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Stabilization for Iwasawa modules in Zp-extensions

Andrea Bandini (�) – Fabio Caldarola (��)

Abstract – LetK=k be a Zp-extension of a number �eld k with layers kn. Let in;m be the

map induced by inclusion between thep-parts of the class groups of kn and km (m > n).

We study the capitulation kernelsHn;m WD ker.in;m/ andHn WD
S

m>nHn;m to give

some explicit formulas for their size and prove stabilization properties for their orders

and p-ranks. We also brie�y investigate stabilization properties for the cokernel of im;n

and for the kernels of the norm maps and point out their relations with the nullity of the

Iwasawa invariants for K=k.
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1. Introduction

Let K=k be a Zp-extension (p a prime number) of a number �eld k, with Galois

group � and whose layers we denote by kn. Assume that all rami�ed primes in

K=k are totally rami�ed in K=kn0
. We denote by An the p-part of the ideal class

group of kn and, for any m > n, we let Nm;n (resp. in;m) be the map Am ! An

(resp. An ! Am) induced by the natural norm (resp. inclusion). Put

X.K/ WD lim
 �

n

An and A.K/ WD lim
�!

n

An

(de�ned via norms and inclusions respectively). By class �eld theory there is a

(canonical) isomorphism X.K/ ' Gal.L.K/=K/, where L.K/ is the maximal
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abelian unrami�ed pro-p-extension of K. Let

ƒ WD lim
 �

n

ZpŒGal.kn=k/� D ZpŒŒ���

be the Iwasawa algebra associated with K=k. Via the usual action of conju-

gation X.K/ and A.K/ can be considered as ƒ-modules, moreover there exist

ƒ-submodules Yn of X.K/ and elements �n;m 2 ƒ such that Ym D �n;mYn

and X.K/=Yn ' An for any n > n0 (see [15, Chapter 13]). Many results relat-

ing the ƒ-module structure of X.K/ with the ker.in;m/ and the ker.Nm;n/ have

been proved since the beginning of Iwasawa theory (see, e.g., [8]). In particular

the relation between the �niteness of X.K/ and the groups Hn;m WD ker.in;m/

and Hn WD
S

m>nHn;m has been exploited in [7] and [12] (and generalized to

Z
d
p -extensions in, for example, [1], [2] and [9]). We consider this type of relations

together with the phenomenon of stabilization.

We say that the order (resp. the p-rank) of the modules ¹Mn ºn2N stabilizes

if there is an index q such that jMnj D jMq j (resp. rkp.Mn/ D rkp.Mq/) for all

n > q. It is customary for Iwasawa modules to stabilize at the very �rst step in

which they do not vary: in particular one can prove (see, e.g., [3] and [5])

Theorem 1.1. The following hold:

(a) if for some n > n0 one has jAnj D jAnC1j, then Yn D 0 and X.K/ ' An;

(b) if for some n > n0 one has rkp.An/ D rkp.AnC1/, then Yn � pX.K/ and

rkp.An/ D rkp.Am/ for any m > n.

In this paper we provide a description of Hn;m in terms of the maximal �nite

submodule D of X.K/ (see Proposition 3.3, derived from [12, Proposition])

Hn;m ' ker¹�n;mWD=.Yn \D/ �! D=.Ym \D/º and Hn ' D=.Yn \D/:

With that we can prove statements like the ones of Theorem 1.1 for the modulesHn

(see Theorem 3.7).

The following theorem enables us to give examples of �nite Iwasawa mod-

ules for which theHn;m have “delayed” stabilization (cf. Theorem 3.11 and Exam-

ple 3.12).

Theorem 1.2. Let r > n0 be the least index such that jHr j D jHrC1j.

If r > n > n0, there exist an index h.n/ (cf. De�nition 3.9) such that

1 D jHn;nj 6 jHn;nC1j 6 jHn;nC2j 6 � � � 6 jHn;r j

D jHn;r j < jHn;rC1j < jHn;rC2j < � � � < jHn;h.n/j

D jHn;h.n/j D jHn;h.n/C1j D jHn;h.n/C2j D � � � D jD=D \ Ynj:
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Other examples arise from the non-abelian theory discussed by M. Ozaki

in [14], since the setting is quite di�erent we shall present them in another paper

(see [4]).

We recall that Iwasawa proved the following formula for the orders of the An

jAnj D p�.K=k/p
nC�.K=k/nC� ; n � 0;

where the Iwasawa invariants �.K=k/ and �.K=k/ depend on the ƒ-module

structure of X.K/. In the �nal section we provide relations between the trivial-

ity of these invariants and the stabilization of the modules Hn, coker.in;m/ and

ker.Nm;n/ (see Theorems 4.2 and 4.4).

