On $\pi\mathfrak{F}$ -supplemented subgroups of a finite group

Zhang, Li (*) – Chen, Xiaoyu (**) – Guo, Wenbin (***)

ABSTRACT – Let \mathfrak{F} be a class of groups and G a finite group. A chief factor H/K of G is called \mathfrak{F} -central in G provided $(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}$. A normal subgroup N of G is said to be $\pi\mathfrak{F}$ -hypercentral in G if every chief factor of G below G order divisible by at least one prime in G is G-central in G. The G-hypercentre of G is the product of all the normal G-hypercentral subgroups of G. In this paper, we study the structure of finite groups by using the notion of G-hypercentre. New characterizations of some classes of finite groups are obtained.

Mathematics Subject Classification (2010). 20D10, 20D15, 20D20.

Keywords. \mathfrak{F} -hypercentre, $\pi\mathfrak{F}$ -hypercentre, Sylow subgroups, n-maximal subgroups.

1. Introduction

Throughout this paper, all groups considered are finite. G always denotes a group, p denotes a prime, and π denotes a non-empty subset of the set \mathbb{P} of all primes. Moreover, $\pi(G)$ denotes the set of all prime divisors of |G| and $\pi(\mathfrak{F}) = \bigcup \{\pi(G) | G \in \mathfrak{F}\}$, where \mathfrak{F} is a non-empty class of finite groups.

Let \mathfrak{F} be a class of groups. If $1 \in \mathfrak{F}$, then we write $G^{\mathfrak{F}}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathfrak{F}$. A non-empty class \mathfrak{F} of groups is called a *formation* if for every group G, every homomorphic image of $G/G^{\mathfrak{F}}$

(*) *Indirizzo dell'A*.: Department of Mathematics, University of Science and Technology of China, 230026, Hefei, P. R. China

E-mail: zhang12@mail.ustc.edu.cn

(**) *Indirizzo dell'A*.: School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, 210023, Nanjing, P. R. China

E-mail: jelly@njnu.edu.cn

(***) *Indirizzo dell'A*.: Department of Mathematics, University of Science and Technology of China, 230026, Hefei, P. R. China

E-mail: wbguo@ustc.edu.cn

belongs to \mathfrak{F} . A formation \mathfrak{F} is said to be (i) *saturated* if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$; (ii) *hereditary* (*normally hereditary*) if $H \in \mathfrak{F}$ whenever $H \leq G \in \mathfrak{F}$ ($H \leq G \in \mathfrak{F}$, respectively). Note that the classes of all *p*-nilpotent groups and all supersolvable groups are both saturated and hereditary. In the sequel, we use \mathfrak{U} to denote the class of all supersolvable groups.

For a class \mathfrak{F} of groups, a chief factor H/K of G is called \mathfrak{F} -central in G if $(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}$. Following [9], a normal subgroup N of G is said to be $\pi\mathfrak{F}$ -hypercentral in G if every chief factor of G below N of order divisible by at least one prime in π is \mathfrak{F} -central in G. The symbol $Z_{\pi\mathfrak{F}}(G)$ denotes the $\pi\mathfrak{F}$ -hypercentre of G, that is, the product of all normal $\pi\mathfrak{F}$ -hypercentral subgroups of G. When $\pi = \mathbb{P}$ is the set of all primes, $Z_{\mathbb{F}}(G)$ is called the \mathfrak{F} -hypercentre of G, and denoted by $Z_{\mathfrak{F}}(G)$. Clearly, for any non-empty set π of primes, $Z_{\mathfrak{F}}(G) \leq Z_{\pi\mathfrak{F}}(G)$.

Applications of the $\pi \mathfrak{F}$ -hypercentre are based on the following concept.

DEFINITION 1.1. Let \mathfrak{F} be a non-empty class of groups. A subgroup H of G is called $\pi\mathfrak{F}$ -supplemented in G, if there exists a subgroup T of G such that G = HT and $(H \cap T)H_G/H_G \leq Z_{\pi\mathfrak{F}}(G/H_G)$, where H_G is the maximal normal subgroup of G contained in H.

In this paper, we will study the structure of finite groups by using the concept of $\pi\mathfrak{F}$ -supplemented subgroup. Now characterizations of p-nilpotency and supersolvability of finite groups are obtained, and a series of known results are generalized.

All unexplained notations and terminologies are standard. The reader is referred to [6], [7], and [13].

2. Preliminaries

The following known results are helpful in our proof.

LEMMA 2.1 ([9, Lemma 2.2] and [5, Lemma 2.8]). Let \mathfrak{F} be a saturated formation and $\pi \subseteq \pi(\mathfrak{F})$. Let $N \subseteq G$ and $A \subseteq G$.

- (1) $Z_{\pi \mathfrak{F}}(G)$ is $\pi \mathfrak{F}$ -hypercentral in G.
- (2) $Z_{\pi\mathfrak{F}}(A)N/N \leq Z_{\pi\mathfrak{F}}(AN/N)$.
- (3) If \mathfrak{F} is (normally) hereditary and A is a (normal) subgroup of G, then $Z_{\pi\mathfrak{F}}(G) \cap A \leq Z_{\pi\mathfrak{F}}(A)$.

Lemma 2.2. Let \mathfrak{F} be a saturated formation and $H \leq K \leq G$.

