Rend. Sem. Mat. Univ. Padova, Vol. 136 (2016), 265–275 DOI 10.4171/RSMUP/136-17

Berezin transform and Stratonovich–Weyl correspondence for the multi-dimensional Jacobi group (addendum)

BENJAMIN CAHEN (*)

ABSTRACT – We extend the results of [13] to the holomorphic representations of the nonscalar type of the multi-dimensional Jacobi group.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 22E27, 32M10, 46E22.

KEYWORDS. Berezin quantization, Berezin transform; quasi-Hermitian Lie group, multidimensional Jacobi group, unitary representation, holomorphic representation of the non-scalar type, Stratonovich–Weyl correspondence.

1. Introduction

We use the notation of [13], Section 2. In particular, we denote by *G* the multidimensional Jacobi group and by *K* the subgroup of *G* consisting of all elements of the form $((0, 0), c, \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix})$ where $c \in \mathbb{R}$ and $P \in U(n)$.

Recall that the unitary representations of *G* considered in [13] are holomorphically induced from a unitary character of *K*. Here we consider, more generally, the unitary representations of *G* which are holomorphically induced from a unitary representation ρ of *K*, see [18], p. 515, and we extend the results of [13] to these representations. The main tool is then the generalized Berezin calculus for a reproducing kernel Hilbert space of vector-valued holomorphic functions, see [2], [17] and [12]. Most of the proofs are similar to those of [13] so we just sketch them briefly.

^(*) *Indirizzo dell'A*.: Université de Lorraine, Site de Metz, UFR-MIM, Département de mathématiques, Bâtiment A, Ile du Saulcy, CS 50128, F-57045, Metz cedex 01, France E-mail: benjamin.cahen@univ-lorraine.fr

2. Representations

Let $\gamma \in \mathbb{R}$ and let ρ_0 be a unitary irreducible representation of U(n) on a (finitedimensional) complex vector space \mathcal{V} . Let ρ be the representation of K on \mathcal{V} defined by

$$\rho((0,0),c, \begin{pmatrix} P & 0 \\ 0 & \overline{P} \end{pmatrix}) = e^{i\gamma c} \rho_0(P).$$

We also denote by ρ_0 and ρ the corresponding representations of $GL_n(\mathbb{C})$ and K^c .

Let $M_n(\mathbb{C}) = \mathfrak{n}^+ \oplus \mathfrak{h}_0 \oplus \mathfrak{n}^-$ be the usual triangular decomposition of $M_n(\mathbb{C})$. Then ρ_0 is associated with a dominant integral weight of the form

$$\Lambda_{m_1,m_2,\ldots,m_n}$$
: Diag $(a_1,a_2,\ldots,a_n) \longrightarrow \sum_{i=1}^n m_i a_i$

where $m_1 \ge m_2 \ge \cdots \ge m_n$ and $m_i \in \mathbb{Z}$ [15], p. 274. Let $m = \sum_{i=1}^n m_i$. Then we have $\rho_0(zI_n) = z^m I_V$ for each $z \in \mathbb{C}^{\times}$.

Recall that for each $y \in \mathbb{C}^n$ and $Y \in M_n(\mathbb{C})$ such that $Y^t = Y$, we denote

 $a(y,Y) := \left((y,0), 0, \begin{pmatrix} 0 & Y \\ 0 & 0 \end{pmatrix} \right) \in \mathfrak{p}^+$

and

$$\mathcal{D} := \{ a(y, Y) \in \mathfrak{p}^+ : I_n - Y\overline{Y} > 0 \} \cong \mathbb{C}^n \times \mathcal{B}$$

where $\mathcal{B} := \{Y \in M_n(\mathbb{C}): Y^t = Y, I_n - Y\overline{Y} > 0\}.$