2. Notations and preliminaries

We quickly describe the basic objects of Iwasawa theory we are going to work

with and list a few results which will be used in the next sections (comprehensive

references are [15, Chapter 13] and [11, Chapter V]).

Let � WD Gal.K=k/ ' Zp and choose a topological generator  of �. The map

 ! 1C T provides a noncanonical isomorphism between ZpŒŒ��� (the Iwasawa

algebra of �) and Zp ŒŒT ��, and we shall always identify them with our ƒ. Let

kn be the n-th layer of K (i.e., the �xed �eld of hp
n
i): we will assume that all

primes which ramify inK=k are totally rami�ed inK=kn0
(sometimes it is useful

to take a minimal n0 but it is not really necessary in the proofs). For any n > n0

we let Yn be the ƒ-submodule of X WD X.K/ such that X=Yn ' An (it is the

closure of the module generated by the commutators and the inertia subgroups of

Gal.L.K/=kn/). For any m > n > n0 one has �n;mYn D Ym, where

�n;m D
�m

�n
D
.1C T /p

m
� 1

.1C T /p
n

� 1
D 1C .1C T /p

n

C � � � C ..1C T /p
n

/p
m�n�1

is a distinguished polynomial (irreducible if m D n C 1). Moreover, for any

m > n > 0, the �n;m verify the following formula (see, e.g., [5, Lemma])

(1) �n;m D
...1C T /p

n
� 1/C 1/p

m�n
� 1

.1C T /p
n

� 1
� pm�n .mod T �n/:

A homomorphism' betweenƒ-modules will be called pseudo-isomorphism if

it has �nite kernel and cokernel. If 'WM ! N is a pseudo-isomorphism, we write

M �ƒ N and say thatM andN are pseudo-isomorphic; being pseudo-isomorphic

is an equivalence relation between �nitely generated torsion ƒ-modules.
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If M is a �nitely generated ƒ-module, there exists an exact sequence

(2) 0 �! D.M/ �! M
'

�! E.M/ �! B.M/ �! 0;

where ' is a pseudo-isomorphism,D.M/ is the maximal �nite submodule of M ,

B.M/ is �nite and E.M/ is an elementary ƒ-module, i.e.,

E.M/ ' ƒs ˚
�

u
M

iD1

ƒ=.g
ei

i /
�

with s; u 2 N, the gi are irreducible distinguished polynomials and the ei are

positive integers (all uniquely determined by M ). The characteristic polynomial

of M is de�ned to be

fM .T / WD

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if s ¤ 0,

u
Y

iD1

g
ei

i if s D 0.

Note that a ƒ-module M is �nite (i.e., M �ƒ 0) if and only if fM .T / 2 ƒ�.

The Iwasawa invariants of the extension K=k are related to fX.K/.T /: indeed

�.K=k/ is the exact power ofp dividing fX.K/.T / and�.K=k/ D deg.fX.K/.T //.

For any �nitely generated Zp-module M we let rkp.M/ denote the p-rank of

M (i.e., rkp.M/ D dimFp
.M=pM/).

Remark 2.1. We recall a general fact on modules over a commutative ring R.

Let N � M be R-modules such that jM=N j is �nite and let a D .a1; : : : ; au/ be

a �nitely generated ideal of R. Then, using induction on u, it is easy to see that

jaM=aN j 6 jM=N j
u. Note, furthermore, that the given bound is sharp: take for

example M D R D ƒ and N D a D .p; T /.

Proposition 2.2. Let 'WM ! N be a pseudo-isomorphism of ƒ-modules,

a an ideal in ƒ, � a nonzero element of ƒ and MŒ�� (resp. NŒ��) the kernel of

� WM ! M (resp. of � WN ! N ). Then we have canonical pseudo-isomorphisms

(a) 'jMŒ��WMŒ�� ! NŒ��;

(b) 'jaM W aM ! aN ;

(c) N'WM=�M ! N=�N (where N' is induced by ').



