : : ; xr is a
A-super�cial sequence with respect to I

annA VI .x/ is m-primary if depth.GI .A// < r:

This intersection of ideals is in some sense analogous to that of core of I ; since
notice that

core.I / D
\

J minimal
reduction of I

annA

A

J
:

Nevertheless they are two di�erent invariants of I . Furthermore our techniques
are totally di�erent from that in the papers listed above.

By a result of Elias depthGI n.A/ is constant for all n � 0, see [6, 2.2]. Since
core.I / � I we have

T

n�1 core.I n/ D 0. Suprisingly, see Theorem 6.3, we have
that if depthGI .A/ < r then

\

n�1

ar.I
n/ is m-primary:
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We now assume A is also complete. Let

R.I / D
M

n�0

I n

be the Rees algebra of I . Set

L D LI .A/ D
M

n�0

A=I nC1:

It can be shown easily that L is a R.I /-module. Of course L is not �nitely
generated as a R.I /-module. Nevertheless we prove that its local cohomology
modulesH i

R.I/C
.L/ are �-Artinian for i D 0; : : : ; d � 1; see Theorem 4.3. Recall

a graded R.I /-module N is �-Artininan if it satis�es descending chain condition
on its graded submodules, cf. [3, p. 142]. Set bi .I / D annR.I/H

i
R.I/C

.L/ for

i D 0; : : : ; d � 1 and qi .I / D bi .I / \ A. Since H i
R.I/C

.L/ is �-Artinian; it is
not di�cult to show that qi is m-primary (or equal to A); see Corollary 4.4.

In Theorem 5.2 we prove that

ar .I / � q0.I /q1.I / � � �qr�1.I /:

Next note that LI .A/.�1/ behaves well with respect to the Veronese functor.
Clearly

�

LI .A/.�1/
�hli

D LI l

.A/.�1/ for each l � 1:

Also local cohomology commutes with the Veronese functor. As a consequence
we have

qi .I
l / � qi .I / for each l � 1 and i D 0; 1; : : : ; r � 1:

It follows that
\

n�1

ar .I
n/ � q0.I /q1.I / � � � qr�1.I /:

The R.I /-module LI .A/ is not a �nitely generated R.I /-module. However
it is quasi-�nite R.I /-module, see §1.5. Quasi-�nite module were introduced
in [11, page 10]. Surprisingly we were able to prove that if E is a quasi-�nite
R.I /-module and has a �lter-regular sequence of length s then the local coho-
mology modules H i

R.I/C
.E/ are all �-Artinian for i D 0; : : : ; s � 1.

We also study the Koszul homology of a quasi-�nite module with respect to a
�lter regular sequence. We then use a spectral sequence, �rst used by P. Roberts
[15, Theorem 1], to relate cohomological annihilators with that of annihilators of
the Koszul complex. We however have to very careful in our proof since we are
dealing with in�nitely generated modules.
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We now describe in brief the contents of this paper. In Section 1 we intro-
duce notation and discuss a few preliminary facts that we need. In Section 2

we study a few basic properties of LI .M/. In Section 3 we prove some prop-
erties of Koszul homology of quasi-�nite modules with respect to �lter-regular
sequence. We also compute H1.u; L

I .M// where u D x1t; : : : ; xr t 2 R.I /1

is a LI .M/-�lter regular sequence. In Section 4 we study local cohomology of
quasi-�nite modules E with `.En/ �nite for all n 2 Z. In Section 5 we prove that
ar .I / is m-primary (or A). In Section 6 we show that

T

n�1 ar.I
n/ is m-primary

(or A).

1. Notation and preliminaries

Throughout we assume that .A;m/ is a Noetherian local ring with an in�nite
residue �eld k D A=m. Let M be a �nitely generated A-module of dimension r
and let I be an ideal of de�nition forM ; i.e, `.M=IM/ is �nite. Here `.�/ denotes
length as an A-module. For unde�ned terms see [3], especially Sections 4.5
and 4.6.

1.1. Assume r D dimM � 1. Let x 2 I n I 2. We say x is M -super�cial

with respect to I if for some c � 1 we have .I nC1M W x/ \ I cM D I nM for
all n � 0. If depthM > 0 then using the Artin–Rees lemma one can prove that
.I nC1M W x/ D I nM for all n � 0.

