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Irreducible characters of �nite simple groups constant

at the p-singular elements

Marco A. Pellegrini (�) – Alexandre Zalesski (��)

Abstract – In representation theory of �nite groups an important role is played by

irreducible characters of p-defect 0, for a prime p dividing the group order. These

are exactly those vanishing at the p-singular elements. In this paper we generalize this

notion investigating the irreducible characters that are constant at the p-singular ele-

ments. We determine all such characters of non-zero defect for alternating, symmetric

and sporadic simple groups.

We also classify the irreducible characters of quasi-simple groups of Lie type that

are constant at the non-identity unipotent elements. In particular, we show that for

groups of BN-pair rank greater than 2 the Steinberg and the trivial characters are the

only characters in question. Additionally, we determine all irreducible characters whose

degrees di�er by 1 from the degree of the Steinberg character.
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1. Introduction

Local representation theory studies properties of group representations depending

on a prime p dividing the order of a �nite group G and the structure of a Sylow

p-subgroup S of G. Denote by ṗ.G/ the set of all p-singular elements of G,

that is, those of order divisible by p. In this theory a prominent role is played by
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irreducible characters of defect 0. These are exactly those vanishing at ṗ.G/. In

this paper we study irreducible characters that are constant at ṗ.G/. We call such

characters p-constant.

Although p-constant characters are very natural as a generalization of those of

defect 0, they do not seem to be discussed in the literature.

IfG has a single conjugacy class of p-singular elements then every irreducible

character ofG is p-constant. GroupsG with single class of non-trivial p-elements

are studied in [10]. Also, the trivial character is p-constant. It is less obvious that

for p > 2 non-exceptional characters in the principal block with cyclic defect

group are p-constant (see Theorem 1.3 below). We mention [13] where the authors

study irreducible characters whose values at the p-singular elements are roots of

unity, mainly for p-solvable groups.

In this paper we focus mainly on quasi-simple groups and in view of Lemma 2.2

below, we can concentrate on simple groups. Our main result is that on classi�-

cation of all p-constant irreducible characters for quasi-simple groups of Lie type

with de�ning characteristic p. Following [1, 1.17], a �nite group of Lie type is the

group of the �xed points of a (non-necessarily standard) Frobenius map acting

on a connected reductive group. (The simple group 2F4.2/
0 will be considered in

Section 5 together with the sporadic groups). Note that among the quasi-simple

groups of Lie type, only SL2.q/ with q even has a single class of non-identity p-

elements. Recall that, for every quasi-simple groupG of Lie type of characteristic

p, the Steinberg character is the only irreducible character of G of p-defect 0.

Theorem 1.1. LetG be a quasi-simple �nite group of Lie type of characteristic

p and let � be an irreducible character of G. Then � is p-constant if, and only if,

one of the following holds:

(1) � is the Steinberg character of G or � D 1G ;

(2) G 2 ¹SL2.q/; SL3.q/; SU3.q/;
2B2.q

2/; 2G2.q
2/º and �.1/ D jGjp ˙ 1.

More precisely, �.1/ ¤ jGjp � 1 if G 2 ¹SU3.q/;
2B2.q

2/; 2G2.q
2/º, and

�.1/ ¤ jGjp C 1 if G D SL3.q/.

One can be interested with the other quasi-simple groups. We state the follow-

ing.

Problem 1.2. LetG be a �nite quasi-simple group. Determine the irreducible

characters � of G for which there exists a constant c ¤ 0 such that �.g/ D c for

all g 2 ṗ.G/.
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Toward this problem, we have the following technical but useful observations.

Recall that, when G has cyclic Sylow p-subgroups, IrrG consists of so called

exceptional and non-exceptional characters, see [7, Chapter VII].

Theorem 1.3. Let G be a �nite group with Sylow p-subgroup S , and let B be

the principal p-block of G.

(1) If � is an irreducible p-constant character of non-zero defect, then � belongs

to B .

(2) Assume further that the defect group S of B is cyclic and that B contains

d ordinary exceptional characters. Let � ¤ 1G be an irreducible character

belonging to B . Then � is p-constant if, and only if, one of the following

occurs:

(a) d D 1;

(b) d > 1, p > 2 and � is not exceptional.

In addition, if � is p-constant then �.g/ D 1 or �1 for g 2 ṗ.G/.

In fact, we have more precise information on � in the case (b) of (2) above in

terms of the Brauer tree of the principal block. This reduces Problem 1.2 to groups

with non-cyclic Sylow p-subgroups. For alternating groups we have the following

result:

Theorem 1.4. Let G D An, n > 4, be an alternating group, and let p be a

prime such that n � 2p. Let � be a p-constant non-linear irreducible character

of non-zero defect. Then one of the following holds:

(1) p > 2, n D 2p and � is an irreducible constituent of an irreducible character

of Sn corresponding to the partition .p; 1p/ or .p; 2; 1p�2/;

(2) p > 2, n D 2p C 1 and � is an irreducible constituent of an irreducible

character of Sn corresponding to the partition .pC1; 1p/ or .pC1; 2; 1p�2/;

(3) p D 2 and .n; �.1// 2 ¹.5; 3/; .5; 5/; .6; 9/; .7; 15/º.