- (1) H is $\pi \mathfrak{F}$ -supplemented in G if and only if there exists a subgroup T of G such that G = HT, $H_G \leq T$ and $(H/H_G) \cap (T/H_G) \leq Z_{\pi \mathfrak{F}}(G/H_G)$.
- (2) Suppose that $H \leq G$. Then K/H is $\pi \mathfrak{F}$ -supplemented in G/H if and only if K is $\pi \mathfrak{F}$ -supplemented in G.
- (3) Suppose that $H \leq G$. Then for every $\pi \mathfrak{F}$ -supplemented subgroup E of G satisfying (|E|, |H|) = 1, EH/H is $\pi \mathfrak{F}$ -supplemented in G/H.
- (4) Suppose that H is $\pi \mathfrak{F}$ -supplemented in G. If \mathfrak{F} is (normally) hereditary and K is a (normal) subgroup of G, then H is $\pi \mathfrak{F}$ -supplemented in K.
- PROOF. (1) The sufficiency is clear. Now assume that H is $\pi \mathfrak{F}$ -supplemented in G. Then there exists a subgroup T of G such that G = HT and that $(H \cap T)H_G/H_G \leq Z_{\pi \mathfrak{F}}(G/H_G)$. Let $T^* = TH_G$. Then $G = HT^*$, $H_G \leq T^*$ and we obtain $(H/H_G) \cap (T^*/H_G) = (H \cap T)H_G/H_G \leq Z_{\pi \mathfrak{F}}(G/H_G)$.
- (2) First assume that K/H is $\pi\mathfrak{F}$ -supplemented in G/H. Then by (1), G/H has a subgroup T/H such that G/H = (K/H)(T/H), $K_G/H \leq T/H$ and $((K/H)/(K_G/H)) \cap ((T/H)/(K_G/H)) \leq Z_{\pi\mathfrak{F}}((G/H)/(K_G/H))$. It follows that $(K/K_G) \cap (T/K_G) \leq Z_{\pi\mathfrak{F}}(G/K_G)$. Thus K is $\pi\mathfrak{F}$ -supplemented in G. Analogously, one can show that if K is $\pi\mathfrak{F}$ -supplemented in G, then K/H is $\pi\mathfrak{F}$ -supplemented in G/H.
- (3) By (1), there exists a subgroup T of G such that G = ET, $E_G \leq T$ and $(E/E_G) \cap (T/E_G) \leq Z_{\pi \mathfrak{F}}(G/E_G)$. In view of (2), we only need to prove that EH is $\pi \mathfrak{F}$ -supplemented in G. Since (|E|, |H|) = 1, $H \leq T$, and so $EH \cap T = (E \cap T)H \leq ZH$, where $Z/E_G = Z_{\pi \mathfrak{F}}(G/E_G)$. Let $D = (EH)_G$. Then $(EH/D) \cap (TD/D) = (EH \cap T)D/D \leq ZD/D \leq Z_{\pi \mathfrak{F}}(G/D)$ by Lemma 2.1(2), and so EH is $\pi \mathfrak{F}$ -supplemented in G.
- (4) By (1), G has a subgroup T such that both G = HT, and $H_G \leq T$, as well as $(H/H_G) \cap (T/H_G) \leq Z_{\pi\mathfrak{F}}(G/H_G)$. Let $T^* = K \cap T$. Since $K = HT^*$ and $(H/H_G) \cap (T^*/H_G) = (H \cap T)/H_G \leq Z_{\pi\mathfrak{F}}(G/H_G) \cap (K/H_G) \leq Z_{\pi\mathfrak{F}}(K/H_G)$ by Lemma 2.1(3), H is $\pi\mathfrak{F}$ -supplemented in K.
- LEMMA 2.3 ([4, Lemma 2.12]). Let p be a prime divisor of |G| with $(|G|, (p-1)(p^2-1)...(p^n-1)) = 1$ for some integer $n \ge 1$. If $H \le G$ with $p^{n+1} \nmid |H|$ and G/H is p-nilpotent, then G is p-nilpotent. In particular, if $p^{n+1} \nmid |G|$, then G is p-nilpotent.

For any subgroup H of G, a subgroup T of G is called a *supplement of* H *in* G if G = HT.

LEMMA 2.4 ([11, Lemma 2.12]). Let p be a prime divisor of G such that (|G|, p-1) = 1. Suppose that P is a Sylow p-subgroup of G such that every maximal subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Lemma 2.5 ([8, Lemma 2.3]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and G a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

The following facts about the generalized Fitting subgroup are useful in our proof (see [14, Chapter X, Section 13] and [19, Lemmas 2.17–2.19]).

Lemma 2.6. (1) If $N \triangleleft G$, then $F^*(N) = F^*(G) \cap N$.

- (2) $F^*(G) \neq 1$ if $G \neq 1$.
- (3) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is solvable, then

$$F^*(G) = F(G).$$

- (4) $F^*(G) = F(G)E(G)$, [F(G), E(G)] = 1, $F(G) \cap E(G) = Z(E(G))$ and E(G)/Z(E(G)) is the direct product of simple non-abelian groups, where E(G) is the layer of G.
 - $(5) C_G(F^*(G)) \le F(G).$
 - (6) If P is a normal p-subgroup of G, then $F^*(G/\Phi(P)) = F^*(G)/\Phi(P)$.
 - (7) If P is a normal p-subgroup of G contained in Z(G), then

$$F^*(G/P) = F^*(G)/P.$$

3. Characterizations of p-nilpotent groups

Recall that a chain $H_0 = H \le H_1 \le \cdots \le H_n = G$ is a maximal chain if each H_i is a maximal subgroup of H_{i+1} ($i = 0, 1, \dots, n-1$). The subgroup H in such a series is an n-maximal subgroup of G. The following proposition is the main step in the proof of Theorem 3.2.

