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On the number of nonzero digits in the beta-expansions

of algebraic numbers

Hajime Kaneko (�)

Abstract – Many mathematicians have investigated the base-b expansions for integral

base-b � 2, and more general ˇ-expansions for a real number ˇ > 1. However, little

is known on the ˇ-expansions of algebraic numbers. The main purpose of this paper

is to give new lower bounds for the numbers of nonzero digits in the ˇ-expansions

of algebraic numbers under the assumption that ˇ is a Pisot or Salem number. As a

consequence of our main results, we study the arithmetical properties of power series
P1

nD1 ˇ
��.zIn/, where z > 1 is a real number and �.zIn/ D bnzc.
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1. Normality of the digits in ˇ-expansions

In this paper, let N (resp. ZC) be the set of nonnegative integers (resp. positive

integers). We denote the integral and fractional parts of a real number x by bxc
and ¹xº, respectively. Moreover, we write the minimal integer n not less than x

by dxe. We denote the length of a nonempty �nite word W D w1w2 : : : wk on a

certain alphabetA by jW j D k. We use the Landau symbolO and the Vinogradov

symbols �;� with their usual meaning.

For a real number ˇ greater than 1, let Tˇ W Œ0; 1� ! Œ0; 1/ be the ˇ-transforma-

tion de�ned by Tˇ .x/ WD ¹ˇxº. Using the ˇ-transformation, Rényi [22] general-

ized the notion of the base-b expansions of real numbers for an integral base b as
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follows. Let x be a real number with 0 � x � 1. Putting tn.ˇ; x/ WD bˇT n�1
ˇ

.x/c
for any positive integer n, we have

x D
1

X

nD1

tn.ˇ; x/ˇ
�n:(1)

The right-hand side of (1) is called the ˇ-expansion of x. In what follows, we

assume that 0 � x � 1 when we consider the ˇ-expansion of x. We have

that tn.ˇ; x/ � bˇc. In particular, if ˇ D b is a rational integer, then we see

tn.b; x/ � b � 1 except the only case of t1.bI 1/ D b.

Parry [21] showed that the digits tn.ˇ; x/ for x < 1 are characterized by the

expansion of 1. Put

tn.ˇ; 1�/ WD lim
x!1�0

tn.ˇ; x/

for any positive integer n. Then we have

1 D
1

X

nD1

tn.ˇ; 1�/ˇ�n:

For any real number x � 1, let t.ˇ; x/ be the right-in�nite sequence de�ned by

t.ˇ; x/ WD t1.ˇ; x/t2.ˇ; x/ : : : :

We also de�ne t.ˇ; 1�/ in the same way. Consider the case where the sequence

t.ˇ; 1/ is �nite, namely, there exists a �nite word a1 : : : aM on the alphabet

¹0; 1; : : : ; bˇcº with aM ¤ 0 such that

t.ˇ; 1/ D a1 : : : aM00 : : : :

Then it is known that

t.ˇ; 1�/ D a1 : : : aM �1.aM � 1/a1 : : : aM �1.aM � 1/a1 : : : :

Suppose that the sequence t.ˇ; 1/ is not �nite, that is, there exist in�nitely many

n’s with tn.ˇ; 1/ ¤ 0. Then

tn.ˇ; 1�/ D tn.ˇ; 1/

for any positive integer n. We denote by �lex the lexicographical order on the

sets of the in�nite sequences of nonnegative integers. Let � be the one-sided shift

operator de�ned by �..sn/
1
nD1/ D .snC1/

1
nD1. Parry [21] showed for any sequence

.sn/
1
nD1 of nonnegative integers that there exists a real number x < 1 satisfying

sn D tn.ˇ; x/ for any positive integer n if and only if

�k..sn/
1
nD1/ �lex t.ˇ; 1�/

holds for any nonnegative integer k.
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We review metrical results on the normality in the digits of ˇ-expansions.

We now recall the notion of ˇ-admissibility. For any positive integers n and k,

we de�ne the �nite word tn;k.ˇ; x/ by

tn;k.ˇ; x/ WD tn.ˇ; x/tnC1.ˇ; x/ : : : tnCk�1.ˇ; x/:

We call that a nonempty �nite wordW on the alphabet ¹0; 1; : : : ; bˇcº is ˇ-admis-

sible if there exists a real number x < 1 such that

W D t1;jW j.ˇ; x/:

If ˇ D b is a rational integer, then any nonempty �nite word W on the alphabet

¹0; 1; : : : ; bº is b-admissible.