All these characters take value 1 or �1 on ṗ.G/.

For �nite simple groups we obtain the following result.
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Theorem 1.5. LetG be a �nite simple group,p be a prime dividing the order of

G and � be an irreducible character ofG. Assume that �.g/ D c for allg 2 ṗ.G/.

Then, one of the following holds:

(1) c 2 ¹�1; 0; 1º;
(2) G D M22, p D 3, c D �2 and �.1/ D 385;

(3) G is a group of Lie type of characteristic r ¤ p with a non-cyclic Sylow

p-subgroup.

Note that case (3) requires further analysis. This case is not vacuous: for

instance the group PSL3.7/ admits an irreducible 3-constant character which takes

value 2 at the 3-singular elements. For sporadic groups see Section 5.

In [15] Seitz discussed a question on pairs of irreducible characters of classical

groups whose degrees di�er by 1. He suggested examples, currently known as

irreducible Weil characters, and studied these examples in certain details. To our

knowledge, no further discussion of this question is available in the literature

(but the Weil characters themselves attracted a lot of attention and have many

applications). As a part of our proof of Theorem 1.1 we classify all cases where

one of the characters is the Steinberg character StG of a �nite group of Lie typeG.

Theorem 1.6. LetG be a quasi-simple �nite group of Lie type. ThenG admits

an irreducible character � such that �.1/ D StG.1/˙ 1 if, and only if, one of the

following holds:

(1) �.1/ D StG.1/C 1 and G 2 ¹SL2.q/; SU3.q/;
2B2.q

2/; 2G2.q
2/º;

(2) �.1/ D StG.1/ � 1 and G 2 ¹SL2.q/; SL3.q/; Sp4.q/; G2.q/º.

In Section 2 we give some basic properties of p-constant characters and we

recall some results of E. Dade in order to prove Theorem 1.3. In Section 3 we

deal with symmetric and alternating groups. In Section 4 we consider p-constant

characters for �nite groups of Lie type in characteristic p and prove Theorems 1.1

and 1.6. In Section 5 we analyse the sporadic groups and �nally in Section 6 we

prove Theorem 1.5.

2. Blocks with cyclic defect group

We �rst make the following observation for an arbitrary �nite group G. Let p be

a prime dividing the order of G and let S be a Sylow p-subgroup of G. Let Z

denote the set of rational integers.
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Lemma 2.1. Let � be a generalized character of a groupG such that �.u/ D a

for some complex number a and every 1 ¤ u 2 S . Then a 2 Z.

Proof. Let � ¤ 1S be an arbitrary linear character of S . Then

.�jS ; �/ D
P

u2S �.u/�.u/

jS j D
�.1/C

P
1¤u2S a�.u/

jS j

D �.1/C a � jS j � .�; 1S/ � a
jS j D �.1/ � a

jS j ;

since .�; 1S / D 0: Hence, a D �.1/ � jS j � .�jS ; �/ 2 Z. �

The following lemma reduces Problem 1.2 to groups with trivial center, in

particular, we can ignore quasi-simple groups that are not simple.

Lemma 2.2. Let G be a �nite group, p a prime and let � be an irreducible

character ofG of non-zero p-defect. Suppose that � is non-trivial and p-constant.

Then one of the following holds:

(1) p does not divide jZ.G/j, Z.G/ � Ker.�/ and the corresponding character

N� of G=Z.G/ is an irreducible p-constant character;

(2) p D 2, jGj2 D 2 and G D Ker.�/ �O2.G/.

Proof. Suppose that Z.G/ is not contained in Ker.�/, and let z 2 Z.G/ such

that �.z/ ¤ �.1/. If z 62 ṗ.G/, then zg 2 ṗ.G/ for every p-element g 2 G.

So �.g/ D �.zg/ D �.z/
�.1/

�.g/. As � is not of p-defect 0, �.g/ ¤ 0 for some

p-element g, and hence �.z/ D �.1/, which is a contradiction.

So, there is a p-element z 2 Z.G/. By Lemma 2.1, �.z/ 2 Z and so �.z/ D
��.1/, whence p D 2 and Ker.�/ has odd order. Let h 2 G. If h has odd order,

then zh 2 †2.G/ and ��.1/ D �.zh/ D �.z/
�.1/

�.h/ D ��.h/, whence h 2 Ker.�/.

It follows that G=Ker.�/ is a 2-group. If h ¤ z�1 is a 2-element of G, then

�.h/ D �.z/ D ��.1/ which implies ��.1/ D �.zh/ D �.1/, a contradiction. So

z is the only 2-element in G. Therefore, G D Ker.�/ � hzi. �

Prior proving Theorem 1.3 we recall certain facts from representation theory

of groups with cyclic Sylow p-subgroups. For further details, see [5]. Let G be a

�nite group with cyclic Sylow p-subgroup S . Set C D CG.S/, N D NG.S/ and

n D jN W C j. As .n; p/ D 1, it follows that n divides p � 1.