A sequence x D x1; : : : ; xl is said to beM -super�cial sequence if x1 isM -su-
per�cial with respect to I and for i D 2; : : : ; r ; xi is M=.x1; : : : ; xi�1/M -su-
per�cial with respect to I . Since k is in�nite, M -super�cial sequences of length
r D dimM exists.

1.2. Let x D x1; : : : ; xr be a M -super�cial sequence with respect to I .
The Valabrega–Valla module of I with respect to M and x is

VI .x;M/ D
M

n�1

I nC1M \ xM

xI nM
:

We consider it as a A-module. Set VI .x/ D VI .x; A/.

1.3. Let yR.I / D
L

n2Z I
ntn denote the extended Rees-algebra of A with

respect to I . Here I n D A for n � 0. We consider it as a subring of AŒt; t�1�. Let
R.I / D

L

n�0 I
ntn denote the Rees algebra of A with respect to I . We consider

it as a subring of AŒt �. Of course we can consider R.I / as a subring of yR.I / too.
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Both these embeddings of R.I / would be useful for us. Set

yR.I /M D
M

n2Z

I nMtn and R.I /M D
M

n�0

I nMtn:

We call yR.I /M the extended Rees module of M with respect to I and we call
R.I /M the Rees module of M with respect to I .

1.4. Consider
LI .M/ D

M

n�0

M=I nC1M:

We consider LI .M/ as a yR.I /-module as follows.
Consider the exact sequence

0 �! yR.I /M �! MŒt; t�1� �! LI .M/.�1/ �! 0:

Here MŒt; t�1� D M ˝A AŒt; t
�1�. This exact sequence gives LI .M/ a structure

of yR.I /-module. Since R.I / is a subring of yR.I /, we also get that LI .M/ is a
R.I /-module. We may also see this directly through the exact sequence

0 �! R.I /M �! MŒt� �! LI .M/.�1/ �! 0:

1.5 Quasi-finite modules. We extend de�nition of quasi-�nite modules
from that of [11, page 10]. Let E D

L

n2ZEn be a R.I /-module. We say E is
quasi-�nite of order at least s if

(1) En is a �nitely generated A-module for all n 2 Z,

(2) En D 0 for all n � 0,

(3) for i D 0; : : : ; s � 1 we have H i
R.I/C

.E/n D 0 for all n � 0.

1.6 Remark. Of course if E is a �nitely generated R.I /-module then it is
quasi-�nite of any order s � 1. In the next section we prove that if M is Cohen–
Macaulay of dimension r � 1 and I is an ideal of de�nition for M then LI .M/

is quasi-�nite of order at-least r .

1.7. Let E D
L

n2ZEn be a non-necessarily �nitely generated R.I /-module
with En D 0 for all n � 0. An element u 2 R.I /1 is E-�lter regular if
.0WE u/n D 0 for all n � 0.

1.8 Remark. If E is quasi-�nite of order at-least s.� 2/ and u is E-�lter
regular then E=uE is quasi-�nite of order at-least s � 1. This can be proved by
noting that .0WE u/ is R.I /C-torsion.
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1.9. Let E D
L

n2ZEn be a quasi-�nite R.I /-module of order at least s. Let
u D u1; : : : ; ur 2 R.I /1 be a sequence and assume r � s. We say u is a E-�lter
regular sequence if u1 is E-�lter regular, u2 is E=u1E-�lter-regular, . . . , ur is
E=.u1; : : : ; ur�1/E �lter-regular.

1.10 Proposition. Assume that the residue �eld ofA is uncountable. LetE be

a quasi-�nite R.I /-module of order at least s. Then there exists u D u1; : : : ; us 2

R.I /1 which is E-�lter regular sequence.

Proof. It is su�cient to do this for s D 1 (see Remark 1.8). In this case the
result follows from [11, 2.7].

1.11 Remark. Assume M is Cohen–Macaulay. Let x D x1; : : : ; xr be a
M -super�cial sequence with respect to I . Set ui D xi t 2 R.I /1 for i D

1; : : : ; r . In the next section we show that u D u1; : : : ; ur is a LI .M/-�lter regular
sequence. We do not need the residue �eld of A to be uncountable.

2. LI.M/

2.1 Setup and introduction. In this section M is a Cohen–Macaulay

A-module of dimension r � 1 and I is an ideal of de�nition for M . We con-
sider the yR.I /-module LI .M/ D

L

n�0M=I
nC1M . We prove that LI .M/ is a

quasi-�nite R.I /-module of order at least r . Let x D x1; : : : ; xr be aM -super�cial
sequence with respect to I . Set ui D xi t 2 R.I /1 for i D 1; : : : ; r . We also show
that u D u1; : : : ; ur is a LI .M/-�lter regular sequence.