Now we will apply the general considerations of [18] and [12] to the particular case of the multi-dimensional Jacobi group. Following [18], p. 497, we set $K(Z, W) := \rho(\kappa(\exp W^* \exp Z))^{-1}$ for $Z, W \in \mathcal{D}$ and $J(g, Z) := \rho(\kappa(g \exp Z))$ for $g \in G$ and $Z \in \mathcal{D}$ and we introduce the Hilbert space \mathcal{H} of all holomorphic functions on \mathcal{D} with values in \mathcal{V} such that

$$\|f\|_{\mathcal{H}}^2 := \int_{\mathcal{D}} \langle K(Z,Z)^{-1} f(Z), f(Z) \rangle_{\mathcal{V}} d\mu(Z) < +\infty$$

where μ denotes the *G*-invariant measure on \mathcal{D} defined in [13], Section 2.

Let π be the unitary representation of *G* on \mathcal{H} defined by

$$(\pi(g)f)(Z) = J(g^{-1}, Z)^{-1}f(g^{-1} \cdot Z).$$

In [12], we verified that π is obtained by holomorphic induction from ρ , that is, π corresponds to the natural action of *G* on the square-integrable holomorphic sections of the Hilbert *G*-bundle $G \times_{\rho} \mathcal{V}$ over $G/K \cong \mathcal{D}$. Moreover, π is irreducible since ρ is irreducible, see [18], p. 515.

The evaluation maps $K_Z: \mathcal{H} \to \mathcal{V}, f \to f(Z)$ are continuous [18], p. 539. The vector coherent states of \mathcal{H} are the maps $E_Z = K_Z^*: \mathcal{V} \to \mathcal{H}$ defined by $\langle f(Z), v \rangle_{\mathcal{V}} = \langle f, E_Z v \rangle_{\mathcal{H}}$ for $f \in \mathcal{H}$ and $v \in \mathcal{V}$.

We have the following result, see [18], p. 540.

PROPOSITION 2.1. (1) There exists a constant $c_{\rho} > 0$ such that

$$E_Z^* E_W = c_\rho K(Z, W)$$

for each $Z, W \in \mathcal{D}$.

(2) For $g \in G$ and $Z \in \mathcal{D}$,

$$E_{g \cdot Z} = \pi(g) E_Z J(g, Z)^*.$$

Now we give explicit formulas for *K* and *J* and we compute c_{ρ} (see Lemma 3.1 in [13]).

PROPOSITION 2.2. (1) Let $Z = a(y, Y) \in \mathcal{D}$ and $W = a(v, V) \in \mathcal{D}$. We set

$$E(y, v, Y, V) := 2y^{t}(I_{n} - \overline{V}Y)^{-1}\overline{v} + y^{t}(I_{n} - \overline{V}Y)^{-1}\overline{V}y + \overline{v}^{t}Y(I_{n} - \overline{V}Y)^{-1}\overline{v}.$$

Then,

$$K(Z, W) = \exp\left(\frac{\gamma}{4}E(y, v, Y, V)\right)\rho_0(I_n - Y\overline{V}).$$

(2) $\mathcal{H} \neq (0)$ if and only if $\gamma > 0$ and m + n + 1/2 < 0. In this case,

$$c_{\rho} = \operatorname{Dim}(\mathcal{V}) \left(\frac{\gamma}{2\pi}\right)^n J_n (-m - n - 3/2)^{-1}.$$

(3) For each $g = ((z_0, \overline{z}_0), c_0, (\frac{P}{\overline{Q}} \frac{Q}{\overline{P}})) \in G$ and each $Z = a(y, Y) \in \mathcal{D}$, we have

$$J(g, Z) = e^{i\gamma c_0} \exp\left(\frac{\gamma}{4} (z_0^t \bar{z}_0 + 2\bar{z}_0^t P y + y^t P^t \bar{Q} y - (\bar{z}_0 + \bar{Q} y)^t (PY + Q) (\bar{Q} y + \bar{P})^{-1} (\bar{z}_0 + \bar{Q} y)\right)$$
$$\rho_0((\bar{Q} Y + \bar{P})^t)^{-1}.$$

