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Classi�cation of a class of torsion-free abelian groups

Ebru Solak (�)

Abstract – The class of almost completely decomposable groups with a critical typeset
of type .2; 2/ and a regulator quotient of exponent � p2 is shown to have exactly 4
near-isomorphism classes of indecomposable groups. Every group of the class is up to
near-isomorphism uniquely a direct sum of these four indecomposable groups.
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1. Introduction

Kaplansky once observed, in essence, that anything can happen in torsion-free
abelian groups even if the groups have �nite rank in analogy to �nite dimen-
sional vector spaces. One way out is the weakening of the isomorphism concept.
M. C. R. Butler introduced “quasi-isomorphism” which lead to an extensive the-
ory, see for example [1]. Another possibility is the study of subclasses that are
both su�ciently interesting and reasonably accessible. Such a class is the class
of almost completely decomposable groups �rst introduced by E. L. Lady, [7].
Every torsion-free abelian group of �nite rank is the direct sum of indecompos-
able groups. Even in the case of almost completely decomposable groups such
decompositions can be very “pathological”. This problem is avoided by restrict-
ing the “regulator index” to be a power of a single prime and to employ a modest
weakening of isomorphism, also due to E. L. Lady, called near-isomorphism. This
way one obtains a Remak–Krull–Schmidt category and a classi�cation up to near-
isomorphism as soon as the indecomposable groups in the class are found. As was
shown in [2] most of these classes contain indecomposable groups of arbitrarily
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large rank in which case it is hopeless to try to describe all near-isomorphism
classes of indecomposable groups. This leaves some special subclasses that may
have a �nite number of near-isomorphism classes of indecomposable groups. The
class considered in this paper is shown to be such a class and the indecomposables
are determined.

Any torsion-free abelian group G is an additive subgroup of a Q-vector
space V . The Q-subspace of V generated byG is denotedQG and dim.QG/ is the
rank of G. A torsion-free abelian group G of �nite rank is completely decompos-

able ifG is the direct sum of rank-1 groups and almost completely decomposable if
G contains a completely decomposable subgroup of �nite index. An almost com-
pletely decomposable group G contains a well-understood fully invariant com-
pletely decomposable subgroup of �nite index, the regulator R.G/, [5].

A type ŒX� is an isomorphism class of a rank-1 group X . The set of types is a
poset, where ŒX� � ŒY � ifX is isomorphic to a subgroup of Y . The critical typeset

of an almost completely decomposable group G is the �nite poset

Tcr.G/ D ¹ŒX�WX a rank-1 summand of R.G/º:

Given a prime p, an almost completely decomposable group G is p-reduced if
each type ŒX� 2 Tcr.G/ is p-locally free, i.e., pX ¤ X .

Given a �nite poset S of p-locally free types, an almost completely decompos-
able groupG is an .S; pk/-group if S D Tcr.G/ and the exponent of the regulator

quotient G=R.G/ is pk, i.e., exp.G=R.G// D pk. Two .S; pk/-groups G and H
are nearly isomorphic if there is an integer n relatively prime to p and homo-
morphisms f WG ! H and gWH ! G with fg D n and gf D n. The group
G is indecomposable if and only if G is nearly isomorphic to an indecompos-
able group, [1]. Moreover, an almost completely decomposable G with G=R.G/
p-primary is, up to near-isomorphism, uniquely a direct sum of indecomposable
groups, [6], [8, Corollary 10.4.6]. Consequently, a classi�cation of all indecom-
posable .S; pk/-groups up to near isomorphism results in a classi�cation of all
.S; pk/-groups up to near isomorphism. Hence, for almost completely decompos-
able groups G with G=R.G/ p-primary, the main question is to determine the
near-isomorphism classes of indecomposable .S; pk/-groups.

As was shown in [9] and [10] the class of .S D .1; 2/; pk/-groups for k � 4

contains �nite number of near-isomorphism classes of indecomposable groups
and it contains indecomposable groups of arbitrarily large rank if k � 6, cf. [2].
The class of .S D .1; 3/; pk/-groups for k � 3 contains �nite number of near-
isomorphism classes of indecomposable groups and it contains indecomposable
groups of arbitrarily large rank if k � 4, cf. [2] and [3]. Moreover, it was shown
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in [4] that the class of .S D .1; 1; 1/; p/-groups contains �nite number of near-
isomorphism classes of indecomposable groups.

Let
.2; 2/ D .�1 j �2 jj �3 j �4/

denote a poset of p-locally free types �1; �2; �3; �4 such that �1 < �2, �3 < �4 and �i

is incomparable with �j for i � 2 < j . We are concerned with ..2; 2/; pk/-groups
and simply write .2; 2/-group if the value of the exponent pk of the regulator
quotient is not relevant.

In this paper we show that

� there are no indecomposable ..2; 2/; p/-groupsG;

� there are four near-isomorphism classes of indecomposable ..2; 2/; p2/-
groupsG. All of these have rank 4, and the regulator quotients are isomorphic
to Z =p2 Z, .Z =p2 Z/˚ .Z =p2 Z/, or .Z =p2 Z/˚ .Z =pZ/.

There exist indecomposable ..2; 2/; p3/-groups of rank 4n for any integer
n � 1, [2, Proposition 9]. Consequently, by [4, Lemma 4.5], for m � 3 there
exist indecomposable ..2; 2/; pm/-groups of arbitrarily large rank. The description
of indecomposable groups in this case is hopeless. This result together with our
present results settle completely the case of .2; 2/-groups.

Our method consists in turning the decomposition question into an equivalence
problem for matrices.

2. Coordinate matrices

We exclusively deal with almost completely decomposable groups G with p-pri-
mary regulator quotient G=R.G/.

The goal of this section is to describe a p-reduced ..2; 2/; p2/-group with
p-primary regulator quotientG=R.G/ by means of an integer matrix, the “coordi-
nate matrix”. The coordinate matrix is obtained by means of “bases” ofR D R.G/
and G=R.