2.2. If E is a graded yR.I /-module then notice that

H i
R.I/C

.E/ Š H i
yR.I/C

.E/ as R.I /-modules:

Note that yR.I /C denotes the ideal R.I /C yR.I / of yR.I /. The following result is
known when M D A; see [1, 3.8].

2.3 Lemma (with hypotheses as in 2.1). As R.I /-modules:

(1) H 1
yR.I/C

.yR.I /M / is a quotient of H 1
R.I/C

.R.I /M /.

(2) H i
yR.I/C

.yR.I /M / Š H i
R.I/C

.R.I /M / for i � 2.

Sketch of proof. We use 2.2 and the following short exact sequence
of R.I /-modules

0 �! R.I /M �! yR.I /M �! yR.I /M=R.I /M �! 0:

Notice yR.I /M=R.I /M is R.I /C-torsion.
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2.4 Proposition. LI .M/ is quasi-�nite of order r D dimM .

Proof. Set L D LI .M/. Notice H i
R.I/C

.L/ D H i
yR.I/C

.L/ as R.I /-modules.

Let x D x1; : : : ; xr be a M -super�cial sequence with respect to I . Set ui D xi t 2

R.I /1 for i D 1; : : : ; r . It can be easily checked that u is a MŒt; t�1� regular
sequence. So H i

yR.I/C

.MŒt; t�1�/ D 0 for i D 0; : : : ; r � 1.

We consider the exact sequence

0 �! yR.I /M �! MŒt; t�1� �! L.�1/ �! 0:

Taking local cohomology with respect to yR.I /C we get that

(a) H i
yR.I/C

.L.�1// Š H iC1
yR.I/C

.yR.I /M / for i D 0; : : : ; r � 2.

(b) H r�1
yR.I/C

.L.�1// is a submodule of H r
yR.I/C

.yR.I /M /.

The result now follows from Lemma 2.3, Remark 2.2 and [2, 15.1.5].

2.5 Proposition. Let x D x1; : : : ; xr be a M -super�cial sequence with re-

spect to I . Set ui D xi t 2 R.I /1 for i D 1; : : : ; r . Then u is a LI .M/-�lter

regular sequence.

Proof. Set L D LI .M/. We �rst show that u1 is L-�lter regular. Notice

.0WL u1/ D
M

n�0

I nC1M WM x1

I nM
:

Since x1 is M -super�cial it follows that u1 is L �lter regular; see 1.1.
Check that

L

u1L
D

M

n�0

M

x1M C I nC1M
D LI .M=x1M/:

The result now follows from an easy induction on dimM .

3. Koszul homology of quasi-�nite modules with respect to �lter-regular

sequence

In this section we prove some properties of Koszul homology of a quasi-�nite
module with respect to a �lter regular sequence. We also compute the �rst Koszul
homology of LI .M/ with respect to u D x1t; : : : ; xst where x1; : : : ; xs is an
M -super�cial sequence with respect to I .
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3.1 Theorem. Let E be a quasi-�nite R.I /-module of order at least s and let

u D u1; : : : ; us be a E-�lter regular sequence. Then for i D 1; : : : ; s we have

(1) Hi.u; E/ is a �nitely generated R.I /-module. It is also R.I /C-torsion. In

particular Hi.u; E/ is a �nitely generated A-module.

(2) If u is E-regular sequence then Hi.u; E/ D 0 for i D 1; : : : ; s.

(3) If H1.u; E/ D 0 then u is a E-regular sequence.

Proof. (1) We prove it by induction on s.

The case s D 1. Notice H1.u1; E/ D .0Wu1
E/. Since u1 is E-�lter regular we

get thatH1.u1; E/ is a �nitely generated A-module and hence a �nitely generated
R.I /-module. Clearly it is also R.I /C torsion.

We assume the result for s D r and prove it for s D r C 1. Let
u D u1; : : : ; ur ; urC1 and u0 D u1; : : : ; ur . We have for all i � 0 an exact se-
quence
(3.1.1)

0 �! H0.urC1; Hi.u
0; E// �! Hi.u; E/ �! H1.urC1; Hi�1.u

0; E// �! 0

Using induction hypothesis it follows that for i � 2 the modules Hi .u; E/ are
�nitely generated R.I /-modules and also R.I /C-torsion. For i D 1 we make the
following observations.

