On finite p-groups that are the product of a subgroup of class two and an abelian subgroup of order p^{3}

Brendan McCann (*)

Abstract - In this note it is shown that if $G=A B$ is a finite p-group that is the product of an abelian subgroup A of order p^{3} and a subgroup B of nilpotency class two, then G can have derived length at most three.

Mathematics Subiect Classification (2010). 20 D 40, 20 D 15.
Keywords. Products of groups, factorised groups, finite p-groups.

The question of the relationship between the derived length of a finite group that is the product of two nilpotent subgroups and the nilpotency classes of the factors goes back to the well-known conjecture, mentioned by Scott in [8] (p. 385) and by Kegel in [6], that the derived length of the product should be bounded by the sum of the classes of the factors. The examples of Cossey and Stonehewer [2] eventually showed that the derived length of a product can exceed the sum of the classes of the factors. In particular, Cossey and Stonehewer constructed examples of finite p-groups of derived length four that can be expressed as the product of an abelian subgroup and a subgroup of class two. In these examples the abelian factor is quite large, being of order $p^{p^{3}}$ for p odd, and the question arises as to how small the abelian factor can be in such a product of derived length four. Another significant result concerning factorised finite p-groups $G=A B$, where A is abelian, is that of Morigi ([7], Theorem 2, or [1], Theorem 3.3.11), which shows that if $\left|B^{\prime}\right|=p^{n}$ then G can have derived length at most $n+2$, while the results of Jabara ([4], [5] or [1], Corollary 3.3.25) show that if B has rank 2 and class k then $G^{(2 k)}=1$, whereas if B has an abelian subgroup of index p^{n-1} then G has derived length at most $2 n$.
(*) Indirizzo dell'A.: Brendan McCann, Department of Mathematics and Computing, Waterford Institute of Technology, Cork Road, Waterford, Ireland
E-mail: bmccann@wit.ie

The purpose of the present note is to consider one very particular case, namely finite p-groups $G=A B$ that are the product of an abelian subgroup A of order p^{3} and a subgroup B of class two. It will be shown that such groups can have derived length at most three. Taken in conjunction with Morigi's result, this shows in particular that a finite p-group of derived length four that factorises as the product of an abelian subgroup and a subgroup of class two will require an abelian factor of order at least p^{4} and a factor of class two whose derived subgroup is of order at least p^{2}.

We first examine a rather restricted normal product of two subgroups of class at most two.

Lemma 1. Let the finite group G be the product $G=H K$, for subgroups H and K such that
(i) $H \unlhd G$ and $K \unlhd G$;
(ii) $|G: H|=|G: K|=p$, where p is a prime;
(iii) H and K are nilpotent of class at most two.

Then $G^{(2)}=1$ and $\left|G^{\prime}\right| \leq p\left|H^{\prime} K^{\prime}\right|$.
Proof. We have

$$
G / H \cong G / K \cong C_{p}
$$

which is abelian, so $H^{\prime} K^{\prime} \leqslant G^{\prime} \leqslant H \cap K$. Since H and K both have class at most two we have $H^{\prime} \leqslant Z(H)$ and $K^{\prime} \leqslant Z(K)$, whence $H^{\prime} K^{\prime} \leqslant Z(H \cap K)$. In addition we see that $[G, H \cap K]=[H, H \cap K][K, H \cap K] \leqslant H^{\prime} K^{\prime}$. Thus

$$
(H \cap K) / H^{\prime} K^{\prime} \leqslant Z\left(G / H^{\prime} K^{\prime}\right)
$$

