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On dimensions of the real nerve of the moduli space

of Riemann surfaces of odd genus

Grzegorz Gromadzki (�) – Ewa Kozłowska-Walania (��)

Abstract – In the moduli space Mg of Riemann surfaces of genus g � 2 there is

important, so-called, real locus Rg , consisting of points representing Riemann surfaces

having symmetries, by which we understand antiholomorphic involutions. Rg itself is

covered by the strata Rk
g , each being formed by the points representing surfaces having

a symmetry of given topological type k. These strata are known to be real analytic

varieties of dimension 3.g � 1/. Also, their topological structure is pretty well known.

Natanzon-Seppälä have realized that they are connected orbifolds homeomorphic to

the factors of R3g�3 with respect to actions of some discrete groups and Goulden–

Jackson–Harer and Harer–Zagier have found their Euler characteristics, expressing

them through the Riemann zeta function. However, topological properties of the whole

real locus Rg were less studied. The most known fact is its connectivity, proved

independently by Buser-Seppälä-Silhol, Frediani and Costa–Izquierdo. This paper can

be seen as a further contribution to the study of topology of Rg , which was possible

through the notion of the nerve Ng , associated to Rg and called the real nerve. We

�nd upper bounds for its geometrical and homological dimensions and we show their

sharpness for in�nitely many values of odd g. Precise values of these dimensions for

even g have been found by the authors in an earlier paper.
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1. Introduction

By a symmetry of a Riemann surface of genus g we understand its antiholomor-

phic involution � . The topological type of the symmetry � is described by an

integer k, whose absolute value is the number of connected components of the

set F D Fix.�/ of points �xed by � , and which is positive if � is separating, i.e.

X � F is disconnected, and negative or 0 otherwise. Each of the components of

F is homeomorphic to a circle and called an oval of � in the Hilbert’s nineteenth

century terminology. The possible types of individual symmetries are known from

the classi�cation of Harnack [15] and Weichold [23]. In such a way, the real locus

Rg of the moduli spaceMg of compact Riemann surfaces of given genus g can be

covered by Œ.3gC4/=2� real analytic varietiesRk
g of dimension 3.g�1/, consisting

of the points represented by surfaces having a symmetry of the type k [7, 21, 22].

Also a topological structure of these varieties is well known. For exampleRk
g form

connected orbifolds, that are homeomorphic to the factors of R3g�3 with respect

to actions of some discrete groups [16, 17, 20]; their Euler characteristics have

been expressed through the Riemann zeta function in [9] and [14].

However, topological properties of the whole real locus Rg were less studied.

The most known fact is its connectivity, proved independently by Buser-Seppälä-

Silhol, Frediani and Costa–Izquierdo. This paper can be seen as a further contri-

bution to the study of topology of Rg , which was possible through the using of the

notion of a nerve Ng , associated to the covering of Rg , by the loci Rk
g , and called

the real nerve.

By the de�nition, .k0; k1; : : : ; kn/ constitutes an n-simplex of our nerve Ng if

and only if

Rk0
g \ Rk1

g \ � � � \ Rkn
g 6D ;;

which in turn means that there exists a Riemann surface having simultaneously

symmetries of distinct types k0; k1; : : : ; kn. The most challenging task here would

be to compute the Euler characteristic of Ng . This seems, however, to be rather

di�cult, though calculation of higher-dimensional Betti numbers seems to be

more tractable. Here we shall deal with geometrical and homological dimensions

of Ng . We �nd upper bounds for them and we show their sharpness for in�nitely

many values of odd g. Precise values of these dimensions for even g have been

found by the authors in an earlier paper [13].

By the mentioned results of of Harnack and Weichold (c.f. [5]), Ng has

Œ.3g C 4/=2� points. Moreover, Ng is connected by the results of Buser, Seppälä,

and Silhol [4], Frediani [8], and it was also shown by Costa and Izquierdo in [6],
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that given arbitrary type k of a symmetry of a Riemann surface of genus g, a sur-

face can be chosen in such a way, to also have a symmetry of the type �1. This in

fact means that �1 is a spine of Ng for any g.

Due to functorial equivalence between compact, connected Riemann surfaces

and projective, irreducible, smooth, complex algebraic curves, we can also trans-

late our results to the language of complex curves and their real forms. Under

this equivalence, a Riemann surface X admits a symmetry � if and only if the

corresponding curve CX has a real form CX .�/. Moreover, two symmetries � and

� de�ne real forms CX .�/ and CX .�/ isomorphic over the reals R if and only

if they are conjugate in Aut˙.X/. Finally, the set Fix.�/ is homeomorphic to a

smooth projective model of the corresponding real form CX .�/. The image MR
g ,

resulting from mapping the moduli space of real algebraic curves into the moduli

space Mg of complex algebraic curves of genus g, is called the real locus and it is

covered by the strata MR

g;k
, consisting of the points of Mg representing complex

algebraic curves having a real form, whose smooth projective model has jkj con-

nected components and the set of its R-rational points leaves, when removed, its

complexi�cation connected or not according to k being negative (or 0) or positive

respectively.

