Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group (addendum)

Benjamin Cahen (*)

Abstract - We extend the results of [13] to the holomorphic representations of the nonscalar type of the multi-dimensional Jacobi group.

Mathematics Subject Classification (2010). 22E27, 32M10, 46E22.
Keywords. Berezin quantization, Berezin transform; quasi-Hermitian Lie group, multidimensional Jacobi group, unitary representation, holomorphic representation of the non-scalar type, Stratonovich-Weyl correspondence.

1. Introduction

We use the notation of [13], Section 2. In particular, we denote by G the multidimensional Jacobi group and by K the subgroup of G consisting of all elements of the form $\left((0,0), c,\left(\begin{array}{cc}P & \frac{0}{0} \\ 0 & \bar{P}\end{array}\right)\right)$ where $c \in \mathbb{R}$ and $P \in U(n)$.

Recall that the unitary representations of G considered in [13] are holomorphically induced from a unitary character of K. Here we consider, more generally, the unitary representations of G which are holomorphically induced from a unitary representation ρ of K, see [18], p. 515, and we extend the results of [13] to these representations. The main tool is then the generalized Berezin calculus for a reproducing kernel Hilbert space of vector-valued holomorphic functions, see [2], [17] and [12]. Most of the proofs are similar to those of [13] so we just sketch them briefly.
(*) Indirizzo dell'A.: Université de Lorraine, Site de Metz, UFR-MIM, Département de mathématiques, Bâtiment A, Ile du Saulcy, CS 50128, F-57045, Metz cedex 01, France E-mail: benjamin.cahen@univ-lorraine.fr

2. Representations

Let $\gamma \in \mathbb{R}$ and let ρ_{0} be a unitary irreducible representation of $U(n)$ on a (finitedimensional) complex vector space \mathcal{V}. Let ρ be the representation of K on \mathcal{V} defined by

$$
\rho\left((0,0), c,\left(\begin{array}{cc}
P & 0 \\
0 & \bar{P}
\end{array}\right)\right)=e^{i \gamma c} \rho_{0}(P)
$$

We also denote by ρ_{0} and ρ the corresponding representations of $\mathrm{GL}_{n}(\mathbb{C})$ and K^{c} 。

Let $M_{n}(\mathbb{C})=\mathfrak{n}^{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{n}^{-}$be the usual triangular decomposition of $M_{n}(\mathbb{C})$. Then ρ_{0} is associated with a dominant integral weight of the form

$$
\Lambda_{m_{1}, m_{2}, \ldots, m_{n}}: \operatorname{Diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \longrightarrow \sum_{i=1}^{n} m_{i} a_{i}
$$

where $m_{1} \geq m_{2} \geq \cdots \geq m_{n}$ and $m_{i} \in \mathbb{Z}$ [15], p. 274. Let $m=\sum_{i=1}^{n} m_{i}$. Then we have $\rho_{0}\left(z I_{n}\right)=z^{m} I_{V}$ for each $z \in \mathbb{C}^{\times}$.

Recall that for each $y \in \mathbb{C}^{n}$ and $Y \in M_{n}(\mathbb{C})$ such that $Y^{t}=Y$, we denote

$$
a(y, Y):=\left((y, 0), 0,\left(\begin{array}{cc}
0 & Y \\
0 & 0
\end{array}\right)\right) \in \mathfrak{p}^{+}
$$

and

$$
\mathcal{D}:=\left\{a(y, Y) \in \mathfrak{p}^{+}: I_{n}-Y \bar{Y}>0\right\} \cong \mathbb{C}^{n} \times \mathcal{B}
$$

where $\mathcal{B}:=\left\{Y \in M_{n}(\mathbb{C}): Y^{t}=Y, I_{n}-Y \bar{Y}>0\right\}$.
Now we will apply the general considerations of [18] and [12] to the particular case of the multi-dimensional Jacobi group. Following [18], p. 497, we set $K(Z, W):=\rho\left(\kappa\left(\exp W^{*} \exp Z\right)\right)^{-1}$ for $Z, W \in \mathcal{D}$ and $J(g, Z):=\rho(\kappa(g \exp Z))$ for $g \in G$ and $Z \in \mathcal{D}$ and we introduce the Hilbert space \mathcal{H} of all holomorphic functions on \mathcal{D} with values in \mathcal{V} such that