Let G be a ..2; 2/; pk/-group of rank m with regulator

R D R1 ˚R2 ˚R3 ˚ R4;

where Ri is homogeneous completely decomposable of rank ri � 1 and type �i

such that �1 < �2, �3 < �4 and �i incomparable with �j for i � 2 < j . In particular,
m D r1 C r2 C r3 C r4. We indicate a puri�cation by the subscript “�”. Then the
ordered set

.x1;1; : : : ; x1;r1
; x2;1; : : : ; x2;r2

; x3;1; : : : ; x3;r3
; x4;1; : : : ; x4;r4

/ D .x1; : : : ; xm/;
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is called a p-basis of R if

R D
M

i;j

hxi;j i�; Ri D

ri
M

j D1

hxi;j i�;

and xi … pR.

Definition 2.1. Let G be a ..2; 2/; pk/-group with regulator R and p-basis
.x1; : : : ; xm/ ofR. An r�mmatrix ı D Œıi;j � is a coordinate matrix ofG moduloR
if ıi;j 2 Z, there is a basis .�1; : : : ; �r/ of G=R, there are representatives gi 2 G

of �i , and there is a p-basis .x1; : : : ; xm/ of R such that

gi D p�ki .
Pm

j D1 ıi;jxj / where h�i i Š Zpki
and 1 � ki � k:

We may write the coordinate matrix ı in the form

ı D

2

6

6

4

ı11 � � � ı1m

::: � � �
:::

ır1 � � � ırm

3

7

7

5

pk1

:::

pkr

where pki D ord.�i / and k1 � k2 � � � � � kr .

The coordinate matrix could be de�ned with respect to any completely decom-
posable “base” subgroup of �nite index but to be really useful the subgroup must
be the regulator. The Regulator Criterion stated below states how it can be seen
by inspecting the coordinate matrix that the base group is indeed the regulator.

The choice of the p-basis divides the coordinate matrix in four blocks ˛1, ˛2,
ˇ1, ˇ2 of sizes r � ri , i D 1; 2; 3; 4 and we have ı D Œ˛1 j ˛2 k ˇ1 j ˇ2�.

The matrices ˛ D Œ˛1 j ˛2� and ˇ D Œˇ1 j ˇ2� are called the ˛- and ˇ-part of
the coordinate matrix, respectively.

We now state the Regulator Criterion in [3, Lemma 13], in the special case of
.2; 2/-groups.

Lemma 2.2 (Regulator Criterion). LetG be a .2; 2/-group. The completely

decomposable subgroup R of �nite index in G is the regulator of G if and only if

R1 ˚ R2 and R3 ˚ R4 are pure in G, and this holds if and only if ˛ and ˇ of a

coordinate matrix  D Œ˛ j ˇ� both have p-rank equal to the number of rows r

of ı.
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3. Direct decomposition and coordinate matrices

Two .2; 2/-groups are nearly isomorphic if and only if their coordinate matrices
are equivalent via an equivalence relation de�ned by certain row and column op-
erations listed below. The connection between almost completely decomposable
groups with p-primary regulator quotient and integer matrices is explicitly docu-
mented in [3].

By Arnold’s Theorem, [1, Chapter 2.2, Exercise 1], if G is nearly isomorphic
to H1 ˚ H2, then there exists subgroups Gi nearly isomorphic to Hi such that
G D G1˚G2. Hence, to classify the near-isomorphism classes of indecomposable
groups, we start with some coordinate matrix of an indecomposable groupG, and
simplify the matrix by means of the row and column transformations listed in
Remark 3.1 because the group G0 belonging to the transformed coordinate matrix
is nearly isomorphic to G and is also indecomposable. If we arrive at a speci�c
matrix containing no unknowns, then the matrix describes the near isomorphism
class of the indecomposable group G, see Proposition 5.2.

We call transformations of rows and of columns of a coordinate matrix of G
allowed if the transformed coordinate matrix is the coordinate matrix of the
same or a near isomorphic group. These are exactly the transformations listed
in Remark 3.1, see [3] for details.

Remark 3.1. Let ı D Œ˛1 j ˛2 k ˇ1 j ˇ2� be a coordinate matrix of a

..2; 2/; pk/-group. Then the following row and column operations on the coor-

dinate matrix are allowed.

(1) Replace any entry of ı by an integer congruent to it modulo pk. Conse-

quently, we assume that the entries of our coordinate matrices are reduced

modulo pk.

(2) Any multiple of a row may be added to any row below it.

(3) Any row or column may be multiplied by an integer relatively prime to p.

(4) Any multiple of the pki1
�ki2 -fold of row i2 may be added to a row i1 < i2 .

(5) Any multiple of a column of ˛1 may be added to another column of Œ˛1 j ˛2�

and any multiple of a column of ˛2 may be added to another column of ˛2.

(6) Any multiple of a column of ˇ1 may be added to another column of Œˇ1 j ˇ2�

and any multiple of a column of ˇ2 may be added to another column of ˇ2.
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4. Standard coordinate matrices

For the convenience of the reader we collect techniques, language conventions and
standard conclusions.

� The term line means a row or a column. A line is called a p-line if all its
entries are in pZ.

� The Smith Normal Form of a square integral matrix M is a diagonal matrix
diag.a1; a2; : : : ; ar/ such that ai divides aiC1 for 1 � i � r � 1. The Smith
Normal Form of M can be produced by applying arbitrary elementary row
and column transformations, or, equivalently, by left and right multiplication
by invertible integral matrices. If M is a submatrix, not necessarily square,
of a coordinate matrix of a ..2; 2/; p2/-group, then the Smith Normal Form
of M can be further simpli�ed by reducing modulo p2 and by multiplying
rows and columns by units modulo p. Consequently, we can achieve the form

2

4

I 0 0

0 pI 0

0 0 0

3

5 or

2

4

I 0

0 pI

0 0

3

5 or

"

I 0 0

0 pI 0

#

;

where the I ’s are identity matrices of possibly di�erent sizes. The phrase “we
produce the Smith Normal Form of some matrix block A” means that there
are allowed matrix transformations that turn the block into Smith Normal
Form in such a way that it is also possible to reestablish submatrices that were
zero or of the form phI and that were a�ected by these transformations.