Stabilization for Iwasawa modules in Zp-extensions 141

Proof. For (a) and (c) just consider the snake lemma sequences associated to

the diagrams

0 // MŒ�� //

��

M //

'

��

�M

��

// 0

0 // NŒ�� // N // �N // 0

and

0 // �M //

'

��

M //

'

��

M=�M

N'

��

// 0

0 // �N // N // N=�N // 0

with easy estimates between the cardinalities of kernels and cokernels. For (b) use

also the previous remark. �

Corollary 2.3. Let M be a �nitely generated torsion ƒ-module and � a

nonzero element of ƒ, then

gcd.�; fM / D 1 () MŒ�� �ƒ 0 () M=�M �ƒ 0 :

Moreover, if any of the previous conditions holds, then, for any submodule N of

M , the induced map N� WM=N ! �M=�N has �nite kernel.

Proof. The statements are obvious for an elementary torsion ƒ-module E

(where one actually �nds EŒ�� D 0 and E=N ' �E=�N ). For a general module

M just consider a pseudo-isomorphism 'WM ! E.M/ and apply the previous

proposition. �

3. Stabilization of the capitulation kernels

We now consider capitulation of ideals and study the maps in;mWAn ! Am

induced by inclusion (in particular their kernels denoted by Hn;m). We provide

a description in terms of D WD D.X.K// (the maximal �nite submodule of

X.K/ appearing in the sequence (2)) in the spirit of the results of [12] for Hn D
S

m>nHn;m.
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Definition 3.1. We put

(a) for all m > n > 0, Dn;m WD �n;mD;

(b) for all n > n0, Dn WD D \ Yn.

The following lemma shows that the Dn behave well with respect to the usual

Iwasawa relations.

Lemma 3.2. For all m > n > n0, we have �n;mDn D Dm D Dn;m \ Ym.

Proof. The relation �n;mDn � Dm is trivial. Now take z 2 Dm � �n;mDn,

i.e., a y 2 Yn such that

z D �n;my 2 D � �n;mDn;

and note that y … Dn yields y … D. Since jX=�n;mX j 6 jX=Ymj D jAmj is �nite

and X=�n;mX �ƒ E.X/=�n;mE.X/ (by Proposition 2.2 (c)), Corollary 2.3 shows

that �n;mWE.X/ ! E.X/ is injective. Hence the induced map �n;mWX=D ! X=D

is injective as well: this contradicts our choice of y … D with �n;my 2 D.

For the last equality, observe that

�n;mDn � �n;mYn D Ym H) �n;mDn � �n;mD \ Ym � Dm;

and we have already seen that the two extremities of the chain are equal. �

Since �n;m 2 .p; T / (the maximal ideal of ƒ), Nakayama’s lemma and

Lemma 3.2 show that, for n > n0, DnC1 ¤ Dn unless Dn D 0. Moreover, since

D is �nite, there exists an r such that Dr D 0. The isomorphisms X=Ym ' Am

induce embeddingsD=Dm ,! Am for allm > n0 and, in particular, we can embed

D into Ar .

The following is a reinterpretation of [12, Proposition] which we shall repeat-

edly use.

Proposition 3.3. With the above notations we have

(3) Hn;m ' ker ¹�n;mWD=Dn �! D=Dmº

and

(4) Hn ' D C Yn=Yn ' D=Dn

for allm > n > n0. Moreover, ifDn D 0, thenHn;m ' DŒpm�n� (whereDŒpm�n�

is the submodule of the pm�n-torsion elements of D).
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Proof. From the well-known commutative diagram

(5)

Am '
// X=Ym

An

in;m

OO

'
// X=Yn

�n;m

OO

we have that Hn;m ' ker ¹�n;mWX=Yn �! X=Ymº. Now consider the diagram

D C Yn=Yn
�

� //

�
.1/
n;m

��

X=Yn // //

�n;m

��

X=D C Yn

�
.2/
n;m

��
D C Ym=Ym

�

� // X=Ym // // X=D C Ym :

Let ˛ 2 X be such that �n;m˛ 2 DCYm, i.e., ˛ .mod DCYn/ 2 ker.�
.2/
n;m/. Then

there exist d 2 D and ym 2 Ym such that �n;m˛ D dCym and, since Ym D �n;mYn,

�n;m˛ D d C �n;myn for some yn 2 Yn. Therefore �n;m.˛ � yn/ D d and

˛ � yn 2 ker¹�n;mWX ! X=Dº. The injectivity of the map �n;mWX=D ! X=D

yields ˛ � yn 2 D, i.e., ˛ 2 D C Yn, which means �
.2/
n;m is injective. Hence

Hn;m ' ker.�n;m/ ' ker¹�.1/n;mWD C Yn=Yn �! D C Ym=Ymº

and the isomorphismD=Di D D=D\Yi ' DCYi=Yi concludes the proof of (3).

The second isomorphism follows easily (note that �n;mD D 0 for large

enough m).