$$
\|f\|_{\mathscr{H}}^{2}:=\int_{\mathcal{D}}\left\langle K(Z, Z)^{-1} f(Z), f(Z)\right\rangle_{\nu} d \mu(Z)<+\infty
$$

where μ denotes the G-invariant measure on \mathcal{D} defined in [13], Section 2.
Let π be the unitary representation of G on \mathcal{H} defined by

$$
(\pi(g) f)(Z)=J\left(g^{-1}, Z\right)^{-1} f\left(g^{-1} \cdot Z\right)
$$

In [12], we verified that π is obtained by holomorphic induction from ρ, that is, π corresponds to the natural action of G on the square-integrable holomorphic sections of the Hilbert G-bundle $G \times{ }_{\rho} \mathcal{V}$ over $G / K \cong \mathcal{D}$. Moreover, π is irreducible since ρ is irreducible, see [18], p. 515.

The evaluation maps $K_{Z}: \mathcal{H} \rightarrow \mathcal{V}, f \rightarrow f(Z)$ are continuous [18], p. 539. The vector coherent states of \mathcal{H} are the maps $E_{Z}=K_{Z}^{*}: \mathcal{V} \rightarrow \mathcal{H}$ defined by $\langle f(Z), v\rangle_{\mathcal{V}}=\left\langle f, E_{Z} v\right\rangle_{\mathcal{H}}$ for $f \in \mathcal{H}$ and $v \in \mathcal{V}$.

We have the following result, see [18], p. 540.

Proposition 2.1. (1) There exists a constant $c_{\rho}>0$ such that

$$
E_{Z}^{*} E_{W}=c_{\rho} K(Z, W)
$$

for each $Z, W \in \mathcal{D}$.
(2) For $g \in G$ and $Z \in \mathcal{D}$,

$$
E_{g \cdot Z}=\pi(g) E_{Z} J(g, Z)^{*}
$$

Now we give explicit formulas for K and J and we compute c_{ρ} (see Lemma 3.1 in [13]).

Proposition 2.2. (1) Let $Z=a(y, Y) \in \mathcal{D}$ and $W=a(v, V) \in \mathcal{D}$. We set

$$
E(y, v, Y, V):=2 y^{t}\left(I_{n}-\bar{V} Y\right)^{-1} \bar{v}+y^{t}\left(I_{n}-\bar{V} Y\right)^{-1} \bar{V} y+\bar{v}^{t} Y\left(I_{n}-\bar{V} Y\right)^{-1} \bar{v}
$$

Then,

$$
K(Z, W)=\exp \left(\frac{\gamma}{4} E(y, v, Y, V)\right) \rho_{0}\left(I_{n}-Y \bar{V}\right)
$$

(2) $\mathcal{H} \neq(0)$ if and only if $\gamma>0$ and $m+n+1 / 2<0$. In this case,

$$
c_{\rho}=\operatorname{Dim}(\mathcal{V})\left(\frac{\gamma}{2 \pi}\right)^{n} J_{n}(-m-n-3 / 2)^{-1} .
$$

(3) For each $g=\left(\left(z_{0}, \bar{z}_{0}\right), c_{0},\left(\begin{array}{c}P \\ \bar{Q} \\ \bar{P}\end{array}\right)\right) \in G$ and each $Z=a(y, Y) \in \mathcal{D}$, we have

$$
\begin{aligned}
& J(g, Z)=e^{i \gamma c_{0}} \exp \left(\frac { \gamma } { 4 } \left(z_{0}^{t} \bar{z}_{0}+2 \bar{z}_{0}^{t} P y+y^{t} P^{t} \bar{Q} y\right.\right. \\
& \left.\quad-\left(\bar{z}_{0}+\bar{Q} y\right)^{t}(P Y+Q)(\bar{Q} y+\bar{P})^{-1}\left(\bar{z}_{0}+\bar{Q} y\right)\right) \\
& \rho_{0}\left((\bar{Q} Y+\bar{P})^{t}\right)^{-1}
\end{aligned}
$$

Proof. (1) and (3) are simple calculations. To prove (2), we use the formula

$$
\left(I_{n}-\bar{Y} Y\right)^{-1}=\operatorname{Det}\left(I_{n}-\bar{Y} Y\right)^{-1} C\left(I_{n}-\bar{Y} Y\right)^{t}
$$

for each $Y \in \mathcal{B}$, where $C(A)$ denotes the cofactor matrix of a matrix A. From this formula, we deduce

$$
\operatorname{Tr} \rho_{0}\left(I_{n}-\bar{Y} Y\right)^{-1}=\operatorname{Det}\left(I_{n}-\bar{Y} Y\right)^{-m} \operatorname{Tr} \rho_{0}\left(C\left(I_{n}-\bar{Y} Y\right)^{t}\right)
$$

and then we can prove (2) by following the same lines as in the proof of Proposition 3.2 of [13], using Theorem XII.5.6 of [18].