Proposition 3.1. Let p be a prime divisor of |G| such that

$$(|G|, (p-1)(p^2-1)...(p^n-1)) = 1$$

for some integer $n \ge 1$. If there exists a Sylow p-subgroup P of G such that every n-maximal subgroup (if exists) of P is $p\mathfrak{U}$ -supplemented in G, then G is p-nilpotent.

PROOF. Suppose that the assertion is false and let G be a counterexample of minimal order. Clearly, $p^{n+1}||G|$ by Lemma 2.3. We proceed via the following steps.

(1)
$$Z_{p\mathfrak{U}}(G) = 1$$
.

PROOF. Suppose that $Z_{p\mathfrak{U}}(G) \neq 1$. Let N be a minimal normal subgroup of G contained in $Z_{p\mathfrak{U}}(G)$. Clearly, either N is a p'-group or |N| = p. By Lemmas 2.2(2) and (3), we see that G/N satisfies the hypothesis of the proposition. Hence, G/N is p-nilpotent by the choice of G. If N is a p'-group, then G is p-nilpotent, a contradiction. Thus |N| = p. As (|G|, p-1) = 1, we have that $N \leq Z(G)$, and so G is p-nilpotent, a contradiction too. Thus (1) holds. Δ

(2) If $O_p(G) \neq 1$, then $O_p(G)$ is a minimal normal subgroup of G and $G = O_p(G) \rtimes M$, where M is a p-nilpotent maximal subgroup of G.

PROOF. Let N be a minimal normal subgroup of G contained in $O_p(G)$. Then N is abelian. Similarly as in the proof of (1), we can show that G/N is p-nilpotent. Since the class of finite p-nilpotent groups is a saturated formation, N is the unique minimal normal subgroup of G contained in $O_p(G)$ and $N \not\leq \Phi(G)$. It follows that $G = N \rtimes M$ for some maximal subgroup M of G. Thus $M \cong G/N$ is p-nilpotent. Clearly, $O_p(G) \cap M \trianglelefteq G$. By the uniqueness of N, we have $O_p(G) \cap M = 1$, and so $O_p(G) = N(O_p(G) \cap M) = N$. Thus $O_p(G) = N$ is a minimal normal subgroup of G.

(3) The final contradiction.

PROOF. Let P_n be any n-maximal subgroup of P. Then $(P_n)_G = 1$ or $O_p(G)$ by (2). If $(P_n)_G = O_p(G)$, then $G = O_p(G)M = P_nM$. Now assume that $(P_n)_G = 1$. Since P_n is $p\mathfrak{U}$ -supplemented in G, G has a subgroup T such that $G = P_nT$ and $P_n \cap T = 1$ by (1). Hence T is p-nilpotent by Lemma 2.3. This shows that every n-maximal subgroup of P has a p-nilpotent supplement in G. Consequently, G is p-nilpotent by Lemma 2.4.

The final contradiction completes the proof.

Theorem 3.2. Let p be a prime divisor of |G| such that

$$(|G|, (p-1)(p^2-1)...(p^n-1)) = 1,$$

for some integer $n \geq 1$. Then G is p-nilpotent if and only if G has a normal subgroup H such that G/H is p-nilpotent, and for any Sylow p-subgroup P of H, every n-maximal subgroup (if exists) of P is $p\mathfrak{U}$ -supplemented in G.

Proof. The necessity is evident. We only need to prove the sufficiency. By Lemma 2.2(4), every *n*-maximal subgroup of P is $p\mathfrak{U}$ -supplemented in H. Hence H is p-nilpotent by Proposition 3.1. Let $H_{p'}$ be the normal Hall p'-subgroup of H. Then obviously, $H_{p'} \leq G$. By Lemma 2.2(3), $(G/H_{p'}, H/H_{p'})$ satisfies the hypothesis of the theorem. If $H_{p'} \neq 1$, then by induction, $G/H_{p'}$ is p-nilpotent, and so G is p-nilpotent.

Hence we may assume that H = P. Let K/P be the normal Hall p'-subgroup of G/P. By Lemma 2.2(4), every n-maximal subgroup of P is $p\mathfrak{U}$ -supplemented in K. Hence K is p-nilpotent by Proposition 3.1, and so $K = P \times K_{p'}$, where $K_{p'}$ is a Hall p'-subgroup of K. This implies that $K_{p'}$ is a normal Hall p'-subgroup of G. Therefore, G is p-nilpotent.

THEOREM 3.3. Let p be a prime divisor of |G|. Then G is p-nilpotent if and only if there exists a normal subgroup H of G such that G/H is p-nilpotent, and for any Sylow p-subgroup P of H, one of the following holds:

- (1) $(|G|, (p-1)(p^2-1)...(p^n-1)) = 1$ for some integer $n \ge 1$, $p^n > 2$ and every subgroup L of P of order p^n is $p\mathfrak{U}$ -supplemented in G;
- (2) p = 2, P is abelian and every subgroup L of P of order 2 is $2 \mathfrak{U}$ -supplemented in G;
- (3) p = 2, P is non-abelian and every cyclic subgroup L of P of order 2 or 4 is 2*U*-supplemented in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that this is false and let (G, H) be a counterexample for which |G| is minimal. We proceed via the following steps.

(1)
$$|P| \ge p^{n+1}$$
.

Proof. It follows from Lemma 2.3.

Δ

(2) $G = P \times Q$, where P is a normal Sylow p-subgroup of G and Q a cyclic Sylow q-subgroup of $G(p \neq q)$, $P/\Phi(P)$ is a chief factor of G, and the exponent of P is p or 4 (when P is a non-abelian 2-subgroup).