2. Preliminaries

We obtain our results by using the combinatorial group theory, i.e. theory of non-

euclidean crystallographic groups (NEC groups in short), which are the discrete

and cocompact subgroups of the group G of all isometries of the hyperbolic plane

H. The algebraic structure of such a group ƒ is determined by the signature:

(1) s.ƒ/ D .hI ˙I Œm1; : : : ; mr �I ¹.n11; : : : ; n1s1
/; : : : ; .nk1; : : : ; nksk

/º/;

where the brackets .ni1; : : : ; nisi
/ are called the period cycles, the integers nij are

the link periods, mi proper periods and h is the orbit genus of ƒ.

A group ƒ with signature (1) has the presentation with the following genera-

tors, called canonical generators:

� x1; : : : ; xr , ei , cij , 1 � i � k; 0 � j � si

and

�

8
<
:

a1; b1; : : : ; ah; bh if the sign is C

d1; : : : ; dh otherwise,

and relators:
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� x
mi

i , i D 1; : : : ; r ,

� c2
ij �1, c2

ij , .cij �1cij /nij , ci0e�1
i cisi

ei , i D 1; : : : ; k; j D 1; : : : ; si ,

and

�

8
<
:

x1 : : : xre1 : : : eka1b1a�1
1 b�1

1 : : : ahbha�1
h

b�1
h

if the sign is C,

x1 : : : xre1 : : : ekd 2
1 : : : d 2

h
otherwise.

The elements xi are elliptic transformations, ai ; bi hyperbolic translations, di glide

re�ections and cij hyperbolic re�ections. We shall call the re�ections cij �1, cij

consecutive.

Now an abstract group with such a presentation can be realized as an NEC

group ƒ if and only if the value

(2) �h C k � 2 C

rX

iD1

�
1 �

1

mi

�
C

1

2

kX

iD1

siX

j D1

�
1 �

1

nij

�
;

is positive, where � D 2 or 1 according to the sign being C or �. This value

corresponds to the normalized hyperbolic area �.ƒ/ of any fundamental region

for ƒ and we have the Hurwitz–Riemann formula

(3) Œƒ W ƒ0� D
�.ƒ0/

�.ƒ/
;

where ƒ0 is a subgroup of �nite index in an NEC group ƒ.

NEC groups having no orientation reversing elements are just the classical

Fuchsian groups and among them particularly important are the Fuchsian surface
groups, which are just torsion free Fuchsian groups. A Fuchsian surface group �

has signature of the type .gI �/ and in such a case H=� is a compact Riemann

surface of genus g. Conversely, every compact Riemann surface X can be repre-

sented as such an orbit space for some Fuchsian surface group � and a �nite group

G is a group of automorphisms of X if and only if G D ƒ=� for some NEC group

ƒ. The following result from [10, 11] is a main tool that we use in this paper.

Theorem 2.1. Let X D H=� be a Riemann surface with the group G of all
automorphisms of X , let G D ƒ=� for some NEC group ƒ and let � W ƒ ! G be
the canonical projection. Then the number of ovals of a symmetry � of X equals

X
ŒC.G; �.ci // W �.C.ƒ; ci //�;

where C denotes the centralizer and the sum is taken over a set of representatives
of all the conjugacy classes of canonical re�ections, whose images under � are
conjugate to � .
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The index

wi D ŒC.G; �.ci // W �.C.ƒ; ci//�

will be called a contribution of ci to k�k. The next result of Singerman allows us

to compute the centralizer of a canonical re�ection in an NEC group

Proposition 2.2 ([18, 19]). Let c0; c1; : : : ; cs; e be the canonical generators
corresponding to a period cycle .n1; : : : ; ns/ of an NEC group ƒ with signa-
ture (1). If all ni are even, then the centralizer C.ƒ; ci / of ci in ƒ is

hci i ˚ .h.ci�1ci /
ni =2i � h.ci ciC1/niC1=2i/ D Z2 ˚ .Z2 � Z2/ for i ¤ 0;

hc0i ˚ .h.c0c1/n1=2i � he�1.cs�1cs/ns=2ei/ D Z2 ˚ .Z2 � Z2/ for i D 0;

hc0i ˚ hei D Z2 ˚ Z for s D 0:

A group G is said to be abstractly oriented if there is an epimorphism

˛W G �! Z2 D ¹˙1º;

called an abstract orientation. An element g of abstractly oriented group G with an

abstract orientation ˛ is said to be orientation preserving (respectively orientation
reversing) if ˛.g/ D C1 (respectively ˛.g/ D �1). Observe that the abstract

orientations of G correspond to the subgroups of index 2 in G. Moreover, by

the Sylow theorem, in our studies of symmetries we may assume that G is a

2-group. Indeed, for �1; �2; : : : ; �k being the representatives of conjugacy classes

of symmetries we know that all Sylow 2-groups are conjugate and so we can

assume that these symmetries generate a 2-group G. In [2] the authors proved

the following two theorems.

Theorem 2.3. A 2-group G containing a dihedral group Dn as a subgroup
of index 2r has at most 2rC2 � 1 conjugacy classes of elements of order 2.
Furthermore, if G is abstractly oriented and the generating involutions x0; y0

of Dn reverse the orientation, then G has at most 2rC1 conjugacy classes of
orientation reversing elements of order 2.

Theorem 2.4. Let X be a Riemann surface of genus g D 2r�1u C 1 with u

odd. Let G be a 2-group of automorphisms of X of order 2t , where t � r C 1 and
assume that its subgroup GC of orientation preserving automorphisms does not
act freely on X . Then G contains a cyclic or a dihedral subgroup of index 2r .
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As a corollary, we obtain the sharp upper bound on a number of nonconjugate

symmetries with �xed points is given in [2].

