On finite *p*-groups that are the product of a subgroup of class two and an abelian subgroup of order p^3

Brendan McCann (*)

ABSTRACT – In this note it is shown that if G = AB is a finite *p*-group that is the product of an abelian subgroup A of order p^3 and a subgroup B of nilpotency class two, then G can have derived length at most three.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20 D 40, 20 D 15.

KEYWORDS. Products of groups, factorised groups, finite *p*-groups.

The question of the relationship between the derived length of a finite group that is the product of two nilpotent subgroups and the nilpotency classes of the factors goes back to the well-known conjecture, mentioned by Scott in [8] (p. 385) and by Kegel in [6], that the derived length of the product should be bounded by the sum of the classes of the factors. The examples of Cossey and Stonehewer [2] eventually showed that the derived length of a product can exceed the sum of the classes of the factors. In particular, Cossey and Stonehewer constructed examples of finite *p*-groups of derived length four that can be expressed as the product of an abelian subgroup and a subgroup of class two. In these examples the abelian factor is quite large, being of order p^{p^3} for p odd, and the question arises as to how small the abelian factor can be in such a product of derived length four. Another significant result concerning factorised finite *p*-groups G = AB, where A is abelian, is that of Morigi ([7], Theorem 2, or [1], Theorem 3.3.11), which shows that if $|B'| = p^n$ then G can have derived length at most n + 2, while the results of Jabara ([4], [5] or [1], Corollary 3.3.25) show that if B has rank 2 and class k then $G^{(2k)} = 1$, whereas if B has an abelian subgroup of index p^{n-1} then G has derived length at most 2n.

^(*) *Indirizzo dell'A*.: Brendan McCann, Department of Mathematics and Computing, Waterford Institute of Technology, Cork Road, Waterford, Ireland E-mail: bmccann@wit.ie

The purpose of the present note is to consider one very particular case, namely finite *p*-groups G = AB that are the product of an abelian subgroup *A* of order p^3 and a subgroup *B* of class two. It will be shown that such groups can have derived length at most three. Taken in conjunction with Morigi's result, this shows in particular that a finite *p*-group of derived length four that factorises as the product of an abelian subgroup and a subgroup of class two will require an abelian factor of order at least p^4 and a factor of class two whose derived subgroup is of order at least p^2 .

We first examine a rather restricted normal product of two subgroups of class at most two.

LEMMA 1. Let the finite group G be the product G = HK, for subgroups H and K such that

- (i) $H \trianglelefteq G$ and $K \trianglelefteq G$;
- (ii) |G:H| = |G:K| = p, where *p* is a prime;

(iii) H and K are nilpotent of class at most two.

Then $G^{(2)} = 1$ *and* $|G'| \le p|H'K'|$.

PROOF. We have

$$G/H \cong G/K \cong C_p$$
,

which is abelian, so $H'K' \leq G' \leq H \cap K$. Since *H* and *K* both have class at most two we have $H' \leq Z(H)$ and $K' \leq Z(K)$, whence $H'K' \leq Z(H \cap K)$. In addition we see that $[G, H \cap K] = [H, H \cap K][K, H \cap K] \leq H'K'$. Thus

$$(H \cap K)/H'K' \leq Z(G/H'K').$$

Now $H/(H \cap K) \cong HK/K = G/K \cong C_p$, so

$$|G: H \cap K| = |G: H||H: H \cap K| = p^2.$$

Since $G/(H \cap K)$ can be embedded in $G/H \times G/K$ ($\cong C_p \times C_p$) we have, by comparison of orders,

$$G/(H \cap K) = H/(H \cap K) \times K/(H \cap K) \cong C_p \times C_p.$$

We let $1 \neq x \in H \setminus (H \cap K)$ and $1 \neq y \in K \setminus (H \cap K)$. Then $G = \langle x, y, H \cap K \rangle$ and $G'/H'K' = \langle [x, y] \rangle H'K'/H'K' \leq (H \cap K)/H'K' \leq Z(G/H'K')$. In addition $x^p H'K' \in (H \cap K)/H'K'$. Thus, since $[x, y]H'K' \in Z(G/H'K')$, we have

$$[x, y]^{p} H' K' = [x^{p}, y] H' K' = 1_{G/H'K'}.$$

Furthermore, since $[x, y] \in H \cap K$ and $H'K' \leq Z(H \cap K)$, we see that $G' = \langle [x, y], H'K' \rangle$ is abelian, whence $G^{(2)} = 1$. Finally we observe that $G'/H'K' = \langle [x, y] \rangle H'K'/H'K'$ is cyclic of order at most p, so it follows that $|G'| \leq p|H'K'|$.