PROOF. (1) and (3) are simple calculations. To prove (2), we use the formula

$$(I_n - \overline{Y}Y)^{-1} = \operatorname{Det}(I_n - \overline{Y}Y)^{-1}C(I_n - \overline{Y}Y)^t$$

for each $Y \in \mathcal{B}$, where C(A) denotes the cofactor matrix of a matrix A. From this formula, we deduce

$$\operatorname{Tr} \rho_0 (I_n - \overline{Y}Y)^{-1} = \operatorname{Det} (I_n - \overline{Y}Y)^{-m} \operatorname{Tr} \rho_0 (C(I_n - \overline{Y}Y)^t)$$

and then we can prove (2) by following the same lines as in the proof of Proposition 3.2 of [13], using Theorem XII.5.6 of [18]. \Box

Proposition 3.4 of [13] can be generalized as follows.

PROPOSITION 2.3. For $X \in \mathfrak{g}^c$, $f \in \mathfrak{H}$ and $Z \in \mathfrak{D}$,

$$d\pi(X)f(Z) = d\rho(p_{\mathfrak{k}^c}(e^{-\operatorname{ad} Z} X))f(Z) - (df)_Z(p_{\mathfrak{p}^+}(e^{-\operatorname{ad} Z} X)).$$

In particular,

- (1) if $X \in \mathfrak{p}^+$, then $d\pi(X)f(Z) = -(df)_Z(X)$;
- (2) if $X \in t^c$, then $d\pi(X) f(Z) = d\rho(X) f(Z) + (df)_Z([Z, X]);$
- (3) if $X \in \mathfrak{p}^-$, then

$$d\pi(X)f(Z) = (d\rho \circ p_{\mathfrak{k}^{c}})\Big(-[Z,X] + \frac{1}{2}[Z,[Z,X]]\Big)f(Z) - (df_{Z} \circ p_{\mathfrak{p}^{+}})\Big(-[Z,X] + \frac{1}{2}[Z,[Z,X]]\Big).$$

Let (E_k) be a basis of \mathfrak{p}^+ . Then, for each $f \in \mathcal{H}$ and each k, we denote

$$(\partial_k f)(Z) = \frac{d}{dt} f(Z + tE_k)|_{t=0}.$$

From the preceding proposition we deduce the following result.

PROPOSITION 2.4. For each $X_1, X_2, \ldots, X_q \in \mathfrak{g}^c$, $d\pi(X_1X_2\cdots X_q)$ is a sum of terms of the form $P(Z)\partial_{k_1}\partial_{k_2}\cdots\partial_{k_r}$ where $r \leq q$ and P(Z) is a polynomial of degree $\leq 2q$.

3. Berezin calculus

First we introduce the Berezin quantization map associated with ρ_0 , see [3], [4], [1], [5], and [19].

Let $\tilde{\varphi}_0$ be the linear form on $M_n(\mathbb{C})$ defined by $\tilde{\varphi}_0 = -i \Lambda_{m_1,m_2,...,m_n}$ on \mathfrak{h}_0 and $\tilde{\varphi}_0 = 0$ on \mathfrak{n}^{\pm} . We denote by φ_0 the restriction of $\tilde{\varphi}_0$ to u(n). Then the orbit $o(\varphi_0)$ of φ_0 under the coadjoint action of U(n) is then said to be associated with ρ_0 .

Note that the stabilizer of φ_0 for the coadjoint action of U(n) contains the torus

$$H_0 := \{ \text{Diag}(ia_1, ia_2, \dots, ia_n) : a_j \in \mathbb{R} \}.$$

We say that such an element φ_0 is *regular* if the stabilizer of φ_0 is equal to H_0 , see [5]. Then we can verify that φ_0 is regular if and only if one has $m_1 > m_2 > \cdots > m_n$. In the rest of the paper, we assume that φ_0 is regular.

Note also that a complex structure on $o(\varphi_0)$ is then defined by the diffeomorphism $o(\varphi_0) \simeq U(n)/H_0 \simeq \operatorname{GL}_n(\mathbb{C})/H_0^c N^-$ where N^- is the analytic subgroup of $\operatorname{GL}_n(\mathbb{C})$ with Lie algebra \mathfrak{n}^- .