Corollary 2.5. Let X be a Riemann surface of genus g D 2r�1u C 1 with
u odd. Then the maximal number of nonconjugate symmetries with �xed points
that X may admit is 2rC1. Furthermore, this bound is attained if and only if
u � 2rC1 � 3.

Remark 2.6. Here we shall mention, that one of the possible types of sym-

metries is 0, which corresponds to a �xed point free (and hence nonseparating)

symmetry. As in our studies of the geometrical and homological dimension of the

nerve Ng we will look for symmetries with distinct types, we have to take a �xed

point free symmetry into account as one (and only one!) of the possibilities. It was

shown in [3] that the bound from Corollary 2.5 is also true, if we allow �xed point

free symmetries.

For the sake of completeness, before we move to the main sections of the paper,

let us cite results concerning even values of g, which were obtained in [13].

Theorem 2.7. Let g be an even integer. Then the following conditions hold:

(1) if g � 2, then dimG.Ng/ D 3;

(2) if g � 6, then dimH .Ng/ D 3, while dimH .N2/ D 0 and dimH .N4/ D 1.

3. Geometrical dimension of Ng

Since symmetries of a Riemann surface X having distinct topological types are

nonconjugate in Aut˙.X/, the quantitative results concerning symmetries from

Corollary 2.5 give us upper bounds for dimG.Ng/ and dimH .Ng/. Observe, how-

ever, that to study the attainment, one needs qualitative results allowing topolog-

ical type of single symmetry � of X to be found in terms of Aut˙.X/ and topo-

logical type of the action. This role in our paper will be played by Theorem 2.1.

Here we shall prove the following

Theorem 3.1. Let g D 2r�1u C 1 where r � 2 and u is odd. The geomet-
rical dimension of Ng does not exceed 2rC1 � 1 and this bound is attained if
u � 2r .2r C 1/ � 5.

Example 3.2. Before we present the proof of the above theorem, let us con-

sider an example, which shall give us an idea and intuition for the upcoming proof.

The example can be viewed as the proof for the speci�c case r D 2 in the theorem

above.
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Let g D 2u C 1 for some odd integer u � 15. It is obvious, by Corollary 2.5,

that the geometrical dimension of Ng cannot be greater than 7. Indeed, there are

at most 8 nonconjugate symmetries, hence at most 8 symmetries of distinct types

and hence the dimension of a simplex in Ng cannot be greater than 7. We shall

show that in fact it is maximal and equals 7 in such a case. Take G D Z4
2 to be an

abstractly oriented group having 8 orientation reversing involutions �0; �1; : : : ; �7.

Consider an NEC group with signature

.0I CI Œ2; .u�15/=2: : : ; 2�I ¹.2; 19: : :; 2/º/;

and de�ne and epimorphism � W ƒ ! Z4
2 on a sequence of consecutive canonical

re�ections in the following way:

�7; �6; �7; �6; �7; �6; �7„ ƒ‚ …
7

; �5; �4; �5; �4; �5„ ƒ‚ …
5

; �3; �2; �3„ ƒ‚ …
3

; �1; �7; �5; �3:

Moreover, we de�ne �.xl / D �0�1 for all values of l and �.e1/ D 1 if .u�15/=2 is

even and �.e1/ D �0�1 otherwise. Here we consider our re�ections as situated on

a circle, so we unify the �rst and the last re�ection. It is easy to see that symmetry

�i has 2i ovals. Indeed, whenever a symmetry appears with the same neighbors,

the corresponding re�ection contributes to it with 4 ovals, by Theorem 2.1 and

Proposition 2.2. Now if it appears with distinct neighbors we have a contribution of

2 ovals to the respective symmetry. It follows easily, that we constructed a Riemann

surface X D H=�, where � D ker � , having 7 nonconjugate symmetries, each

with di�erent nontrivial number of ovals, hence of distinct topological types.

Furthermore we still have a �xed point free symmetry �0 which in our notations is

the product of some unique three ones from �1; : : : ; �7. Therefore we constructed a

7-dimensional simplex and the geometrical dimension here is maximal and equals

7. The genus of X can be calculated directly using the Hurwitz–Riemann formula

and (2); here we have �.ƒ/ D u=4, �.�/ D 2g � 2 and ŒƒW �� D 16.

Proof of Theorem 3.1. The upper bound on dimG Ng is obvious by Corol-

lary 2.5. Again, as there are at most 2rC1 nonconjugate symmetries, then there are

at most 2rC1 distinct types. It follows immediately that the dimension of a simplex

in Ng is bounded by 2rC1�1 and so dimG.Ng/ � 2rC1�1. Therefore for the proof

it is enough to construct, for any g as in the theorem, a Riemann surface of genus

g, having 2rC1 symmetries of distinct topological types. Let u � 2r.2r C 1/ � 5

and consider an NEC group ƒ with signature

(4) .0I CI Œ2; m: : :; 2�I ¹.2; s: : :; 2/º/;
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where s D 2r.2r C 1/ � 1, m D .u � 2r .2r C 1/ C 5/=2. We shall construct

an epimorphism � W ƒ ! G D ZrC2
2 , where G is an abstractly oriented group.