For the �nal statement use (1) to get �n;m D pm�n C g.T /T �n (for some

g.T / 2 ƒ). If Dn D 0, then

T �nD D �n0;n�n0
TD � �n0;n.Yn0

\D/ D �n0;nDn0
D Dn D 0;

by Lemma 3.2. Hence �n;m acts as multiplication by pm�n on D. �

Corollary 3.4. For all m > n > n0 we have

(a) jHn;mj D
jDj � jDmj

jDnj � jDn;mj
D jD C Yn=Dn;m C Ymj �

jAnj

jAmj
;

(b) if D ¤ 0 and n > n0, then inWAn ! A D A.K/ is injective if and only if

n D n0 and D is contained in Yn0
.

Proof. (a) For the �rst equality just note that im.�n;m/ D Dn;m=Dm and use

Proposition 3.3. For the second one note that im.�
.1/
n;m/ D Dn;m C Ym=Ym yields

jHn;mj D
jD C Yn=Ynj

jDn;m C Ym=Ymj
:
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Using the exact sequences

Yn=Ym ,�! D C Yn=Ym �� D C Yn=Yn; Yn=Ym ,�! X=Ym �� X=Yn

and

Dn;m C Ym=Ym ,�! D C Yn=Ym �� D C Yn=Dn;m C Ym

(recalling that jX=Yi j D jAi j for any i > n0), one gets

jD C Yn=Ynj

jDn;m C Ym=Ymj
D

jD C Yn=Ymj

jYn=Ymj
�

jD C Yn=Dn;m C Ymj

jD C Yn=Ymj

D
jD C Yn=Dn;m C Ymj

jYn=Ymj

D jD C Yn=Dn;m C Ymj �
jAnj

jAmj
:

(b) By Proposition 3.3, Hn D 0 implies D � Yn � Yn0
, so D D Dn D Dn0

.

Now as remarked before Proposition 3.3, since D is not zero, we obtain n D n0.

The converse is trivial. �

Note that from the last assertion it follows that ifD ¤ 0 and n > n0, then there

are at least p � 1 ideal classes in An which capitulate in some Am.

Corollary 3.5. For any Zp-extension K=k, the following are equivalent:

(a) X does not contain any nontrivial �nite submodule;

(b) Hn0C1 D 0;

(c) in;mWAn ! Am is injective for all m > n > n0.

Proof. (a) H) (c) follows from Proposition 3.3, (c) H) (b) is obvious and

(b) H) (a) is given by Corollary 3.4 (b). �

The following corollary generalizes [5, Proposition].

Corollary 3.6. Let K=k be a Zp-extension, assume that An ¤ 0 and in;m is

injective for some m > n > n0. Then jAmj > pm�njAnj.

Proof. It su�ces to prove that Yi © YiC1 for any n 6 i 6 m � 1 or, equiva-

lently, Ym�1 ¤ 0 (by Nakayama’s lemma the modules Yn and YnC1 become equal

only when they are zero). So we assume Ym�1 D 0 and look for a contradiction.

Obviously

jAnj D jin;m�1.An/j D j�n;m�1X=Ym�1j D j�n;m�1X j
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and

jAnj D jin;m.An/j D j�n;mX=Ymj D j�n;mX j:

This yields

�m�1;m�n;m�1X D �n;m�1X

and, by Nakayama’s lemma,

�n;m�1X D 0:

Then in;m is the zero map and this contradicts An ¤ 0. �

We are now ready to state the stabilization result regarding the modules Hn.

Theorem 3.7. Assume n > n0:

(a) if jHnj=jHnC1j, thenHm ' Hn ' D for allm > n. In particular there exists

r > n0 such that

(6) jHn0
j < jHn0C1j < � � � < jHr j D jHrC1j D � � � D jDjI

(b) if rkp.Hn/ D rkp.HnC1/, then rkp.Hm/ D rkp.Hn/ D rkp.D/ for all m > n.

In particular there exists Qr > n0 such that

(7)

rkp.Hn0
/ < rkp.Hn0C1/ < � � � < rkp.HQr/ D rkp.HQrC1/ D � � � D rkp.D/:

Proof. (a) Since Hn ' D=Dn, the hypothesis yields

Dn D DnC1 D �n;nC1Dn

(by Lemma 3.2). Nakayama’s lemma impliesDn D 0, so, for anym > n,Dm D 0

and Hm ' Hn ' D.