Without loss of generality, we can assume that \mathcal{V} is the space of holomorphic functions on (a dense open set of) $o(\varphi_0)$ as in [5]. For $\varphi \in o(\varphi_0)$ there exists a unique function $e_{\varphi} \in \mathcal{V}$ (called a coherent state) such that $a(\varphi) = \langle a, e_{\varphi} \rangle_{\mathcal{V}}$ for each $a \in \mathcal{V}$. The Berezin calculus on $o(\varphi_0)$ associates with each operator B on \mathcal{V} the complex-valued function s(B) on $o(\varphi_0)$ defined by

$$s(B)(\varphi) = \frac{\langle Be_{\varphi}, e_{\varphi} \rangle_{\mathcal{V}}}{\langle e_{\varphi}, e_{\varphi} \rangle_{\mathcal{V}}}$$

which is called the symbol of B. Then we have the following proposition, see [14], [1] and [5].

PROPOSITION 3.1. (1) The map $B \rightarrow s(B)$ is injective.

- (2) For each operator B on \mathcal{V} , we have $s(B^*) = \overline{s(B)}$.
- (3) For each $\varphi \in o(\varphi_0)$, $k \in U(n)$ and $B \in \text{End}(\mathcal{V})$, we have

$$s(B)(\operatorname{Ad}^*(k)\varphi) = s(\rho_0(k)^{-1}B\rho_0(k))(\varphi).$$

(4) For each $A \in u(n)$ and $\varphi \in o(\varphi_0)$, we have $s(d\rho_0(A))(\varphi) = i \langle \varphi, A \rangle$.

We also need the following result, see [10] and [12].

PROPOSITION 3.2. Let $Z \in \mathbb{D}$. There exists a unique element k_Z in K^c such that $k_Z^* = k_Z$ and $k_Z^2 = \kappa (\exp Z^* \exp Z)^{-1}$. Each $g \in G$ such that $g \cdot 0 = Z$ is then of the form $g = \exp(-Z^*) \zeta (\exp Z^* \exp Z) k_Z^{-1} h$ where $h \in K$. Consequently, the map $Z \to g_Z := \exp(-Z^*) \zeta (\exp Z^* \exp Z) k_Z^{-1}$ is a section for the action of G on \mathbb{D} .

More explicitly, for each $Z = a(y, Y) \in D$ *, we have*

$$k_Z = \left((0,0), -\frac{i}{8} E(y, y, Y, Y), \begin{pmatrix} (I_n - Y\bar{Y})^{1/2} & 0\\ 0 & (I_n - \bar{Y}Y)^{-1/2} \end{pmatrix} \right)$$

and

$$g_{Z} = \left((-\bar{w}, -w), \frac{i}{8} (y^{t} (I_{n} - \bar{Y}Y)^{-1} \bar{Y}y - \bar{y}^{t} Y (I_{n} - \bar{Y}Y)^{-1} \bar{y}), M(Y) \right)$$

where $w := -(I_n - \overline{Y}Y)^{-1}(\overline{y} + \overline{Y}y)$ and

$$M(Y) := \begin{pmatrix} (I_n - Y\bar{Y})^{-1/2} & Y(I_n - \bar{Y}Y)^{-1/2} \\ \bar{Y}(I_n - Y\bar{Y})^{-1/2} & (I_n - \bar{Y}Y)^{-1/2} \end{pmatrix}$$

Now, following [17], [2], [12], we define the pre-symbol $S_0(A)$ of an operator A by

$$S_0(A)(Z) = c_{\rho}^{-1} \rho(k_Z^{-1}) E_Z^* A E_Z \rho(k_Z^{-1})^*$$

and the Berezin symbol S(A) of A is defined as the complex-valued function on $\mathcal{D} \times o(\varphi_0)$ given by

$$S(A)(Z,\varphi) = s(S_0(A)(Z))(\varphi).$$

For each $g \in G$ and $Z \in \mathcal{D}$, let $k(g, Z) := g_Z^{-1} g^{-1} g_{g \cdot Z} \in K$. Then we can write

$$k(g, Z) = \left((0, 0), c(g, Z), \begin{pmatrix} P(g, Z) & 0\\ 0 & \overline{P(g, Z)} \end{pmatrix} \right),$$

where $c(g, Z) \in \mathbb{R}$ and $P(g, Z) \in U(n)$.