Denote by �i ; 0 � i � 2rC1 � 1; all the orientation reversing involutions in G. Let

�.xl / D �0�1 for 1 � l � m and �.e1/ D 1 or �0�1 depending on the parity of

m, that is �.e1/ D 1 for m being even and �.e1/ D �0�1 otherwise. Let us divide

the sequence of canonical re�ections c0; : : : ; cs�1 in the following way: �rst we

have 2r segments, where the n-th segment has length 2rC1 � .2n � 1/, and at

the end we have the remaining 2r � 1 re�ections; we shall call these a tail of the

sequence. Now we de�ne � to map the re�ections of n-th segment alternatively

to �2rC1�.2n�1/ and �2rC1�2n, starting and �nishing with �2rC1�.2n�1/. The last

2r -th segment has length 1 and its re�ection is mapped to �1. Next, we map the

remaining consecutive re�ections respectively to

�2rC1�1; �2rC1�3; : : : ; �3:

As before, we unify the �rst and the last re�ection, hence we can view the canon-

ical re�ections as situated on a circle and treat the �rst one and the last one as the

same. Clearly � is an epimorphism and it is also easy to determine the number

of ovals of all the symmetries. Obviously �0 is a �xed point free symmetry. The

centralizer of any symmetry �i in G has order 2rC2. By Proposition 2.2, an image

of the centralizer of a re�ection c in ƒ is generated by �.c/ D �i and the images of

its neighboring re�ections on a circle mentioned above. Therefore, if these images

are distinct, then the re�ection c contributes, by Theorem 2.1, with 2rC2=8 D 2r�1

ovals to symmetry �i . If these images are the same, then we have 2rC2=4 D 2r

ovals.

Let us now consider symmetries of the n-th segment, �2rC1�.2n�1/ and

�2rC1�2n for some 1 � n � 2r . The segment has odd length and its �rst and last re-

�ections contribute with 2r�1 ovals to symmetry �2rC1�.2n�1/. Indeed, recall that

for the �rst and last re�ection in the segment, the images of neighboring re�ec-

tions are distinct, so the image of this centralizer has order 8. Now by Theorem 2.1,

the last and the �rst re�ection in the segment contribute jGj=8 D 2r�1 ovals each.

Observe also, that all the remaining re�ections of this segment contribute with

jGj=4 D 2r ovals to respective symmetries. This is so, because now the image

of the centralizer of a re�ection has order 4, as the neighboring re�ections have

the same image. Summing up, the n-th segment gives .2r � n/ � 2r ovals to sym-

metries �2rC1�.2n�1/ and �2rC1�2n each. Furthermore, symmetry �2rC1�.2n�1/

appears once more, as it is the image of one of the re�ections at the tail of the

cycle (not connected to any segment). This re�ection again contributes with 2r�1

ovals. Therefore, symmetry �2rC1�.2n�1/ has .2rC1 � 2n C 1/ � 2r�1 ovals and
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�2rC1�2n has .2rC1 � 2n/ � 2r�1 ovals. Observe also that symmetries connected

with distinct segments have distinct numbers of ovals, as the lengths of the seg-

ments di�er. Hence we arrived to the con�guration of 2rC1 symmetries �i , where

the symmetry �i has i � 2r�1 ovals, for some 0 � i � 2rC1 � 1. This shows that

we have a .2rC1 � 1/-simplex in Ng and so dimG Ng D 2rC1 � 1, the proof is

�nished

4. Homological dimension of Ng

Now we shall deal with the problem of the homological dimension dimH Ng .

Obviously the homological dimension of the nerve cannot be greater than the

geometrical dimension of Ng . The next result shows, that in fact the bound again

is attained for in�nitely many values of g.

Theorem 4.1. Let g D 2r�1u C 1 for some r � 2 and u odd. Then the
homological dimension of Ng does not exceed 2rC1 � 1 and equals 2rC1 � 1 if
u � 2rC1.2r�1 C 1/ � 5.

Example 4.2. The �rst part of the statement is clearly true, as dimH Ng �

dimG Ng � 2rC1 �1. As before, we shall start with a speci�c case of r D 2, which

shall help us to go through the general proof. Let us assume that g D 2u C 1 for

some odd u � 19. We shall construct 9 Riemann surfaces X0; : : : ; X8 in such a

way, that a surface Xj has 8 commuting symmetries �i with 2i ovals each, where

0 � i � 8 and i ¤ j . Let us take an NEC group ƒ with signature .4/. Now we

shall consider 9 cases de�ning m; s and respective epimorphisms �j onto Z4
2 such

that Xj D H= ker �j is the surface we looked for. Throughout the proof we assume

�i to be all the orientation reversing involutions in Z4
2. We also assume that the

canonical re�ections in an NEC group ƒ are situated on a circle so that the last

and �rst one are uni�ed and treated as one.

Case 0. Take m D u�19
2

; s D 23 and de�ne �0 by mapping the consecutive

canonical re�ections respectively to

�8; �7; �8; : : : ; �7„ ƒ‚ …
8

; �6; �5; : : : ; �5„ ƒ‚ …
6

; �4; �3; �4; �3„ ƒ‚ …
4

; �1; �4; �6; �8; �2

and all the elliptic generators to �1�2. The connecting generator e1 is mapped to

�1�2 or 1 for m odd or even respectively. By Theorem 2.1 and Proposition 2.2, in

the same way as we did in the proof of Theorem 3.1, it is easy to see that �i has 2i

ovals for i D 1; : : : ; 8.