Borel [7] introduced the notion of normal numbers in base-b for any integer

b � 2. Recall that a real number � < 1 is a normal number if, for any nonempty

�nite word W on the alphabet ¹0; 1; : : : ; b � 1º, we have

lim
N !1

Card¹n 2 ZC j n � N; tn;jW j.b; �/ D W º
N

D b�jW j;

where Card denotes the cardinality.

Rényi [22] proved for any real number ˇ > 1 that there exists a unique

Tˇ -invariant probability measure �ˇ on Œ0; 1/which is absolutely continuous with

respect to the Lebesgue measure on Œ0; 1/. Moreover, he also veri�ed that �ˇ is

ergodic. Consequently, almost all real numbers � < 1 are normal with respect to

the ˇ-expansion, that is, for any (nonempty �nite) ˇ-admissible wordW , we have

lim
N !1

Card¹n 2 ZC j n � N; tn;jW j.ˇ; �/ D W º
N

D �ˇ .¹x 2 Œ0; 1/ j t1;jW j.ˇ; x/ D W º/:

On the other hand, it is di�cult to determine whether a given real number

� < 1 is normal with respect to the ˇ-expansion. For instance, if ˇ D b is a

rational integer, then Borel [8] conjectured that every algebraic irrational number

is normal in base-b. However, neither proof nor counterexample is known for

Borel’s conjecture. The main purpose of this paper is to study the properties of

digits in the ˇ-expansions of algebraic numbers in the case where ˇ is a Pisot or

Salem number.

We recall the de�nition of Pisot and Salem numbers. Let ˇ be an algebraic

integer greater than 1. Then ˇ is called a Pisot number if the conjugates of ˇ except

itself have moduli less than 1. Moreover, ˇ is a Salem number if the conjugates of
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ˇ except itself have absolute values not greater than 1, and there exists a conjugate

of ˇ with absolute value 1.

In Section 2, we study the complexity of the sequence t.ˇ; �/ in the case where

ˇ is a Pisot or Salem number and 0 < � � 1 is an algebraic number. In particular,

we give new lower bounds for the numbers of nonzero digits in t.ˇ; �/. The lower

bounds are deduced from Theorem 2.2, which is proved in Section 3.

2. Main results

Let ˇ > 1 and 0 < � � 1 be algebraic numbers. Lower bounds for the numbers

.ˇ; �IN/ of digit changes, de�ned by

.ˇ; �IN/ WD Card¹n 2 ZC j n � N; tn.ˇ; �/ ¤ tnC1.ˇ; �/º;

for positive integer N were studied in [9, 11, 13, 18, 19], which gives partial

results on the normality of � with respect to the ˇ-expansion. In particular,

Bugeaud [11] proved the follwoing: Suppose that ˇ is a Pisot or Salem number

and that tn.ˇ; �/ ¤ tnC1.ˇ; �/ for in�nitely many n. Then there exist e�ectively

computable positive constants C1.ˇ; �/; C2.ˇ; �/, depending only on ˇ and �,

satisfying

.ˇ; �IN/ � C1.ˇ; �/
.logN/3=2

.log logN/1=2
(2)

for any N with N � C2.ˇ; �/. Lower bounds for the block complexity p.ˇ; �IN/,
de�ned by

p.ˇ; �IN/ WD Card¹tn;N .ˇ; �/ j n 2 ZCº

for positive integer N , were also obtained in [2, 3, 10, 13, 17]. Moreover, the

diophantine exponents of the sequence t.ˇ; �/ were studied in [2, 15].

Bailey, Borwein, Crandall, and Pomerance [5] studied the numbers of nonzero

digits in the binary expansions of algebraic irrational numbers. More generally,

we estimate lower bounds for the nonzero digits in the ˇ-expansions of algebraic

numbers. Let ˇ > 1 and � � 1 be real numbers. Put

�.ˇ; �IN/ WD Card¹n 2 ZC j n � N; tn.ˇ; �/ ¤ 0º

for any positive integer N . It is easily seen that

�.ˇ; �IN/ � 1

2
.ˇ; �IN/CO.1/:
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Let ˇ be a Pisot or Salem number and � an algebraic number. Assume that the

digits of t.ˇ; �/ change in�nitely many times. Then (2) implies that

�.ˇ; �IN/ � C1.ˇ; �/

3
� .logN/3=2

.log logN/1=2
(3)

for any su�ciently large N .