Proof. Let M be any maximal subgroup of G. Then by Lemma 2.2(4), $(M, M \cap H)$ satisfies the hypothesis of the theorem. The choice of (G, H) implies that M is p-nilpotent, and so G is a minimal non-p-nilpotent group. Hence, by [13, IV, Satz 5.4] and [18, Theorem 1.1], $G = G_p \rtimes Q$, where $G_p = G^{\mathfrak{N}^p}$ is the normal Sylow p-subgroup of G and Q a cyclic Sylow q-subgroup of G ($q \neq p$), $G_p/\Phi(G_p)$ is a chief factor of G, and the exponent of G_p is p or 4(when G_p is a non-abelian 2-subgroup). Note that $G^{\mathfrak{N}^p} \leq H$. Therefore, $G_p = P$ and (2) holds. Δ

П

(3) P has a proper subgroup L of order p^n or 4 (when P is a non-abelian 2-subgroup) such that $L \nleq \Phi(P)$ and L is $p\mathfrak{U}$ -supplemented in G.

PROOF. Take an element $x \in P \setminus \Phi(P)$ and let $E = \langle x \rangle$. Then |E| = p or 4 (when p = 2 and P is non-abelian) by (2). It follows that there exists a subgroup L of P of order p^n or 4 (when p = 2, n = 1 and P is nonablian, we may take L = E) such that $E \leq L$. By the hypothesis, L is $p\mathfrak{U}$ -supplemented in G. Moreover, if L = P, then |P| = 4 since $|P| \geq p^{n+1}$ by (1). This implies that P is abelian, a contradiction. Thus L < P.

(4) The final contradiction.

PROOF. By (3), there exists a subgroup T of G such that G = LT and $(L \cap T)L_G/L_G \leq Z_{p\mathfrak{U}}(G/L_G)$. Since $P/\Phi(P)$ is a chief factor of G by (2), $(P \cap T)\Phi(P)/\Phi(P) \leq G/\Phi(P)$, and so $(P \cap T)\Phi(P) = \Phi(P)$ or P. If $(P \cap T)\Phi(P) = \Phi(P)$, then $P \cap T \leq \Phi(P)$, and thereby $P = P \cap LT = L(P \cap T) \leq L\Phi(P) \neq P$ unless L = P, a contradiction. We may, therefore, assume that $(P \cap T)\Phi(P) = P$. Then we get $P \leq T$, and so T = G. Thus $L/L_G \leq Z_{p\mathfrak{U}}(G/L_G)$. Since $P/\Phi(P)$ is a chief factor of G by (2), $\Phi(P)L_G = \Phi(P)$ or P. If $\Phi(P)L_G = P$, then L = P, which contradicts (3). Therefore, $\Phi(P)L_G = \Phi(P)$, and so $L_G \leq \Phi(P)$. If $P/\Phi(P) \leq Z_{p\mathfrak{U}}(G/\Phi(P))$, then $|P/\Phi(P)| = P$, and so $P = L\Phi(P) = L$, a contradiction. Thus $Z_{p\mathfrak{U}}(G/\Phi(P)) \cap (P/\Phi(P)) = 1$ by (2). It follows from Lemma 2.1(2) that $L\Phi(P)/\Phi(P) \leq Z_{p\mathfrak{U}}(G/\Phi(P)) \cap (P/\Phi(P)) = 1$. This implies that $L \leq \Phi(P)$.

The final contradiction completes the proof.

4. Characterizations of supersolvable groups

In order to prove Theorem 4.2, we first establish the following proposition.

Proposition 4.1. For any $p \in \pi(G)$, if every maximal subgroup of every non-cyclic Sylow p-subgroup P of G is $p\mathfrak{U}$ -supplemented in G, then G is a Sylow tower group of supersolvable type.

PROOF. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. If P is cyclic, then G is p-nilpotent (see [17, (10.1.9)]). Otherwise, G is p-nilpotent by Proposition 3.1. Let V be the normal Hall p'-subgroup of G. Hence by Lemma 2.2(4), V satisfies the hypothesis of the proposition. Therefore, by induction, we obtain that G is a Sylow tower group of supersolvable type. \square

Theorem 4.2. G is supersolvable if and only if G has a normal subgroup H such that G/H is supersolvable, and every maximal subgroup of every non-cyclic Sylow p-subgroup of H is $p\mathfrak{U}$ -supplemented in G, for any prime $p \in \pi(H)$.

PROOF. The necessity is obvious. We only need to prove the sufficiency. Suppose that the result is false and let (G, H) be a counterexample for which |G| is minimal.

(1) Let q be the largest prime divisor of |H| and Q a Sylow q-subgroup of H. Then $Q \leq G$.

PROOF. By Lemma 2.2(4) and Proposition 4.1, H is a Sylow tower group of supersolvable type. This implies that $Q \leq G$.

(2) Q is a non-cyclic minimal normal subgroup of G.

PROOF. Let N be a minimal normal subgroup of G contained in Q, then N is an elementary abelian group. By Lemmas 2.2(2) and (3), the hypothesis of the theorem holds for (G/N, H/N). The choice of G implies that $G/N \in \mathfrak{U}$. Since \mathfrak{U} is a saturated formation, N is the unique minimal normal subgroup of G contained in Q and $N \not\leq \Phi(G)$. It follows that G has a maximal subgroup M such that $G = N \rtimes M$. It is easy to see that $Q \cap M \trianglelefteq G$, and so $Q \cap M = 1$. Therefore, $Q = N(Q \cap M) = N$ is a minimal normal subgroup of G. If G is cyclic, then $G \in \mathfrak{U}$ by Lemma 2.5, which is impossible. Thus G is non-cyclic.