Proposition 3.4 of [13] can be generalized as follows.
Proposition 2.3. For $X \in \mathfrak{g}^{c}, f \in \mathcal{H}$ and $Z \in \mathcal{D}$,

$$
d \pi(X) f(Z)=d \rho\left(p_{\mathfrak{k} c}\left(e^{-\mathrm{ad} Z} X\right)\right) f(Z)-(d f)_{Z}\left(p_{\mathfrak{p}^{+}}\left(e^{-\mathrm{ad} Z} X\right)\right)
$$

In particular,

(1) if $X \in \mathfrak{p}^{+}$, then $d \pi(X) f(Z)=-(d f)_{Z}(X)$;
(2) if $X \in \mathfrak{k}^{c}$, then $d \pi(X) f(Z)=d \rho(X) f(Z)+(d f)_{Z}([Z, X])$;
(3) if $X \in \mathfrak{p}^{-}$, then

$$
\begin{aligned}
d \pi(X) f(Z)= & \left(d \rho \circ p_{\mathfrak{k}} c\right)\left(-[Z, X]+\frac{1}{2}[Z,[Z, X]]\right) f(Z) \\
& -\left(d f_{Z} \circ p_{\mathfrak{p}^{+}}\right)\left(-[Z, X]+\frac{1}{2}[Z,[Z, X]]\right) .
\end{aligned}
$$

Let $\left(E_{k}\right)$ be a basis of \mathfrak{p}^{+}. Then, for each $f \in \mathcal{H}$ and each k, we denote

$$
\left(\partial_{k} f\right)(Z)=\left.\frac{d}{d t} f\left(Z+t E_{k}\right)\right|_{t=0}
$$

From the preceding proposition we deduce the following result.
Proposition 2.4. For each $X_{1}, X_{2}, \ldots, X_{q} \in \mathfrak{g}^{c}, d \pi\left(X_{1} X_{2} \cdots X_{q}\right)$ is a sum of terms of the form $P(Z) \partial_{k_{1}} \partial_{k_{2}} \cdots \partial_{k_{r}}$ where $r \leq q$ and $P(Z)$ is a polynomial of degree $\leq 2 q$.

3. Berezin calculus

First we introduce the Berezin quantization map associated with ρ_{0}, see [3], [4], [1], [5], and [19].

Let $\tilde{\varphi}_{0}$ be the linear form on $M_{n}(\mathbb{C})$ defined by $\tilde{\varphi}_{0}=-i \Lambda_{m_{1}, m_{2}, \ldots, m_{n}}$ on \mathfrak{h}_{0} and $\tilde{\varphi}_{0}=0$ on $\mathfrak{n}^{ \pm}$. We denote by φ_{0} the restriction of $\tilde{\varphi}_{0}$ to $u(n)$. Then the orbit $o\left(\varphi_{0}\right)$ of φ_{0} under the coadjoint action of $U(n)$ is then said to be associated with ρ_{0}.

Note that the stabilizer of φ_{0} for the coadjoint action of $U(n)$ contains the torus

$$
H_{0}:=\left\{\operatorname{Diag}\left(i a_{1}, i a_{2}, \ldots, i a_{n}\right): a_{j} \in \mathbb{R}\right\}
$$

We say that such an element φ_{0} is regular if the stabilizer of φ_{0} is equal to H_{0}, see [5]. Then we can verify that φ_{0} is regular if and only if one has $m_{1}>m_{2}>$ $\cdots>m_{n}$. In the rest of the paper, we assume that φ_{0} is regular.

Note also that a complex structure on $o\left(\varphi_{0}\right)$ is then defined by the diffeomorphism $o\left(\varphi_{0}\right) \simeq U(n) / H_{0} \simeq \mathrm{GL}_{n}(\mathbb{C}) / H_{0}^{c} N^{-}$where N^{-}is the analytic subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ with Lie algebra \mathfrak{n}^{-}.