100 G. Gromadzki – E. Kozłowska-Walania

Case 1. Take m D u�19
2

; s D 23 and de�ne �1 by mapping the connecting

and elliptic generators similarly as above, with the image being �0�2 or 1, and

consecutive canonical re�ections respectively to

�8; �7; �8; : : : ; �7„ ƒ‚ …
8

; �6; �5; : : : ; �5„ ƒ‚ …
6

; �4; �3; �4; �3„ ƒ‚ …
4

; �2; �8; �6; �4; �2:

Here again �i has 2i ovals for i D 2; : : : ; 7 and i D 0. Observe also that in this

case we have in addition a �xed point free symmetry �0. This also holds true for

all the remaining cases.

Case 2. Take m D u�19
2

; s D 23 and de�ne �2 by mapping the consecutive

canonical re�ections respectively to

�8; �7; �8; : : : ; �7„ ƒ‚ …
8

; �6; �5; : : : ; �5„ ƒ‚ …
6

; �4; �3; �4; �1; �3; �4; �8; �6; �4

and connecting and elliptic generators similarly as above, with the nontrivial image

being �0�1. Here again �i has 2i ovals for 0 � i � 8 and i ¤ 2.

Case 3. Take m D u�17
2

; s D 21 and de�ne �3 by mapping the consecutive

canonical re�ections respectively to

�8; �7; �8; : : : ; �7„ ƒ‚ …
8

; �6; �5; : : : ; �5„ ƒ‚ …
6

; �4; �2; �4; �1; �6; �8; �4:

The elliptic and connecting generators are mapped as in the previous case.

Case 4. Take m D u�17
2

; s D 21 and de�ne �4 by mapping the consecutive

canonical re�ections respectively to

�8; �7; �8; : : : ; �7„ ƒ‚ …
8

; �6; �5; : : : ; �5„ ƒ‚ …
6

; �3; �2; �3; �8; �6; �3; �1:

The elliptic and connecting generators are mapped as in the previous case.

Case 5. Take m D u�15
2

; s D 19 and de�ne �5 by mapping the consecutive

canonical re�ections respectively to

�8; �7; �8; : : : ; �7„ ƒ‚ …
8

; �6; �4; �6; �4; �6; �3; �6; �3; �1; �8; �2:

The elliptic and connecting generators are mapped as in the previous case.
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Case 6. Take m D u�17
2

; s D 21 and de�ne �6 by mapping the consecutive

canonical re�ections respectively to

�8; �7; �8; : : : ; �7„ ƒ‚ …
8

; �5; �4; �5; �4; �5; �3; �1; �2; �3; �8; �5; �3; �2:

The elliptic and connecting generators are mapped as in the previous case.

Case 7. Take m D u�15
2

; s D 19 and de�ne �7 by mapping the consecutive

canonical re�ections respectively to

�8; �4; �8; �4; �8; �3; �8; �3; �6; �5; �6; �5; �6; �5; �1; �2; �8; �2; �6:

The elliptic and connecting generators are mapped as in the previous case.

Case 8. Take m D u�15
2

; s D 19 and de�ne �8 by mapping the consecutive

canonical re�ections as in the �rst Example concerning Theorem 3.1. It is not

hard to see, that in the j -th Case we obtained a surface Xj with the con�guration

of symmetries announced before.

Proof of Theorem 4.1. Let g be as in the theorem with u � 2rC1.2r�1C1/�5.

Our aim will be to construct 2rC1 C1 Riemann surfaces Xj , j D 0; 1; : : : ; 2rC1 of

genus g, each having 2rC1 symmetries with 0�2r�1; 1�2r�1; : : : ; 2j � 2r�1; : : : ; 2rC1�

2r�1 ovals, where the symbol y� means that the corresponding value is removed.

We shall divide our considerations into a few cases, depending on the 4-adic

structure of j � 1. Throughout this part of the proof we shall again denote

G D ZrC2
2 . We also employ the following convention: during the construction of

Xj assume that all the orientation reversing involutions in G are �i for i ¤ j and

0 � i � 2rC1. These will also become symmetries in question and the convention

will allow us to link the number of the symmetry with its number of ovals, which

for symmetry �i will be equal to i � 2r�1. In addition, during constructions of the

epimorphisms �j ; j ¤ 0; j ¤ 1 for which Xj D H= ker �j , we assume that all

the m elliptic generators are mapped to �0�1 and �j .e1/ D �0�1 for m odd and

�j .e1/ D 1 otherwise. For j D 0 we replace �0�1 in the above de�nition with

�1�2, and for j D 1 we take it to be �0�2.