(3) The final contradiction.

PROOF. Let Q_1 be a maximal subgroup of Q. Then $(Q_1)_G=1$ by (2). By the hypothesis, there exists a subgroup T of G such that $G=Q_1T$ and $Q_1\cap T\leq Z_{q\mathfrak{U}}(G)$. Note that $Q\cap T\leq G$. By $(2), Q\cap T=1$ or Q. If $Q\cap T=1$, then $Q=Q_1(Q\cap T)=Q_1$, a contradiction. Hence we may assume that $Q\cap T=Q$. Then T=G, and so $Q_1\leq Z_{q\mathfrak{U}}(G)\cap Q$. Since Q is a minimal normal subgroup of G, $Z_{q\mathfrak{U}}(G)\cap Q=1$ or Q. It follows that either $Q_1=1$ or $Q\leq Z_{q\mathfrak{U}}(G)$. In both cases, we have that Q is cyclic.

The final contradiction completes the proof.

The next proposition is useful in the proof of Theorem 4.4.

Proposition 4.3. G is supersolvable if and only if there exists a solvable normal subgroup H of G such that G/H is supersolvable, and every maximal subgroup of every non-cyclic Sylow p-subgroup of F(H) is $p\mathfrak{U}$ -supplemented in G, for any $p \in \pi(F(H))$.

PROOF. The necessity is clear. We only need to prove the sufficiency. Suppose that this is false and let (G, H) be a counterexample for which |G| is minimal.

(1)
$$\Phi(G) \cap F(H) = 1$$
.

PROOF. Assume that $\Phi(G) \cap F(H) \neq 1$, and let P_1 be a Sylow p-subgroup of $\Phi(G) \cap F(H)$ for some prime $p \in \pi(\Phi(G) \cap F(H))$. Then clearly, $P_1 \leq G$. Note that $F(H/P_1) = F(H)/P_1$ by [6, Chapter A, Theorem 9.3(c)]. It is easy to see that $(G/P_1, H/P_1)$ satisfies the hypothesis of the proposition by Lemmas 2.2(2) and (3). Thus, the choice of (G, H) implies that $G/P_1 \in \mathfrak{U}$, and so $G \in \mathfrak{U}$, a contradiction. Thus (1) holds.

(2) $F(H) = N_1 \times N_2 \times \cdots \times N_t$, where $t \geq 1$ is an integer, and N_i (i = 1, 2, ..., t) is a minimal normal subgroup of G of prime order.

PROOF. Since $H \neq 1$ is solvable, $F(H) \neq 1$. By (1) and [13, Chapter III, Theorem 4.5], $F(H) = N_1 \times N_2 \times \cdots \times N_t$, where N_i (i = 1, 2, ..., t) is a minimal normal subgroup of G. Without loss of generality, we may assume that $P = N_1 \times N_2 \times \cdots \times N_s$ $(s \le t)$ is a Sylow p-subgroup of F(H). We claim that $|N_i| = p$ for any i = 1, 2, ..., s. Otherwise, without loss of generality, we may assume that $|N_1| > p$. Then P is non-cyclic. Let N_1^* be a maximal subgroup of N_1 and $P^* = N_1^* N_2 \dots N_s$. Then P^* is a maximal subgroup of P and $(P^*)_G = N_2 \dots N_s$. By the hypothesis and Lemma 2.2(1), there exists a subgroup T of G such that $G = P^*T$, $(P^*)_G \leq T$ and $(P^*/(P^*)_G) \cap (T/(P^*)_G) \leq$ $Z_{p\mathfrak{U}}(G/(P^*)_G)$. Since $P\cap T \leq G$ and $P/(P^*)_G$ is a chief factor of $G, P\cap T=$ $(P^*)_G$ or P. If $P \cap T = (P^*)_G$, then $P \cap T \leq P^*$, and so $P = P^*(P \cap T) = P^*$, a contradiction. Hence we may assume that $P \cap T = P$. Then T = G. This implies that $P^*/(P^*)_G \leq Z_{p\mathfrak{U}}(G/(P^*)_G) \cap (P/(P^*)_G)$. Since $P^*/(P^*)_G \neq 1$, $P/(P^*)_G \leq Z_{p\mathfrak{U}}(G/(P^*)_G)$, and so $|N_1| = p$. This contradiction shows that (2) holds. Δ

(3) *The final contradiction.*

PROOF. By (2), $G/C_G(N_i)$ is a cyclic group for any $1 \le i \le t$. Hence $G/C_G(F(H)) = G/(\bigcap_{i=1}^t C_G(N_i)) \in \mathfrak{U}$. Consequently, $G/F(H) \in \mathfrak{U}$. It follows from Theorem 4.2 that $G \in \mathfrak{U}$.

The final contradiction completes the proof.

Theorem 4.4. G is supersolvable if and only if there exists a normal subgroup H of G such that G/H is supersolvable, and every maximal subgroup of every non-cyclic Sylow p-subgroup of $F^*(H)$ is $p\mathfrak{U}$ -supplemented in G, for any prime $p \in \pi(F^*(H))$.

PROOF. The necessity is clear. We only need to prove the sufficiency. Suppose that the result is false and let (G, H) be a counterexample for which |G| is minimal.

(1)
$$H = G$$
 and $F^*(G) = F(G) \neq 1$.

PROOF. By Lemma 2.2(4) and Theorem 4.2, $F^*(H) \in \mathfrak{U}$. Hence by Lemmas 2.6(2) and (3), $F^*(H) = F(H) \neq 1$. Obviously, (H, H) satisfies the hypothesis of the theorem by Lemma 2.2(4). If H < G, then the choice of (G, H) implies that $H \in \mathfrak{U}$. Hence $G \in \mathfrak{U}$ by Proposition 4.3, a contradiction. Thus H = G. \triangle

(2) Each proper normal subgroup of G containing F(G) is supersolvable.