Now $H /(H \cap K) \cong H K / K=G / K \cong C_{p}$, so

$$
|G: H \cap K|=|G: H \| H: H \cap K|=p^{2}
$$

Since $G /(H \cap K)$ can be embedded in $G / H \times G / K\left(\cong C_{p} \times C_{p}\right)$ we have, by comparison of orders,

$$
G /(H \cap K)=H /(H \cap K) \times K /(H \cap K) \cong C_{p} \times C_{p}
$$

We let $1 \neq x \in H \backslash(H \cap K)$ and $1 \neq y \in K \backslash(H \cap K)$. Then $G=\langle x, y, H \cap K\rangle$ and $G^{\prime} / H^{\prime} K^{\prime}=\langle[x, y]\rangle H^{\prime} K^{\prime} / H^{\prime} K^{\prime} \leqslant(H \cap K) / H^{\prime} K^{\prime} \leqslant Z\left(G / H^{\prime} K^{\prime}\right)$. In addition $x^{p} H^{\prime} K^{\prime} \in(H \cap K) / H^{\prime} K^{\prime}$. Thus, since $[x, y] H^{\prime} K^{\prime} \in Z\left(G / H^{\prime} K^{\prime}\right)$, we have

$$
[x, y]^{p} H^{\prime} K^{\prime}=\left[x^{p}, y\right] H^{\prime} K^{\prime}=1_{G / H^{\prime} K^{\prime}}
$$

Furthermore, since $[x, y] \in H \cap K$ and $H^{\prime} K^{\prime} \leqslant Z(H \cap K)$, we see that $G^{\prime}=\left\langle[x, y], H^{\prime} K^{\prime}\right\rangle$ is abelian, whence $G^{(2)}=1$. Finally we observe that $G^{\prime} / H^{\prime} K^{\prime}=\langle[x, y]\rangle H^{\prime} K^{\prime} / H^{\prime} K^{\prime}$ is cyclic of order at most p, so it follows that $\left|G^{\prime}\right| \leq p\left|H^{\prime} K^{\prime}\right|$.

Corollary 2. Let G be a finite p-group and let H be a subgroup of G such that
(i) $|G: H| \leq p^{2}$;
(ii) H has class at most two.

Then $G^{(3)}=1$.

Proof. If $H \unlhd G$ then G / H is abelian and the result follows. If $H \nexists G$ then, since G is a finite p-group and $|G: H| \leq p^{2}$, we must have $\left|G: N_{G}(H)\right|=$ $\left|N_{G}(H): H\right|=p$, so $H \unlhd N_{G}(H) \unlhd G$. In addition, for $x \in G \backslash N_{G}(H)$ we have, by comparison of orders, $N_{G}(H)=H H^{x}$. Since H and H^{x} have class at most two and are (normal) subgroups of index p in $N_{G}(H)$, we see by Lemma 1 that $N_{G}(H)$ has derived length at most two. Since $G / N_{G}(H) \cong C_{p}$ is abelian, it follows that $G^{(3)}=1$.

An easy, and no doubt well-known, consequence of Corollary 2 is that a finite p-group that is the product of a subgroup of class two and an abelian subgroup of order p^{2} can have derived length at most three.

We note the following elementary consequence of the famous Theorem of Itô ([3], Satz 1, or [1], Theorem 3.1.7):

Lemma 3. Let the group $G=A B$ be the product of the subgroups A and B such that
(i) A is abelian;
(ii) $\left(B^{\prime}\right)^{G}$ is abelian.

Then $G^{(3)}=1$.
Proof. We see that $G /\left(B^{\prime}\right)^{G}=\left(A\left(B^{\prime}\right)^{G} /\left(B^{\prime}\right)^{G}\right)\left(B\left(B^{\prime}\right)^{G} /\left(B^{\prime}\right)^{G}\right)$ is the product of two abelian subgroups. By Itô's Theorem we have $G^{(2)} \leqslant\left(B^{\prime}\right)^{G}$. Since $\left(B^{\prime}\right)^{G}$ is abelian, we conclude that $G^{(3)}=1$.

We will use the next lemma in the proof of our main result, Theorem 5.

Lemma 4. Let the group $G=A B$ be the product of the subgroups A and B such that
(i) A is abelian;
(ii) $B^{\prime} \leqslant Z(B)$;
(iii) B is subnormal of defect at most two in G.