� Let M be a submatrix of a coordinate matrix of a ..2; 2/; p2/-group. By we

annihilateM we mean that by applying allowed row and columns operations
on M , the submatrix M changes to the 0-matrix.

� Let M and N be submatrices of a coordinate matrix of a ..2; 2/; p2/-group.
If M is in Smith Normal Form, then by we annihilate with the part I of M

in N we mean that the I in the Smith Normal Form of M can be used to
annihilate columns or rows of N .

Definition 4.1. Let A be a completely decomposable group and let e be
a positive integer. Let �WA �! A=eA denote the natural epimorphism. So,
in particular, xA D A=eA. Furthermore, � will be used to denote as well the induced
homomorphisms �W AutA �! Aut xA. The images A.�/, A�.�/ D A].�/ of the
type subgroups of A form a distinguished family of subgroups of xA which will
be called the type subgroups of xA. A type automorphism is an automorphism  
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of xA such that  .A.�// D A.�/ for all critical types of A. The group of type
automorphisms is denoted by TypAut xA. Let

RFEE.A; e/ D ¹X � QA j A D R.X/ and eX � Aº

denote the regulated extensions of A with e-bounded regulator quotient.
The groups G;H 2 RFEE.A; e/ are said to be type-isomorphic if there is a
� 2 TypAut.A; e/ such that �.eG/ D eH , and we write G Dtp H .

Lemma 4.2. Let G;H be ..2; 2/; p2/-groups with common regulator R D

R1 ˚R2 ˚R3 ˚ R4, as above, i.e., G;H 2 QR. If G Dnr H , then

G C p�1.R2 CR3 CR4/

R1 ˚ p�1.R2 CR3 CR4/
Š
H C p�1.R2 CR3 CR4/

R1 ˚ p�1.R2 CR3 CR4/
;

and

G C hR2 C R3 C p�1R4i�

R1 ˚ hR2 CR3 C p�1R4i�

Š
H C hR2 CR3 C p�1R4i�

R1 ˚ hR2 CR3 C p�1R4i�

:

Proof. By [8, 9.2.4] G Dtp H if and only if G Dnr H . So near-isomorphism
of G;H induces a type-automorphism ' of p2R=R such that '.G=R/ D H=R.
Since .p

�1

.R2 C R3 C R4/ C R/=R and .hR2 C R3 C p�1R4i� C R/=R are
'-invariant we obtain the above isomorphisms.

We establish a kind of standard form for coordinate matrices of ..2; 2/; p2/-
groups.

An almost completely decomposable group is called clipped if it has no sum-
mand of rank 1.

Proposition 4.3. A clipped .2; 2/-groupG with regulator quotient isomorphic

to Z
l1

p2
˚Zl2

p , l1 � 1; l2 � 0 has a coordinate matrix

(1)

Œ˛1; ˛2 k ˇ1; ˇ2� D

2

6

6

6

6

6

4

Is1
0 0

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

0 pIs2
0

ˇ

ˇ Is2
0 0

ˇ

ˇ

ˇ

ˇ

0 0 0
ˇ

ˇ 0 Is3
0

ˇ

ˇ

ˇ

ˇ

0 0 Is4

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

0 0 0
ˇ

ˇ 0 0 Is5

ˇ

ˇ

ˇ

ˇ

A1

ˇ

ˇ A2

B1

ˇ

ˇ B2

C1

ˇ

ˇ C2

D1

ˇ

ˇ D2

E1

ˇ

ˇ E2

3

7

7

7

7

7

5

p2

p2

p2

p

p

:

The non-negative integers si all are near-isomorphism invariants of G. Also,

l1 D s1 C s2 C s3, l2 D s4 C s5, and the last two block columns forming ˇ both

are present.
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Proof. Let G be a clipped .2; 2/-group with regulator quotient isomorphic to
Z

l1

p2
˚Zl2

p , l1 � 1; l2 � 0 and let

(2) Œ˛1 j ˛2 k ˇ1 j ˇ2� D

"

X1

ˇ

ˇ X2

ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

Y1

ˇ

ˇ Y2

ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

#

p2

p

be its coordinate matrix. As G is clipped neither ˛ nor ˇ can contain a 0-column.
The Regulator Criterion implies that neither ˛ nor ˇ can have a 0-row.
Starting with Equation 2 we �rst form the (partial) Smith Normal Form for X1 to
get

Œ˛1 j ˛2 k vˇ1 j ˇ2� D

2

6

4

I 0
ˇ

ˇ X21

ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

0 pX1

ˇ

ˇ X22

ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

Y11 Y12

ˇ

ˇ Y2

ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

3

7

5

p2

p2

p

:

We annihilate with I downward Y11 and then we annihilate X21. Hence we get

Œ˛1 j ˛2 k ˇ1 j ˇ2� D

2

6

4

I 0
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

0 pX1

ˇ

ˇ X2

ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

0 Y1

ˇ

ˇ Y2

ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

3

7

5

p2

p2

p

:

The Smith Normal Form of Y1 is
�

I 0
0 0

�

. We annihilate with the part I in pX1

and in Y2. Hence we get

Œ˛1 j ˛2 k ˇ1 j ˇ2� D

2

6

6

6

4

I 0 0
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

0 0 pX1

ˇ

ˇ X2

ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

0 I 0
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

0 0 0
ˇ

ˇ Y2

ˇ

ˇ

ˇ

ˇ E1

ˇ

ˇ E2

3

7

7

7

5

p2

p2

p

p

:

Then the Smith Normal Form of pX1 is
�

pI
0

�

and hence

Œ˛1 j ˛2 k ˇ1 j ˇ2� D

2

6

6

6

6

6

4

I 0 0
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

0 0 pI
ˇ

ˇ X2

ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

0 0 0
ˇ

ˇ X3

ˇ

ˇ

ˇ

ˇ C1

ˇ

ˇ C2

0 I 0
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

0 0 0
ˇ

ˇ Y2

ˇ

ˇ

ˇ

ˇ E1

ˇ

ˇ E2

3

7

7

7

7

7

5

p2

p2

p2

p

p

:

The Regulator Criterion requires that the Smith Normal Form of X3 is ŒI 0�.
We produce the Smith Normal Form of X3 to get

Œ˛1 j ˛2 k ˇ1 j ˇ2� D

2

6

6

6

6

6

4

I 0 0
ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

0 0 pI
ˇ

ˇ X21 X22

ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

0 0 0
ˇ

ˇ I 0
ˇ

ˇ

ˇ

ˇ C1

ˇ

ˇ C2

0 I 0
ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

0 0 0
ˇ

ˇ Y21 Y22

ˇ

ˇ

ˇ

ˇ E1

ˇ

ˇ E2

3

7

7

7

7

7

5

p2

p2

p2

p

p

:
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The submatricesX21 and Y21 can be annihilated due to the presence of I in ˛2,
i.e.,X21 D 0 and Y21 D 0. Then the Smith Normal Form ofX22 is ŒI 0� due to the
Regulator Criterion. We use the part I in this Smith Normal Form to annihilate in
Y22 and then forming the Smith Normal Form of the nonzero rest of Y22 we get

Œ˛1 j ˛2 k ˇ1 j ˇ2� D

2

6

6

6

6

6

4

I 0 0
ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

0 0 pI
ˇ

ˇ 0 I 0
ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

0 0 0
ˇ

ˇ I 0 0
ˇ

ˇ

ˇ

ˇ C1

ˇ

ˇ C2

0 I 0
ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

0 0 0
ˇ

ˇ 0 0 I
ˇ

ˇ

ˇ

ˇ E1

ˇ

ˇ E2

3

7

7

7

7

7

5

p2

p2

p2

p

p

:

Interchanging the second and the third column in ˛1 and the �rst and the second
column in ˛2 produces the claimed result.

Now we prove that the numbers si are near-isomorphism invariants. A �rst
observation is that the numbers

l1 D s1 C s2 C s3 and l2 D s4 C s5

describe the regulator quotient, so they are near isomorphism invariants. Secondly,

rankR1 D s1 C s2 C s4 and rankR2 D s2 C s3 C s5;

again invariants.

Moreover, if G;H are near-isomorphic, we may assume that G;H 2 QR

where R is the regulator of both.
By Lemma 4.2 and using the coordinate matrix following the block rows

A;B; C;D;E we may read o� the isomorphism types of those groups

G C p�1.R2 CR3 CR4/

R1 ˚ p�1.R2 CR3 CR4/
Š
H C p�1.R2 CR3 CR4/

R1 ˚ p�1.R2 CR3 CR4/

Š Zs1

p ˚Z
s2

p2
˚Zs3

p ˚Zs4

p ;

G C hR2 C R3 C p�1R4i�

R1 ˚ hR2 CR3 C p�1R4i�

Š
H C hR2 CR3 C p�1R4i�

R1 ˚ hR2 CR3 C p�1R4i�

Š Zs1

p ˚Z
s2

p2
˚Zs4

p :

So also s1 C s3 C s4, s2 and s1 C s4 are near-isomorphism invariants. Linearly
combining those invariants we get that all si are near-isomorphism invariants.

Eventually, if one of the last two block columns forming ˇ is not present,
then G is not a .2; 2/-group.
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A coordinate matrix of a ..2; 2/; p2/-group as in Proposition 4.3 is called
standard.

Remark 4.4. We will usually use the following abbreviated form where the
�rst two columns must be interpreted correctly, the sizes of the identity matrices
I need not be the same, and block lines may even be absent altogether.

2

6

6

6

6

6

4

I
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

pI
ˇ

ˇ I
ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

0
ˇ

ˇ I
ˇ

ˇ

ˇ

ˇ C1

ˇ

ˇ C2

I
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ D1

ˇ

ˇ D2

0
ˇ

ˇ I
ˇ

ˇ

ˇ

ˇ E1

ˇ

ˇ E2

3

7

7

7

7

7

5

p2

p2

p2

p

p

:

A matrix is decomposed if it is of the form
�

A 0
0 B

�

. Here either one of the
matrices A;B is allowed to have no rows or no columns, i.e., the decomposed
matrices include the special cases Œ0 B�,

�

0
B

�

, ŒA 0�,
�

A
0

�

.
A matrix A is called decomposable if there are row and column permutations

that transform it to a decomposed form, i.e., there are permutation matrices P;Q
such that PAQ is decomposed.

Lemma 4.5 shows that indecomposability of a .2; 2/-group with coordinate
matrix Œ˛ k ˇ� can be decided by just studying ˇ.

Lemma 4.5. A .2; 2/-group is decomposable if and only if there is a standard

coordinate matrix Œ˛ k ˇ� with decomposable ˇ.

Proof. For nearly isomorphic groups the ˛-part of all standard coordinate
matrices is the same, cf. Proposition 4.3. If G D H ˚ L is a decomposable
.2; 2/-group, then R.G/ D R.H/

L

R.L/, cf. [4, Lemma 3.1]. So, if G D
L

Gl ,
then all summandsGl can be assumed to be given by standard coordinate matrices
Œ˛l j ˇl � and the direct sum

�
L

˛l j
L

ˇl

�

is a coordinate matrix of G. We can
rearrange the lines of

�

˚ ˛l j
L

ˇl

�

and obtain a standard coordinate matrix
Œ˛ j ˇ� of the whole group G and ˇ is permutation equivalent to a direct sum of
matrices and hence decomposable.