COROLLARY 2. Let G be a finite p-group and let H be a subgroup of G such that

- (i) $|G:H| \le p^2$;
- (ii) H has class at most two.

Then $G^{(3)} = 1$.

PROOF. If $H \leq G$ then G/H is abelian and the result follows. If $H \not\leq G$ then, since G is a finite p-group and $|G : H| \leq p^2$, we must have $|G : N_G(H)| =$ $|N_G(H) : H| = p$, so $H \leq N_G(H) \leq G$. In addition, for $x \in G \setminus N_G(H)$ we have, by comparison of orders, $N_G(H) = HH^x$. Since H and H^x have class at most two and are (normal) subgroups of index p in $N_G(H)$, we see by Lemma 1 that $N_G(H)$ has derived length at most two. Since $G/N_G(H) \cong C_p$ is abelian, it follows that $G^{(3)} = 1$.

An easy, and no doubt well-known, consequence of Corollary 2 is that a finite p-group that is the product of a subgroup of class two and an abelian subgroup of order p^2 can have derived length at most three.

We note the following elementary consequence of the famous Theorem of Itô ([3], Satz 1, or [1], Theorem 3.1.7):

LEMMA 3. Let the group G = AB be the product of the subgroups A and B such that

- (i) A is abelian;
- (ii) $(B')^G$ is abelian.

Then $G^{(3)} = 1$.

PROOF. We see that $G/(B')^G = (A(B')^G/(B')^G)(B(B')^G/(B')^G)$ is the product of two abelian subgroups. By Itô's Theorem we have $G^{(2)} \leq (B')^G$. Since $(B')^G$ is abelian, we conclude that $G^{(3)} = 1$.

We will use the next lemma in the proof of our main result, Theorem 5.

LEMMA 4. Let the group G = AB be the product of the subgroups A and B such that

- (i) A is abelian;
- (ii) $B' \leq Z(B)$;
- (iii) *B* is subnormal of defect at most two in *G*.

Then $(B')^G$ is abelian (so $G^{(3)} = 1$ by Lemma 3).

PROOF. Since *B* has defect at most two, there exists a normal subgroup $N \leq G$ such that $B \leq N \leq G$. Then $N/B = (N \cap A)B/B$ is isomorphic to a factor group of *A*, so $N' \leq B$. But $N' \leq G$ so $(B')^G \leq N' (\leq B)$. Hence $B' \leq Z(B) \cap (B')^G \leq Z((B')^G) \leq G$, so we conclude that $(B')^G$ is abelian. \Box

Our main result provides some information about the structure of a finite p-group that is the product of an abelian subgroup of order p^3 and a subgroup of class two.

THEOREM 5. Let G = AB be a finite p-group for subgroups A and B such that

- (i) A is abelian;
- (ii) $|A| = p^3$;
- (iii) $A \cap B = 1$;
- (iv) $B' \leq Z(B)$.

Then one of the following holds:

- 1. *G* has a subgroup B_1 (with possibly $B_1 = B$) such that
 - (a) $G = AB_1 \text{ and } A \cap B_1 = 1;$
 - (b) $B'_1 \leq Z(B_1);$
 - (c) $(B_1)' \leq B';$
 - (d) $(B'_1)^G$ is abelian;

or

- 2. G has a subgroup B_2 such that
 - (a) $B'_2 \leq Z(B_2);$ (b) $|B_2^G : B_2| = p;$ (c) $|G : B_2^G| = p^2.$