We have the following properties of S, see [12].

PROPOSITION 3.3. (1) Each operator A is determined by S(A).

- (2) For each operator A, we have $S(A^*) = \overline{S(A)}$.
- (3) We have $S(I_{\mathcal{H}}) = 1$.
- (4) For each operator A, $g \in G$, $Z \in D$ and $\varphi \in o(\varphi_0)$, we have

$$S(A)(g \cdot Z, \varphi) = S(\pi(g)^{-1}A\pi(g))(Z, \operatorname{Ad}^*(P(g, Z))\varphi).$$

Now, we give some formulas for the Berezin pre-symbol of $\pi(g)$ for $g \in G$ and for the Berezin symbol of $d\pi(X)$ for $X \in \mathfrak{g}^c$. For $\varphi \in u(n)^*$, we denote by φ^s the linear form on \mathfrak{s} defined by

$$\left\langle \varphi^{s}, \left(\begin{array}{c} P & Q \\ \overline{Q} & \overline{P} \end{array} \right) \right\rangle = \left\langle \varphi, P \right\rangle$$

and by φ^e the linear form on \mathfrak{g} defined by

$$\left\langle \varphi^{e}, \left((z, \bar{z}), c, \left(\begin{array}{c} P & Q \\ \bar{Q} & \bar{P} \end{array} \right) \right) \right\rangle = \langle \varphi, P \rangle + \gamma c.$$

We also denote by φ^s and φ^e the extensions of φ^s and φ^e to \mathfrak{s}^c and \mathfrak{g}^c .

270

PROPOSITION 3.4 ([12]). (1) For $g \in G$ and $Z \in \mathcal{D}$, we have

 $S_0(\pi(g))(Z) = \rho \left(k_Z^{-1} \kappa (\exp Z^* g^{-1} \exp Z)^{-1} (k_Z^{-1})^* \right).$

(2) For each $X \in \mathfrak{g}$, $Z \in \mathfrak{D}$ and $\varphi \in o(\varphi_0)$, we have

$$S(d\pi(X))(Z,\varphi) = i \langle \operatorname{Ad}^*(g_Z)\varphi^e, X \rangle.$$

Recall that $\xi_0 \in \mathfrak{g}^*$ is said to be *regular* if the stabilizer $G(\xi_0)$ of ξ_0 for the coadjoint action is connected and if the Hermitian form $(Z, W) \rightarrow \langle \xi_0, [Z, W^*] \rangle$ is not isotropic [12].

LEMMA 3.5. The linear form φ_0^e is regular if and only if we have $m_j > 0$ for each j or $m_j < 0$ for each j.

PROOF. On the one hand, by using the formula for the coadjoint action of *G* given in [13], Section 2, we can verify that $G(\varphi_0^e)$ consists of all matrices of the form $((0,0), c, \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix})$ where $c \in \mathbb{R}$ and $P \in U(n)$ is such that $\operatorname{Ad}^*(P)\varphi_0 = \varphi_0$. Since φ_0 is assumed to be regular as an element of $u(n)^*$, we get $P \in H_0$. Hence $G(\varphi_0^e) \cong \mathbb{R} \times H_0$ is connected.

On the other hand, for each $Z = a(y, Y) \in \mathcal{D}$, we have

$$\begin{aligned} \langle \varphi_0^e, [Z, Z^*] \rangle &= -\langle \varphi_0, Y \overline{Y} \rangle - \frac{i}{2} \gamma |y|^2 \\ &= -\sum_j m_j |Y_j|^2 - \frac{i}{2} \gamma |y|^2 \end{aligned}$$

where Y_1, Y_2, \ldots, Y_n denote the columns of Y. The result hence follows.