Without loss of generality, we can assume that \mathcal{V} is the space of holomorphic functions on (a dense open set of) $o\left(\varphi_{0}\right)$ as in [5]. For $\varphi \in o\left(\varphi_{0}\right)$ there exists a unique function $e_{\varphi} \in \mathcal{V}$ (called a coherent state) such that $a(\varphi)=\left\langle a, e_{\varphi}\right\rangle_{\mathcal{V}}$ for each $a \in \mathcal{V}$. The Berezin calculus on $o\left(\varphi_{0}\right)$ associates with each operator B on \mathcal{V} the complex-valued function $s(B)$ on $o\left(\varphi_{0}\right)$ defined by

$$
s(B)(\varphi)=\frac{\left\langle B e_{\varphi}, e_{\varphi}\right\rangle_{\nu}}{\left\langle e_{\varphi}, e_{\varphi}\right\rangle_{\nu}}
$$

which is called the symbol of B. Then we have the following proposition, see [14], [1] and [5].

Proposition 3.1. (1) The map $B \rightarrow s(B)$ is injective.
(2) For each operator B on \mathcal{V}, we have $s\left(B^{*}\right)=\overline{s(B)}$.
(3) For each $\varphi \in o\left(\varphi_{0}\right), k \in U(n)$ and $B \in \operatorname{End}(\mathcal{V})$, we have

$$
s(B)\left(\operatorname{Ad}^{*}(k) \varphi\right)=s\left(\rho_{0}(k)^{-1} B \rho_{0}(k)\right)(\varphi) .
$$

(4) For each $A \in u(n)$ and $\varphi \in o\left(\varphi_{0}\right)$, we have $s\left(d \rho_{0}(A)\right)(\varphi)=i\langle\varphi, A\rangle$.

We also need the following result, see [10] and [12].
Proposition 3.2. Let $Z \in \mathcal{D}$. There exists a unique element k_{Z} in K^{c} such that $k_{Z}^{*}=k_{Z}$ and $k_{Z}^{2}=\kappa\left(\exp Z^{*} \exp Z\right)^{-1}$. Each $g \in G$ such that $g \cdot 0=Z$ is then of the form $g=\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k_{Z}^{-1} h$ where $h \in K$. Consequently, the map $Z \rightarrow g_{Z}:=\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k_{Z}^{-1}$ is a section for the action of G on \mathcal{D}.

More explicitly, for each $Z=a(y, Y) \in \mathcal{D}$, we have

$$
k_{Z}=\left((0,0),-\frac{i}{8} E(y, y, Y, Y),\left(\begin{array}{cc}
\left(I_{n}-Y \bar{Y}\right)^{1 / 2} & 0 \\
0 & \left(I_{n}-\bar{Y} Y\right)^{-1 / 2}
\end{array}\right)\right)
$$

and

$$
g_{Z}=\left((-\bar{w},-w), \frac{i}{8}\left(y^{t}\left(I_{n}-\bar{Y} Y\right)^{-1} \bar{Y} y-\bar{y}^{t} Y\left(I_{n}-\bar{Y} Y\right)^{-1} \bar{y}\right), M(Y)\right)
$$

where $w:=-\left(I_{n}-\bar{Y} Y\right)^{-1}(\bar{y}+\bar{Y} y)$ and

$$
M(Y):=\left(\begin{array}{cc}
\left(I_{n}-Y \bar{Y}\right)^{-1 / 2} & Y\left(I_{n}-\bar{Y} Y\right)^{-1 / 2} \\
\bar{Y}\left(I_{n}-Y \bar{Y}\right)^{-1 / 2} & \left(I_{n}-\bar{Y} Y\right)^{-1 / 2}
\end{array}\right) .
$$