Then $\left(B^{\prime}\right)^{G}$ is abelian $\left(\right.$ so $G^{(3)}=1$ by Lemma 3).
Proof. Since B has defect at most two, there exists a normal subgroup $N \unlhd G$ such that $B \unlhd N \unlhd G$. Then $N / B=(N \cap A) B / B$ is isomorphic to a factor group of A, so $N^{\prime} \leqslant B$. But $N^{\prime} \unlhd G$ so $\left(B^{\prime}\right)^{G} \leqslant N^{\prime}(\leqslant B)$. Hence $B^{\prime} \leqslant Z(B) \cap\left(B^{\prime}\right)^{G} \leqslant Z\left(\left(B^{\prime}\right)^{G}\right) \unlhd G$, so we conclude that $\left(B^{\prime}\right)^{G}$ is abelian.

Our main result provides some information about the structure of a finite p group that is the product of an abelian subgroup of order p^{3} and a subgroup of class two.

Theorem 5. Let $G=A B$ be a finite p-group for subgroups A and B such that
(i) A is abelian;
(ii) $|A|=p^{3}$;
(iii) $A \cap B=1$;
(iv) $B^{\prime} \leqslant Z(B)$.

Then one of the following holds:

1. G has a subgroup B_{1} (with possibly $B_{1}=B$) such that
(a) $G=A B_{1}$ and $A \cap B_{1}=1$;
(b) $B_{1}^{\prime} \leqslant Z\left(B_{1}\right)$;
(c) $\left(B_{1}\right)^{\prime} \leqslant B^{\prime}$;
(d) $\left(B_{1}^{\prime}\right)^{G}$ is abelian;
or
2. G has a subgroup B_{2} such that
(a) $B_{2}^{\prime} \leqslant Z\left(B_{2}\right)$;
(b) $\left|B_{2}^{G}: B_{2}\right|=p$;
(c) $\left|G: B_{2}^{G}\right|=p^{2}$.

Proof. We use induction on $\left|B^{\prime}\right|$ and note that if $\left(B^{\prime}\right)^{G}$ is abelian (in particular if $B^{\prime}=1$) then we may let $B_{1}=B$ and see that the result is trivial. We therefore assume that $\left(B^{\prime}\right)^{G}$ is non-abelian. By Lemma 4 we may also assume that B has defect three in G. Now $|A|=p^{3}$, so we may further assume that there exist elements $w, x, y \in A$ for which the following is satisfied:

$$
\begin{aligned}
A & =\langle w, x, y\rangle \\
\langle w\rangle & =N_{A}(B) \cong C_{p} ; \\
\langle w, x\rangle & =N_{A}(\langle w\rangle B) ; \\
y^{p} & \in\langle w, x\rangle, \quad \text { but } y \notin\langle w, x\rangle ; \\
x^{p} & \in\langle w\rangle, \quad \text { but } x \notin\langle w\rangle .
\end{aligned}
$$

We may further assume that $\langle w\rangle B=N_{G}(B)$ and $\langle w, x\rangle B=N_{G}(\langle w\rangle B) \unlhd G$. Thus $B^{\prime} \leqslant(\langle w, x\rangle B)^{\prime} \unlhd G$, so $\left(B^{\prime}\right)^{G} \leqslant(\langle w, x\rangle B)^{\prime}$. But $\langle w, x\rangle B /\langle w\rangle B$ is abelian, so $(\langle w, x\rangle B)^{\prime} \leqslant\langle w\rangle B$. Hence, in particular, we have $\left(B^{\prime}\right)^{G} \leqslant\langle w\rangle B$ and, by conjugation, $\left(B^{\prime}\right)^{G} \leqslant(\langle w\rangle B)^{y}=\langle w\rangle B^{y}$.