Conversely, a .2; 2/-group which has a standard coordinate matrix Œ˛ k ˇ�with
decomposable ˇ is decomposable.

So, if G is decomposable and a coordinate matrix of G is given in standard
form, then there are allowed transformations that produce a coordinate matrix
of G with decomposable ˇ. Thus, for a proof of indecomposability, we only have
to check that with allowed transformations that maintain the part ˛ of a standard
form it is impossible to change ˇ into a decomposable form.
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5. Indecomposable (2,2)-groups with regulator quotient of exponent p
k

Our �rst main result says that sometimes there are no indecomposable groups.

Theorem 5.1. ..2;2/;p/-groupsdecompose and the summands are of rank � 2.

Proof. Let G be a clipped ..2; 2/; p/-group with coordinate matrix

ı D Œ˛1 j ˛2 k ˇ1 j ˇ2�

whose entries are necessarily either zeros or units. We apply transformations to
annihilate entries. While doing this, some other entries that were originally zero
may become nonzero; those entries are called �ll-ins.

By Proposition 4.3 we may assume that

ı D

"

Ia

ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ A1

ˇ

ˇ A2

0
ˇ

ˇ Ib

ˇ

ˇ

ˇ

ˇ B1

ˇ

ˇ B2

#

:

The Smith Normal Form forB1 is
�

I 0
0 0

�

. We annihilate with I in A1 and inB2.
The �ll-ins in ˛2 can be annihilated by Ia. Hence we obtain

ı D

2

4

Ia

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ 0 A1

ˇ

ˇ A2

0
ˇ

ˇ Ib 0
ˇ

ˇ

ˇ

ˇ I 0
ˇ

ˇ 0

0
ˇ

ˇ 0 Ib

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ B2

3

5 :

By the Regulator Criterion the Smith Normal Form forB2 is ŒI 0�. A 0-column
in A1 displays a direct summand of rank 1. Since G is clipped the Smith Normal
Form of A1 is

�

I
0

�

. We may annihilate with I in A2. Hence we obtain

ı D

2

6

6

6

4

Ia 0
ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ 0 I
ˇ

ˇ 0 0

0 Ia

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ A2 A0

2

0 0
ˇ

ˇ Ib 0
ˇ

ˇ

ˇ

ˇ I 0
ˇ

ˇ 0 0

0 0
ˇ

ˇ 0 Ib

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ I 0

3

7

7

7

5

:

We may annihilate with I upward in A2. The �ll-ins in ˛2 can be annihilated
by Ia. The Smith Normal Form of A0

2 is I by clipped and by the Regulator
Criterion. Hence we get

ı D

2

6

6

6

4

Ia 0
ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ 0 I
ˇ

ˇ 0 0

0 Ia

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ 0 I

0 0
ˇ

ˇ Ib 0
ˇ

ˇ

ˇ

ˇ I 0
ˇ

ˇ 0 0

0 0
ˇ

ˇ 0 Ib

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ I 0

3

7

7

7

5

:

Now we can read o� all summands, and all are of rank 2.
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Next we produce examples of indecomposable ..2; 2/; p2/-groups.

Proposition 5.2. The following four ..2; 2/; p2/-groups, all of rank 4 with

�xed isomorphism type of the regulator, given by their regulator quotient and a

coordinate matrix are indecomposable and pairwise not near-isomorphic.

(1) Œ˛1 j ˛2 k ˇ1 j ˇ2� D Œp j 1 k p j 1�

with regulator quotient Š Zp2 ;

(2) Œ˛1 j ˛2 k ˇ1 j ˇ2� D

"

1
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ 1
ˇ

ˇ 0

0
ˇ

ˇ 1
ˇ

ˇ

ˇ

ˇ p
ˇ

ˇ 1

#

with regulator quotient Š .Zp2/2.

(3) Œ˛1 j ˛2 k ˇ1 j ˇ2� D

"

1
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ 1
ˇ

ˇ 1

0
ˇ

ˇ 1
ˇ

ˇ

ˇ

ˇ 1
ˇ

ˇ 0

#

with regulator quotient Š Zp2 ˚Zp.

(4) Œ˛1 j ˛2 k ˇ1 j ˇ2� D

"

0
ˇ

ˇ 1
ˇ

ˇ

ˇ

ˇ p
ˇ

ˇ 1

1
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ 1
ˇ

ˇ 0

#

with regulator quotient Š Zp2 ˚Zp.

Proof. A .2; 2/-group has a standard coordinate matrix

Œ˛ k ˇ� D Œ˛1 j ˛2 k ˇ1 j ˇ2�

by Proposition 4.3. In order to show that the groups (1) through (4) are indecom-
posable we must show that there is no allowed transformation that changes the
coordinate matrix to a “decomposable form.” By Lemma 4.5 it is enough to ex-
clude that a standard coordinate matrix can be obtained where ˇ is decomposable.
By Lemma 4.5 left multiplication is allowed by an invertible matrix U such that
there is an upper triangular invertible matrix Z with U˛Z D ˛, and there is an
invertible upper triangular matrix Y such that ˇ0 D UˇY is decomposable. Note
that U describes row transformations and Z describes column transformations,
and that there is the restriction in the cases (3) and (4) that only p-multiples of
the second row can be added to the �rst row. Note that the only decomposed 1� 4

matrices are Œ� 0� and Œ0 ��, and the only decomposed 2 � 2 matrices, without
0-lines, are

�

� 0
0 �

�

and
�

0 �
� 0

�

.
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(1) With U D u and Y D
�

y b

0 y0

�

where u; y; y0 are units. So

u � ˇ0 D u � ˇY D u � Œp 1�

�

y b

0 y0

�

D Œuyp u.y0 C pb/�

that is not decomposable for any choice of u; y; y0; b.

(2) We get U D
�

u a
0 u0

�

and Y D
� y b

0 y0

�

where u; u0; y; y0 are units. So

ˇ0 D UˇY D

�

u a

0 u0

��

1 0

p 1

��

y b

0 y0

�

D

�

y.uC pa/ y0a C b.uC pa/

u0yp u0.y0 C pb/

�

that is not decomposable.