First of all we shall construct X0, which will be a Riemann surface having

2rC1 symmetries respectively with i � 2r�1 ovals, where 1 � i � 2rC1. Consider

an NEC group ƒ with signature .4/, where m D .u � 2rC1.2r�1 C 1/ C 5/=2

and s D 2rC1.2r�1 C 1/ � 1. Let �1; : : : ; �2rC1 denote all the symmetries in

G. We de�ne �0 W ƒ ! G in the following way: we divide our cycle into
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pieces such that �rst we have 2r � 1 segments, where the n-th segment has length

2rC1 � 2.n � 1/. The consecutive canonical re�ections corresponding to the n-th

segment are sent alternatively to �2rC1�2.n�1/ and �2rC1�2nC1, starting with the

former and �nishing with the latter. The last of these segments has length 4 and its

re�ections are sent to �4; �3; �4; �3. Now the next re�ection is mapped to �1 and

the remaining re�ections respectively to �4; �6; : : : ; �2rC1; �2, as shown below:

�2rC1 ; �2rC1�1; �2rC1; : : : ; �2rC1�1„ ƒ‚ …
2rC1

; �2rC1�2; �2rC1�3; : : : �2rC1�3„ ƒ‚ …
2rC1�2

; : : : ;

�2rC1�2.n�1/; �2rC1�2nC1; : : : ; �2rC1�2nC1„ ƒ‚ …
2rC1�2.n�1/

; : : : ;

�4; �3; �4; �3„ ƒ‚ …
4

; �1; �4; �6; : : : ; �2rC1; �2:

In the same way as in the proof of Theorem 3.1, we see that the re�ections

of the n-th segment are contributed with .2rC1 � 2n C 1/ � 2r�1 ovals each.

Furthermore, symmetry �2rC1�2.n�1/ appears once again as the image of one of

the re�ections at the end of the cycle. Therefore it has .2rC1 �2nC2/ �2r�1 ovals.

In addition, symmetry �1 has 2r�1 ovals and symmetry �2 has 2r ovals. Hence

the epimorphism �0 leads to the con�guration of 2rC1 symmetries �i with i � 2r�1

ovals each, where 1 � i � 2rC1.

We construct the surface X2 in the similar way. Consider an epimorphism

�2W ƒ ! G, which is de�ned in the same way as �0 on all the canonical re�ections

except the last segment and the tail of the cycle. On these canonical re�ections we

de�ne �2 as

�4; �3; �4; �1„ ƒ‚ …
4

; �3; �4; �2rC1 ; �2rC1�2; : : : ; �8; �6; �4:

Compared to �0, we do not have the symmetry with 2 � 2r�1 ovals, which was our

aim. This one is replaced by �xed point free symmetry �0. The numbers of ovals of

all the other symmetries did not change. Note, that we replaced the symmetry �2

at the end of the cycle with symmetry �4 but we also changed the sequence of the

symmetries at the end of the cycle and switched �3 with �1 in the last segment.

Therefore also now �4 has 4 � 2r�1 ovals, although it appears once more in the

cycle.

Now we shall construct surfaces X2n for 1 < n � 2r . Consider an NEC

group ƒ with signature .4/ where m D .u � 2rC1.2r�1 C 1/ C 5/=2 C bn=2c

and s D 2rC1.2r�1 C 1/ � 1 � 2bn=2c. We de�ne �2n W ƒ ! G by dividing our



Real nerve of the moduli spaces 103

cycle into pieces, as before, such that �rst we have 2r �1 segments and after these

segments we have the tail of the cycle. Now the segments with numbers from 1 to

2r �n are the same as in the case of X0 and we de�ne �2n in the same way as �0 on

the canonical re�ections corresponding to these segments. Now we shall modify

the latter part, depending on the parity of n.

Let �rst n be even. The next segments (with numbers from 2r � n C 1 up to

2r �1) are shortened and their lengths are diminished by 1, which means they have

lengths 2n � 1; 2n � 3; : : : ; 3 respectively. The consecutive canonical re�ections

corresponding to these shortened segments are mapped as follows:

�2n�1; �2n�2; : : : ; �2n�1„ ƒ‚ …
2n�1

; �2n�3; �2n�2; : : : ; �2n�3„ ƒ‚ …
2n�3

; : : : ; �3; �2; �3„ ƒ‚ …
3

:

Hence for the a-th segment (with a � 2r � n C 1) the re�ections are sent

alternatively to �2rC1�2aC1 and �2rC1�2a, starting and �nishing with the former.

These segments are exactly the same as in the proof of Theorem 3.1. Now the

consecutive re�ections from the tail of the cycle, not belonging to the segments,

are mapped respectively to �2rC1 , �2rC1�2, : : : , �2nC2, �2n�1, �2n�3, : : : , �1.

Obviously the numbers of ovals of symmetries with numbers distinct from 2n have

not changed compared to �0. But here we do not have symmetry with 2n � 2r�1

ovals and in fact this one has been replaced by �xed point free symmetry �0, which

is the con�guration we looked for.

Let now n be odd. The only di�erence we make, compared to the case of n

being even, is on the last segment and the latter part of the cycle. Recall that the

last segment had length 3 and its re�ections were mapped to �3; �2; �3. We take this

segment to have length 4 and map the corresponding re�ections to �3; �1; �2; �3.

Observe that this operation causes the symmetry �2 to loose 2r�1 ovals. But

we also modify the epimorphism on the last part of the cycle, by taking the

re�ections to be mapped to �2rC1 ; �2rC1�2; : : : ; �2nC2; �2n�1; �2n�3; : : : ; �3; �2.

Here the total length of the cycle remains correct and again there is no symmetry

�2n with 2n � 2r�1 ovals, this symmetry was replaced by �0. As for the other

symmetries, the only di�erence is that the symmetry �2 appeared once more at

the end of the cycle, which gave her the lacking 2r�1 ovals - the ones that were

taken during the modi�cation of the last segment.