(a) H0.urC1; H1.u
0; E// is �nitely generated R.I /-module. It is also R.I /C-tor-

sion.

(b) H1.urC1; H0.u
0; E// D H1.urC1; E=u

0E/. Since urC1 is E=u0E-�lter reg-
ular then by s D 1 case we have thatH1.urC1; H0.u

0; E// is a �nitely gener-
ated R.I /-module and it also R.I /C-torsion. The result follows.

(2) The standard proof works, cf. [3, 1.6.16].

(3) Nothing to prove when s D 1. So assume s � 2. Set r D s � 1. We
use the exact sequence (3.1.1). If H1.u; E/ D 0 then H0.urC1; H1.u

0; E// D 0.
So we have H1.u

0; E/ D urC1H1.u
0; E/. Since H1.u

0; E/ is a �nitely generated
graded R.I /-module and urC1 has positive degree it follows that H1.u

0; E/ D 0.
By induction hypothesis it follows that u1; : : : ; ur is a E-regular sequence.

From 3.1.1 we also get

H1.urC1; H0.u
0; E// D H1.urC1; E=u

0E/ D 0:

So urC1 is E=u0E- regular. It follows that u is a E-regular sequence.
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3.2 Proposition. LetM be a Cohen–MacaulayA-module of dimension r � 1

and let I be an ideal of de�nition for M . Let x D x1; : : : ; xs be a M -super�cial

sequence with respect to I with s � r . Set ui D xi t 2 R.I /1 for i D 1; : : : ; s.

Then u is a LI .M/-�lter regular sequence and

H1.u; L
I .M// D

M

n�1

I nC1M \ xM

xI nM
D VI .x;M/:

Proof. Set L D LI .M/. In Proposition 2.5 we have shown already that u is
a LI .M/ �lter-regular sequence.

Consider the exact sequence

0 �! yR.I /M �! MŒt; t�1� �! L.�1/ �! 0:

It can be easily checked that u is a MŒt; t�1� regular sequence. So we get
H1.u;MŒt; t�1�/ D 0. Thus we have an exact sequence

0 �! H1.u; L.�1// �! H0.u; yR.I /M / �! H0.u;MŒt; t�1�/

�! H0.u; L/ �! 0:

Notice

H0.u; yR.I /M / D
M

n2Z

I nM

xI n�1M
and H0.u;MŒt; t�1�/ D M=xMŒt; t�1�:

So

H1.u; L.�1// D
M

n2Z

I nM \ xM

xI n�1M
:

The result follows.

4. Local cohomology of quasi-�nite modules E with `.En/ �nite for all n 2 Z

In this section we prove a surprising fact: the local cohomology modules
H i

R.I/C
.LI .M// are all �-Artinian for i D 0; : : : ; depthM � 1. It is convenient to

prove it in the generality of quasi-�nite modules.

4.1. Throughout this section,H i .�/ D H i
R.I/C

.�/ the i-th local cohomology
functor with respect to R.I /C. In this section we assume that

(1) .A;m/ is complete with in�nite residue �eld,

(2) E is a quasi-�nite module of order at least s,

(3) there exists an E-�lter regular sequence of length s,

(4) `.En/ �nite for all n 2 Z.
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4.2 Remark. The hypothesis on existence of E-�lter regular sequence of
length s is automatically satis�ed if k is uncountable. The assumption "`.En/�nite
for all n 2 Z" is to imitate that of LI .M/. Finally if M is CM and A has in�nite
residue �eld then assumptions 2, 3, 4 are automatically satis�ed for LI .M/. The
assumption A is complete is needed since we will use Matlis-duality.

4.3 Theorem (with hypotheses as in 4.1). For i D 0; : : : ; s � 1 we have

(1) `.H i .E/n/ < 1 for all n 2 Z;

(2) H i .E/_ is a Noetherian R.I /-module;

(3) H i .E/ is a �-Artinian R.I /-module.

Proof. We prove everything together by induction on s.

The case s D 1. Clearly `.H 0.E/n/ < 1 for all n 2 Z and is zero for n � 0.
By hypothesis E is quasi-�nite of order at least 1. So H 0.E/n D 0 for all n � 0.
The result follows.