(b) The hypothesis yields

D=Dn C pD ' D=DnC1 C pD;

i.e.,

Dn C pD D DnC1 C pD:

Therefore

Dn C pD=pD D �n;nC1.Dn C pD=pD/;

and, from Nakayama’s lemma, Dn C pD=pD D 0. Thus, for any m > n,

Dm � Dn � pD and D=Dm C pD D D=Dn C pD D D=pD, which is the

claim. �
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Remark 3.8. From the proof of Theorem 3.7 it is easy to see that the or-

ders (resp. the p-ranks) of the Hn stabilize exactly when Dr D 0 (resp. when

DQr � pD).

The Hn;m have a less regular (hence more interesting) behaviour with respect

to stabilization, at least for small indices: to describe it we use the following

Definition 3.9. For any n > 0, let h.n/ WD min¹z > n s:t: Dn;z D 0º.

Proposition 3.10. Let jDj D pı with ı 2 N and let p" 2 N be the exponent

of D (i.e., the minimum integer for which p"D D 0). Then

(a) for any n > 0, we have h.n/ � n 6 ı and, for every n > ı, h.n/ � n D ";

(b) for any n > r , we have h.n/ � n D ".

Proof. (a) The �rst statement follows from Nakayama’s lemma: indeed, for

any n > 0, �n;nCıD D 0 (since �n;mP D P if and only if P D 0, the order of a

nontrivial module must decrease of a factor at least p at any step, i.e.,D vanishes

after at most ı steps).

For the second statement, consider the action of � D Gal.K=k/ over D and

let p! be the cardinality of the greatest orbit in D. Then �p
!

acts trivially on D,

so, for all n > ı > !, the element �n;nC1 D 1 C p
n

C � � � C  .p�1/pn
acts

on D as multiplication by p. This implies both �n;nC"�1D D p"�1D ¤ 0 and

�n;nC"D D p"D D 0, i.e., h.n/ D nC ".

(b) The hypothesis n > r yields Dn D 0, hence, as seen in the proof of

Proposition 3.3, �n;nC1D D pD. This immediately leads to h.n/ D nC ". �

Theorem 3.11. Let n > n0, then

(a) if n < r , one has

1 D jHn;nj 6 jHn;nC1j 6 jHn;nC2j 6 � � � 6 jHn;r j

D jHn;r j < jHn;rC1j < jHn;rC2j < � � � < jHn;h.n/j

D jHn;h.n/j

D jHn;h.n/C1j D jHn;h.n/C2j D � � � D jD=DnjI

(b) if n > r , one has jHn;mj D jDj
jDn;mj

for all m > n, h.n/ D nC " and

1 < jHn;nC1j < � � � < jHn;nC"j D jHn;nC"C1j D � � � D jDj:
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Proof. Everything follows from Corollary 3.4 and Proposition 3.10. For the

strict inequalities of the central line of (a) note that, since �n;rCjDn D DrCj D 0

for any j > 0, one has

jHn;rCj j D
jDj

jDnj � jDn;rCj j

and, by Lemma 3.2 and Nakayama’s lemma, theDn;rCj stabilize (i.e., become 0)

only at the level Dn;h.n/. �

Example 3.12. By [13, Theorem 1], for any �nite ZpŒŒ���-module D there

exists a �eld k whose cyclotomic Zp-extension kcyc=k provides X.kcyc/ ' D.

Take D ' ƒ=.pu; T / and let u0 be such that 0 6 u0 6 u and D0 D pu0D

(enlarging the base �eld, if necessary, we can assume n0 D 0). A little calculation

shows that

jHn;mj D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if 0 6 n 6 m 6 u � u0;

pm�uCu0 if n 6 u � u0 and u � u0 < m 6 nC u;

pm�n if n > u � u0 and n 6 m 6 nC u;

pu if n > u � u0 and m > nC u:

Furthermore we can easily see that our parameters take the following values:

r D u� u0; Qr D 0

and

h.n/ D nC u for all n > 0:

In particular, if n < u � u0, the equation of Theorem 3.11 (a) becomes

1 D jHn;nj D � � � D jHn;u�u0
j < jHn;u�u0C1j < � � � < jHn;nCuj D � � � D jHnj

and shows that the orders of the Hn;m (unlike the ones of the other Iwasawa

modules) can be constant for some indices, then increase and �nally stabilize for

good.

4. Stabilization and Iwasawa invariants

In this �nal section we deal with relations between the stabilization ofƒ-modules

and the triviality of Iwasawa invariants for K. To simplify notations we assume

the following
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Assumption 4.1. All primes which ramify in K=k are totally rami�ed, i.e.,

n0 D 0.