Now, following [17], [2], [12], we define the pre-symbol $S_{0}(A)$ of an operator A by

$$
S_{0}(A)(Z)=c_{\rho}^{-1} \rho\left(k_{Z}^{-1}\right) E_{Z}^{*} A E_{Z} \rho\left(k_{Z}^{-1}\right)^{*}
$$

and the Berezin symbol $S(A)$ of A is defined as the complex-valued function on $\mathcal{D} \times o\left(\varphi_{0}\right)$ given by

$$
S(A)(Z, \varphi)=s\left(S_{0}(A)(Z)\right)(\varphi) .
$$

For each $g \in G$ and $Z \in \mathcal{D}$, let $k(g, Z):=g_{Z}^{-1} g^{-1} g_{g \cdot Z} \in K$. Then we can write

$$
k(g, Z)=\left((0,0), c(g, Z),\left(\begin{array}{cc}
P(g, Z) & 0 \\
0 & P(g, Z)
\end{array}\right)\right)
$$

where $c(g, Z) \in \mathbb{R}$ and $P(g, Z) \in U(n)$.
We have the following properties of S, see [12].
Proposition 3.3. (1) Each operator A is determined by $S(A)$.
(2) For each operator A, we have $S\left(A^{*}\right)=\overline{S(A)}$.
(3) We have $S\left(I_{\mathcal{H}}\right)=1$.
(4) For each operator $A, g \in G, Z \in \mathcal{D}$ and $\varphi \in o\left(\varphi_{0}\right)$, we have

$$
S(A)(g \cdot Z, \varphi)=S\left(\pi(g)^{-1} A \pi(g)\right)\left(Z, \operatorname{Ad}^{*}(P(g, Z)) \varphi\right)
$$

Now, we give some formulas for the Berezin pre-symbol of $\pi(g)$ for $g \in G$ and for the Berezin symbol of $d \pi(X)$ for $X \in \mathfrak{g}^{c}$. For $\varphi \in u(n)^{*}$, we denote by φ^{s} the linear form on \mathfrak{s} defined by

$$
\left\langle\varphi^{s},\left(\begin{array}{c}
P \\
\bar{Q} \\
\bar{P}
\end{array}\right)\right\rangle=\langle\varphi, P\rangle
$$

and by φ^{e} the linear form on \mathfrak{g} defined by

$$
\left\langle\varphi^{e},\left((z, \bar{z}), c,\left(\begin{array}{c}
P \\
\bar{Q} \\
\bar{P}
\end{array}\right)\right)\right\rangle=\langle\varphi, P\rangle+\gamma c .
$$

We also denote by φ^{s} and φ^{e} the extensions of φ^{s} and φ^{e} to \mathfrak{s}^{c} and \mathfrak{g}^{c}.

Proposition 3.4 ([12]). (1) For $g \in G$ and $Z \in \mathcal{D}$, we have

$$
S_{0}(\pi(g))(Z)=\rho\left(k_{Z}^{-1} \kappa\left(\exp Z^{*} g^{-1} \exp Z\right)^{-1}\left(k_{Z}^{-1}\right)^{*}\right)
$$

(2) For each $X \in \mathfrak{g}, Z \in \mathcal{D}$ and $\varphi \in o\left(\varphi_{0}\right)$, we have

$$
S(d \pi(X))(Z, \varphi)=i\left\langle\operatorname{Ad}^{*}\left(g_{Z}\right) \varphi^{e}, X\right\rangle
$$

Recall that $\xi_{0} \in \mathfrak{g}^{*}$ is said to be regular if the stabilizer $G\left(\xi_{0}\right)$ of ξ_{0} for the coadjoint action is connected and if the Hermitian form $(Z, W) \rightarrow\left\langle\xi_{0},\left[Z, W^{*}\right]\right\rangle$ is not isotropic [12].

Lemma 3.5. The linear form φ_{0}^{e} is regular if and only if we have $m_{j}>0$ for each j or $m_{j}<0$ for each j.

Proof. On the one hand, by using the formula for the coadjoint action of G given in [13], Section 2, we can verify that $G\left(\varphi_{0}^{e}\right)$ consists of all matrices of the form $\left((0,0), c,\left(\begin{array}{cc}P & 0 \\ 0 & \frac{P}{P}\end{array}\right)\right)$ where $c \in \mathbb{R}$ and $P \in U(n)$ is such that $\operatorname{Ad}^{*}(P) \varphi_{0}=\varphi_{0}$. Since φ_{0} is assumed to be regular as an element of $u(n)^{*}$, we get $P \in H_{0}$. Hence $G\left(\varphi_{0}^{e}\right) \cong \mathbb{R} \times H_{0}$ is connected.