We assume the result for s D r and prove for s D rC1. Since E is quasi-�nite
module of order at least r C 1 it is also quasi-�nite module of order at least r .
So by induction hypothesis applied to E we have that for i D 0; : : : ; r � 1 the
modulesH i .E/ satisfy properties (1)–(3). It remains to prove thatH r.E/ satis�es
properties (1)–(3).

Let u be E-�lter regular. Set F D E=uE. We have an exact sequence

0 �! .0WE u/ �! E.�1/
u

�! E �! F �! 0:

Since .0WE u/ is RC-torsion, by using a standard trick, we get the exact sequence

0 �! .0WE u/ �! H 0.E/.�1/
u

�! H 0.E/ �! H 0.F / �!

H 1.E/.�1/
u

�! H 1.E/ �! H 1.F / �!

:::

H r�1.E/.�1/
u

�! H r�1.E/ �! H r�1.F / �!

H r .E/.�1/
u

�! H r .E/:

So we have an exact sequence

(�) H r�1.F /
ı

�! H r .E/.�1/
u

�! H r .E/:
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Since F is quasi-�nite of order at least r we get that H r�1.F / satis�es proper-
ties (1)–(3). We prove that H r.E/ satis�es properties (1)–(3).

(1) By hypothesis onE we haveH r .E/n D 0 for all n � 0 say from n � cC1.
By equation (�) we have

H r�1.F /cC1
ı

�! H r .E/c �! H r.E/cC1 D 0:

SinceH r�1.F / satis�es (1) we get thatH r .E/c has �nite length. Once can induct
on j to show that H r.E/c�j has �nite length for all j � 0.

(2) We have an exact sequence of R.I /-modules

H r.E/_
u

�! H r.E/_.C1/
ı_

�! H r�1.F /_:

Set W D H r.E/_. Since H r�1.F /_ is �nitely generated R.I /-module it follows
that W=uW.C1/ (and so W=uW ) is �nitely generated.

Say V D h�1; : : : ; �mi is a R.I /-submodule of W such that W D V C uW .
We prove W D V . This we do degree-wise. By hypothesis on E we have
H r .E/n D 0 for all n � 0. So Wn D 0 for all n � 0 say from n < c. Since
degu D 1 we have Wc D Vc . Notice

WcC1 D VcC1 C uWc D VcC1 C uVc D VcC1:

By induction on j it is easy to show WcCj D VcCj for all j � 0.

(3) This follows from Matlis duality.

4.4 Corollary (with hypotheses as in 4.1). For i D 0; : : : ; s � 1 set

a.E/i D annR.I/H
i .E/ and qi .E/ D a.E/i \ A. If H i .E/ ¤ 0 then qi .E/ is

m-primary.

Proof. Fix i with 0 � i � s � 1. Set Di D H i .E/ and assume it is non-zero.
It is easily checked using Matlis duality that annR.I/Di D annR.I/D

_
i .

NoticeD_
i is a �nitely generated R.I /-module such that `..D_

i /n/ is �nite for
all n. Let m1; : : : ; ms be homogeneous generators of D_

i . Consider the map

 W
R.I /

ai .E/
�!

s
M

j D1

D_
i .� degmj /;

t 7�! .tm1; : : : ; tms/:

Clearly is injective. Taking degree zero part of this embedding gets us that qi .E/

is m-primary.
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5. Proof of the main theorem

The proof of the following result is inspired by [3, Theorem 8.1.2]; (also see [15,
Theorem 1]). However we have to be extra careful at a few places. The hypothesis
of our result is not exactly similar and we are dealing with in�nitely generated
modules.

5.1 Theorem. Let .A;m/ be a complete Noetherian ring with an in�nite

residue �eld and let I be an m-primary ideal in A. Let N be a quasi-�nite

R.I /-module of order at least m. Assume u D u1; : : : ; um 2 R.I /1 is a N �lter-

regular sequence such that

H�
u .N / D H�

R.I/C
.N /

Also assume that `.Nn/ is �nite for all n 2 Z. Set u0 D u1; : : : ; un with n � m and

let

K� D K�.u
0; N /W 0 �! En �! � � � �! E1 �! E0 �! 0

be the Koszul complex of u0 with coe�cients in N .

For j D 0; : : : ; m � 1 set bj D annR.I/H
j

R.I/C
.N / and qj D A \ bj . Then

q0q1 � � � qn�1 annihilates H1.K�.u
0; N //.