PROOF. We use induction on |B'| and note that if $(B')^G$ is abelian (in particular if B' = 1) then we may let $B_1 = B$ and see that the result is trivial. We therefore assume that $(B')^G$ is non-abelian. By Lemma 4 we may also assume that B has defect three in G. Now $|A| = p^3$, so we may further assume that there exist elements $w, x, y \in A$ for which the following is satisfied:

$$A = \langle w, x, y \rangle$$

$$\langle w \rangle = N_A(B) \cong C_p;$$

$$\langle w, x \rangle = N_A(\langle w \rangle B);$$

$$y^p \in \langle w, x \rangle, \quad \text{but } y \notin \langle w, x \rangle;$$

$$x^p \in \langle w \rangle, \quad \text{but } x \notin \langle w \rangle.$$

We may further assume that $\langle w \rangle B = N_G(B)$ and $\langle w, x \rangle B = N_G(\langle w \rangle B) \leq G$. Thus $B' \leq (\langle w, x \rangle B)' \leq G$, so $(B')^G \leq (\langle w, x \rangle B)'$. But $\langle w, x \rangle B/\langle w \rangle B$ is abelian, so $(\langle w, x \rangle B)' \leq \langle w \rangle B$. Hence, in particular, we have $(B')^G \leq \langle w \rangle B$ and, by conjugation, $(B')^G \leq (\langle w \rangle B)^y = \langle w \rangle B^y$.

If $C_A(B') \neq 1$, then *B* is a proper subgroup of $C_G(B')$, and thus also of $N_{C_G(B')}(B) = N_G(B) \cap C_G(B')$. By comparison of orders it follows that $N_G(B) = \langle w \rangle B \leq C_G(B')$. Hence $B' \leq Z(\langle w \rangle B)$. But $(B')^G \leq \langle w \rangle B$, so $B' \leq Z(\langle w \rangle B) \cap (B')^G \leq Z((B')^G)$ and $(B')^G$ is in fact abelian, in contradiction to our assumption. Hence we may assume that $C_A(B') = 1$ so, in particular, we have $B = C_G(B')$ (and, for $g \in G$, $B^g = C_G((B')^g)$).

If $(B')^G \leq B$ then $B' \leq Z(B) \cap (B')^G \leq Z((B')^G)$ and $(B')^G$ is again abelian (which is excluded). Thus, since $(B')^{\langle w,x\rangle B} \leq ((\langle w\rangle B)')^{\langle w,x\rangle B} = (\langle w\rangle B)' \leq$ B, we may further assume that $(B')^y \notin B$. Now, if $B^y \leq \langle w\rangle B$, then we obtain $(B')^y \leq (\langle w\rangle B)' \leq B$, which has been ruled out. Hence it follows that $B^y \notin \langle w\rangle B$.

Since $|\langle w \rangle B : B| = |\langle w, x \rangle B : \langle w \rangle B| = p$, we then have, by comparison of orders:

$$\langle w \rangle B = BB^x = B(B')^y$$

and

$$\langle w, x \rangle B = \langle w \rangle BB^{y} = B(B')^{y}B^{y} = BB^{y}.$$

In particular it follows that

$$p^{2}|B| = |\langle w, x \rangle B| = \frac{|B||B^{y}|}{|B \cap B^{y}|} = \frac{|B|}{|B \cap B^{y}|}|B^{y}|,$$

and so

$$|B: B \cap B^{y}| = \frac{|B|}{|B \cap B^{y}|} = p^{2}.$$

Now $|(B')^y : (B')^y \cap B| = |B(B')^y : B| = |\langle w \rangle B : B| = p$. Therefore, since $B = C_G(B')$, we have

$$|(B')^{y}: C_{(B')^{y}}(B')| = |(B')^{y}: (B')^{y} \cap C_{G}(B')| = |(B')^{y}: (B')^{y} \cap B| = p.$$