Let B be a block of G having defect group S . By Brauer’s �rst main theo-

rem, there exists a unique block B0 of N with the same defect group S such that
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BG
0 D B . Let b0 be a block of C such that bN

0 D B0 (also S is the defect group

of b0). Let E be the subgroup of N �xing b0 and e D jE W C j. Then E=C acts on

S as a group of automorphisms and e divides p � 1 (e is called the inertia index

of B).

The set of non-trivial irreducible characters of S partitions into .jS j � 1/=e

orbits under the action of E=C . Each of these orbits contains e elements. Let ƒ

be a complete set of representatives of these orbits. So d D jƒj D .jS j � 1/=e.

For a non-trivial character � 2 Irr S let �� denote the sum of all N=C -

conjugates of �. In particular, ��.1/ D n and .��; 1S/ D 0. Note that if �; �

are N -conjugate, then �� D ��.

Lemma 2.3 ([5, Theorem 1 and Corollary 1.9]). Under the previous hypothesis

on G; S; B; : : :, the block B contains e non-exceptional characters �1; : : : ; �e and

d D jƒj exceptional characters �� .� 2 ƒ/. Let g 2 S be of order jS j and let �

be the unique irreducible Brauer character of C contained in b0. When jS j > p,

let x 2 S be of order p and S1 D hxi. Set N1 D NG.S1/ and C1 D CG.S1/.

(1) For any j D 1; : : : ; e one has

�j .g/ D "j�.1/ � jN W Ej and �j .x/ D "j�1.1/ � jN1 W EC1j;

for some �1 2 IBrC1, "j D ˙1 and  D ˙1 that do not depend on g and x.

(2) For any � 2 ƒ one has

��.g/ D "0�.1/��.g/ and ��.x/ D "0�1.1/
X

y2N1=C1

�y.x/;

where �1;  are the same as in item (1) and "0 D ˙1 does not depend on g; x

and �.

(3) ��.S/ � Q if, and only if, n D p � 1 and j�.S/j D p.

(4) Assume B is the principal block of G and d > 1. Then the trivial character

1G is not exceptional, except possibly when p D 2 and G has a normal

subgroup of index jS j.

Proof. (3) and (4) are not stated in [5], so we provide a proof here, although

they can be known to some experts.

(3) Let S D hgi. By item (2), ��.g/ D "0�.1/��.g/, where ��.1/ D n. Let

� be a representation of S with character ��. Let j�.S/j D pa for some integer

a > 0 (so �.g/ is a primitive pa-root of unity). Let ˛1; : : : ; ˛n be the eigenvalues of

�.g/. As �� is the sum of allN -conjugates of � and 1S ¤ � 2 IrrS , it follows that

˛1; : : : ; ˛n are (distinct) roots of the polynomial t .x/ WD .xpa � 1/=.xpa�1 � 1/,
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which is irreducible over Q. Let f .x/ be the characteristic polynomial of the

matrix �.g/, so ˛1; : : : ; ˛n are also the roots of f .x/. Suppose that that ��.h/ is

rational for every h 2 S . Then so is ��.h/ and ��.h/ D ˛k
1 C� � �C˛k

n 2 Q for every

integer k. It is well known that the coe�cients of the characteristic polynomial of a

square matrixM , say, are polynomials of the traces ofM i for various integers i . It

follows that the coe�cients of f .x/ are rational. This implies that the polynomial

t .x/ is reducible over Q, unless t .x/ D f .x/. In the latter case all primitive pa-

roots are the roots of f .x/. Therefore, n D p � 1 and a D 1.

The converse is obvious.

(4) Suppose the contrary, that 1G is an exceptional character (this belongs to the

principal block). We �rst recall that the principal blocks of G and N correspond

to each other under the Brauer correspondence [4, 61.16]. Furthermore, it follows

from by [4, 61.7 and 61.11], that 1N is the only irreducible Brauer character in the

principal block of N . In particular, � is the trivial Brauer character of C . The

group E above is in fact the stabilizer in N of this character, and hence E D N ,

e D n in this case.

By item (3), n D p � 1. Let 1G D �� for some � 2 ƒ such that j�.S/j D p.

Therefore, ��.g/ D �1. Since d > 1 we have jS j > p. Clearly, jN1=C1j � p � 1.
As N � N1 and jN=C j D p � 1, we have jN1=C1j D p � 1. By item (2) we get

1 D ��.x/ D ˙�1.1/ � jN1 W C1j for some �1 2 IBrC1, whence n D 1 and p D 2.

The statement on the structure of G follows from the Burnside Normal Com-

plement Theorem [8, Theorem 14.3.1]. �

Proof of Theorem 1.3. Clearly we may assume � ¤ 1G .

(1) It follows from Lemma 2.1 that �.S/ � Z, so � � a � 1G (where a D �.s/,

1 ¤ s 2 S ) is a non-zero generalized character vanishing at the p-singular

elements. It follows from [7, Ch.IV, Lemma 3.14] that � and 1G belong to the

same block. As 1G is in the principal block, so is �.

(2) By (1), 1G and � belong to the principal block, and, by assumption,� ¤ 1G .

Consider the Brauer tree associated to the principal block. Recall that one node

of the Brauer tree corresponds to the sum of all d D jƒj exceptional characters

(denoted by �0), and the other nodes are in bijective correspondence with the e

non-exceptional characters of the block.