If $C_{A}\left(B^{\prime}\right) \neq 1$, then B is a proper subgroup of $C_{G}\left(B^{\prime}\right)$, and thus also of $N_{C_{G}\left(B^{\prime}\right)}(B)=N_{G}(B) \cap C_{G}\left(B^{\prime}\right)$. By comparison of orders it follows that $N_{G}(B)=\langle w\rangle B \leqslant C_{G}\left(B^{\prime}\right)$. Hence $B^{\prime} \leqslant Z(\langle w\rangle B)$. But $\left(B^{\prime}\right)^{G} \leqslant\langle w\rangle B$, so $B^{\prime} \leqslant Z(\langle w\rangle B) \cap\left(B^{\prime}\right)^{G} \leqslant Z\left(\left(B^{\prime}\right)^{G}\right)$ and $\left(B^{\prime}\right)^{G}$ is in fact abelian, in contradiction to our assumption. Hence we may assume that $C_{A}\left(B^{\prime}\right)=1$ so, in particular, we have $B=C_{G}\left(B^{\prime}\right)$ (and, for $g \in G, B^{g}=C_{G}\left(\left(B^{\prime}\right)^{g}\right)$).

If $\left(B^{\prime}\right)^{G} \leqslant B$ then $B^{\prime} \leqslant Z(B) \cap\left(B^{\prime}\right)^{G} \leqslant Z\left(\left(B^{\prime}\right)^{G}\right)$ and $\left(B^{\prime}\right)^{G}$ is again abelian (which is excluded). Thus, since $\left(B^{\prime}\right)^{\langle w, x\rangle B} \leqslant\left((\langle w\rangle B)^{\prime}\right)^{\langle w, x\rangle B}=(\langle w\rangle B)^{\prime} \leqslant$ B, we may further assume that $\left(B^{\prime}\right)^{y} \notin B$. Now, if $B^{y} \leqslant\langle w\rangle B$, then we obtain $\left(B^{\prime}\right)^{y} \leqslant(\langle w\rangle B)^{\prime} \leqslant B$, which has been ruled out. Hence it follows that $B^{y} \notin\langle w\rangle B$.

Since $|\langle w\rangle B: B|=|\langle w, x\rangle B:\langle w\rangle B|=p$, we then have, by comparison of orders:

$$
\langle w\rangle B=B B^{x}=B\left(B^{\prime}\right)^{y}
$$

and

$$
\langle w, x\rangle B=\langle w\rangle B B^{y}=B\left(B^{\prime}\right)^{y} B^{y}=B B^{y}
$$

In particular it follows that

$$
p^{2}|B|=|\langle w, x\rangle B|=\frac{|B|\left|B^{y}\right|}{\left|B \cap B^{y}\right|}=\frac{|B|}{\left|B \cap B^{y}\right|}\left|B^{y}\right|,
$$

and so

$$
\left|B: B \cap B^{y}\right|=\frac{|B|}{\left|B \cap B^{y}\right|}=p^{2}
$$

Now $\left|\left(B^{\prime}\right)^{y}:\left(B^{\prime}\right)^{y} \cap B\right|=\left|B\left(B^{\prime}\right)^{y}: B\right|=|\langle w\rangle B: B|=p$. Therefore, since $B=C_{G}\left(B^{\prime}\right)$, we have

$$
\left|\left(B^{\prime}\right)^{y}: C_{\left(B^{\prime}\right)^{y}}\left(B^{\prime}\right)\right|=\left|\left(B^{\prime}\right)^{y}:\left(B^{\prime}\right)^{y} \cap C_{G}\left(B^{\prime}\right)\right|=\left|\left(B^{\prime}\right)^{y}:\left(B^{\prime}\right)^{y} \cap B\right|=p .
$$

In particular we see that B^{\prime} and $\left(B^{\prime}\right)^{y}$ do not centralise each other. Thus, since $C_{G}\left(\left(B^{\prime}\right)^{y}\right)=B^{y}$, we have $B^{\prime} \not B^{y}$, so $\langle w\rangle B^{y}=B^{y} B^{\prime}$. It then similarly follows that

$$
\left|B^{\prime}: B^{\prime} \cap B^{y}\right|=p
$$

In addition since $\left(B^{\prime}\right)^{G} \leqslant\langle w\rangle B=N_{G}(B)$, we have $B^{\prime} \unlhd\left(B^{\prime}\right)^{G}$. By conjugation $\left(B^{\prime}\right)^{y}$ is also normal in $\left(B^{\prime}\right)^{G}$, so B^{\prime} and $\left(B^{\prime}\right)^{y}$ normalise each other. We note that