The main purpose of this paper is to improve lower bound (3). Bailey, Borwein,

Crandall, and Pomerance [5] proved for any algebraic irrational number � � 1 of

degree D that there exist positive constants C3.�/ and C4.�/, depending only on

�, satisfying

�.2; �IN/ � C3.�/N
1=D(4)

for any integer N with N � C4.�/. Note that C3.�/ is e�ectively computable

but C4.�/ is not. Rivoal [23] improved the constant C3.�/ for certain classes of

algebraic irrational numbers.

Adamczewski, Faverjon [4] and Bugeaud [12] independently veri�ed for each

integral base b � 2 and any algebraic irrational number � of degree D that there

exist e�ectively computable positive constants C5.b; �/ and C6.b; �/, depending

only on b and �, satisfying

�.b; �IN/ � C5.b; �/N
1=D

for any integer N with N � C6.b; �/.

Let again ˇ be a Pisot or Salem number and � � 1 an algebraic number. Put

ŒQ.ˇ; �/ W Q.ˇ/� D D, where ŒL W K� denotes the degree of the �eld extension

L=K. Suppose that there exist in�nitely many nonzero digits in the sequence

t.ˇ; �/. Then we have [20]

�.ˇ; �IN/ � C7.ˇ; �/
N 1=.2D�1/

.logN/1=.2D�1/
(5)

for any integer N with N � C8.ˇ; �/, where C7.ˇ; �/ and C8.ˇ; �/ are e�ectively

computable positive constants depending only on ˇ and �. The inequality (5)

follows from Theorem 2.1 in [20], which we introduce as follows: For any sequence

s D .sn/
1
nD0 of integers, we set

�.s/ D ¹n 2 N j sn ¤ 0º

and

f .sIX/ WD
1

X

nD0

snX
n:
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Moreover, for any nonnegative integer N and any nonempty set A of nonnegative

integers, we put

�.AIN/ WD Card.Œ0; N �\ A/:

Theorem 2.1 ([20, Theorem 2.1]). Let ˇ be a Pisot or Salem number and � an

algebraic number with ŒQ.ˇ; �/ W Q.ˇ/� D D. Suppose that there exists a sequence

s D .sn/
1
nD0 of integers satisfying the following two assumptions.

(1) There exists a positive integer B such that, for any n 2 N,

0 � sn � B:

Moreover, there exist in�nitely many n such that sn > 0:

(2) � D f .sIˇ�1/:

Then there exist e�ectively computable positive constants C9 D C9.ˇ; �; B/ and

C10 D C10.ˇ; �; B/, depending only on ˇ; � and B , such that, for any integer N

with N � C10, we have

�.�.s/IN/ � C9

N 1=.2D�1/

.logN/1=.2D�1/
:(6)

In what follows, we improve Theorem 2.1 under the same assumptions.

Theorem 2.2. Let ˇ be a Pisot or Salem number and � an algebraic number

with ŒQ.ˇ; �/ W Q.ˇ/� D D. Suppose that there exists a sequence s D .sn/
1
nD0 of

integers satisfying the following two assumptions.

(1) There exists a positive integer B such that, for any n 2 N,

0 � sn � B:

Moreover, there exist in�nitely many n such that sn > 0.

(2) We have

� D f .sIˇ�1/:(7)

Then there exist e�ectively computable positive constants C11 D C11.ˇ; �; B/ and

C12 D C12.ˇ; �; B/, depending only on ˇ; � and B , such that, for any integer N

with N � C12,

�.�.s/IN/ � C11

N 1=D

.logN/1=D
:(8)
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We note that Theorems 2.1 and 2.2 are applicable not only to the ˇ-expansion

but also to a general ˇ-representation

� D
1

X

nD0

tnˇ
�n;

where .tn/
1
nD0 is a bounded sequence of nonnegative integers.

As a consequence of Theorem 2.2, we improve (5) as follows.

Corollary 2.3. Let ˇ be a Pisot or Salem number and � � 1 an algebraic

number with ŒQ.ˇ; �/ W Q.ˇ/� D D. Suppose that there exist in�nitely many

nonzero digits in t.ˇ; �/. Then there exist e�ectively computable positive constants

C13.ˇ; �/ and C14.ˇ; �/, depending only on ˇ and �, satisfying

�.ˇ; �IN/ � C13.ˇ; �/
N 1=D

.logN/1=D

for any integer N with N � C14.ˇ; �/.