(i) The theorem is true if both � and 1G are not exceptional or d D 1.

Let v; w be the nodes at the Brauer tree corresponding to the characters 1G and

�, let n1 D v; n2; : : : ; nk D w be the consequent nodes of the path connecting v

and w, and let  i be the ordinary character corresponding to ni for i D 1; : : : ; k
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(one of the characters  i coincides with �0, which is irreducible if and only if

d D 1). By [7, Ch.VII, Lemma 2.15],  i C  iC1 is the character of a projective

indecomposable module for i D 1; : : : ; k � 1. Let g 2 ṗ.G/. Then  i .g/ D
� iC1.g/ for every i D 1; : : : ; k � 1. It follows that  i .g/ D .�1/iC1 1.g/.

As  1 D 1G , we arrive at the case (2)(a). In addition, this proves the additional

statement of the theorem in this case.

(ii) The theorem is true if d > 1 and � or 1G is exceptional.

Let d > 1. If 1G is exceptional then, by Lemma 2.3(4), n D e D 1, p D 2 and

G=P Š S for a normal subgroup P of G. We show that the same is true if 1G is

non-exceptional.

Let � D �� for some � 2 ƒ. By Lemma 2.3(3), ��.S/ 6� Q unless n D p � 1
and j�.S/j D p. In this case ��.g/ D �1 and �.g/ D ˙1. Let x 2 S be of

order p and S1 D hxi. Set N1 D NG.S1/ and C1 D CG.S1/. As �.x/ D 1, by

Lemma 2.3(2), we have ��.x/ D ˙�1.1/ � jN1 W C1j for some �1 2 IBrC1. As �

is p-constant, �.g/ D �.x/, whence N1 D C1. It is well known N \ C1 D C . As

N � N1, we have N D C , and hence n D 1. Then n D p � 1 implies p D 2.

By the Burnside Normal Complement Theorem [8, Theorem 14.3.1], G has a

normal 2-complement, that is, G has a normal subgroup P , say, of index jS j as

claimed.

Furthermore, � belongs to the principal blockB , so the irreducible constituents

of �jP are in the principal block b ofP , see [12, Theorem 9.2]. As P is a p0-group,

1P is the only irreducible character in b. Therefore, �jP D �.1/ � 1P , and hence P

is in the kernel of �. So � is linear. Since d > 1, necessarily jS j > 2. In this case,

the hypothesis � be p-constant leads to the contradiction � D 1G .

To prove the converse, suppose that � is non-exceptional. By Lemma 2.3(1),

�.S/ � Q. By (i), we only have to deal with the case where 1G is exceptional. Then

by Lemma 2.3(4), n D e D 1 and G=P Š S for a normal subgroup P of G. Then

we have seen in the previous paragraph that �.P / D 1. Now �.S/ � Q implies

�2 D 1G . Then �.g/ D �.g2/ leads to � D 1G which is a contradiction. �

It is well known that the defect group of the principal block of G coincides

with a Sylow p-subgroup. Therefore, if a p-constant character belongs to a block

with cyclic defect group then, by Theorem 1.3(1), the Sylow p-subgroups of G are

cyclic.

3. Symmetric and alternating groups

We �rst consider the case where Sylow p-subgroups of G D Sn are cyclic,

equivalently with p � n < 2p. By Theorem 1.3, a character � 2 IrrG of non-zero
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defect is p-constant if, and only if, � belongs to the principal block. Therefore,

it su�ces to determine the non-linear irreducible characters that are in the same

block as 1G . However, this is already known, see [9, 6.1.21]. Speci�cally, if �� is

the irreducible character of G corresponding to a partition � of n, then �� is in

the principal block if and only if the p-core of � is the same as that of the trivial

partition .n/. (See [9, p.76] for the notion of p-core.) If n D p then the p-core of

.n/ is empty; this implies that � is a hook. If p < n < 2p then the p-core of .n/ is

.n � p/. It follows that � is the partition associated to the diagram obtained from

a hook diagram associated to a partition �0 ¤ .p/ for Sp either by adding .n� p/
boxes to the second row, or by adding the additional row of .n � p/ boxes above

the diagram of �0, provided this yields a proper diagram. In more accurate terms

this is described in the following lemma.

Lemma 3.1. Let p be a prime such that 2 � p � n < 2p. A non-linear

irreducible character �� of Sn of non-zero defect is p-constant if, and only if, n

and � satisfy one of the following conditions:

(i) n D p � 3 and � D .b; 1p�b/ with 2 � b � p � 1;
(ii) n D p C 1 � 4 and � D .b C 1; 2; 1p�b�2/ with 1 � b � p � 2;

(iii) n D p C r � 5, r � 2, and � is one of the following partitions:

.p � a; r C 1; 1a�1/ .1 � a � p � r � 1/I .r; b; 1p�b/ .1 � b � r/:

Note that if n D p; p C 1 then G has a single block of non-zero defect [3,

86.10]. We consider now the alternating groups.