We remark that all statements can be proved for a general n0 (substituting 0

with n0 and 1 with n0 C 1) with no relevant modi�cations.

Theorem 4.2. The following are equivalent:

(a) �.K=k/ D �.K=k/ D 0;

(b) im.in;m/ D im.in�1;m/ for some m > n > 1;

(c) ker.Nm;n/ D ker.Nm;n�1/ for some m > n > 1;

(d) rkp.Hn/ D rkp.An/ D rkp.AnC1/ for some n > 0.

Proof. The �rst equivalences are just exercises with ƒ-modules. For

(b) H) (a) the hypothesis yields �n�1;mX D �n;mX , hence one gets �n;mX D 0,

Ym D 0, and X ' Am. Conversely (a) H) (b) because if X is �nite, then

�n�1;mX D �n�1;n�n;mX D 0 for m � 0.

For (c) H) (a) recall the commutative diagram

(8)

Am
' //

Nm;n

��

Xm ' X=Ym

�m;n

��
An

' // Xn ' X=Yn

(where �m;n is the projection), which, in particular, implies ker.Nm;n/ ' Yn=Ym.

The hypothesis yields Yn�1=Ym D Yn=Ym D �n�1;nYn�1=Ym, i.e., one gets

Yn�1 D Yn D �n�1;nYn�1. Hence Yn�1 D 0 and X ' An�1 (and ker.Nb;a/ D 0

for all b > a > n � 1). The reverse arrow is similar to the previous one (if X is

�nite, the Yn are �nite as well).

For (a) H) (d) just recall the well-known fact that the �niteness of X implies

An D Hn for any n > 0. For the reverse (and �nal) arrow consider the map

 WD � ı i given by the composition

D C Yn
i

,�! X
�

�! X=Yn C pX:
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Since rkp.An/ D rkp.AnC1/ (i.e., Yn � pX by Theorem 1.1 (b)), we have the

equalities

ker. / D .D C Yn/ \ .pX C Yn/

D .D C Yn/ \ pX

D .D \ pX/C Yn

D pD C Yn;

where the last equality comes from Corollary 2.3 (indeed if px is an element of

D\pX of order pˇ , then x 2 ker¹pˇC1WX ! Xº which is �nite, hence contained

in D, because �.K=k/ D 0). So  induces an embedding

D C Yn=pD C Yn
N 

,�! X=Yn C pX:

Now note that D C Yn=pD C Yn ' D=.D \ Yn/ C pD ' Hn=pHn

(by Proposition 3.3), hence the hypothesis rkp.Hn/ D rkp.An/ implies that N 

is an isomorphism. Then X D D C pX and eventually X D D. �

Remark 4.3. Note that if (b), (c), or (d) are true for a certain suitable n, then

they are true for every n (again because of An D Hn for all n > 0).

We mention that one can �nd several other equivalences (mainly dealing with

inverse images of norms and inclusions), but we decided to include only kernels,

cokernels and images since they are more commonly used in the theory (see, e.g.,

[6] or [10]) and they give a full account of the techniques used in the proofs.

The following theorem only deals with the triviality of the�-invariant which is

related to the stabilization of the p-rank of kernels and cokernels of natural maps.

Theorem 4.4. The following are equivalent:

(a) �.K=k/ D 0;

(b) for some m > n > 1, rkp.ker.Nm;n// D rkp.ker.NmC1;n// (equivalently,

rkp.ker.Nm;n// D rkp.ker.Nm;n�1//);

(c) for some m > n > 1, rkp.coker.in;m// D rkp.coker.in;mC1// (equivalently,

rkp.coker.in;m// D rkp.coker.in�1;m//);

(d) for some m > n > 1, rkp.coker.in;m// D rkp.Am/.
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Proof. The proof will be provided by the main results of the following two

subsections. In particular,

� the equivalence (b) () (a) follows from Theorem 4.7 and Proposition 4.9;

� the equivalence (c) () (a) follows from Theorem 4.10 and Proposition 4.12;

� the equivalence (c) () (d) follows from Theorem 4.10 and Remark 4.11.

�

4.1 – The kernel of the norm map

Since the extension K=k is totally rami�ed at some prime, the maps Nm;n have

trivial cokernels, hence we focus on the ker.Nm;n/ to show their link with the

stabilization of the rkp.An/. Before studying the stabilization properties of the

rkp.ker.Nm;n//, we give a �nal result on the relation between ker.Nm;n/, Hm and

the �niteness X (which we left out of Theorem 4.2 because it does not involve

stabilization).