We apply Theorem 2.2 to the arithmetical properties on certain values of power

series at algebraic points. Let .vn/
1
nD1 be a sequence of nonnegative integers such

that vnC1 > vn for su�ciently large n. Bugeaud [9, 11] posed a problem on the

transcendence of
P1

nD1 ˛
vn , where ˛ is an algebraic number with 0 < j˛j < 1,

under the assumption that .vn/
1
nD1 increases su�ciently rapidly. Corvaja and

Zannier [14] proved for any algebraic number ˛ with 0 < j˛j < 1 that if

lim inf
n!1

vnC1

vn

> 1

holds, then
P1

nD1 ˛
vn is transcendental. In particular, consider the case of ˛ D

ˇ�1, where ˇ is a Pisot or Salem number. Adamczewski [1] proved that if

lim sup
n!1

vnC1

vn

> 1;

then
P1

nD1 ˇ
�vn is transcendental. However, if

lim
n!1

vnC1

vn

D 1;(9)

then it is generally di�cult to determine whether
P1

nD1 ˛
vn is transcendental.

For instance, put, for any real number z > 1 and any positive integer n, �.zI n/ WD
bnzc. Moreover, set .zIX/ WD

P1
nD1X

�.zIn/. Then the transcendence of .zI ˛/
is unknown except the case where  .2I ˛/ is transcendental for any algebraic
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number ˛ with 0 < j˛j < 1, which was proved by Duverney, Nishioka, Nishioka,

Shiokawa [16], and Bertrand [6] independently.

Using Theorem 2.1 or Theorem 2.2, we obtain that if

lim sup
n!1

vn

nR
D 1(10)

for any positive real number R, then, for any Pisot or Salem number ˇ, we

have
P1

nD1 ˇ
�vn is transcendental. This criterion for transcendence is applicable

to certain sequences .vn/
1
nD1 satisfying (9). For instance, let, for any positive

integer n,

wn WD bnlog nc D bexp ..logn/2/c:

Then .wn/
1
nD1 ful�lls (9). Since .wn/

1
nD1 satis�es (10), we see that

P1
nD1 ˇ

�wn is

transcendental.

Moreover, Using Theorem 2.1, we get for real number z > 1 and any Pisot or

Salem number ˇ that  .zIˇ�1/ cannot be algebraic of small degree over Q.ˇ/,

precisely

ŒQ. .zIˇ�1/; ˇ/ W Q.ˇ/� �
�

z C 1

2

�

:(11)

In fact, we put

 .zIX/ DW
1

X

nD0

snX
n:

Then a bounded sequence s D .sn/
1
nD0 of nonnegative integers satis�es

lim
N !1

�.�.s/IN/
N 1=z

D 1:

If  .zIˇ�1/ is transcendental, then (11) is clear because the left-hand side is equal

to in�nity. Assume that  .zIˇ�1/ is an algebraic number satisfying

ŒQ. .zIˇ�1/; ˇ/ W Q.ˇ/ � D D:

Then (6) holds only in the case of z � 2D � 1. Similarly, using Theorem 2.2, we

deduce that

ŒQ. .zIˇ�1/; ˇ/ W Q.ˇ/� � dze;

which improves (11).
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3. Proof of Theorem 2.2

For the proof of Theorem 2.2, we recall the following Liouville type inequality

deduced from Theorem 11 in [24, p. 34].

Lemma 3.1 ([20, Proposition 3.1]). Let z and � be algebraic numbers. Suppose

that there exists a sequence s D .sn/
1
nD0 of integers satisfying the following three

assumptions.

(1) There exists a positive integer B such that, for any n 2 N,

0 � sn � B:

(2) � D f .sI z/.

(3) For any M 2 N,

M
X

nD0

snz
n ¤ �:

Let .w.m//1mD0 be a strictly increasing sequence of nonnegative integers de�ned

by

¹n 2 N j sn ¤ 0º DW ¹w.0/ < w.1/ < � � � º:

Then there exist e�ectively computable positive constants C15 D C15.z; �; B/ and

C16 D C16.z; �; B/, depending only on z; � and B , such that, for any integer m

with m � C16, we have

w.mC 1/

w.m/
< C15:

If D D 1, then (8) is deduced from (6). Thus, we may assume thatD � 2. For

simplicity, put

� WD �.s/; �.N/ WD �.�IN/:

We may assume that s0 ¤ 0, that is ,

0 2 �:(12)