In particular we see that B' and $(B')^y$ do not centralise each other. Thus, since $C_G((B')^y) = B^y$, we have $B' \notin B^y$, so $\langle w \rangle B^y = B^y B'$. It then similarly follows that

$$|B':B'\cap B^{y}|=p.$$

In addition since $(B')^G \leq \langle w \rangle B = N_G(B)$, we have $B' \leq (B')^G$. By conjugation $(B')^y$ is also normal in $(B')^G$, so B' and $(B')^y$ normalise each other. We note that

$$(B')^{y} \cap B = (B')^{y} \cap B \cap B^{y} \leq (B')^{y} \cap B'(B \cap B^{y}) \leq (B')^{y} \cap B,$$

and so

$$(B')^{y} \cap B'(B \cap B^{y}) = (B')^{y} \cap B.$$

We let $H = \langle B', (B')^y, B \cap B^y \rangle$. Then *H* can be expressed as the product $H = (B')^y B'(B \cap B^y)$ and we have

$$|H| = \frac{|(B')^{y}||B'(B \cap B^{y})|}{|(B')^{y} \cap B'(B \cap B^{y})|}$$

= $\frac{|(B')^{y}||B'(B \cap B^{y})|}{|(B')^{y} \cap B|}$
= $p|B'(B \cap B^{y})|$
= $p\frac{|B'||B \cap B^{y}|}{|B' \cap B \cap B^{y}|}$
= $p\frac{|B'|}{|B' \cap B^{y}|}|B \cap B^{y}|$
= $p^{2}|B \cap B^{y}|.$

But $|B: B \cap B^y| = p^2$, so it follows that

$$|H| = p^2 \left(\frac{|B|}{p^2}\right) = |B|.$$

6

Product of a subgroup of class two and an abelian subgroup of order p^3

Now B' and $(B')^{y}$ normalise each other, so

$$[B', (B')^{y}] \leq B' \cap (B')^{y} \leq Z(B) \cap Z(B^{y}) \leq Z(BB^{y}) = Z(\langle w, x \rangle B).$$

We similarly have

$$(B \cap B^{\mathcal{Y}})' \leq B' \cap (B')^{\mathcal{Y}} \leq Z(\langle w, x \rangle B).$$

Hence, bearing in mind that both B' and $(B')^y$ are centralised by $B \cap B^y$, we have

$$H' = \langle B', (B')^y, B \cap B^y \rangle'$$

= $[B', (B')^y](B \cap B^y)'$
 $\leq Z(\langle w, x \rangle B) \cap (B')^y \cap B' (\leq Z(H))$

Thus *H* has class at most two. In addition we see that *w* centralises *H'* and that $H' \leq B'$. However *w* does not centralise *B'*, so we further conclude that *H'* is a proper subgroup of *B'*.

If $A \cap H = 1$ then, since |H| = |B|, we have G = AH. As |H'| < |B'| and $H' \leq B'$, we can then use induction on |B'| to show that the result holds. Thus we may assume that $A \cap H \neq 1$. Since $H = \langle B', (B')^y, B \cap B^y \rangle \leq B(B')^y = \langle w \rangle B$, we have $A \cap H \leq A \cap \langle w \rangle B = \langle w \rangle$. But $\langle w \rangle$ has order p, so

$$A \cap H = \langle w \rangle.$$

We further have $|\langle w \rangle B : H| = |\langle w \rangle B : B| = p$, so $H \leq \langle w \rangle B$. Therefore $\langle w \rangle B = HB$ is the (normal) product of the subgroups H and B, both of class at most two and of index p in $\langle w \rangle B$. Hence, by Lemma 1, we have $|(\langle w \rangle B)'| \leq p |H'B'|$. But $H' \leq B'$, so we conclude

$$|(\langle w \rangle B)'| \le p|B'|.$$

If $(B')^x = B'$ then $x \in N_G(B')$, so x normalises $C_G(B') = B$, which is ruled out. Thus B' is a proper subgroup of $B'(B')^x$. Now $B'(B')^x \leq (\langle w \rangle B)'(=(BB^x)')$ and, from above, $|\langle w \rangle B \rangle'| \leq p|B'|$, so, by comparison of orders, we have

$$(\langle w \rangle B)' = B'(B')^x.$$

Hence $C_G((\langle w \rangle B)') = C_G(B'(B')^x) = C_G(B') \cap C_G((B')^x) = B \cap B^x$. But $(\langle w \rangle B)' \trianglelefteq \langle w, x \rangle B$, so $B \cap B^x \trianglelefteq \langle w, x \rangle B$. Since both *B* and B^x have index *p* in $\langle w \rangle B$, we have $B' \le B \cap B^x$. Thus if $B \cap B^x \trianglelefteq G$, then $(B')^G \le B$, which has already been have ruled out. Therefore we may assume that $B \cap B^x \measuredangle G$, so $\langle w, x \rangle B = N_G(B \cap B^x)$.