Let us assume that φ_0^e is regular and denote by $\mathcal{O}(\varphi_0^e)$ the orbit of φ_0^e for the coadjoint action of *G*. Then we have the following proposition, see [12].

PROPOSITION 3.6. The map $\Psi: \mathfrak{D} \times o(\varphi_0) \to \mathfrak{g}^*$ defined by

$$\Psi(Z,\varphi) = \operatorname{Ad}^*(g_Z)\varphi^{\epsilon}$$

is a diffeomorphism form $\mathbb{D} \times o(\varphi_0)$ onto $\mathbb{O}(\varphi_0^e)$ such that

$$\Psi(g \cdot Z, \varphi) = \operatorname{Ad}^*(g) \,\Psi(Z, \operatorname{Ad}^*(P(g, Z))(\varphi))$$

for each $g \in G$, $Z \in \mathcal{D}$ and $\varphi \in o(\varphi_0)$.

More precisely, with the notation of [13], we have

$$\Psi(Z,\varphi) = \left(\gamma(\bar{w},w),\gamma,\operatorname{Ad}^*(M(Y))\varphi^s - \frac{\gamma}{2}(\bar{w},w) \times (\bar{w},w)\right)$$

where $Z = a(y, Y) \in \mathcal{D}$ and $w := -(I_n - \overline{Y}Y)^{-1}(\overline{y} + \overline{Y}y)$.

4. Berezin transform and Stratonovich-Weyl correspondence

Here we introduce the Berezin transform associated with *S* and the corresponding Stratonovich–Weyl correspondence, following [12].

We fix a *K*-invariant measure ν on $o(\varphi_0)$ normalized as in [5], Section 2. Then the measure $\tilde{\mu} := \mu \otimes \nu$ on $\mathcal{D} \times o(\varphi_0)$ is invariant under the action of *G* on $\mathcal{D} \times o(\varphi_0)$ given by $g \cdot (Z, \varphi) := (g \cdot Z, \operatorname{Ad}^*(P(g, Z))^{-1}\varphi)$ and the measure $\mu_{\mathcal{O}(\varphi_0^e)} := (\Psi^{-1})^*(\tilde{\mu})$ is a *G*-invariant measure on $\mathcal{O}(\varphi_0^e)$.

We denote by $\mathcal{L}_2(\mathcal{H})$ the space of Hilbert-Schmidt operators on \mathcal{H} endowed with the Hilbert-Schmidt norm. We also endow End(\mathcal{V}) with the Hilbert-Schmidt norm. We denote by $L^2(\mathcal{D} \times o(\varphi_0))$ (respectively $L^2(\mathcal{D}), L^2(o(\varphi_0)), L^2(\mathcal{O}(\varphi_0^e)))$ the space of functions on $\mathcal{D} \times o(\varphi_0)$ (respectively $\mathcal{D}, o(\varphi_0), \mathcal{O}(\varphi_0^e)$) which are square-integrable with respect to the measure $\tilde{\mu}$ (respectively $\mu, \nu, \mu_{\mathcal{O}(\varphi_0^e)}$). Then we have the following result, see for instance [6].

PROPOSITION 4.1. The Berezin transform $b := ss^*$ is given by

$$b(a)(\psi) = \int_{o(\varphi_0)} a(\varphi) \frac{|\langle e_{\psi}, e_{\varphi} \rangle_{\mathcal{V}}|^2}{\langle e_{\varphi}, e_{\varphi} \rangle_{\mathcal{V}} \langle e_{\psi}, e_{\psi} \rangle_{\mathcal{V}}} d\nu(\varphi)$$

for each $a \in L^2(o(\varphi_0))$

Similarly, we have the following proposition.