In what follows, the implied constants in the symbol � and the constants C17,

C18; : : : are e�ectively computable positive ones depending only on ˇ; � and B .
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We see for any M 2 N that
PM

nD0 snˇ
�n ¤ � by (7) and the �rst assumption of

Theorem 2.2. Thus, using Lemma 3.1, we get that there existC17 andC18 satisfying

� \ Œx; C17x/ ¤ ;(13)

for any real number x with x � C18. By ŒQ.ˇ; �/ W Q.ˇ/� D D, there exists an

polynomial P.X/ D ADX
D C AD�1X

D�1 C � � � C A0 2 ZŒˇ�ŒX� with AD > 0

such that P.�/ D 0. In the same way as the proof of Theorem 2.1 in [20], we see

for any k with 1 � k � D that

�k D
�

X

m2�

smˇ
�m

�k

D
1

X

mD0

ˇ�m�.kIm/;(14)

where

�.kIm/ D
X

m1;:::;mk2�

m1C���CmkDm

sm1
: : : smk

:

Note for any nonnegative integer m that �.kIm/ is a nonnegative integer. More-

over, putting

k� WD ¹m1 C � � � Cmk j m1; : : : ; mk 2 �º;

we get that �.kIm/ is positive if and only if m 2 k�. By (12), we have

.0 2/ � � 2� � � � � � .D � 1/� � D�:(15)

Observe that

�.k�IN/ D Card.Œ0; N �\ k�/ � Card.Œ0; N �\ �/k D �.N/k(16)

and that

�.kIm/ � Bk
X

m1;:::;mk2�

m1C���CmkDm

1 � Bk.mC 1/k:(17)

We see that

0 D P.�/ D A0 C
D

X

kD1

Ak�
k D A0 C

D
X

kD1

Ak

1
X

mD0

ˇ�m�.kIm/(18)

by (14). Let R be a nonnegative integer. Then, multiplying (18) by ˇR, we get

0 D A0ˇ
R C

D
X

kD1

Ak

1
X

mD�R

ˇ�m�.kImC R/:
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In particular, putting

YR WD
D

X

kD1

Ak

1
X

mD1

ˇ�m�.kImCR/;

we obtain

YR D �A0ˇ
R �

D
X

kD1

Ak

0
X

mD�R

ˇ�m�.kImCR/:(19)

Note that YR is an algebraic integer by (19) because ˇ is a Pisot or Salem number.

In the same way as the proof of Lemma 4.1 in [20], we deduce the following: There

exists positive integers C19 and C20 such that ifR is an integer with R � C20, then

we have

YR D 0 or jYRj � R�C19 :(20)

In the case of ˇ D 2, Bailey, Borwein, Crandall, and Pomerance [5] investigated

the numbers of positive YR to prove (4). More precisely, they estimated upper and

lower bounds for the value

Card¹R 2 N j R � N; YR > 0º

for a nonnegative integer N . However, if ˇ is a general Pisot or Salem number,

then it is di�cult to obtain upper bounds. So we modify their de�nition, that is,

we consider the value

yN WD Card ¹R 2 N j R � N; YR � C21 º

for a integer N with N � 1, where C21 D min¹1=ˇ; AD=ˇº. We give upper

bounds for yN in Lemma 3.2, using the function �.N/. Note that we modify the

de�nition of yN to get (22), which is the key inequality for the proof of Lemma 3.2.

On the other hand, we estimate lower bounds for yN in Lemma 3.5. The main tool

for the proof of Lemma 3.5 is Lemma 3.4, which is deduced from Liouville type

inequality (20).

In what follows, we assume that N is a su�ciently large integer satisfying

�

1C 1

N

�D

<
1C ˇ

2
:(21)

Lemma 3.2.

yN � logN C �.N/D:

for any integer N with N � 1.
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Proof. Putting K WD d.D C 1/ logˇ N e, we get

yN � K C yN �K D K C
X

0�R�N�K
YR�C21

1 � K C 1

C21

N �K
X

RD0

jYRj:(22)

Observe that

N �K
X

RD0

jYRj �
N �K
X

RD0

D
X

kD1

1
X

mD1

jAkjˇ�m�.kImCR/

D
D

X

kD1

jAkj
N �K
X

RD0

1
X

mD1

ˇ�m�.kImCR/

DW
D

X

kD1

jAkjz.k/
N ;