We have $B^{y} \leq \langle w, x \rangle B = N_{G}(B \cap B^{x})$ and, since $(B')^{y} \notin B$, we also have $(B')^{y} \notin B \cap B^{x}$. Hence $B^{y}(B \cap B^{x})/(B \cap B^{x})$ is a non-abelian group. But, since $|B:B \cap B^{x}| = |BB^{x}:B^{x}| = |\langle w \rangle B:B^{x}| = p$, we have

$$|\langle w, x \rangle B : B \cap B^x| = |\langle w, x \rangle B : B||B : B \cap B^x| = p^2 p = p^3.$$

Therefore, since $B^{y}(B \cap B^{x})/(B \cap B^{x})$ is non-abelian, we have by comparison of orders:

$$B^{y}(B \cap B^{x})/(B \cap B^{x}) = \langle w, x \rangle B/(B \cap B^{x}),$$

or, equivalently:

$$\langle w, x \rangle B = B^{y} (B \cap B^{x}).$$

Now $(\langle w \rangle B)' = B'[\langle w \rangle, B]$ and, from above, $(\langle w \rangle B)' = B'(B')^x$. Hence if $B \leq C_G([\langle w \rangle, B])$ then *B* centralises $(\langle w \rangle B)'$ and, in particular, one gets $B \leq C_G((B')^x) = B^x$, which is ruled out. Thus $B \nleq C_G([\langle w \rangle, B])$. But we have $[\langle w \rangle, B] = [\langle w \rangle, AB] = [\langle w \rangle, G] \trianglelefteq G$ and $B \cap B^x = C_G((\langle w \rangle B)') \leq$ $C_G([\langle w \rangle, B])$ so, by normality, $(B \cap B^x)^G \leq C_G([\langle w \rangle, B])$. It then follows that $B \nleq (B \cap B^x)^G$.

We now let

$$T = (B \cap B^x)^G.$$

Then $T \leq \langle w, x \rangle B$ but, since $B \notin T$, we have $T \neq \langle w x \rangle B$. Now,

$$\langle w, x \rangle B/(B \cap B^x) = B^y(B \cap B^x)/(B \cap B^x)$$

is a non-abelian group of order p^3 , so $Z(\langle w, x \rangle B/(B \cap B^x)) \cong C_p$. In addition $|\langle w \rangle B/(B \cap B^x)| = |\langle w, x \rangle (B \cap B^x)/(B \cap B^x)| = p^2$. Hence, by comparison of orders:

$$Z(\langle w, x \rangle B/(B \cap B^x)) = \langle w \rangle B/(B \cap B^x) \cap \langle w, x \rangle (B \cap B^x)/(B \cap B^x)$$
$$= \langle w \rangle (B \cap B^x)/(B \cap B^x) (\cong C_p).$$

Now $B \cap B^x \not \simeq G$, so $B \cap B^x$ is a proper subgroup of $T (= (B \cap B^x)^G)$. Thus, by normality,

$$1 \neq T/(B \cap B^x) \cap Z(\langle w, x \rangle B/(B \cap B^x)),$$

so:

$$\langle w \rangle (B \cap B^x) / (B \cap B^x) \leq T / (B \cap B^x).$$

Since $B \notin T$ we see, by comparison of orders, that $B \cap T = B \cap B^x$. Thus $BT/T \cong B/(B \cap T) \cong B/(B \cap B^x) \cong C_p$. We then also have $(BT/T)^{yT} = B^yT/T \cong C_p$. Hence if $T = \langle w \rangle (B \cap B^x)$, then $|\langle w, x \rangle B : T| = p^2$, so B^yT is a proper subgroup of $\langle w, x \rangle B$. But $\langle w, x \rangle B = B^y(B \cap B^x) \notin B^yT$ and a contradiction ensues. Therefore $\langle w \rangle (B \cap B^x)$ is a proper subgroup of T and, since $T \neq \langle w, x \rangle B$, we conclude that $|\langle w, x \rangle B : T| = p$. In particular we see that $|G:T| = p^2$.