Now we shall construct surfaces X4nC3 for 0 � n < 2r�1 � 1. Consider an

NEC group ƒ with signature .4/ where m D .u�2rC1.2r�1 C1/C5/=2C .nC1/

and s D 2rC1.2r�1 C 1/ � 1 � 2.n C 1/. We de�ne �4nC3 W ƒ ! G in the similar

way as in the previous case. Like before, we divide our cycle into pieces such that

�rst we have 2r �1 segments and after these segments we have the tail of the cycle.
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On the �rst segments, up to the number 2r � 2n � 2, we de�ne the epimorphism

as in the case of �0, which means that a-th segment has length 2rC1 � 2.a � 1/

and its re�ections are sent alternatively to �2rC1�2.a�1/ and �2rC1�2aC1, starting

with the former and �nishing with the latter. We change the epimorphism on the

next segment, with number 2r � 2n � 1, by replacing all the entries of symmetry

�4nC3 by symmetries �2nC2 and �2nC1. As a result, the epimorphism �4nC3 sends

the re�ections of this segment respectively to:

�4nC4; �2nC2; : : : ; �4nC4; �2nC2„ ƒ‚ …
2nC2

; �4nC4; �2nC1; : : : ; �2nC1; �4nC4; �2nC1„ ƒ‚ …
2nC2

:

Observe that in fact the symmetries �2nC2; �2nC1 cannot appear again in the

sequence of images of the canonical re�ections. Moreover, the symmetry �4nC4

lost 2r�1 ovals. Observe also that for n D 0 this modi�ed segment is the last one

and it consists of �4; �2; �4; �1, while in the other cases the last segment consists of

two re�ections which are mapped to �2; �1. On the segments with numbers from

2r � 2n up to 2r � n � 1, if there are any, again we de�ne the epimorphism as in

the case of �0: the a-th segment has length 2rC1 � 2.a � 1/ and its re�ections are

sent alternatively to �2rC1�2.a�1/ and �2rC1�2aC1, starting with the former and

�nishing with the latter. Now for the segment with number 2r � n we should have

symmetries �2nC2; �2nC1, but these were already used before. Therefore we skip

these symmetries and take the next pair, if there is any. As a result, all the segments

with numbers from 2r � n up to 2r � 1 are, roughly speaking, ’shifted’ compared

to what we had with �0 and a-th segment has length 2rC1 � 2a, its re�ections

being sent alternatively to �2rC1�2a and �2rC1�2a�1, starting with the former and

�nishing with the latter. The last thing here is to de�ne the epimorphism on the tail

of the cycle and we do this by mapping the consecutive re�ections respectively to

�2rC1�2; �2rC1�4; : : : ; �4nC6; 1�4nC4; : : : ;

�2nC4; 1�2nC2; �2n; : : : ; �2; �2rC1 ; �4.nC1/

for 0 � n � 2r�1 � 2 (note that for n D 0 we have �4nC4 D �2nC4 and the last

appears only at the end of the cycle and �2 does not appear at all). Here it is easy

to see that we obtained a con�guration we were looking for, that is a set of 2rC1

symmetries, on a Riemann surface of genus g, where the symmetries have i � 2r�1

ovals for 0 � i � 2rC1 and i ¤ 4n C 3 for some 0 � n < 2r�1 � 1.

Now if n D 2r�1�1, we use the same de�nitions for ƒ and in the epimorphism

we only change the last segment and the tail of the sequence. That is, we take the

last segment, with number 2r � 1, to be �1; �2 and the tail of the sequence to be

�2rC1 ; �2; �4; : : : ; c�2r ; : : : ; �2rC1�4; �2rC1�2:

With these de�nitions we obtain a desired con�guration of symmetries.
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Now we shall construct X4nC1 for 1 � n � 2r�1 � 1. Consider an NEC

group ƒ with signature .4/, where m D .u � 2rC1.2r�1 C 1/ C 5/=2 C .n C 1/,

s D 2rC1.2r�1 C 1/ � 1 � 2.n C 1/ We de�ne �4nC1 W ƒ ! G in the following

way: we divide our cycle into pieces such that �rst we have 2r � 2 segments and

after these segments we have the tail of the cycle. On the �rst segments, up to the

number 2r � 2n � 1, we de�ne the epimorphism as in the case of �0. We change

the next segment, with number 2r � 2n and length 4n C 2, by changing its length

to 4n C 4 and the epimorphism on this segment by replacing symmetry �4nC1

by symmetries �2nC2 and �2nC1. As a result, the epimorphism �4nC1 sends the

re�ections of this segment respectively to:

�4nC2; �2nC2; : : : ; �4nC2; �2nC2„ ƒ‚ …
2nC2

; �4nC2; �2nC1; : : : ; �2nC1 �4nC2; �2nC1„ ƒ‚ …
2nC2

:

Again symmetries �2nC2; �2nC1 already have .2nC2/�2r�1 and .2nC1/�2r�1 ovals

and will not appear again in the sequence of images of the canonical re�ections.

Moreover, the symmetry �4nC2 gained 2r�1 ovals and also will not appear again.