Proposition 3.2. Let p be a prime such that 2 < p � n < 2p. A non-linear

irreducible character � of G D An of non-zero defect is p-constant if, and only

if, � is a constituent of ��jG , where �� 2 Irr Sn and one of the following holds:

(i) n D p � 5 and � D .b; 1p�b/ with 2 � b � p � 1 and b ¤ pC1
2

;

(ii) n D pC 1 � 6 and � D .bC 1; 2; 1p�b�2/ with 1 � b � p� 2 and b ¤ p�1
2

;

(iii) n D p C r , r > 2, and � is one of the following partitions:

.p � a; r C 1; 1a�1/ .1 � a � p � r � 1/I .r; b; 1p�b/ .1 � b � r/:

Proof. By [9, Theorem 6.1.46], the characters of the principal p-block of An

are constituents of the characters ��, where � is one of the partitions described in

Lemma 3.1. Denote by �T the partition associated with the diagram transpose

to that of �. If � ¤ �T , the restriction � D ��jG is irreducible and so � is
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p-constant. Consider now the case � D �T . This happens only for n D p when

� D .pC1
2
; 1

p�1
2 / and for n D p C 1 when � D .pC1

2
; 2; 1

p�3
2 /. In these cases

the group An has two conjugacy classes �C; �� of elements of order p. For the

previous values of �, the character �� splits on An as two characters �1; �2. By [9,

Theorem 2.5.13] we have �i .�˙/ D .�1/.p�1/=2˙
p

p.�1/.p�1/=2

2
, whence these �i ’s

are not p-constant. �

Now, suppose that n � 2p. From the proof of Propositions 4.2 and 4.3 of [11]

we can deduce the following result.

Lemma 3.3. Let �� be the non-linear irreducible character of H D Sn

associated to the partition �. Let �� be an irreducible character ofG D An which

is a constituent of ��jG . Let p > 2 be a prime such that n � 2p. Then ��.h/ D 0

for some h 2 ṗ.H/, unless possibly when � is conjugate to one of the following

partitions:

(i) 2p � n D 2p C r � 3p � 1 and � D .p C r; r C 1; 1p�r�1/;

(ii) n D 2p, � D .p; 2; 1p�2/;

(iii) n D 2p C 1, � D .p C 1; 1p/.

Similarly, ��.g/ D 0 for some g 2 ṗ.G/, unless possibly when � is one of the

partitions of items (i) to (iii).

Let p D 2. If n > 11 then every non-linear irreducible character of Sn and

every non-linear irreducible character of An vanishes at some 2-singular element.

To deal with the missing cases of the previous Lemma, we look at the character

table of G D Sn;An, when n � 11, obtaining the following irreducible characters

� of G that do not vanish at ˙2.G/:

SnW .n; �.1// 2 ¹.4; 3/; .5; 5/ºI

AnW .n; �.1// 2 ¹.4; 3/; .5; 3/; .5; 5/; .6; 5/; .6; 9/; .7; 15/; .7; 21/; .7; 35/;
.10; 315/; .11; 165/º:

However, among these characters, only those described in Theorem 1.4(3) and

the irreducible character of degree 3 of A4 are 2-constant.

As an application of Murnaghan-Nakayama formula (e.g., see [9, 2.4.7]) we

prove the following.

Proposition 3.4. Let p be a prime such that n � 2p � 4. Then the non-linear

p-constant irreducible characters of Sn are all of p-defect 0.
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Proof. Let, as before, �� be the irreducible character of Sn associated to the

partition � of n. Assume that �� is of non-zero defect. When p D 2, it su�ces

to look at the character tables for the cases n � 11 as done before. So, suppose

p > 2. By Lemma 3.3 we are left to consider the case n D 2p C r (0 � r < p).

First, take � D .p C r; r C 1; 1p�r�1/ with 0 � r < p. We apply Murnaghan-

Nakayama formula to permutations � whose cyclic decomposition is of type

.2p/.r/ or .p C r/.r/, obtaining ��..2p/.r// D .�1/rC1 and ��..p C r/.p// D

.�1/r . When � D .p C r; r C 1; 1p�r�1/T , we obtain ��..2p/.r// D �1 and

��..p C r/.p// D C1. This means that these characters �� are not constant on

ṗ.G/. Now, if n D 2p and � D .p; 2; 1p�2/, then ��..2p// D 0. Finally, if

n D 2p C 1 and � D .p C 1; 1p/, then ��..2p/.1// D 0. �

Proof of Theorem 1.4. If n � 2p > 4, by Lemma 3.3 we are reduced to the

following cases:

(a) n D 2p and � D .p; 2; 1p�2/; .p; 1p/;

(b) n D 2p C 1 and � D .p C 1; 1p/; .p C 1; 2; 1p�2/;

(c) n D 2p C r , r > 1, and � D .p C r; r C 1; 1p�r�1/.

Actually, we can exclude case (c). Using Murnaghan-Nakayama formula we obtain

��..p C r � 1/.p/.1// D .�1/r and ��..2p/.r � 1/.1// D .�1/rC1.