Proof. Let C� be the Čech co-chain complex on u1; : : : ; um. We shift
C� m-places and write it as a chain complex

D�W 0 �! Dm �! � � � �! D1 ! D0 �! 0:

By construction Hi .N ˝ D�/ D Hm�i
R.I/C

.N /.
Consider the chain bicomplex X D D� ˝ K�. We consider the two standard

spectral sequences to compute the homology of Y� D Tot.X/; the total complex
of X.

The �rst spectral sequence. IE0
pq D Dp ˝Kq . So

IE1
pq D Hq.Dp ˝ K�/

D Dp ˝Hq.K�/; since Dp is �at:

By Theorem 3.1 we have that Hq.K�/ is R.I /C-torsion for all q > 0. It follows
that

IE1
pq D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 for q > 0 and p ¤ m,

Hq.K�/ for q > 0 and p D m,

Dp ˝H0.K�/ for q D 0.
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Therefore

IE2
pq D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0 for q > 0 and p ¤ m,

Hq.K�/ for q > 0 and p D m,

H
m�p

R.I/C
.H0.K�// for q D 0:

Observe that this spectral sequence collapses at IE2. SoHmCi .Y�/ Š Hi.K�/ for
1 � i � n.

The second spectral sequence. IIE0
pq D Dq ˝Kp. So

IIE1
pq D Hq.D� ˝Kp/ D H

m�q

R.I/C
.Kp/ D .H

m�q

R.I/C
.N //.

n
p/:

By construction qm�q annihilates IIE1
pq if q ¤ 0. Since IIE1

pq is a subquotient of
IIE1

pq we get that qm�q annihilates E1
pq if q ¤ 0.

Let 0 D V�1 � V0 � V1 � � � � � Vj �1 � Vj D HmC1.Y�/ be the
�ltration such that IIE1

p;mC1�p Š Vp=Vp�1. Notice IIE1
p;mC1�p D 0 for p > n

and mC 1 � p > m (equivalently p < 1). So in the �ltration 1 � p � n. Notice
in this range q D mC 1 � p ¤ 0 (otherwise p D mC 1 > n). So qm�q D qp�1

annihilates IIE1
p;mC1�p for the range 1 � p � n. It follows that q0q1 � � � qn�1

annihilates HmC1.Y�/. The result follows since HmC1.Y�/ D H1.K�/.

5.2 Theorem. Let .A;m/ be a complete Cohen–Macaulay local ring with

in�nite residue �eld and dimension d � 1. Let I be an m-primary ideal in A. Set

L D LI .A/. For i D 0; : : : ; d �1 set qi D A\annR.I/H
i
RC
.L/. For r D 1; : : : ; d

set

ar .I / D
\

x D x1; : : : ; xr is a
super�cial sequence of I

annA VI .x/:

Then ar .I / � q0 � � � qr�1. In particular if depthGI .A/ < r then ar .I / is m-pri-

mary.

Proof. By Proposition 2.4, L is quasi-�nite R.I /-module of order at least
d . Fix r � 1. Let x0 D x1; : : : ; xr be an I -super�cial sequence. Then x0 can
be extended to a maximal super�cial sequence x D x1; : : : ; xr ; xrC1; : : : ; xd .
Set ui D xi t 2 R.I /1. Then by Proposition 2.5 u D u1; : : : ; ud is a L-�lter
regular sequence. Since .x/ is a reduction of I it follows that u generates R.I /C
up to radical. So H i

u.L/ D H i
R.I/C

.L/. Set u0 D u1; : : : ; ur . Let K�.u
0; L/ be

the Koszul complex on u0 with coe�cients in L. By Proposition 3.2 we get that
H1.u

0; L/ D VI .x
0/. By Theorem 5.1. we get annA VI .x

0/ � q0 � � � qr�1. Since x0

was an arbitary super�cial sequence of length r we get ar .I / � q0 � � � qr�1.
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We now drop the assumption that A is complete.

5.3 Theorem. Let .A;m/ be a Cohen–Macaulay local ring with in�nite

residue �eld and dimension d � 1. Let I be anm-primary ideal and let 1 � r � d .

Then

ar .I yA/ \ A � ar .I /:

Furthermore if depthGI .A/ < r then ar.I / is m-primary.

Proof. Let yA be the completion of A. Let x D x1; : : : ; xr be an I -super�cial
sequence. Then x considered as a sequence in yA is also a yI -super�cial se-
quence. Furthermore V

I yA
.x/ D VI .x/ since it is of �nite length. It follows that

ann yA
V

I yA
.x/ \ A D annA VI .x/.