(3) We get U D
� u pa

0 u0

�

and Y D
�

y b

0 y0

�

where u; u0; y; y0 are units. So

ˇ0 D UˇY D

�

u pa

0 u0

��

1 1

1 0

��

y b

0 y0

�

D

�

y.uC pa/ uy0 C b.uC pa/

u0y u0b

�

that is not decomposable for any Y .

(4) In general U D
� u pa

x u0

�

and Y D
� y b

0 y0

�

where u; u0; y; y0 are units. Now

as ˛ D U˛Z for some invertible upper triangular Z D
�

z c
0 z0

�

, i.e., z; z0 are units,
we have

�

u pa

x u0

�

D U D ˛Z
�1

˛
�1

D

�

0 1

1 0

��

z c

0 z0

��

0 1

1 0

�

D

�

z0 0

c z

�

:

Thus U D
�

u 0
x u0

�

and we get

ˇ0 D UˇY D

�

u 0

x u0

��

p 1

1 0

��

y b

0 y0

�

D

�

uyp u.y0 C pb/

y.uC xp/ y0x C b.u0 C xp/

�

that is not decomposable.

The four groups di�er either in ˛ or in the regulator quotient. So they are
pairwise not nearly isomorphic because by Proposition 4.3 the ˛-parts are near
isomorphism invariants and so are the regulator quotients.
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Example 5.3. (1) Let G D hR; gi be a ..2; 2/; p2/-group with regulator

R D ZŒ2�1�x1 ˚ ZŒ.2 � 3/�1�x2 ˚ ZŒ5�1�x3 ˚ ZŒ.5 � 7/�1�x4

where xi 2 R and with g D 11�2.11x1 C x2 C 11x3 C x4/. Then G is indecom-
posable by Proposition 5.2(1).

(2) Let G D hR; g1; g2i be a ..2; 2/; p2/-group with regulator

R D ZŒ3�1�x1 ˚ ZŒ.3 � 5/�1�x2 ˚ ZŒ7�1�x3 ˚ ZŒ.7 � 11/�1�x4

where xi 2 R and with g1 D 13�2.x1 C x3/ and g2 D 13�2.x2 C 13x3 C x4/.
Then G is indecomposable by Proposition 5.2(2).

(3) Let G D hR; g1; g2i be a ..2; 2/; p2/-group with regulator

R D ZŒ2�1�x1 ˚ ZŒ.2 � 3/�1�x2 ˚ ZŒ5�1�x3 ˚ ZŒ.5 � 7/�1�x4

where xi 2 R and with g1 D 11�2.x1 C x3 C x4/ and g2 D 11�2.x2 C x3/. Then
G is indecomposable by Proposition 5.2(3).

(4) Let G D hR; g1; g2i be a ..2; 2/; p2/-group with regulator

R D ZŒ3�1�x1 ˚ ZŒ.3 � 5/�1�x2 ˚ ZŒ7�1�x3 ˚ ZŒ.7 � 11/�1�x4

where xi 2 R and with g1 D 13�2.x2 C 13�1x3 C x4/ and g2 D 13�1.x1 C x3/.
Then G is indecomposable by Proposition 5.2(4).

By Proposition 5.2 there are at least four near-isomorphism classes of inde-
composable ..2; 2/; p2/-groups. The next theorem shows that there are no others.

Theorem 5.4. There are precisely the four near-isomorphism classes of inde-

composable ..2; 2/; p2/-groups listed in Proposition 5.2.

Proof. Let G be a ..2; 2/; p2/-group without summands of rank � 3. This is
no restriction, because every indecomposable .2; 2/-group has rank � 4. Without
loss of generality the group G has a standard coordinate matrix. This matrix
incorporates all possibilities where block rows as well as block columns may be
absent.

The matrix X D Œxi;j � has a cross at .i0; j0/ if xi0;j0
¤ 0 and ai0;j D 0,

ai;j0
D 0 for all i ¤ i0 and j ¤ j0. Crosses display possible or impossible

summands and means that certain rows and columns of the coordinate matrix may
or must be be omitted. By An entry x leads to a cross in Œˇ1 j ˇ2� we mean that
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this entry x can be used to annihilate by allowed line transformations in its row
and its column to produce a cross at x.

Mostly we want to change certain submatrices either to a 0-matrix or to a
matrix of the form phI , h � 0. While executing matrix transformations with
this goal, �ll-ins may occur. The phrase we can annihilate tacitly includes that the
occurring �ll-ins can be removed by subsequent transformations so that already
obtained blocks 0 or pf I can be reestablished.

We brie�y say “in A” instead of “in the A-row,” etc.

We progressively simplify the coordinate matrix and make it more concrete.
This must be done without changing the special ˛-part of the matrix. This restricts
the use of the allowed transformations. Note that in Œ˛1j˛2� only the �ll-ins due to
the following row transformations can be reversed by column transformations:

� with pivots in B we can annihilate in A;D;E;

� with pivots in Awe can annihilate inD and also we can annihilate the entries
in B that are in pZp2 ;

� with pivots in C we can annihilate in A;B;D;E;

� with pivots inD we can annihilate inA and also we can annihilate the entries
in B that are in pZp2 ;

� with pivots in E we can annihilate in D, and entries in A;B; C that are
in pZp2 .

Only the row transformations above are allowed to ˇ.