The case p D 2 follows from Lemma 3.3 and previous direct computations for

n � 11. �

4. Groups of Lie type

Following [1, 1.17] we use the term “a group of Lie type” to refer to groups of shape

GF , where G is a connected reductive algebraic group in de�ning characteristic

p with an algebraic group endomorphism F W G ! G such that the subgroup

GF WD ¹g 2 GWF.g/ D gº is �nite. Such an endomorphism is called a Frobenius

map (F is not necessarily the standard Frobenius map). In what follows G is

assumed to be simple, not necessarily simply connected.

In Lemma 4.1 below the term “regular character” is used as in the Deligne–

Lusztig theory. More precisely, a regular character is de�ned to be a constituent

of a Gelfand–Graev character [6, 14.39], where the latter is the induced character

�G when � is a linear character of a Sylow p-subgroup U satisfying a certain

non-degeneracy condition. Every group of Lie type has at least one Gelfand–Graev

character. In addition, every Gelfand–Graev character is multiplicity free and does

not have 1G as a constituent.
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Lemma 4.1. Let G be a connected reductive group de�ned over a �eld of

characteristic p, F a Frobenius endomorphism and G D GF . Let U be a Sylow

p-subgroup ofG and let � be an irreducible character ofG such that �.u/ D a ¤ 0

for all 1 ¤ u 2 U . Then either �.1/ D 1 or � is regular, a D ˙1 and

�.1/ D aC jU j.

Proof. By Lemma 2.1, a 2 Z and so � D � � a � 1G is a Sylp-vanishing

generalized character of G (i.e. vanishing on U n ¹1º). If �.1/ D 0 then �.1/ D a,

and hence U � Ker.�/. It follows that the normal subgroup X of G generated

by the unipotent elements is contained in Ker.�/. It is well known that G=X is

abelian, and hence �.1/ D 1.

Suppose �.1/ ¤ 0. Then �.1/ is a multiple of jU j (cf. [14, Lemma 2.4]).

Observe that for any linear character � of U we have

.�; �G/ D .�jU ; �/ D �.1/

jU j D .�; �G/ � a � .1G ; �
G/:

In particular, considering � ¤ 1U non-degenerate, � is a regular character of

G. As �G is multiplicity free [1, Theorem 8.1.3], we have .�; �G/ D 1, whence

�.1/ D jU j. Furthermore, �.1/ D jU j implies that .�; �G/ D 1 for any linear

character � of U . In particular, taking � D 1U we obtain 1 D .�; 1G
U /� a, whence

.�; 1G
U / D a C 1 � 0 and a � �1. We show that a D ˙1.

We �rst consider the case where Z.G/ is connected. Since � is constant on

U n ¹1º, the average value of � on any set of regular unipotent elements of G

coincides with its value a. Hence, by [1, Theorem 8.3.3(i)], we have a D ˙1 (as

a ¤ 0).

Next, suppose that Z.G/ is not connected. Note that G can be embedded in

a reductive group yG with connected center such that the derived groups yG0 and

G0 coincide. Moreover, each Frobenius endomorphism of G extends to that of yG
[6, pp. 139–140]. We keep F to denote the extended endomorphism of yG. Then

G D GF � yG D yGF ; moreover G is a normal subgroup of yG with abelian

quotient (loc.cit.). Let � be an irreducible constituent of �
yG . By Cli�ord’s theorem,

�jG D e
Pt

i �i , where ¹�1 D �; �2; : : : ; �tº are the distinct conjugates of � and

e D .�; �
yG/. Since � is constant on the set of the non-trivial unipotent elements of

G, so are all the �i ’s, and moreover, �i .u/ D a for every 1 ¤ u 2 U . This means

that also � is constant on U n ¹1º, and, in addition, �.u/ D et � �.u/ ¤ 0 is an

integer. By the above, �.u/ D ˙1, whence et D 1 and so a D �.u/ D ˙1. �
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In the proof of the following two lemmas, we will make use of the Zsigmondy

primes. Here, we brie�y recall their de�nition. Let a; n be two positive integers.

If a � 2, n � 3 and .a; n/ ¤ .2; 6/, then there exists a prime, denoted here by

�n.a/, dividing an � 1 and coprime to ai � 1 for every 1 � i < n. This prime, not

necessarily unique, is called a Zsigmondy prime (or a primitive prime divisor of

an � 1). Observe that if �n.a/ divides ak � 1, then n divides k.

Lemma 4.2. Let G be a simple connected reductive group and let G D GF

be the corresponding �nite group. Then jGjp � 1 divides jGj if, and only if,

G 2 ¹A1.q/; A2.q/; A3.2/; B2.q/; C2.q/; G2.q/º.

Proof. First, consider the groups of type 2B2.q
2/ and 2G2.q

2/. If G D
2B2.q

2/, where q2 D 22nC1, then jGj2 � 1 D q4 � 1 does not divide jGj D
q4.q2 � 1/.q4 C 1/, as gcd.q2 C 1; q4 C 1/ D 1. If G D 2G2.q

2/, where

q2 D 32nC1, then jGj3 � 1 D q6 � 1 does not divide jGj D q6.q2 � 1/.q6 C 1/, as

gcd.q6 � 1; q6 C 1/ D 2.