(23)

where

z
.k/
N D

N �K
X

RD0

1
X

mD1

ˇ�m�.kImCR/

for any N and k with N � 0 and 1 � k � D. By (22) and (23), it su�ces to show

z
.k/
N � �.N/D(24)

for any N and k with N � 1 and 1 � k � D. We see that

z
.k/
N D

K
X

mD1

ˇ�m

N �K
X

RD0

�.kImCR/C
1

X

mDKC1

ˇ�m

N �K
X

RD0

�.kImCR/

DW S1.k/C S2.k/:

(25)

Using the �rst assumption of Theorem 2.2 and the de�nition of �.kIR/; �.N/,
we obtain

S1.k/ �
K

X

mD1

ˇ�m

N
X

RD0

�.kIR/ �
1

X

mD1

ˇ�m

N
X

RD0

�.kIR/

�
N

X

RD0

�.kIR/ D
N

X

RD0

X

m1;:::;mk2�

m1C���Cmk DR

sm1
: : : smk

D
X

m1;:::;mk2�

m1C���Cmk �N

sm1
: : : smk

� Bk
X

m1;:::;mk2�

m1C���Cmk �N

1

� BD�.N/D � �.N/D:

(26)
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On the other hand, (17) implies by k � D that

S2.k/ �
1

X

mDKC1

ˇ�m

N �K
X

RD0

.mC RC 1/D � N

1
X

mDKC1

ˇ�m.mCN/D:

Thus, using (21), we obtain for any integer N with N � 1 that

S2.k/ � Nˇ�1�K.1CK CN/D
1

X

mD0

ˇ�m
�1C ˇ

2

�m

� ˇ�KNDC1 � 1:

(27)

Therefore, combining (25), (26), and (27), we deduce (24). �

Recalling that 0 2 .D � 1/� by (15), set

Œ0; N / \ .D � 1/� DW ¹0 D i.1/ < i.2/ < � � � < i.�/º;

where

� D �.N / � �.N/D�1(28)

by (16). Put i.1C �/ WD N .

Let 1 � h � � . We de�ne the interval Ih by

Ih WD

8

<

:

Œi.h/; i.1C h// .1 � h � �1C �/;

Œi.�/; i.1C �/� .h D �/:

Moreover, let jIhj WD i.1C h/ � i.h/ and

yN .h/ WD Card ¹R 2 Ih j YR � C21 º :

Then we have

�
X

hD1

jIhj D N(29)

and

�
X

hD1

yN .h/ D yN :(30)

Consider the case where Ih satis�es

jIhj > 8D.1C C17/C19 logˇ N DW C22 logˇ N:(31)
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If N � 1, then applying (13) with x D jIhj=.1 C C17/, we see by (31) that there

exists �.h/ 2 � with

1

1C C17

jIhj � �.h/ <
C17

1C C17

jIhj:

Putting M.h/ WD i.h/C �.h/, we get

i.h/C 1

1C C17

jIhj � M.h/ < i.h/C C17

1C C17

jIhj:(32)

Moreover, we obtain M.h/ 2 D�, by i.h/ 2 .D � 1/� and �.h/ 2 �.

Lemma 3.3. LetN; h be integers with N � 1 and 1 � h � � . Assume that (31)

holds. Then YR > 0 for any integer R with i.h/ � R < M.h/.

Proof. We prove the lemma by induction on R. We �rst consider the case

where R D �1CM.h/. Observe that

Y�1CM.h/ D AD

1
X

mD1

ˇ�m�.DImCM.h/ � 1/

C
D�1
X

kD1

Ak

1
X

mD1

ˇ�m�.kImCM.h/ � 1/

DW S3 C S4:

(33)

By M.h/ 2 D�, we get

S3 � AD

ˇ
�.DIM.h// � AD

ˇ
:(34)

We estimate upper bounds for jS4j. Let k;m be integers with 1 � k � D � 1 and

1 � m � �1C d2D logˇ N e. Observe that, by (32), (31), and C19 � 1,

i.1C h/ �M.h/ � i.1C h/ � i.h/ � C17

1C C17

jIhj

D 1

1C C17

jIhj > 8D logˇ N > m

Hence, we see

i.h/ < mCM.h/ � 1 < i.1C h/;

by i.h/ < M.h/ � mCM.h/ � 1. Consequently, mCM.h/ � 1 62 .D � 1/�: In

particular, by (15) we obtain mCM.h/ � 1 62 k�. Therefore, we deduce that

�.kImCM.h/ � 1/ D 0

for any k;m with 1 � k � D � 1 and 1 � m � �1C d2D logˇ N e.
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Using (17), we obtain

jS4j �
D�1
X

kD1

jAkj
X

m�d2D logˇ N e

ˇ�m�.kImCM.h/ � 1/

�
D�1
X

kD1

jAkj
X

m�d2D logˇ N e

ˇ�mBD.mCN/D

�
X

m�d2D logˇ N e

ˇ�m.mCN/D :