On the other hand, for each $Z=a(y, Y) \in \mathcal{D}$, we have

$$
\begin{aligned}
\left\langle\varphi_{0}^{e},\left[Z, Z^{*}\right]\right\rangle & =-\left\langle\varphi_{0}, Y \bar{Y}\right\rangle-\frac{i}{2} \gamma|y|^{2} \\
& =-\sum_{j} m_{j}\left|Y_{j}\right|^{2}-\frac{i}{2} \gamma|y|^{2}
\end{aligned}
$$

where $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote the columns of Y. The result hence follows.
Let us assume that φ_{0}^{e} is regular and denote by $\mathcal{O}\left(\varphi_{0}^{e}\right)$ the orbit of φ_{0}^{e} for the coadjoint action of G. Then we have the following proposition, see [12].

Proposition 3.6. The map $\Psi: \mathcal{D} \times o\left(\varphi_{0}\right) \rightarrow \mathfrak{g}^{*}$ defined by

$$
\Psi(Z, \varphi)=\operatorname{Ad}^{*}\left(g_{Z}\right) \varphi^{e}
$$

is a diffeomorphism form $\mathcal{D} \times o\left(\varphi_{0}\right)$ onto $\mathcal{O}\left(\varphi_{0}^{e}\right)$ such that

$$
\Psi(g \cdot Z, \varphi)=\operatorname{Ad}^{*}(g) \Psi\left(Z, \operatorname{Ad}^{*}(P(g, Z))(\varphi)\right)
$$

for each $g \in G, Z \in \mathcal{D}$ and $\varphi \in o\left(\varphi_{0}\right)$.
More precisely, with the notation of [13], we have

$$
\Psi(Z, \varphi)=\left(\gamma(\bar{w}, w), \gamma, \operatorname{Ad}^{*}(M(Y)) \varphi^{s}-\frac{\gamma}{2}(\bar{w}, w) \times(\bar{w}, w)\right)
$$

where $Z=a(y, Y) \in \mathcal{D}$ and $w:=-\left(I_{n}-\bar{Y} Y\right)^{-1}(\bar{y}+\bar{Y} y)$.

4. Berezin transform and Stratonovich-Weyl correspondence

Here we introduce the Berezin transform associated with S and the corresponding Stratonovich-Weyl correspondence, following [12].

We fix a K-invariant measure v on $o\left(\varphi_{0}\right)$ normalized as in [5], Section 2. Then the measure $\tilde{\mu}:=\mu \otimes \nu$ on $\mathcal{D} \times o\left(\varphi_{0}\right)$ is invariant under the action of G on $\mathcal{D} \times o\left(\varphi_{0}\right)$ given by $g \cdot(Z, \varphi):=\left(g \cdot Z, \operatorname{Ad}^{*}(P(g, Z))^{-1} \varphi\right)$ and the measure $\mu_{\mathcal{O}\left(\varphi_{0}^{e}\right)}:=\left(\Psi^{-1}\right)^{*}(\tilde{\mu})$ is a G-invariant measure on $\mathcal{O}\left(\varphi_{0}^{e}\right)$.

We denote by $\mathcal{L}_{2}(\mathcal{H})$ the space of Hilbert-Schmidt operators on \mathcal{H} endowed with the Hilbert-Schmidt norm. We also endow $\operatorname{End}(\mathcal{V})$ with the Hilbert-Schmidt norm. We denote by $L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$ (respectively $\left.L^{2}(\mathcal{D}), L^{2}\left(o\left(\varphi_{0}\right)\right), L^{2}\left(\mathcal{O}\left(\varphi_{0}^{e}\right)\right)\right)$ the space of functions on $\mathcal{D} \times o\left(\varphi_{0}\right)$ (respectively $\left.\mathcal{D}, o\left(\varphi_{0}\right), \mathcal{O}\left(\varphi_{0}^{e}\right)\right)$ which are square-integrable with respect to the measure $\tilde{\mu}$ (respectively $\left.\mu, \nu, \mu_{\mathcal{O}\left(\varphi_{0}^{e}\right)}\right)$. Then we have the following result, see for instance [6].