Now for the segments with numbers from 2r �2nC1 up to 2r �n�1, if any exist,

again we de�ne the epimorphism as in the case of �0. Similarly, for the segment

with number 2r � n, if it exists, we should have symmetries �2nC2; �2nC1, but as

these were already used before, we take the next pair. As a result, all the segments

(if there are any) with numbers from 2r � n up to 2r � 2 are ’shifted’ compared

to what we had with �0 and a-th segment has length 2rC1 � 2a, its re�ections

being sent alternatively to �2rC1�2a and �2rC1�2a�1, starting with the former and

�nishing with the latter. The last thing here is to de�ne the epimorphism on the last

part of the cycle and we do this by mapping the consecutive re�ections respectively

to

�1; �4; �6; : : : ; 1�2nC2; �2nC4; : : : ; 1�4nC2; �4nC4; : : : ; �2rC1 ; �2

for 1 � n � 2r�1 � 1. In this sequence any symmetry appears only once and we

remove �2nC2 and �4nC2. Note that for n D 1 we have 2n C 2 D 4; 4n C 2 D 6

and so �4 and �6 do not appear at all in the sequence above. This again leads to

the con�guration we were looking for.

The last thing is to construct X1. Here again we take an NEC group with

signature .4/, where m D .u�2rC1.2r�1 C1/C5/=2 and s D 2rC1.2r�1 C1/�1.

The epimorphism �1 W ƒ ! G is de�ned in the same way as above but we need

to change the tail of the sequence slightly, as the symmetry removed is �1. We

start with 2r � 1 segments, where the a-th segment has length 2rC1 � 2.a � 1/ and

maps the consecutive re�ections alternatively to �2rC1�2.a�1/ and �2rC1�2.a�1/�1,
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starting with the former and �nishing with the latter. The last segment has length

4 and its symmetries are �4; �3; �4; �3. Now for the tail of the sequence we take:

�2; �2rC1 ; �2rC1�2; : : : ; �4; �2:

This construction gives a Riemann surface X1, having 2rC1 nonconjugate symme-

tries of distinct topological types, as the symmetries have i � 2r�1 ovals for i ¤ 1

and 0 � i � 2rC1.

Remark 4.3. In the two main theorems of this paper we constructed surfaces

having the desired con�guration of symmetries with distinct numbers of ovals and

hence with distinct types. However, as in our constructions we used the abelian

group G as the automorphism group of the surface, by the results of [1] it is not

hard to determine that all the symmetries constructed are nonseparating.

5. Concluding remarks, open problems and conjectures

We would like to �nish this paper with some conjectures, which are being inves-

tigated right now and as far as we are concerned at the moment, they are most

probably true.

The �rst conjecture concerns the structure of the group generated by the so-

called extremal con�guration of symmetries.

Conjecture 5.1. Let G be an abstractly oriented 2-group generated by orien-
tation reversing involutions. If G contains a dihedral group Dn as a subgroup of
index 2r , an element of order n in Dn preserves the orientation and G has 2rC1

conjugacy classes of orientation reversing involutions, then it is a direct product
Dn ˚ Z2˚

r
� � � ˚Z2.

This basically means, by Theorem 2.4, that given a Riemann surface of genus

g D 2r�1u C 1, for some odd integer u and such that it has 2rC1 nonconjugate

symmetries, the structure of the group generated by the symmetries is just a direct

product of a dihedral group and respective amount of cyclic groups of order 2.

This result can be seen as the generalization of one of the theorems of Gromadzki

and Izquierdo from [12]. Being given the structure of the group generated by

symmetries in question, we should have enough data to prove the next conjecture

to be true.

Conjecture 5.2. The su�cient conditions for the maximal geometrical and
homological dimensions of Ng , given in Theorems 3.1 and 4.1, are also necessary.
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We claim that actually the lower bounds on integer u, and hence the lower

bounds on g cannot be improved. As for the geometrical dimension, it seems that

actually it is enough to consider an abelian group G, being a direct product ZrC2
2

and an NEC group signature .4/. The important thing here is that when we get

rid of the non-zero genus and multiple period cycles in the signature of ƒ, we are

left with consecutive re�ections situated on a circle. This basically means, that we

only have to solve the following combinatorial problem for k D 2rC1 � 1.

Problem 5.3. Let us consider a number of points situated on a circle, coloured

by k � 3 colours in such a way that no two consecutive points have the same

colour. Moreover, we put weights on our points in such a way that the weight is

2 if a point has neighbours with the same colour and the weight is 1 otherwise.

Next, for every colour we de�ne its weight as the sum of all the weights of points

coloured with it. What is the smallest possible number of points '.k/, for which

there exists such a colouring and all the colours have distinct weights? For our

principal goals, the most important is the case k D 2rC1 � 1 for which we have

some evidence for the following conjecture to be true.

Conjecture 5.4. '.k/ D 2r .2r C 1/ � 1.

The point is that this problem, k D 2rC1 � 1, describes exactly the situation,

when we need to have k D 2rC1 � 1 symmetries with �xed points (colours),

in addition one �xed point free symmetry, and the group epimorphism can be

seen as the colouring of the points (consecutive canonical re�ections). Looking

for the smallest possible number of points is just looking for the shortest possible

period cycle, hence the group ƒ with smallest area and hence, by the Hurwitz–

Riemann formula, the smallest possible g for which there exists a Riemann surface

X of genus g, realizing the maximal geometrical dimension of the nerve Ng . We

also believe that it will be possible to employ this method to solve similar, but

more di�cult, problem for the homological dimension of Ng . Finally, given k

and s � '.k/, a systematic procedure of producing all colourings, described in

Problem 5.3, is also crucial to �nd higher Betti numbers of Ng .
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