Now, let jGjp D qm, with G 62 ¹2B2.q
2/; 2G2.q

2/º. We start our analysis with

the cases where the existence of a Zsigmondy prime �m.q/ is not guaranteed, i.e.

m � 2 or .m; q/ D .6; 2/. Ifm � 2, thenG D A1.q/. In this case, jGjp �1 D q�1
divides jGj D q.q2 � 1/. If .m; q/ D .6; 2/ then G is one of the following groups:

A3.2/,
2A3.2/, G2.2/. In this case, we can directly check when jGjp � 1 divides

jGj. This happens only when G D A3.2/; G2.2/.

Hence, we may assume m � 3 and .m; q/ ¤ .6; 2/. Under this assumption,

a Zsigmondy prime �m.q/ exists, and we check when this prime divides jGj.
We show that this happens only for the groups of rank 2 in the statement.

If G is of type An.q/, then m D n.nC1/
2

� 3. Suppose that �m.q/ divides

jGj. Then n.nC1/
2

� n C 1, whence n2 � n � 2 � 0 and so n D 2. In this case,

jA2.q/jp � 1 D q3 � 1 divides jGj. If G is of type 2An.q/, then m D n.nC1/
2

� 3.

Suppose that �m.q/ divides jGj. Then n.nC1/
2

� 2.n C 1/, whence n D 3; 4. For

n D 3, j2A3.q/jp � 1 D q3 � 1 does not divide jGj D q3.q3 C 1/.q2 � 1/

since gcd.q3 � 1; q3 C 1/ � 2. For n D 4, j2A4.q/jp � 1 D q6 � 1 and

jGj D q6.q4�1/.q3C1/.q2�1/. Notice that �3.q/ does not divide .q4�1/.q2�1/,
whence jGjp � 1 does not divide jGj.

If G is of type Bn.q/ or Cn.q/, then m D n2 � 3. The condition �m.q/

divides jGj implies n2 � 2n and so n D 2. On the other hand, if n D 2 then

jGjp � 1 D q4 � 1 divides jGj D q4.q4 � 1/.q2 � 1/. If G is of type Dn.q/, then

m D n2 � n � 3. The condition �m.q/ divides jGj implies n2 � n � 2n � 2 and

so n D 1; 2. If G is of type 2Dn.q/, then m D n2 � n � 3. If �m.q/ divides

jGj then n2 � n � 2n and so n D 3. In this case, jGjp � 1 D q6 � 1 and
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jGj D q6.q4 � 1/.q2 � 1/.q3 C 1/. However, the prime �3.q/ divides jGjp � 1, but

does not divide jGj.
Similarly, if G is of type E6.q/,

2E6.q/, E7.q/, E8.q/ or F4.q/, then it is

straightforward to see that jGjp � 1 does not divide jGj. If G is of type 2F4.q
2/,

where q2 D 22nC1, then �6nC3.2/ divides jGj2 � 1 but does not divide jGj. If G is

of type 3D4.q/, then m D 12. In this case, jGj D q12 .q6�1/.q12�1/

.q2C1/
. Suppose that

jGjp � 1 D q12 � 1 divides jGj, then we obtain that q2 C 1 divides q6 � 1, i.e.

�4.q/ divides q6 � 1, which does not happen, since 4 does not divide 6. Finally, if

G is of type G2.q/ then jGjp � 1 divides jGj. �

With the same techniques used in the proof of the previous lemma, we can also

prove the following one.

Lemma 4.3. Let G be a simple connected reductive group and let G D GF

be the corresponding �nite group. Then jGjp C 1 divides jGj if, and only if,

G 2 ¹A1.q/;
2A2.q/;

2B2.q
2/; 2G2.q

2/º.

As previously remarked, if G is quasi-simple then the Steinberg character is

the only irreducible character of p-defect 0. So we can now prove Theorem 1.1.

Proof of Theorem 1.1. Assume that �.1/ > 1 and �.u/ D a ¤ 0. By

Lemma 4.1, a D ˙1 and � is a regular character of degree jGjp ˙ 1. If

a D �1, by Lemma 4.2 we are reduced to consider the following groups:

SL2.q/; SL3.q/; SL4.2/; Sp4.q/ andG2.q/. Since � D �C1G is a proper Sylp-van-

ishing character, we may use [14]. If a D 1, by Lemma 4.3, it su�ces to consider

the following groups: SL2.q/; SU3.q/;
2B2.q

2/ and 2G2.q
2/. For all these groups

the result follows by analysis of the character tables. �

Proof of Theorem 1.6. As �.1/ D jGjp ˙1 and �.1/ divides jGj, it follows by

Lemmas 4.2 and 4.3 that G must be one of the following groups: SL2.q/, SL3.q/,

SL4.2/; SU3.q/; Sp4.q/;
2B2.q

2/; G2.q/;
2G2.q

2/. So, it su�ces to inspect the

character tables of these groups to identify the irreducible characters with the

degrees in question. �

5. Sporadic groups

The answer to Problem 1.2 for quasi-simple sporadic groups can be obtained di-

rectly from their character tables. We describe here the most interesting properties.
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Proposition 5.1. LetG be a �nite quasi-simple sporadic group and let p be a

prime dividing jGj. Let �p.G/ be the set of the non-linear irreducible characters

of G whose p-defect is not 0 and which are constant on ṗ.G/.