Consequently, (21) implies that

jS4j � ˇ�d2D logˇ N e.d2D logˇ N e CN/D
1

X

mD0

ˇ�m
�1C ˇ

2

�m

� N�D :

If N � 1, then

jS4j < AD

2ˇ
:(35)

Combining (33), (34), and (35), we deduce Y�1CM.h/ > 0.

Next we assume YR > 0 for some R with i.h/ < R < M.h/.< i.1 C h//.

Using �.kIR/ D 0 for k D 1; : : : ; D � 1 by (15), we see

YR�1 D
D

X

kD1

Ak

1
X

mD1

ˇ�m�.kImCR � 1/

D 1

ˇ
AD�.DIR/C 1

ˇ

D
X

kD1

Ak

1
X

mD2

ˇ�.m�1/�.kIm� 1C R/

D 1

ˇ
AD�.DIR/C 1

ˇ
YR � 1

ˇ
YR > 0

(36)

by the inductive hypothesis. Therefore, we proved the lemma. �

Lemma 3.4. LetN; h be integers with N � 1 and 1 � h � � . Assume that (31)

holds. Let R be an integer with

i.h/C 4C19 logˇ N � R < M.h/:

Then we have

R � max
®

R0 2 N
ˇ

ˇ R0 < R; YR0 � C21

¯

� 2C19 logˇ N:
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Proof. Let

R1 WD max
®

R0 2 N
ˇ

ˇ R0 < R; YR0 � C21

¯

:

In the same way as the proof of (36), we see for any integer r with i.h/ < r <

i.1C h/ that

Yr�1 D 1

ˇ
AD�.DI r/C 1

ˇ
Yr :(37)

For the proof of the lemma, we may assume that YR < 1. In fact, if YR � 1,

then we have YR�1 � 1=ˇ � C21 by (37) and R �R1 D 1 � 2C19 logˇ N .

Put S WD dC19 logˇ N e: Assume for any integer m with 0 � m � S that

�.DIR �m/ D 0:

Since M.h/ > R > R � 1 > � � � > R � S > i.h/, we get by (37) that

1 > YR D ˇYR�1 D � � � D ˇSYR�S D ˇ1CSYR�S�1 > 0:

In fact, Lemma 3.3 implies YR�S�1 > 0 by R � S � 1 � i.h/. Consequently,

we see

ˇSC1 < Y �1
R�S�1 D jYR�S�1j�1:

If N � 1, then we have R � S � 1 � 2C19 logˇ N � C20. Thus, using (20),

we obtain

ˇSC1 < jYR�S�1j�1 � .R � S � 1/C19 < NC19 :

Hence, we deduce that

dC19 logˇ N e C 1 D S C 1 < C19 logˇ N;

a contradiction. Therefore, there exists an integer m0 with 0 � m0 � S such that

�.DIR �m0/ � 1. Finally, using (37) and YR�m0 > 0 by Lemma 3.3, we obtain

YR�m0�1 � AD

ˇ
� C21

and

R �R1 � m0 C 1 � 2C19 logˇ N: �
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Lemma 3.5. There exists C23 satisfying the following: If N � 1, then, for any

integer h with 1 � h � � , we have

yN .h/ �
� jIhj
C23 logˇ N

�

:(38)

Proof. If (31) holds, then (38) follows from Lemma 3.4. In what follows, we

suppose that jIhj � C22 logˇ N . If necessary, increasing C23, we may assume that

C23 > C22. Thus, (38) holds by

� jIhj
C23 logˇ N

�

D 0: �

If N � 1, then, combining (30), Lemma 3.5, and (29), (28), we deduce that

yN D
�

X

hD1

yN .h/ �
�

X

hD1

� jIhj
C23 logˇ N

� 1
�

� N

C23 logˇ N
� � � N

logN
� �.N/D�1:

On the other hand, Lemma 3.2 implies that

logN C �.N/D � yN � N

logN
� �.N/D�1:

Therefore, we proved Theorem 2.2.