PROOF. Let $F(G) \leq N \leq G$ with N < G. Then by Lemmas 2.6(1) and (3), $F^*(G) = F^*(F^*(G)) \leq F^*(N) \leq F^*(G)$, and so $F^*(G) = F^*(N)$. By Lemma 2.2(4), (N, N) satisfies the hypothesis of the theorem. Therefore, $N \in \mathfrak{U}$ by the choice of (G, H).

(3) F(G) is elementary abelian and $C_G(F(G)) = F(G)$.

PROOF. Assume $\Phi(O_p(G)) \neq 1$ for some $p \in \pi(F(G))$. By Lemma 2.6(6), $F^*(G/\Phi(O_p(G))) = F^*(G)/\Phi(O_p(G))$. Then $(G/\Phi(O_p(G)), G/\Phi(O_p(G)))$ satisfies the hypothesis of the theorem by Lemmas 2.2(2) and (3). The choice of (G, H) implies that $G/\Phi(O_p(G)) \in \mathfrak{U}$, and so $G \in \mathfrak{U}$, a contradiction. Therefore, $\Phi(O_p(G)) = 1$ for any $p \in \pi(F(G))$, and thereby F(G) is elementary abelian. By Lemma 2.6(5), we obtain that $C_G(F(G)) = F(G)$.

(4) There exists no normal subgroup of G of prime order contained in F(G).

PROOF. Suppose that G has a normal subgroup L contained in F(G) such that |L|=p. Then clearly, $G/C_G(L)$ is cyclic and $F(G)\leq C_G(L)$. If $C_G(L)< G$, then $C_G(L)\in \mathfrak{U}$ by (2). It follows that G is solvable, and so $G\in \mathfrak{U}$ by Proposition 4.3, a contradiction. Hence $C_G(L)=G$, and consequently $L\leq Z(G)$. Then by Lemma 2.6(7), $F^*(G/L)=F^*(G)/L$. It follows from Lemmas 2.2(2) and (3) that (G/L,G/L) satisfies the hypothesis of the theorem. Therefore, $G/L\in \mathfrak{U}$ by the choice of (G,H). Thus $G\in \mathfrak{U}$ by Lemma 2.5, a contradiction. Thus (4) holds.

(5) Let P be a nontrivial Sylow p-subgroup of F(G). Then P is non-cyclic and $P \cap \Phi(G) \neq 1$.

PROOF. If P is cyclic, then by (3), P is elementary abelian, and so |P| = p, which contradicts (4). Hence P is non-cyclic. Suppose that $P \cap \Phi(G) = 1$. Then by [13, Chapter III, Theorem 4.5], $P = R_1 \times R_2 \times \cdots \times R_t$, where R_1, \ldots, R_t are minimal normal subgroups of G. By discussing similarly as step (2) in Proposition 4.3, we have that $|R_i| = p$ for any $i = 1, 2, \ldots, t$, contrary to (4). Therefore, $P \cap \Phi(G) \neq 1$.

(6) There exists a unique normal subgroup L of G contained in P.

PROOF. In view of (5), let L be a minimal normal subgroup of G contained in $P \cap \Phi(G)$ and E/L = E(G/L), where E(G/L) is the layer of G/L. Then by Lemma 2.6(4), $F^*(G/L) = F(G)E/L$ and $[F(G), E] \leq L$. Let N be a minimal normal subgroup of G contained in P such that $N \neq L$. Then $[N, E] \leq N \cap L = 1$, and so $E \leq C_G(N)$. If $C_G(N) < G$, then $E \leq C_G(N) \in \mathfrak{U}$ by (2). Consequently, $F^*(G/L) = F(G)/L$. Hence (G/L, G/L) satisfies the hypothesis of the theorem by Lemmas 2.2(2) and (3). The choice of (G, H) implies $G/L \in \mathfrak{U}$. This yields that $G \in \mathfrak{U}$, which is impossible. Hence $C_G(N) = G$, contrary to (4). Thus L is the unique normal subgroup of G contained in P.

(7) *The final contradiction*.

PROOF. By (3), P is elementary abelian. Let S be a complement of L in P, L^* be a maximal subgroup of L and $P^* = L^*S$. Then P^* is a maximal subgroup of P, and clearly $(P^*)_G = 1$ by (6). By the hypothesis, P^* is $p\mathfrak{U}$ -supplemented in G. Then there exists a subgroup T of G such that $G = P^*T$ and $P^* \cap T \leq Z_{p\mathfrak{U}}(G)$. If $P^* \cap T \neq 1$, then $L \leq Z_{p\mathfrak{U}}(G)$ by (6). Therefore, |L| = p. This contradiction shows that $P^* \cap T = 1$, and so $|P \cap T| \leq p$. If $P \cap T = 1$, then $P = P^*$, which is impossible. Thus $P \cap T \neq 1$. Since $P \cap T \preceq G$, $L \leq P \cap T$ by (6). This yields that |L| = p, which contradicts (4).

The proof is thus completed.

THEOREM 4.5. G is supersolvable if and only if there exists a normal subgroup H of G such that G/H is supersolvable, and every cyclic subgroup of H of order p or order 4 (if H has a non-abelian Sylow 2-subgroup) is $p\mathfrak{U}$ -supplemented in G, for any prime $p \in \pi(H)$.