(1) For every G there exists a prime p such that the set �p.G/ is not empty.

(2) There exists exactly one prime p such that �p.G/ ¤ ; if, and only if, p D 7

and G D J2; 2:J2.

(3) The set�2.G/ is not empty if, and only if,G D J1. In this case�2.J1/ D ¹�º
where �.1/ D 209.

(4) G has a character � 2 �p.G/ such that j�.g/j ¤ 1 .g 2 ṗ.G// if, and

only if, p D 3, G 2 ¹M22; 2:M22; 4:M22º and �.1/ D 385. In these cases

�.g/ D �2.

Finally we consider the simple groupG D 2F4.2/
0, which admits the following

p-constant irreducible characters (in the notation of [2]):

(1) p D 3: �8 of degree 325;

(2) p D 5: �9 of degree 351 and �12; �13 of degree 624;

(3) p D 13: �4; �5 of degree 27, �7 of degree 300, �15 of degree 675 and �20 of

degree 1728.

In all these cases, the characters take value ˙1 on ṗ.G/.

6. Proof of Theorem 1.5

Let G be a �nite simple group and let � 2 Irr.G/ such that �.g/ D c for

all g 2 ṗ.G/, where p is a prime dividing jGj. By Lemma 2.1, c 2 Z and

c D 0 precisely when � is of p-defect 0. Also, by Theorem 1.3(2) c D ˙1 when

G has a cyclic Sylow p-subgroup. So, assume that � is not of p-defect 0 and

that the Sylow p-subgroups of G are not cyclic. If G is an alternating group,

then by Proposition 1.4 it follows that c D ˙1. If G is a sporadic group, from

Proposition 5.1 we get that either c D ˙1 or G D M22, c D �2, p D 3 and

�.1/ D 385. Finally, for groups of Lie type of characteristic p, the result follows

from Lemma 4.1. This proves Theorem 1.5.

Acknowledgements. We want to thank the referee for careful reading the man-

uscript and making a number of useful suggestions for improving it.



50 Marco A. Pellegrini – A. Zalesski

References

[1] R. Carter, Finite groups of Lie type, Conjugacy classes and complex characters,

Pure and Applied Mathematics (New York), A Wiley–Interscience Publication, John

Wiley & Sons, New York, 1985.

[2] J. H. Conway – R. T. Curtis – S. P. Norton – R. A. Parker – R. A. Wilson, Atlas

of �nite groups, Maximal subgroups and ordinary characters for simple groups, with

computational assistance from J. G. Thackray, Oxford University Press, Eynsham,

1985.

[3] Ch. Curtis – I. Reiner, Representation theory of �nite groups and associative

algebras, Pure and Applied Mathematics, XI, Interscience Publishers, New York and

London, 1962.

[4] Ch. Curtis – I. Reiner, Methods of representation theory, With applications to �nite

groups and orders, Vol. II, John Wiley & Sons, New York, 1987.

[5] E. Dade, Blocks with cyclic defect group, Ann. Math. 79 (1966), pp. 20–48.

[6] F. Digne – J. Michel, Representations of �nite groups of Lie type, London Mathe-

matical Society Student Texts, 21. Cambridge University Press, Cambridge, 1991.

[7] W. Feit, The representation theory of �nite groups, North-Holland Mathematical

Library, 25. North-Holland Publishing Co., Amsterdam and New York, 1982.

[8] M. Hall Jr., The theory of groups, The Macmillan Co., New York, 1959.

[9] G. James – A. Kerber, The representation theory of the symmetric group, with a

foreword by P. M. Cohn, with an introduction by Gilbert de B. Robinson, Encyclope-

dia of Mathematics and its Applications, 16. Addison–Wesley, Reading, Mass., 1981.

[10] B. Külshammer – G. Navarro – B. Sambale – P. H. Tiep, Finite groups with

two conjugacy classes of p-elements and related questions for p-blocks, Bull. Lond.

Math. Soc. 46 (2014), no. 2, pp. 305–314.

[11] C. Lassueur – G. Malle – E. Schulte, Simple endotrivial modules for quasi-simple

groups, J. Reine Angew. Math. 712 (2016), pp. 141–174.

[12] G. Navarro, Characters and blocks of �nite groups, London Mathematical Society

Lecture Note Series, 250, Cambridge University Press, Cambridge, 1998.

[13] G. Navarro – G. Robinson, Irreducible characters taking root of unity values on

p-singular elements, Proc. Amer. Math. Soc. 140 (2012), no. 11, pp. 3785–3792.

[14] M. A. Pellegrini – A. Zalesski, On characters of Chevalley groups vanishing at the

non-semisimple elements, Internat. J. Algebra Comput. 26 (2016), no. 4, pp. 789–841.

[15] G. Seitz, Some representations of classical groups, J. London Math. Soc. (2) 10

(1975), pp. 115–120.

Manoscritto pervenuto in redazione il 2 ottobre 2014.


	Introduction
	Blocks with cyclic defect group
	Symmetric and alternating groups
	Groups of Lie type
	Sporadic groups
	Proof of Theorem 1.5
	References