Since $w \in T = (B \cap B^x)^G \leq C_G([\langle w \rangle, B]) \leq C_G([\langle w \rangle, B \cap B^x])$, we see that $\langle w \rangle (B \cap B^x)$ centralises $[\langle w \rangle, B \cap B^x]$. We further have $(B \cap B^x)' \leq B' \cap (B')^x$, which is centralised by $BB^x = \langle w \rangle B$ so, in particular, $\langle w \rangle (B \cap B^x)$ centralises $(B \cap B^x)'$. Hence

$$(\langle w \rangle (B \cap B^x))' = (B \cap B^x)'[\langle w \rangle, B \cap B^x]$$
$$\leq Z(\langle w \rangle (B \cap B^x)).$$

Thus $\langle w \rangle (B \cap B^x)$ has class at most two. Now $\langle w \rangle (B \cap B^x)/(B \cap B^x) \cong C_p$, so $\langle w \rangle (B \cap B^x)$ is a (normal) subgroup of index p in T. Thus, letting

$$B_2 = \langle w \rangle (B \cap B^x),$$

we have $B'_2 \leq Z(B_2)$ and, since $T = (B \cap B^x)^G = (\langle w \rangle (B \cap B^x))^G = B_2^G$, we conclude that $|B_2^G : B_2| = p$ and $|G : B_2^G| = p^2$, as desired.

COROLLARY 6. Let the finite p-group G = AB be the product of an abelian subgroup A of order p^3 and a subgroup B of class two. Then $G^{(3)} = 1$.

PROOF. If $A \cap B \neq 1$ then $|G : B| \leq p^2$, and the result follows from Corollary 2. If $A \cap B = 1$ then, by Theorem 5, either $G = AB_1$ where $(B'_1)^G$ is abelian and the result follows from Lemma 3, or G has a subgroup B_2 , of class at most two, such that $|B_2^G : B_2| = p$ and $|G : B_2^G| = p^2$. In the latter case $B_2 \leq B_2^G$ and, letting $y \in G \setminus N_G(B_2)$, we see that $B_2^G = B_2 B_2^y$ is the normal product of two subgroups of class at most two and index p. Thus Lemma 1 applies and we have $(B_2^G)^{(2)} = 1$. But $|G : B_2^G| = p^2$ so G/B_2^G is abelian and we conclude that $G^{(3)} = 1$.

The following elementary example shows that *G* will not necessarily have derived length three if the factor *A* of order p^3 , as in Corollary 6, is non-abelian. We let *H* be be a *p*-group of class two and let *K* be a non-abelian *p*-group of order p^3 . We then let G = HwrK be the regular wreath product of *H* by *K*. Since the regular wreath product of two groups of derived length two has derived length four, *G* is thus a *p*-group of derived length four that is the product of the base group H^K , which has class two, and *K* which has order p^3 and is non-abelian.

References

- [1] A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO M. ASAAD, *Products of finite groups*, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter, Berlin, 2010.
- [2] J. COSSEY S. STONEHEWER, On the derived length of finite dinilpotent groups, Bull. London Math. Soc. 30 (1998), pp. 247–250.
- [3] N. Itô, Über das Produkt von zwei abelschen Gruppen, Math. Z. 63 (1955), pp. 400–401.
- [4] E. JABARA, A note on finite products of nilpotent groups, Ricerche di Mat. 54 (2005), pp. 205–209.
- [5] E. JABARA, A note on a class of factorized p-groups, Czechoslovak Math. J. 55 (2005), pp. 993–996.
- [6] O. H. KEGEL, On the solvability of some factorized linear groups, Illinois J. Math. 9 (1965), pp. 535–547.
- [7] M. MORIGI, A Note on Factorized (Finite) p-Groups, Rend. Sem. Mat. Univ. Padova 98 (1997), pp. 101-105.
- [8] W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N.J., 1964.

Manoscritto pervenuto in redazione il 21 luglio 2014.