Proposition 4.5. The following hold

(a) if Hn;m D An for some m > n > 1, then X ' Am;

(b) if ker.Nn;n�1/ � Hn;m for some m > n > 1, then X ' Am.

Proof. (a) Note thatHn;m D An impliesH1;m D A1, so we only consider the

case n D 1. From diagram (5) and the hypothesis, one gets

�1;mX � Ym D �0;1�1;mY0 � �0;1�1;mX:

Nakayama’s lemma yields �1;mX D 0, thus Ym D 0 and X ' Am.

(b) By diagram (8), the hypothesis yields Yn�1=Yn � ker.�n;m/, i.e., one gets

�n;mYn�1 � Ym. Since Ym D �n;mYn � �n;mYn�1, we have �n;mYn�1 D Ym.

Multiplying by �n�1;n, one has Ym D �n�1;nYm, which yields Ym D 0 and

X ' Am. �

Having seen that ker.Nm;n/ � Hm implies the �niteness of X , we point out

that the reverse inclusion holds if and only if D D 0.

Proposition 4.6. The following hold

(a) if m > n > 1, then Hm � ker.Nm;n/ if and only if D D 0;

(b) if n > 0, then Hn � ker.Nn;0/ if and only if H0 D 0.

Proof. Note thatHm � ker.Nm;n/ () D D Dn. Then (b) follows from (4),

while, in case (a), n > 1 yields D D Dn D Dn�1 and �nally D D 0. �
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Now we work on results involving p-ranks which appear in Theorem 4.4 .

Theorem 4.7. Let K=k be as above.

(a) If rkp.ker.Nn;l // D rkp.ker.Nn;l�1// for some n > l > 1, then

rkp.Yl/ D rkp.ker.Nm;l // D rkp.ker.Nn;l //

and

rkp.Am/ D rkp.An/

for all m > n;

(b) if rkp.ker.Nn;l // D rkp.ker.NnC1;l // for some n > l > 0, then

rkp.Yl/ D rkp.ker.Nm;l // D rkp.ker.Nn;l //

and

rkp.Am/ D rkp.An/

for all m > n.

Proof. (a) Since ker¹�l�1;l WYl�1 ! Yl=Yn º � �l;nYl�1 one has a surjective

map

Yl�1=Yn
�

�! Yl�1=�l;nYl�1
�l�1;l

����! Yl=Yn

(where � is the projection). This map � WD �l�1;l ı � induces a surjection

N� WYl�1=Yn C pYl�1 ! Yl=Yn C pYl . By hypothesis

rkp.Yl�1=Yn/ D rkp.ker.Nn;l�1// D rkp.ker.Nn;l // D rkp.Yl=Yn/;

thus both N� and N� WYl�1=YnCpYl�1 ! Yl�1=�l;nYl�1CpYl�1 are isomorphisms.

This means that Yn C pYl�1 D �l;nYl�1 C pYl�1 and, if we consider the quotient

moduleM WD �l;nYl�1CpYl�1=pYl�1, we have that �l�1;lM D M . Nakayama’s

lemma yields M D 0 and �l;nYl�1 � pYl�1. Therefore Yn � pYl and, in general,

Ym � pYl � pX for any m > n. Hence

rkp.ker.Nm;l // D dimFp
.Yl=Ym C pYl/ D dimFp

.Yl=pYl / D rkp.Yl/

and

rkp.Am/ D dimFp
.X=Ym C pX/ D dimFp

.X=pX/

for any m > n (note that, in particular, the last equality implies �.K=k/ D 0).

(b) From the hypothesis we have Yl=Yn C pYl ' Yl=YnC1 C pYl , then

Yn CpYl D YnC1 CpYl . As in (a), letting M WD Yn CpYl=pYl , one getsM D 0,

i.e., Yn � pYl and, in general, Ym � pYl � pX for any m > n. �
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Remark 4.8. The previous statements cannot be reversed, i.e., the equality

rkp.An/ D rkp.AnC1/ for some n > l > 0 does not imply that one gets

rkp.ker.Nn;l // D rkp.ker.NnC1;l //. But with the following proposition we can

give a bound for the delay of the stabilization of the rkp.ker.Nm;l //.

Proposition 4.9. Let rkp.An/ D rkp.AnC1/. Then, for any l 2 ¹0; 1; : : : ; nº,

we have

rkp.ker.Nm;l // D rkp.ker.NnC"l ;l // for all m > nC "l

(where p"l is the exponent of Al).