$$
\left(B^{\prime}\right)^{y} \cap B=\left(B^{\prime}\right)^{y} \cap B \cap B^{y} \leqslant\left(B^{\prime}\right)^{y} \cap B^{\prime}\left(B \cap B^{y}\right) \leqslant\left(B^{\prime}\right)^{y} \cap B,
$$

and so

$$
\left(B^{\prime}\right)^{y} \cap B^{\prime}\left(B \cap B^{y}\right)=\left(B^{\prime}\right)^{y} \cap B .
$$

We let $H=\left\langle B^{\prime},\left(B^{\prime}\right)^{y}, B \cap B^{y}\right\rangle$. Then H can be expressed as the product $H=\left(B^{\prime}\right)^{y} B^{\prime}\left(B \cap B^{y}\right)$ and we have

$$
\begin{aligned}
|H| & =\frac{\left|\left(B^{\prime}\right)^{y}\right|\left|B^{\prime}\left(B \cap B^{y}\right)\right|}{\left|\left(B^{\prime}\right)^{y} \cap B^{\prime}\left(B \cap B^{y}\right)\right|} \\
& =\frac{\left|\left(B^{\prime}\right)^{y}\right|\left|B^{\prime}\left(B \cap B^{y}\right)\right|}{\left|\left(B^{\prime}\right)^{y} \cap B\right|} \\
& =p\left|B^{\prime}\left(B \cap B^{y}\right)\right| \\
& =p \frac{\left|B^{\prime}\right|\left|B \cap B^{y}\right|}{\left|B^{\prime} \cap B \cap B^{y}\right|} \\
& =p \frac{\left|B^{\prime}\right|}{\left|B^{\prime} \cap B^{y}\right|}\left|B \cap B^{y}\right| \\
& =p^{2}\left|B \cap B^{y}\right| .
\end{aligned}
$$

But $\left|B: B \cap B^{y}\right|=p^{2}$, so it follows that

$$
|H|=p^{2}\left(\frac{|B|}{p^{2}}\right)=|B| .
$$

Now B^{\prime} and $\left(B^{\prime}\right)^{y}$ normalise each other, so

$$
\left[B^{\prime},\left(B^{\prime}\right)^{y}\right] \leqslant B^{\prime} \cap\left(B^{\prime}\right)^{y} \leqslant Z(B) \cap Z\left(B^{y}\right) \leqslant Z\left(B B^{y}\right)=Z(\langle w, x\rangle B)
$$

We similarly have

$$
\left(B \cap B^{y}\right)^{\prime} \leqslant B^{\prime} \cap\left(B^{\prime}\right)^{y} \leqslant Z(\langle w, x\rangle B) .
$$

Hence, bearing in mind that both B^{\prime} and $\left(B^{\prime}\right)^{y}$ are centralised by $B \cap B^{y}$, we have

$$
\begin{aligned}
H^{\prime} & =\left\langle B^{\prime},\left(B^{\prime}\right)^{y}, B \cap B^{y}\right\rangle^{\prime} \\
& =\left[B^{\prime},\left(B^{\prime}\right)^{y}\right]\left(B \cap B^{y}\right)^{\prime} \\
& \leqslant Z(\langle w, x\rangle B) \cap\left(B^{\prime}\right)^{y} \cap B^{\prime}(\leqslant Z(H))
\end{aligned}
$$

Thus H has class at most two. In addition we see that w centralises H^{\prime} and that $H^{\prime} \leqslant B^{\prime}$. However w does not centralise B^{\prime}, so we further conclude that H^{\prime} is a proper subgroup of B^{\prime}.