PROPOSITION 4.2. The Berezin transform $B := SS^*$ is a bounded operator of $L^2(\mathbb{D} \times o(\varphi_0))$ and that, for each $f \in L^2(\mathbb{D} \times o(\varphi_0))$, we have the following integral formula

$$B(f)(Z,\psi) = \int_{\mathcal{D}\times o(\varphi_0)} k(Z,W,\psi,\varphi) f(W,\varphi) d\mu(W) d\nu(\varphi)$$

where

$$k(Z, W, \psi, \varphi) := \frac{|\langle \rho(\kappa(g_Z^{-1}g_W))^{-1}e_{\psi}, e_{\varphi}\rangle_{\mathcal{V}}|^2}{\langle e_{\varphi}, e_{\varphi}\rangle_{\mathcal{V}}\langle e_{\psi}, e_{\psi}\rangle_{\mathcal{V}}}$$

Consider the left-regular representation τ of G on $L^2(\mathcal{D} \times o(\varphi_0))$ defined by

$$(\tau(g)(f))(Z,\varphi) = f(g^{-1} \cdot (Z,\varphi)).$$

Clearly, τ is unitary. Moreover, since S is G-equivariant, we immediately verify that for each $f \in L^2(\mathcal{D} \times o(\varphi_0))$ and each $g \in G$, we have $B(\tau(g)f) = \tau(g)(B(f))$.

Now, we introduce the polar decomposition of $S: \mathcal{L}_2(\mathcal{H}) \to L^2(\mathcal{D} \times o(\varphi_0))$. We can write $S = (SS^*)^{1/2}W = B^{1/2}W$ where $W := B^{-1/2}S$ is a unitary operator from $\mathcal{L}_2(\mathcal{H})$ to $L^2(\mathcal{D} \times o(\varphi_0))$. Then we have the following proposition, see [12]. The main point is that W is G-equivariant since S (hence B) is G-equivariant.

PROPOSITION 4.3. (1) $W: \mathcal{L}_2(\mathcal{H}) \to L^2(\mathcal{D} \times o(\varphi_0))$ is a Stratonovich–Weyl correspondence for the triple $(G, \pi, \mathcal{D} \times o(\varphi_0))$.

(2) The map \mathcal{W} from $\mathcal{L}_2(\mathcal{H})$ to $L^2(\mathfrak{O}(\varphi_0^e))$ defined by $\mathcal{W}(f) = W(f \circ \Psi)$ is a Stratonovich–Weyl correspondence for the triple $(G, \pi, \mathfrak{O}(\varphi_0^e))$.

5. Extension of the Berezin transform

Here we generalize Proposition 5.2 of [13], that is, we extend *B* to a class of functions which contains $S(d\pi(X))$ for $X \in \mathfrak{g}^c$, in particular in order to define $W(d\pi(X))$.

For $Z, W \in \mathcal{D}$, we set $l_Z(W) := \log \eta(\exp Z^* \exp W) \in \mathfrak{p}^-$. We need the following lemma which is the direct generalization of Lemma 5.1 of [13].

LEMMA 5.1. (1) For each $Z, W \in \mathcal{D}, V \in \mathfrak{p}^+$ and $v \in \mathcal{V}$,

$$\frac{d}{dt} (E_Z v)(W + tV) \Big|_{t=0} = -c_\rho (d\rho \circ p_{\mathfrak{k}^c}) \Big([l_Z(W), V] + \frac{1}{2} [l_Z(W), [l_Z(W), V]] \Big) (E_Z v)(W).$$

(2) For Z, $W \in \mathcal{D}$ and $V \in \mathfrak{p}^+$,

$$\frac{d}{dt} l_Z(W + tV) \Big|_{t=0} = p_{\mathfrak{p}^-} \Big([l_Z(W), V] + \frac{1}{2} [l_Z(W), [l_Z(W), V]] \Big).$$

- (3) The function $(\partial_{k_1}\partial_{k_2}\cdots\partial_{k_q}E_Z v)(W)$ is of the form $Q(l_Z(W))(E_Z v)(W)$ where Q is a polynomial of degree $\leq 2q$ with values in End(V).
- (4) For each $X_1, X_2, ..., X_q \in \mathfrak{g}^c$, the function $S_0(d\pi((X_1X_2\cdots X_q)))$ is a sum of terms of the form $\rho(k_Z)^{-1}P(Z)Q(l_Z(Z))\rho(k_Z)$ where P and Q are polynomials of degree $\leq 2q$ with values in End(\mathcal{V}).