Proof. The hypothesis yields Yn � pX . Now exp.Al / D p"l and (1) imply

�n;nC"l
X � Yl . Thus

Ym D �nC"l ;mYnC"l
� YnC"l

D �n;nC"l
Yn � �n;nC"l

pX � pYl :

Since rkp.ker.Nm;l // D rkp.Yl=Ym C pYl/, the statement follows. �

4.2 – The cokernel of the inclusion maps

First note that, once n and m are �xed, we have increasing sequences

(9) rkp.coker.in;m// 6 rkp.coker.in;mC1// 6 rkp.coker.in;mC2// 6 � � �

and

(10) rkp.coker.in;m// 6 rkp.coker.in�1;m// 6 rkp.coker.in�2;m// 6 � � � :

Theorem 4.10. If, for some m > n, rkp.coker.in;m// D rkp.coker.in;mC1//

(or rkp.coker.in;m// D rkp.coker.in�1;m// with n > 1), then

(a) rkp.coker.il;q// D rkp.coker.in;m// for all l 6 n 6 m 6 q;

(b) rkp.Aq/ D rkp.Am/ D rkp.coker.in;m// for all q > m.

Proof. (a) By hypothesis

X=�n;mX C pX ' X=�n;mC1X C pX;

hence

pX C �n;mX D pX C �n;mC1X

and

�m;mC1.�n;mX C pX=pX/ D �n;mC1X C pX=pX:

By Nakayama’s lemma, �n;mX C pX=pX D 0, thus �n;mX � pX and

�l;qX � pX for any l 6 n 6 m 6 q.

(b) Just note that �n;mX � pX implies Yq � Ym � pX for all q > m. �
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Remark 4.11. An immediate consequence of Theorem 4.10 (resp. of Theo-

rem 4.7) and of Theorem 4.2 (d) is that if rkp.coker.ia;n// (resp. rkp.ker.Nn;a//)

stabilizes and is equal to rkp.Hn/, then X is �nite. Note also that the equality

rkp.Am/ D rkp.coker.in;m// is easily seen to imply �n;mX � pX , i.e., the stabi-

lization of rkp.coker.in;m//.

We can give a bound for the delay of the stabilization of the rkp.coker.in;m//

analogous to the one in Proposition 4.9 (the proof is similar).

Proposition 4.12. Let rkp.An/ D rkp.AnC1/. Then, for any l 2 ¹0; 1; : : : ; nº,

we have

rkp.coker.il;m// D rkp.coker.il;nC"l
// for all m > nC "l :

4.3 – A relation between coker.in;m/ and ker.Nm;n/

We conclude with a special case in which the stabilization of the two modules is

achieved at the same level (i.e., without the delay described in Propositions 4.9

and 4.12). If jA�1 j D jA0j (resp. A0 D 0, but limiting ourselves to n > 1), one

has Y0 D TX (resp. Y0 D X) and it is easy to see that the stabilization of the

rkp.coker.in;m// yields stabilization of the rkp.ker.Nm;n// (i.e., �n;mX � pX

implies Ym � pYn). To obtain a relation in the other direction one needs to assume

also the maximality of rkp.ker.Nm;n//.

Theorem 4.13. Assume jA�1 j D jA0j or A0 D 0 and n > 1. If one has

rkp.Am/ D rkp.ker.Nm;n//, then rkp.coker.in;q// stabilizes for q > m. Moreover

rkp.Aq/ and rkp.ker.Nq;n// stabilize for q > m too.

Proof. We give a proof only in the case jA�1 j D jA0j because the other one is

similar. Consider the map

ˇ WD � ı �n ı T

pictured as

X
T

�! Y0
�n

�! Yn
�

�! Yn=Ym C pYn

where � is the canonical projection. Since pXC�n;mX � ker.ˇ/, we can consider

the map

X=Ym C pX 7�! X=�n;mX C pX
Ň

�! Yn=Ym C pYn;

where Ň is induced by ˇ and the �rst map is again a projection. By hypothesis

X=Ym C pX ' Yn=Ym C pYn;
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hence, from the middle term, we get

Ym C pX D �n;mX C pX:

Moding out by pX one has

T .�n;mX C pX=pX/ D �n;mY0 C pX=pX

� Ym C pX=pX

D �n;mX C pX=pX:

Nakayama’s lemma yields �n;mX C pX=pX D 0, i.e., �n;mX � pX and, in

general, �n;qX � pX for any q > m. This implies

rkp.coker.in;q// D dimFp
.X=�n;qX C pX/ D dimFp

.X=pX/

for any q > m. The �nal statement follows from Theorem 4.10. �
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