If $A \cap H=1$ then, since $|H|=|B|$, we have $G=A H$. As $\left|H^{\prime}\right|<\left|B^{\prime}\right|$ and $H^{\prime} \leqslant B^{\prime}$, we can then use induction on $\left|B^{\prime}\right|$ to show that the result holds. Thus we may assume that $A \cap H \neq 1$. Since $H=\left\langle B^{\prime},\left(B^{\prime}\right)^{y}, B \cap B^{y}\right\rangle \leqslant B\left(B^{\prime}\right)^{y}=\langle w\rangle B$, we have $A \cap H \leqslant A \cap\langle w\rangle B=\langle w\rangle$. But $\langle w\rangle$ has order p, so

$$
A \cap H=\langle w\rangle
$$

We further have $|\langle w\rangle B: H|=|\langle w\rangle B: B|=p$, so $H \unlhd\langle w\rangle B$. Therefore $\langle w\rangle B=H B$ is the (normal) product of the subgroups H and B, both of class at most two and of index p in $\langle w\rangle B$. Hence, by Lemma 1, we have $\left|(\langle w\rangle B)^{\prime}\right| \leq p\left|H^{\prime} B^{\prime}\right|$. But $H^{\prime} \leqslant B^{\prime}$, so we conclude

$$
\left|(\langle w\rangle B)^{\prime}\right| \leq p\left|B^{\prime}\right|
$$

If $\left(B^{\prime}\right)^{x}=B^{\prime}$ then $x \in N_{G}\left(B^{\prime}\right)$, so x normalises $C_{G}\left(B^{\prime}\right)=B$, which is ruled out. Thus B^{\prime} is a proper subgroup of $B^{\prime}\left(B^{\prime}\right)^{x}$. Now $B^{\prime}\left(B^{\prime}\right)^{x} \leqslant(\langle w\rangle B)^{\prime}\left(=\left(B B^{x}\right)^{\prime}\right)$ and, from above, $\left|(\langle w\rangle B)^{\prime}\right| \leq p\left|B^{\prime}\right|$, so, by comparison of orders, we have

$$
(\langle w\rangle B)^{\prime}=B^{\prime}\left(B^{\prime}\right)^{x} .
$$

Hence $C_{G}\left((\langle w\rangle B)^{\prime}\right)=C_{G}\left(B^{\prime}\left(B^{\prime}\right)^{x}\right)=C_{G}\left(B^{\prime}\right) \cap C_{G}\left(\left(B^{\prime}\right)^{x}\right)=B \cap B^{x}$. But $(\langle w\rangle B)^{\prime} \unlhd\langle w, x\rangle B$, so $B \cap B^{x} \unlhd\langle w, x\rangle B$. Since both B and B^{x} have index p in $\langle w\rangle B$, we have $B^{\prime} \leqslant B \cap B^{x}$. Thus if $B \cap B^{x} \unlhd G$, then $\left(B^{\prime}\right)^{G} \leqslant B$, which has already been have ruled out. Therefore we may assume that $B \cap B^{x} \nexists G$, so $\langle w, x\rangle B=N_{G}\left(B \cap B^{x}\right)$.

We have $B^{y} \leqslant\langle w, x\rangle B=N_{G}\left(B \cap B^{x}\right)$ and, since $\left(B^{\prime}\right)^{y} \notin B$, we also have $\left(B^{\prime}\right)^{y} \nexists B \cap B^{x}$. Hence $B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)$ is a non-abelian group. But, since $\left|B: B \cap B^{x}\right|=\left|B B^{x}: B^{x}\right|=\left|\langle w\rangle B: B^{x}\right|=p$, we have

$$
\left|\langle w, x\rangle B: B \cap B^{x}\right|=\left|\langle w, x\rangle B: B \| B: B \cap B^{x}\right|=p^{2} p=p^{3}
$$