Notice
ar .I yA/ � ann yA

V
I yA
.x/:

So ar .I yA/ \ A � VI .x/. Therefore ar.I yA/ \ A � ar .I /. Furthermore as
G

I yA
. yA/ D GI .A/ has depth < r we have that ar .I yA/ is ym-primary. It follows

that ar.I / is m-primary.

6. Powers of I

In this section we investigate ar .I
l / for l � 1. One of the advantages of working

with LI .A/ is that LI .A/.�1/ commutes with the Veronese functor. Clearly

.LI .A/.�1//hli D LI l

.A/.�1/ for each l � 1:

Also note that for the Rees algebras we have

R.I l / D R.I /hli and R.I l/C D R.I /
hli
C :

Local cohomology also commutes with the Veronese functor. So we have that

H i
R.I l /C

.LI l

.A/.�1// Š .H i
R.I/C

.LI .A//.�1//hli for all l � 1:

We �rst prove the following general result.

6.1 Lemma. Let .A;m/ be a Noetherian local ring and let I be an m-primary

ideal. Let E be a �nitely generated graded R.I /-module with `.En/ < 1 for all

n 2 Z. For l � 1 set

q.I l /E D .annR.I l /E
hli/ \ A:

Then
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(1) q.I l/E is m-primary for each l � 1;

(2) for each r; l � 1 we have

q.I l /E � q.I rl/E I

(3) the set

C D ¹q.I l/E j l � 1º;

has a unique maximal element which we denote as q.I /1E .

Proof. (1) Fix l � 1. Then Ehli is a �nitely generated graded R.I l/-module
with `.Ehli

j / �nite for all j 2 Z. So by an argument similar to Corollary 4.4 we

have that q.I l /E is m-primary.

(2) Notice
.Ehli/hri D Ehrli:

Thus it su�ces to prove the result for l D 1. Let a 2 q.I /E . Then aEj D 0 for all
j 2 Z. So we have that a 2 annR.I r /E

hri. Also as a 2 Awe have that a 2 q.I r/E .

(3) Suppose q.I l /E and q.I r/E are maximal elements in C. By .2/ we have
that

q.I l /E � q.I rl/E and q.I r /E � q.I rl /E :

By maximality of q.I l /E in C we have that

q.I l/E D q.I rl/E :

Similarly
q.I r /E D q.I rl /E :

So q.I l /E D q.I r/E .

6.2 Question (with hypotheses as above). Is

q.I /1E D q.I l /E for all l � 0‹

We now prove the following result:

6.3 Theorem. Let .A;m/ be a Cohen–Macaulay local ring with in�nite

residue �eld and dimension d � 1. Let I be anm-primary ideal and let 1 � r � d .

If depthGI .A/ < r then

\

n�1

ar.I
n/ is m-primary:
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Proof. By Theorem 5.3

ar .I yA/ \ A � ar .I /:

Thus ar.I
n yA/\A � ar.I

n/ for all n � 1. Thus it su�ces to prove the result when
A is complete. Let l � 1. For i D 0; 1; : : : ; r � 1, de�ne

qi .I
l / D .annR.I l /H

i
R.I/C

.LI l

.A///\ A:

By Theorem 5.2

ar.I
l / � q0.I

l/q1.I
l/ � � � qr�1.I

l/:

For i D 0; 1; : : : ; r � 1 set

Di .l/ D H i
R.I/C

.LI l

.A/.�1//_:

Note that by Matlis duality

Di .l/_ D H i
R.I/C

.LI l

.A/.�1//:

Clearly

qi .I
l / D .ann

R.I l /Di .l// \ A for i D 0; 1; : : : ; r � 1:

Since LI .A/ and local cohomology behaves well with respect to the Veronese
functor we have that for all l � 1 we have

Di .l/ D Di.1/
hli for i D 0; 1; : : : ; r � 1:

By Lemma 6.1(2) we have qi .I
l/ � qi .I / for all l � 1 and for all i D 0; : : : ; r �1.

Therefore we have

ar.I
l / � q0.I /q1.I / � � �qr�1.I / for all l � 1:

It follows that
T

n�1 ar .I
n/ is m-primary.

We end our paper with the following:

6.4 Question (with hypothesis as above). Is ar.I
n/ constant for all n � 0?
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