Proposition 4.1. The Berezin transform $b:=s s^{*}$ is given by

$$
b(a)(\psi)=\int_{o\left(\varphi_{0}\right)} a(\varphi) \frac{\left|\left\langle e_{\psi}, e_{\varphi}\right\rangle_{\mathcal{V}}\right|^{2}}{\left\langle e_{\varphi}, e_{\varphi}\right\rangle_{\mathcal{V}}\left\langle e_{\psi}, e_{\psi}\right\rangle_{\mathcal{V}}} d \nu(\varphi)
$$

for each $a \in L^{2}\left(o\left(\varphi_{0}\right)\right)$
Similarly, we have the following proposition.
Proposition 4.2. The Berezin transform $B:=S S^{*}$ is a bounded operator of $L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$ and that, for each $f \in L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$, we have the following integral formula

$$
B(f)(Z, \psi)=\int_{\mathcal{D} \times o\left(\varphi_{0}\right)} k(Z, W, \psi, \varphi) f(W, \varphi) d \mu(W) d v(\varphi)
$$

where

$$
k(Z, W, \psi, \varphi):=\frac{\left|\left\langle\rho\left(\kappa\left(g_{Z}^{-1} g_{W}\right)\right)^{-1} e_{\psi}, e_{\varphi}\right\rangle_{\mathcal{V}}\right|^{2}}{\left\langle e_{\varphi}, e_{\varphi}\right\rangle_{\mathcal{V}}\left\langle e_{\psi}, e_{\psi}\right\rangle_{\mathcal{V}}}
$$

Consider the left-regular representation τ of G on $L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$ defined by

$$
(\tau(g)(f))(Z, \varphi)=f\left(g^{-1} \cdot(Z, \varphi)\right)
$$

Clearly, τ is unitary. Moreover, since S is G-equivariant, we immediately verify that for each $f \in L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$ and each $g \in G$, we have $B(\tau(g) f)=$ $\tau(g)(B(f))$.

Now, we introduce the polar decomposition of $S: \mathcal{L}_{2}(\mathcal{H}) \rightarrow L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$. We can write $S=\left(S S^{*}\right)^{1 / 2} W=B^{1 / 2} W$ where $W:=B^{-1 / 2} S$ is a unitary operator from $\mathcal{L}_{2}(\mathcal{H})$ to $L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$. Then we have the following proposition, see [12]. The main point is that W is G-equivariant since S (hence B) is G-equivariant.

Proposition 4.3. (1) $W: \mathcal{L}_{2}(\mathcal{H}) \rightarrow L^{2}\left(\mathcal{D} \times o\left(\varphi_{0}\right)\right)$ is a Stratonovich-Weyl correspondence for the triple $\left(G, \pi, \mathcal{D} \times o\left(\varphi_{0}\right)\right)$.
(2) The map \mathcal{W} from $\mathcal{L}_{2}(\mathcal{H})$ to $L^{2}\left(\mathcal{O}\left(\varphi_{0}^{e}\right)\right)$ defined by $\mathcal{W}(f)=W(f \circ \Psi)$ is a Stratonovich-Weyl correspondence for the triple $\left(G, \pi, \mathcal{O}\left(\varphi_{0}^{e}\right)\right)$.

5. Extension of the Berezin transform

Here we generalize Proposition 5.2 of [13], that is, we extend B to a class of functions which contains $S(d \pi(X))$ for $X \in \mathfrak{g}^{c}$, in particular in order to define $W(d \pi(X))$.

For $Z, W \in \mathcal{D}$, we set $l_{Z}(W):=\log \eta\left(\exp Z^{*} \exp W\right) \in \mathfrak{p}^{-}$. We need the following lemma which is the direct generalization of Lemma 5.1 of [13].

Lemma 5.1. (1) For each $Z, W \in \mathcal{D}, V \in \mathfrak{p}^{+}$and $v \in \mathcal{V}$,

$$
\begin{aligned}
\frac{d}{d t} & \left.\left(E_{Z} v\right)(W+t V)\right|_{t=0} \\
& =-c_{\rho}\left(d \rho \circ p_{\mathfrak{k}} c\right)\left(\left[l_{Z}(W), V\right]+\frac{1}{2}\left[l_{Z}(W),\left[l_{Z}(W), V\right]\right]\right)\left(E_{Z} v\right)(W)
\end{aligned}
$$

(2) For $Z, W \in \mathcal{D}$ and $V \in \mathfrak{p}^{+}$,

$$
\left.\frac{d}{d t} l_{Z}(W+t V)\right|_{t=0}=p_{\mathfrak{p}^{-}}\left(\left[l_{Z}(W), V\right]+\frac{1}{2}\left[l_{Z}(W),\left[l_{Z}(W), V\right]\right]\right)
$$