(a1) Smith normal forms for
2

6

4

B

C

E

3

7

5
:

Next, successively simplifying, we show that

(3)

2

6

4

B1 j B2

C1 j C2

E1 j E2

3

7

5
D

2

6

6

6

4

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

5

p2; B

p2; C

p; E

p; E

:

There is no unit in C1, because otherwise there is a cross in ˇ indicating the
existence of a rank-2 summand. Then in turn there is no unit in B1, because a unit
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leads to a cross in ˇ. Now we form the Smith Normal Form for E1 and get
�

I 0
0 0

�

.
Thus we obtain

(4)

2

6

4

B1 j B2

C1 j C2

E1 j E2

3

7

5
D

2

6

6

6

4

pB1 pB 0

1

ˇ

ˇ B2

pC1 pC 0

1

ˇ

ˇ C2

I 0
ˇ

ˇ E2

0 0
ˇ

ˇ E 0

2

3

7

7

7

5

p2; B

p2; C

p; E

p; E

:

The submatrices pB1; pC1 andE2 can be annihilated due to the presence of I
in E below, so without loss of generality pB1 D 0 , pC1 D 0 and E2 D 0. Thus
we have

(5)

2

6

4

B1 j B2

C1 j C2

E1 j E2

3

7

5
D

2

6

6

6

4

0 pB 0

1

ˇ

ˇ B2

0 pC 0

1

ˇ

ˇ C2

I 0
ˇ

ˇ 0

0 0
ˇ

ˇ E 0

2

3

7

7

7

5

p2; B

p2; C

p; E

p; E

:

The Regulator Criterion requires that the submatricesB2; C2 andE 0

2 have units
in each row. So the Smith Normal Form ofC2 is Œ I 0 �. We may annihilate all other
entries in the block column of this I in

2

6

4

B

C

E

3

7

5
:

Hence we get
2

6

4

B1 j B2

C1 j C2

E1 j E2

3

7

5
D

2

6

6

6

4

0 pB 0

1

ˇ

ˇ 0 B2

0 pC 0

1

ˇ

ˇ I 0

I 0
ˇ

ˇ 0 0

0 0
ˇ

ˇ 0 E 0

2

3

7

7

7

5

:

Due to the Regulator Criterion the Smith Normal Form ofB2 is ŒI 0�. We may
annihilate with the part I of B2 in E 0

2 and then we form the Smith Normal Form
of the non-zero rest of E 0

2 and get ŒI 0�. Thus we obtain

(6)

2

6

4

B1 j B2

C1 j C2

E1 j E2

3

7

5
D

2

6

6

6

4

0 pB 0

1

ˇ

ˇ 0 I 0 0

0 pC 0

1

ˇ

ˇ I 0 0 0

I 0
ˇ

ˇ 0 0 0 0

0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

5

p2; B

p2; C

p; E

p; E

:

If there is a 0-row in pC 0

1 then we can annihilate with I in C2 in the rows
A;B;D and we get a cross. Thus there is no 0-row in pC 0

1, to avoid a cross. Hence
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the Smith Normal Form of pC 0

1 is ŒpI 0�. We annihilate with pI in pB 0

1 and get

(7)

2

6

4

B1 j B2

C1 j C2

E1 j E2

3

7

5
D

2

6

6

6

4

0 0 pB 0

1

ˇ

ˇ 0 I 0 0

0 pI 0
ˇ

ˇ I 0 0 0

I 0 0
ˇ

ˇ 0 0 0 0

0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

5

p2; B

p2; C

p; E

p; E

:

If there is a 0-row in pB 0

1 then we can annihilate with I in B2 in the rows
A;B;D and this leads to a cross. Hence there is no 0-row in pB 0

1. Thus the Smith
Normal Form of pB 0

1 is ŒpI 0�. Hence we obtain the claimed form of
2

6

4

B

C

E

3

7

5

as in Equation (3).

�gureversiontab(a2) Block form for ˇ.

By part (a1) we can write ˇ as

(8) Œˇ1 j ˇ2� D

2

6

6

6

6

6

6

6

4

A1
1 A2

1 A3
1 A4

1

ˇ

ˇ A1
2 A2

2 A3
2 A4

2

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0

D1
1 D2

1 D3
1 D4

1

ˇ

ˇ D1
2 D2

2 D3
2 D4

2

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

7

7

7

7

5

p2; A

p2; B

p2; C

p; D

p; E1

p; E2

:

The submatrices A1
2 and D1

2 can be annihilated due to the presence of I in C
and the submatrices A2

2 and D2
2 can be annihilated with I above in B . Moreover,

the submatricesD1
1 andD3

2 can be annihilated by I inE1; E2, respectively. Hence
we get

(9) Œˇ1 j ˇ2� D

2

6

6

6

6

6

6

6

4

A1
1 A2

1 A3
1 A4

1

ˇ

ˇ 0 0 A3
2 A4

2

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0

0 D2
1 D3

1 D4
1

ˇ

ˇ 0 0 0 D4
2

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

7

7

7

7

5

p2; A

p2; B

p2; C

p; D

p; E1

p; E2

:

A unit in A4
1 allows to annihilate inD4

1 and in its row, leading to a cross. So we
replace A4

1 by pA4
1. Then in turn there is no unit in A3

1 by the same arguments, and
we write pA3

1. A unit inA2
1 allows �rst to annihilate inD2

1 and then in its row. This
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causes �ll-ins in D and C . The �ll-ins in D can be annihilated by I in E1; E2.
The �ll-ins in C are either in p2 Z and can be ignored or they can be annihilated
by I in E1. This leads to a summand with coordinate matrix

ˇ D

"

1 0

p 1

#

;

where the rows belong toA;C , respectively. This is a summand of type .2/. Hence
omitting all those summands we may assume that the entries ofA2

1 are inpZ. Thus
we get

(10) Œˇ1 j ˇ2� D

2

6

6

6

6

6

6

6

4

A1
1 pA2

1 pA3
1 pA4

1

ˇ

ˇ 0 0 A3
2 A4

2

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0

0 D2
1 D3

1 D4
1

ˇ

ˇ 0 0 0 D4
2

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

7

7

7

7

5

p2; A

p2; B

p2; C

p; D

p; E1

p; E2

:

Now a unit in D4
1 allows to annihilate in its row and then in pA4

1, creating a
cross. So we may assume that D4

1 D 0. A unit in D3
1 allows to annihilate in its

row, then in pI and in pA3
1 above. But this leads again to a cross. Hence we may

assume that D3
1 D 0.