Therefore, since $B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)$ is non-abelian, we have by comparison of orders:

$$
B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)=\langle w, x\rangle B /\left(B \cap B^{x}\right)
$$

or, equivalently:

$$
\langle w, x\rangle B=B^{y}\left(B \cap B^{x}\right)
$$

Now $(\langle w\rangle B)^{\prime}=B^{\prime}[\langle w\rangle, B]$ and, from above, $(\langle w\rangle B)^{\prime}=B^{\prime}\left(B^{\prime}\right)^{x}$. Hence if $B \leqslant C_{G}([\langle w\rangle, B])$ then B centralises $(\langle w\rangle B)^{\prime}$ and, in particular, one gets $B \leqslant C_{G}\left(\left(B^{\prime}\right)^{x}\right)=B^{x}$, which is ruled out. Thus $B \notin C_{G}([\langle w\rangle, B])$. But we have $[\langle w\rangle, B]=[\langle w\rangle, A B]=[\langle w\rangle, G] \unlhd G$ and $B \cap B^{x}=C_{G}\left((\langle w\rangle B)^{\prime}\right) \leqslant$ $C_{G}([\langle w\rangle, B])$ so, by normality, $\left(B \cap B^{x}\right)^{G} \leqslant C_{G}([\langle w\rangle, B])$. It then follows that $B \notin\left(B \cap B^{x}\right)^{G}$.

We now let

$$
T=\left(B \cap B^{x}\right)^{G}
$$

Then $T \leqslant\langle w, x\rangle B$ but, since $B \notin T$, we have $T \neq\langle w x\rangle B$. Now,

$$
\langle w, x\rangle B /\left(B \cap B^{x}\right)=B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)
$$

is a non-abelian group of order p^{3}, so $Z\left(\langle w, x\rangle B /\left(B \cap B^{x}\right)\right) \cong C_{p}$. In addition $\left|\langle w\rangle B /\left(B \cap B^{x}\right)\right|=\left|\langle w, x\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)\right|=p^{2}$. Hence, by comparison of orders:

$$
\begin{aligned}
Z\left(\langle w, x\rangle B /\left(B \cap B^{x}\right)\right) & =\langle w\rangle B /\left(B \cap B^{x}\right) \cap\langle w, x\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \\
& =\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)\left(\cong C_{p}\right)
\end{aligned}
$$

Now $B \cap B^{x} \nexists G$, so $B \cap B^{x}$ is a proper subgroup of $T\left(=\left(B \cap B^{x}\right)^{G}\right)$. Thus, by normality,

$$
1 \neq T /\left(B \cap B^{x}\right) \cap Z\left(\langle w, x\rangle B /\left(B \cap B^{x}\right)\right)
$$

so:

$$
\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \leqslant T /\left(B \cap B^{x}\right)
$$

Since $B \nless T$ we see, by comparison of orders, that $B \cap T=B \cap B^{x}$. Thus $B T / T \cong B /(B \cap T) \cong B /\left(B \cap B^{x}\right) \cong C_{p}$. We then also have $(B T / T)^{y T}=$ $B^{y} T / T \cong C_{p}$. Hence if $T=\langle w\rangle\left(B \cap B^{x}\right)$, then $|\langle w, x\rangle B: T|=p^{2}$, so $B^{y} T$ is a proper subgroup of $\langle w, x\rangle B$. But $\langle w, x\rangle B=B^{y}\left(B \cap B^{x}\right) \leqslant B^{y} T$ and a contradiction ensues. Therefore $\langle w\rangle\left(B \cap B^{x}\right)$ is a proper subgroup of T and, since $T \neq\langle w, x\rangle B$, we conclude that $|\langle w, x\rangle B: T|=p$. In particular we see that $|G: T|=p^{2}$.

Since $w \in T=\left(B \cap B^{x}\right)^{G} \leqslant C_{G}([\langle w\rangle, B]) \leqslant C_{G}\left(\left[\langle w\rangle, B \cap B^{x}\right]\right.$, we see that $\langle w\rangle\left(B \cap B^{x}\right)$ centralises $\left[\langle w\rangle, B \cap B^{x}\right]$. We further have $\left(B \cap B^{x}\right)^{\prime} \leqslant B^{\prime} \cap\left(B^{\prime}\right)^{x}$, which is centralised by $B B^{x}=\langle w\rangle B$ so, in particular, $\langle w\rangle\left(B \cap B^{x}\right)$ centralises $\left(B \cap B^{x}\right)^{\prime}$. Hence

$$
\begin{aligned}
\left(\langle w\rangle\left(B \cap B^{x}\right)\right)^{\prime} & =\left(B \cap B^{x}\right)^{\prime}\left[\langle w\rangle, B \cap B^{x}\right] \\
& \leqslant Z\left(\langle w\rangle\left(B \cap B^{x}\right)\right) .
\end{aligned}
$$