PROOF. We only need to prove the sufficiency. Suppose that this is false and let (G, H) be a counterexample with |G| + |H| is minimal.

(1) $H = G^{\mathfrak{U}}$ is a p-group for some prime p, $H/\Phi(H)$ is a chief factor of G, and the exponent of H is p or 4 (when H is a non-abelian 2-subgroup).

PROOF. Obviously, $G^{\mathfrak{U}} \leq H$. If $G^{\mathfrak{U}} < H$, then $(G, G^{\mathfrak{U}})$ satisfies the hypothesis of the theorem, and so $G \in \mathfrak{U}$ by the choice of (G, H), a contradiction. Thus $H = G^{\mathfrak{U}}$. Now let M be any maximal subgroup of G. Then it is easy to check that the hypothesis of the theorem holds for $(M, M \cap H)$ by Lemma 2.2(4). Hence $M \in \mathfrak{U}$ by the choice of (G, H). This shows that G is a minimal non-supersolvable group. Consequently, G is solvable by [17, (10.3.4)]. Now by [18, Theorem 1.1], G is a G-group for some prime G is a chief factor of G, and the exponent of G is G or 4 (when G is a non-abelian 2-subgroup).

(2)
$$|H/\Phi(H)| = p$$
.

PROOF. If not, then we may take a subgroup $X/\Phi(H)$ of $H/\Phi(H)$ of order p and an element $x \in X \setminus \Phi(H)$. Then $L = \langle x \rangle$ is a cyclic group of order p or 4 (when H is a non-abelian 2-subgroup) by (1), and $L\Phi(H) = X$. If $L \subseteq G$, then $X \subseteq G$, and so H = X by (1). It follows that $H/\Phi(H)$ is cyclic. Thus $|H/\Phi(H)| = p$, a contradiction. Hence $L \not\subseteq G$, and so $L_G \subseteq \Phi(H)$. By the hypothesis, there exists a subgroup T such that G = LT and $(L \cap T)L_G/L_G \subseteq Z_{p\mathfrak{U}}(G/L_G)$. By Lemma 2.1(2), $(L \cap T)\Phi(H)/\Phi(H) \subseteq Z_{p\mathfrak{U}}(G/\Phi(H)) \cap (H/\Phi(H))$. If $H/\Phi(H) \subseteq Z_{p\mathfrak{U}}(G/\Phi(H))$, then one has $|H/\Phi(H)| = p$, a contradiction. Thus $Z_{p\mathfrak{U}}(G/\Phi(H)) \cap (H/\Phi(H)) = 1$, and thereby $L \cap T \subseteq \Phi(H)$. This implies that T < G. Since $(H \cap T)\Phi(H) \subseteq G$, $(H \cap T)\Phi(H) = H$ or $\Phi(H)$ by (1). If $(H \cap T)\Phi(H) = H$, then $H \subseteq T$, and so T = G, a contradiction. Therefore, $H \cap T \subseteq \Phi(H)$. It follows that $H = L(H \cap T) = L$, also a contradiction. Thus $|H/\Phi(H)| = p$.

(3) The final contradiction.

PROOF. In view of (2), $G/\Phi(H) \in \mathfrak{U}$ by Lemma 2.5, and thus $G \in \mathfrak{U}$. \triangle

The final contradiction ends the proof.

5. Some Applications

Recall that a subgroup H of G is said to be \mathfrak{F} -supplemented [8] in G, if there exists a subgroup T of G such that G = HT and $(H \cap T)H_G/H_G \leq Z_{\mathfrak{F}}(G/H_G)$. Moreover, many authors introduced various concepts, such as, c-normal subgroup (see [20]), c-supplemented subgroup (see [3]), \mathfrak{U}_c -normal subgroup (see [1]), \mathfrak{F} -z-supplemented subgroup (see [10]).

It is easy to see that, all these subgroups, whether they are c-normal, c-supplemented, \mathfrak{U}_c -normal, \mathfrak{U} -supplemented or \mathfrak{U} -z-supplemented, are all $\pi\mathfrak{U}$ -supplemented subgroups for some set of primes π . However, a $\pi\mathfrak{U}$ -supplemented subgroup is not necessarily a \mathfrak{U} -supplemented subgroup as the following example illustrates.

EXAMPLE 5.1. Let $G = A_4$ and $H = \{1, (12)(34)\}$ be a subgroup of G of order 2. Clearly, $H_G = 1$. It is easy to check that $Z_{\mathfrak{U}}(G) = 1$ and $Z_{\mathfrak{M}}(G) = G$. Now we show that the subgroup H is \mathfrak{M} -supplemented, but not \mathfrak{U} -supplemented in G. In fact, if H is \mathfrak{U} -supplemented in G, then there exists a subgroup T of G such that G = HT and $H \cap T \leq Z_{\mathfrak{U}}(G) = 1$. Therefore, |T| = 6. But A_4 has no subgroup of order 6, a contradiction. Clearly, H is \mathfrak{M} -supplemented in G.

In the literature, one can find a large number of special cases of our theorems. We now list only a small part of them.

COROLLARY 5.2 ([12, Theorem 3.4]). Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. If every maximal subgroup of P is c-supplemented in G, then G is p-nilpotent.

COROLLARY 5.3 ([10, Theorem 3.2]). Let P be a Sylow p-subgroup of G, where p is a prime divisor of G with (|G|, p-1) = 1. If every maximal subgroup of P is \mathfrak{N}^p -z-supplemented in G, where \mathfrak{N}^p denotes the class of all p-nilpotent groups, then G is p-nilpotent.