(3) The function $\left(\partial_{k_{1}} \partial_{k_{2}} \cdots \partial_{k_{q}} E_{Z} v\right)(W)$ is of the form $Q\left(l_{Z}(W)\right)\left(E_{Z} v\right)(W)$ where Q is a polynomial of degree $\leq 2 q$ with values in $\operatorname{End}(\mathcal{V})$.
(4) For each $X_{1}, X_{2}, \ldots, X_{q} \in \mathfrak{g}^{c}$, the function $S_{0}\left(d \pi\left(\left(X_{1} X_{2} \cdots X_{q}\right)\right)\right.$ is a sum of terms of the form $\rho\left(k_{Z}\right)^{-1} P(Z) Q\left(l_{Z}(Z)\right) \rho\left(k_{Z}\right)$ where P and Q are polynomials of degree $\leq 2 q$ with values in $\operatorname{End}(\mathcal{V})$.

By combining the arguments of the proof of Proposition 6.5 in [8] with those of the proof of Proposition 5.2 in [13], we then obtain the following result. Recall that $m:=\sum_{i} m_{i}$.

Proposition 5.2. If $q<\frac{1}{4}(-m-2 n)$ then for each $X_{1}, X_{2}, \ldots, X_{q} \in \mathfrak{g}^{c}$, the Berezin transform of $S\left(d \pi\left(X_{1} X_{2} \cdots X_{q}\right)\right)$ is well-defined.

We have then generalized Proposition 5.2 of [13]. However, it seems difficult to obtain here an explicit expression for $W(d \pi(X)), X \in \mathfrak{g}$, as in [13], Section 6.

References

[1] D. Arnal - M. Cahen - S. Gutt, Representations of compact Lie groups and quantization by deformation, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4-5, pp. 123-141.
[2] S. T. Alı - M. Englis, Berezin-Toeplitz quantization over matrix domains, preprint 2006. arXiv:math-ph/0602015
[3] F. A. Berezin, Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), pp. 1116-1175. (In Russian.) English translation, Math. USSR-Izv. 8 (1974), no. 5, pp. 1109-1165.
[4] F. A. Berezin, Quantization in complex symmetric domains, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363-402, 472. (In Russian.) English translation, Math. USSR-Izv. 9 (1975), no. 2, pp. 341-379.
[5] B. Cahen, Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), pp. 66-84.
[6] B. Cahen, Stratonovich-Weyl correspondence for compact semisimple Lie groups, Rend. Circ. Mat. Palermo 59 (2010), pp. 331-354.
[7] B. Cahen, Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno) 47 (2011), pp. 41-58.
[8] B. Cahen, Berezin transform for non-scalar holomorphic discrete series, Comment. Math. Univ. Carolin. 53 (2012), no. 1, pp. 1-17.
[9] B. Cahen, Berezin quantization and holomorphic representations, Rend. Semin. Mat. Univ. Padova 129 (2013), pp. 277-297.
[10] B. Cahen, Global parametrization of scalar holomorphic coadjoint orbits of a quasiHermitian Lie group, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), no. 1, pp. 35-48.
[11] B. Cahen, Stratonovich-Weyl correspondence for the Jacobi group, Commun. Math. 22 (2014), no. 1, pp. 31-48.
[12] B. Cahen, Stratonovich-Weyl correspondence via Berezin quantization, Rend. Istit. Mat. Univ. Trieste 46 (2014), pp. 157-180.
[13] B. Cahen, Berezin transform and Stratonovich-Weyl correspondence for the multidimensional Jacobi group, Rend. Sem. Mat. Univ. Padova 136 (2016), pp. 69-93.
Berezin transform and Stratonovich-Weyl correspondence (addendum)
[14] M. Cahen - S. Gutt - J. Rawnsley, Quantization of Kähler manifolds. I. Geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990), pp. 45-62.
[15] R. Goodman - N. R. Wallach, Symmetry, representations and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009.
[16] A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, R.I., 2004.
[17] S. Kilic, The Berezin symbol and multipliers on functional Hilbert spaces, Proc. Amer. Math. Soc. 123 (1995), no. 12, pp. 3687-3691.
[18] K-H. Neeb, Holomorphy and convexity in Lie theory, de Gruyter Expositions in Mathematics, 28. Walter de Gruyter \& Co., Berlin, 2000.
[19] N. J. Wildberger, On the Fourier transform of a compact semisimple Lie group, J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, pp. 64-116.

Manoscritto pervenuto in redazione l'8 agosto 2015.