Thus $\langle w\rangle\left(B \cap B^{x}\right)$ has class at most two. Now $\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \cong C_{p}$, so $\langle w\rangle\left(B \cap B^{x}\right)$ is a (normal) subgroup of index p in T. Thus, letting

$$
B_{2}=\langle w\rangle\left(B \cap B^{x}\right)
$$

we have $B_{2}^{\prime} \leqslant Z\left(B_{2}\right)$ and, since $T=\left(B \cap B^{x}\right)^{G}=\left(\langle w\rangle\left(B \cap B^{x}\right)\right)^{G}=B_{2}^{G}$, we conclude that $\left|B_{2}^{G}: B_{2}\right|=p$ and $\left|G: B_{2}^{G}\right|=p^{2}$, as desired.

Corollary 6. Let the finite p-group $G=A B$ be the product of an abelian subgroup A of order p^{3} and a subgroup B of class two. Then $G^{(3)}=1$.

Proof. If $A \cap B \neq 1$ then $|G: B| \leq p^{2}$, and the result follows from Corollary 2. If $A \cap B=1$ then, by Theorem 5, either $G=A B_{1}$ where $\left(B_{1}^{\prime}\right)^{G}$ is abelian and the result follows from Lemma 3, or G has a subgroup B_{2}, of class at most two, such that $\left|B_{2}^{G}: B_{2}\right|=p$ and $\left|G: B_{2}^{G}\right|=p^{2}$. In the latter case $B_{2} \unlhd B_{2}^{G}$ and, letting $y \in G \backslash N_{G}\left(B_{2}\right)$, we see that $B_{2}^{G}=B_{2} B_{2}^{y}$ is the normal product of two subgroups of class at most two and index p. Thus Lemma 1 applies and we have $\left(B_{2}^{G}\right)^{(2)}=1$. But $\left|G: B_{2}^{G}\right|=p^{2}$ so G / B_{2}^{G} is abelian and we conclude that $G^{(3)}=1$.

The following elementary example shows that G will not necessarily have derived length three if the factor A of order p^{3}, as in Corollary 6, is non-abelian. We let H be be a p-group of class two and let K be a non-abelian p-group of order p^{3}. We then let $G=H w r K$ be the regular wreath product of H by K. Since the regular wreath product of two groups of derived length two has derived length four, G is thus a p-group of derived length four that is the product of the base group H^{K}, which has class two, and K which has order p^{3} and is non-abelian.

References

[1] A. Ballester-Bolinches - R. Esteban-Romero - M. Asaad, Products of finite groups, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter, Berlin, 2010.
[2] J. Cossey - S. Stonehewer, On the derived length of finite dinilpotent groups, Bull. London Math. Soc. 30 (1998), pp. 247-250.
[3] N. Itô, Über das Produkt von zwei abelschen Gruppen, Math. Z. 63 (1955), pp. 400401.
[4] E. Jabara, A note on finite products of nilpotent groups, Ricerche di Mat. 54 (2005), pp. 205-209.
[5] E. Jabara, A note on a class of factorized p-groups, Czechoslovak Math. J. 55 (2005), pp. 993-996.
[6] O. H. Kegel, On the solvability of some factorized linear groups, Illinois J. Math. 9 (1965), pp. 535-547.
[7] M. Morigi, A Note on Factorized (Finite) p-Groups, Rend. Sem. Mat. Univ. Padova 98 (1997), pp. 101-105.
[8] W. R. Scotт, Group theory, Prentice-Hall, Englewood Cliffs, N.J., 1964.

Manoscritto pervenuto in redazione il 21 luglio 2014.