Corollary 5.4 ([2, Lemma 3.1]). Let p be the smallest prime dividing |G| and let P be a Sylow p-subgroup of G. If all subgroups of P of order p or order 4 are c-normal in G, then G is p-nilpotent.

COROLLARY 5.5 ([15, Theorem 3.3]). Let N be a normal subgroup of G such that G/N is supersolvable, and P_1 is c-normal in G for every Sylow subgroup P of N and every maximal subgroup P_1 of P. Then G is supersolvable.

COROLLARY 5.6 ([16, Theorem 2]). Let G be a solvable group. If H is a normal subgroup of G such that G/H is supersolvable and all maximal subgroups of any Sylow subgroup of F(H) are c-normal in G, then G is supersolvable.

Corollary 5.7 ([8, Corollary 3.1.1]). G is supersolvable if and only if every maximal subgroup of every non-cyclic Sylow subgroup of G is \mathfrak{U} -supplemented in G.

COROLLARY 5.8 ([10, Theorem 3.3]). G is supersolvable if and only if there exists a normal subgroup N such that G/N is supersolvable and every maximal subgroup of every Sylow subgroup of N is \mathfrak{U} -z-supplemented in G.

COROLLARY 5.9 ([3, Theorem 4.1]). Let K be the supersolvable residual $G^{\mathfrak{U}}$ of G. Suppose that every cyclic subgroup of K of prime order or order 4 is c-supplemented in G. Then G is supersolvable.

Corollary 5.10 ([1, Corollary 1.5]). G is supersolvable if and only if all cyclic subgroups of G with prime order or order 4 are \mathfrak{U}_c -normal in G.

Acknowledgements. The authors are grateful to the referee for his/her valuable and helpful comments.

Li Zhang and Wenbin Guo are supported by an NNSF grant of China (grant #11371335) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Science. Xiaoyu Chen is supported by an NNSF of China (grant No. 11371335), the Start-up Scientific Research Foundation of Nanjing Normal University (grant No. 2015101XGQ0105) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

- [1] A. Y. Alsheik Ahmad J. J. Jaraden A. N. Skiba, On \mathfrak{U}_c -normal subgroups of finite groups, Algebra Colloq. **14** (2007), no. 1, pp. 25–36.
- [2] M. ASAAD M. EZZAT MOHAMED, *On c-normality of finite groups*, J. Aust. Math. Soc. **78** (2005), no. 3, pp. 297–304.
- [3] A. Ballester-Bolinches Y. Wang X. Guo, *C-supplemented subgroups of finite groups*, Glasg. Math. J. **42** (2000), no. 3, pp. 383–389.
- [4] X. Chen W. Guo, *On weakly S-embedded and weakly \tau-embedded subgroups*, Sibirsk. Mat. Zh. **54** (2013), no. 5, pp. 1162–1181. In Russian. English translation, Sib. Math. J. **54** (2013), no. 5, 931–945.

- [5] X. Chen W. Guo, On the $\pi \mathfrak{F}$ -norm and the \mathfrak{H} - \mathfrak{F} -norm of a finite group, J. Algebra **405** (2014), pp. 213–231.
- [6] K. Doerk T. Hawkes, *Finite soluble groups*, de Gruyter Expositions in Mathematics, 4, Walter de Gruyter, Berlin, 1992.
- [7] W. Guo, *The theory of classes of groups*, Translated from the 1997 Chinese original, Mathematics and its Applications, 505, Kluwer Academic Publishers Group, Dordrecht, and Science Press, Beijing, 2000.
- [8] W. Guo, On *3-supplemented subgroups of finite groups*, Manuscripta Math. **127** (2008), no. 2, pp. 139–150.
- [9] W. Guo A. N. Skiba, On the intersection of the \(\frac{F}{2}\)-maximal subgroups and the generalized \(\frac{F}{2}\)-hypercentre of a finite group, J. Algebra 366 (2012), pp. 112–125.
- [10] W. Guo N. Tang B. Li, On *\vec{x}*-z-supplemented subgroups of finite groups, Acta Math. Sci. Ser. B Engl. Ed. **31** (2011), no. 1, pp. 22–28.
- [11] W. Guo F. Xie B. Li, Some open questions in the theory of generalized permutable subgroups, Sci. China Ser. A **52** (2009), no. 10, pp. 2132–2144.
- [12] X. Guo K. P. Shum, Finite p-nilpotent groups with some subgroups c-supplemented, J. Aust. Math. Soc. **78** (2005), no. 3, pp. 429–439.
- [13] B. Huppert, *Endliche Gruppen* I., Die Grundlehren der Mathematischen Wissenschaften, 134, Springer, Berlin etc., 1967.
- [14] B. Huppert N. Blackburn, *Finite groups* III, Grundlehren der Mathematischen Wissenschaften, 243, Springer, Berlin etc., 1982.
- [15] D. Li X. Guo, *The influence of c-normality of subgroups on the structure of finite groups*, J. Pure Appl. Algebra **150** (2000), no. 1, pp. 53–60.
- [16] D. Li X. Guo, *The influence of c-normality of subgroups on the structure of finite groups* II, Comm. Algebra **26** (1998), no. 6, pp. 1913–1922.
- [17] D. J. S. Robinson, *A course in the theory of groups*, Graduate Texts in Mathematics, 80, Springer, New York and Berlin, 1982.
- [18] V. N. Semenchuk, *Minimal non F-groups*, Algebra Logic **18** (1980), pp. 214–233.
- [19] A. N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007), no. 1, pp. 192–209.
- [20] Y. Wang, *C-normality of groups and its properties*, J. Algebra **180** (1996), no. 3, pp. 954–965.

Manoscritto pervenuto in redazione il 7 novembre 2014.