Acknowledgements. The author would like to thank professor Yann Bugeaud

for careful reading of the manuscript and for giving fruitful advice. The author is

grateful the referees for valuable comments. The author was supported by JSPS

KAKENHI Grant Number 15K17505.

References

[1] B. Adamczewski, Transcendance � à la Liouville � de certains nombres réels,

C. R. Acad. Sci. Paris 338 (2004), pp. 511–514.

[2] B. Adamczewski – Y. Bugeaud, Dynamics for beta-shifts and Diophantine approx-

imation. Ergod. Theory and Dynamical Syst. 27 (2007), pp. 1695–1711.

[3] B. Adamczewski – Y. Bugeaud, On the complexity of algeraic numbers

I. Expansions in integer bases, Annals of Math. 165 (2007), pp. 547–565.



222 H. Kaneko

[4] B. Adamczewski – C. Faverjon, Chi�res non nuls dans le développement en base

entière des nombres algébriques irrationnels, C. R. Acad. Sci. Paris 350 (2012),

pp. 1–4.

[5] D. H. Bailey – J. M. Borwein – R. E. Crandall – C. Pomerance, On the

binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16 (2004),

pp. 487–518.

[6] D. Bertrand. Theta functions and transcendence, The Ramanujan J. 1 (1997),

pp. 339-350.

[7] É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend.

circ. Mat. Palermo 27 (1909), pp. 247–271.

[8] É. Borel, Sur les chi�res décimaux de
p
2 et divers problèmes de probabilités en

chaîne, C. R. Acad. Sci. Paris 230 (1950), pp. 591–593.

[9] Y. Bugeaud, On the b-ary expansion of an algebraic number, Rend. Sem. Math. Univ.

Padova 118 (2007), pp. 217–233.

[10] Y. Bugeaud,An explicit lower bound for the block complexity of an algebraic number,

Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19

(2008), pp. 229–235.

[11] Y. Bugeaud, On the ˇ-expansion of an algebraic number in an algebraic base ˇ,

Integers 9 (2009), pp. 215–226.

[12] Y. Bugeaud, Distribution modulo one and diophantine approximation, Cambridge

Tracts in Mathematics, 193. Cambridge University Press, Cambridge, 2012.

[13] Y. Bugeaud – J.-H. Evertse, On two notions of complexity of algebraic numbers,

Acta Arith. 133 (2008), pp. 221–250.

[14] P. Corvaja – U. Zannier, Some new applications of the subspace theorem, Com-

positio Math. 131 (2002), pp. 319–340.

[15] A. Dubickas, On ˇ-expansions of unity for rational and transcendental numbers ˇ,

Mathematica Slovaca 61 (2011), pp. 705–716.

[16] D. Duverney – Ke. Nishioka – Ku. Nishioka – I. Shiokawa, Transcendence of

Jacobi’s theta series, Proc. Japan. Acad. Sci, Ser. A bf 72 (1996), pp. 202–203.

[17] S. Ferenczi – C. Mauduit, Transcendence of numbers with a low complexity

expansion, J. Number Theory 67 (1997), pp. 146–161.

[18] H. Kaneko, On the binary digits of algebraic numbers, J. Aust. Math. Soc. 89 (2010),

pp. 233–244.

[19] H. Kaneko, On the number of digit changes in base-b expansions of algebraic

numbers, Unif. Distrib. Theory 7 (2012), pp. 141–168.

[20] H. Kaneko, On the beta-expansions of 1 and algebraic numbers for a Salem number

beta, Ergod. Theory and Dynamical Syst. 35 (2015), pp. 1243–1262.

[21] W. Parry, On the ˇ-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11

(1960), pp. 401–416.



On the number of nonzero digits in the beta-expansions of algebraic numbers 223

[22] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math.

Acad. Sci. Hung. 8 (1957), pp. 477–493.

[23] T. Rivoal, On the bits counting function of real numbers, J. Aust. Math. Soc. 85

(2008), pp. 95–111.

[24] A. B. Shidlovskii, Transcendental numbers, translated from the Russian by

N. Koblitz, with a foreword by W. Dale Brownawell, de Gruyter Studies in Mathe-

matics, 12. Walter de Gruyter & Co., Berlin, 1989.

Manoscritto pervenuto in redazione il 28 luglio 2014.


	Normality of the digits in -expansions
	Main results
	Proof of Theorem 2.2
	References