A unit in D2
1 allows to annihilate in pA2

1 and in D4
2 . This leads to a summand

with coordinate matrix

ˇ D

"

p 1

1 0

#

;

where the rows belong to C;D, respectively, and a summand of type .4/. Omitting
those summands we getD2

1 D 0. Hence we obtain

(11) Œˇ1 j ˇ2� D

2

6

6

6

6

6

6

6

4

A1
1 pA2

1 pA3
1 pA4

1

ˇ

ˇ 0 0 A3
2 A4

2

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0

0 0 0 0
ˇ

ˇ 0 0 0 D4
2

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

7

7

7

7

5

p2; A

p2; B

p2; C

p; D

p; E1

p; E2

:

A unit in A4
2 allows to annihilate in D4

2 creating a 0-row in ˇ, so the entries
in the column in A4

2 above a unit in D4
2 are all in pZ. But then this column can

be annihilated by the unit in D4
2 . This leads to a cross. Thus the D4

2-row is not
present. Due to the I in E1, the entries in A1

1 are either units or 0. Note that A1
1
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has no 0-column to avoid a cross. Hence the Smith Normal Form of A1
1 is

�

I
0

�

and
we get

(12) Œˇ1jˇ2� D

2

6

6

6

6

6

6

6

4

I pA21
1 pA31

1 pA41
1

ˇ

ˇ 0 0 A31
2 A41

2

0 pA22
1 pA32

1 pA42
1

ˇ

ˇ 0 0 A32
2 A42

2

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

7

7

7

7

5

p2; A1

p2; A2

p2; B

p2; C

p; E1

p; E2

:

The submatrices pA21
1 , pA31

1 , pA41
1 and A31

2 can be annihilated by using I in
A1. The �ll-ins inE are either in pZ and can be ignored or they can be annihilated
by I in E2. Hence we get

(13) Œˇ1jˇ2� D

2

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0 0 0 A41
2

0 pA2
1 pA3

1 pA4
1

ˇ

ˇ 0 0 A3
2 A42

2

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

7

7

7

7

5

p2; A1

p2; A2

p2; B

p2; C

p; E1

p; E2

:

A unit in A42
2 allows to annihilate in A41

2 . The �ll-ins in A1 can be annihilated
by I in the A-row and then the resulting �ll-ins in E1 can be annihilated due to
the presence of I in E2. Thus below a unit in A41

2 there is no unit in A42
2 , i.e., the

entries in A42
2 which are below a unit in A41

2 are either 0 or in pZ. Hence we may
annihilate with a unit in A41

2 in its column. So a unit in A41
2 leads to a summand

with coordinate matrix
"

1
ˇ

ˇ 1

1
ˇ

ˇ 0

#

where the rows belong to A and E, respectively. This is a summand of type .3/.
Omitting all those summands we may assume that A41

2 has no unit, i.e., we may
write pA41

2 . But then pA41
2 can be annihilated by I in A-row and this leads to

a summand with coordinate matrix with
�

1
1

�

where the rows belong to A, E,
respectively, and a summand of rank 3. So the A1-row, the E1-row and the �rst
block column of ˇ do not exist. Hence we get

(14) Œˇ1 j ˇ2� D

2

6

6

6

4

pA2
1 pA3

1 pA4
1

ˇ

ˇ 0 0 A3
2 A4

2

0 pI 0
ˇ

ˇ 0 I 0 0

pI 0 0
ˇ

ˇ I 0 0 0

0 0 0
ˇ

ˇ 0 0 I 0

3

7

7

7

5

p2; A

p2; B

p2; C

p; E

:
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We form the Smith Normal Form for A4
2 and get

h

I 0
0 pA4

2

i

. We use the part I

to annihilate in A3
2 and form the Smith Normal Form of the nonzero rest of A3

2.
Note that the nonzero rest of A3

2 has no 0-row due to the Regulator Criterion and
has no 0-column to avoid a cross. Thus,

ŒA3
2 j A4

2� D

"

0
ˇ

ˇ I 0

I
ˇ

ˇ 0 pA4
2

#

:

Hence we get

(15) Œˇ1 j ˇ2� D

2

6

6

6

6

6

4

pA21
1 pA31

1 pA41
1

ˇ

ˇ 0 0 0 I 0

pA22
1 pA32

1 pA42
1

ˇ

ˇ 0 0 I 0 pA4
2

0 pI 0
ˇ

ˇ 0 I 0 0 0

pI 0 0
ˇ

ˇ I 0 0 0 0

0 0 0
ˇ

ˇ 0 0 I 0 0

3

7

7

7

7

7

5

p2; A1

p2; A2

p2; B

p2; C

p; E

:

A unit in A2 left to pA4
2 allows to annihilate in E leading to a 0-row inE. Thus

the block row of A4
2 is not present and we get

(16) Œˇ1 j ˇ2� D

2

4

pA2
1 pA3

1 pA4
1

ˇ

ˇ 0 0 I

0 pI 0
ˇ

ˇ 0 I 0

pI 0 0
ˇ

ˇ I 0 0

3

5

p2; A

p2; B

p2; C

:

The submatrix pA2
1 can be annihilated due to the presence of pI in C and

similarly pA3
1 can be annihilated due to the presence of pI in B . Hence we may

assume that pA2
1 D 0 and pA3

1 D 0. Then the submatrix pA4
1 has no 0-line to

avoid a cross and hence the Smith Normal Form of pA4
1 is pI . Thus we get

(17) Œˇ1jˇ2� D

2

4

0 0 pI
ˇ

ˇ 0 0 I

0 pI 0
ˇ

ˇ 0 I 0

pI 0 0
ˇ

ˇ I 0 0

3

5

p2; A

p2; B

p2; C

:

Now we can read o� all summands, and all are of rank � 4 and known. This
ends the proof.
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