By combining the arguments of the proof of Proposition 6.5 in [8] with those of the proof of Proposition 5.2 in [13], we then obtain the following result. Recall that $m := \sum_{i} m_{i}$.

PROPOSITION 5.2. If $q < \frac{1}{4}(-m-2n)$ then for each $X_1, X_2, \ldots, X_q \in \mathfrak{g}^c$, the Berezin transform of $S(d\pi(X_1X_2\cdots X_q))$ is well-defined.

We have then generalized Proposition 5.2 of [13]. However, it seems difficult to obtain here an explicit expression for $W(d\pi(X))$, $X \in \mathfrak{g}$, as in [13], Section 6.

References

- D. ARNAL M. CAHEN S. GUTT, Representations of compact Lie groups and quantization by deformation, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4-5, pp. 123–141.
- S. T. ALI M. ENGLIS, Berezin–Toeplitz quantization over matrix domains, preprint 2006. arXiv:math-ph/0602015
- [3] F. A. BEREZIN, *Quantization*, Izv. Akad. Nauk SSSR Ser. Mat. **38** (1974), pp. 1116–1175. (In Russian.) English translation, Math. USSR-Izv. **8** (1974), no. 5, pp. 1109–1165.
- [4] F. A. BEREZIN, Quantization in complex symmetric domains, Izv. Akad. Nauk SSSR Ser. Mat. **39** (1975), no. 2, 363–402, 472. (In Russian.) English translation, Math. USSR-Izv. **9** (1975), no. 2, pp. 341–379.
- [5] B. CAHEN, Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), pp. 66–84.
- [6] B. CAHEN, Stratonovich-Weyl correspondence for compact semisimple Lie groups, Rend. Circ. Mat. Palermo 59 (2010), pp. 331–354.
- [7] B. CAHEN, Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno) 47 (2011), pp. 41–58.
- [8] B. CAHEN, Berezin transform for non-scalar holomorphic discrete series, Comment. Math. Univ. Carolin. 53 (2012), no. 1, pp. 1–17.
- [9] B. CAHEN, Berezin quantization and holomorphic representations, Rend. Semin. Mat. Univ. Padova 129 (2013), pp. 277–297.
- [10] B. CAHEN, Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), no. 1, pp. 35–48.
- [11] B. CAHEN, Stratonovich-Weyl correspondence for the Jacobi group, Commun. Math. 22 (2014), no. 1, pp. 31–48.
- [12] B. CAHEN, Stratonovich-Weyl correspondence via Berezin quantization, Rend. Istit. Mat. Univ. Trieste 46 (2014), pp. 157–180.
- [13] B. CAHEN, Berezin transform and Stratonovich–Weyl correspondence for the multidimensional Jacobi group, Rend. Sem. Mat. Univ. Padova 136 (2016), pp. 69–93.

- [14] M. CAHEN S. GUTT J. RAWNSLEY, Quantization of Kähler manifolds. I. Geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990), pp. 45–62.
- [15] R. GOODMAN N. R. WALLACH, Symmetry, representations and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009.
- [16] A. A. KIRILLOV, *Lectures on the orbit method*, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, R.I., 2004.
- [17] S. KILIC, The Berezin symbol and multipliers on functional Hilbert spaces, Proc. Amer. Math. Soc. 123 (1995), no. 12, pp. 3687–3691.
- [18] K-H. NEEB, *Holomorphy and convexity in Lie theory*, de Gruyter Expositions in Mathematics, 28. Walter de Gruyter & Co., Berlin, 2000.
- [19] N. J. WILDBERGER, On the Fourier transform of a compact semisimple Lie group, J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, pp. 64–116.

Manoscritto pervenuto in redazione l'8 agosto 2015.