On BNA-normality and solvability of finite groups

He, X. (*) - Li, S. (**) - Wang, Y. (***)

ABSTRACT – Let G be a finite group. A subgroup H of G is called a BNA-subgroup if either $H^x = H$ or $x \in \langle H, H^x \rangle$ for all $x \in G$. In this paper, some interesting properties of BNA-subgroups are given and, as applications, the structure of the finite groups in which all minimal subgroups are BNA-subgroups have been characterized.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20D10, 20D20, 20D25.

KEYWORDS. BNA-subgroup, minimal subgroup, soluble group, fitting height, *p*-length.

1. Introduction

All groups considered in this paper are finite. We use conventional notions and notation, as in Huppert [11]. *G* always denotes a finite group, |G| is the order of *G*, $\pi(G)$ denotes the set of all primes dividing |G|, G_p is a Sylow *p*-subgroup of *G* for some $p \in \pi(G)$.

Recall that a subgroup H of G is said to be an *abnormal subgroup* if $x \in \langle H, H^x \rangle$ for all $x \in G$. There have been several researches on normal and abnormal subgroups. In 1974, A. Fattahi classified the finite groups with only normal and abnormal subgroups [7]. G. Ebert and S. Bauman in 1975 studied the finite groups whose subgroups are either subnormal or abnormal [6]. Cuccia and

(**) *Indirizzo dell'A*.: Department of Mathematics, Guangxi University, Nanning, Guangxi, 530004, PR China

E-mail: shirong@gxu.edu.cn

(***) *Indirizzo dell'A*.: Lingnan College and Dept. of Math., Sun Yat-sen University, Guangzhou, 510275, PR China E-mail: stswym@mail.sysu.edu.cn

^(*) *Indirizzo dell'A*.: Department of Mathematics, Guangxi University, Nanning, Guangxi, 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Mathematics and Its Applications, Nanning, 530004, PR China E-mail: xuanlihe@163.com

Liotta in 1982 showed that if *G* is a finite group and, for every minimal subgroup *X* of *G*, either $C_G(X)$ is subnormal or abnormal, then *G* is soluble [4]. G. J. Wood in [15] studied the finite soluble groups whose subgroups are pronormal. Recently, Liu and Li in [13] classified *CLT*-groups with normal or abnormal subgroups, etc.

The abnormality and the normality are two basic concepts in the theory of groups, which are dual concepts. Precisely speaking, G has only one subgroup, itself, that is both normal and abnormal in G. Each maximal subgroup of G is either normal or abnormal.

In general, for any group G and any subgroup H of G, the following inclusion holds:

 $H \leq \langle H, H^x \rangle \leq \langle H, x \rangle$, for any $x \in G$.

For brevity, we introduce the following definition.

DEFINITION 1.1. Let G be a group. A subgroup H of G is called a BNA-subgroup of G if either $H^x = H$ or $x \in \langle H, H^x \rangle$ for all $x \in G$, H is also said to be BNA-normal in G.

Obviously, BNA-subgroups are in between normal subgroups and abnormal subgroups, all normal subgroups and all abnormal subgroups of G are BNA-subgroups of G. The following example shows that the concept of BNA-subgroups is meaningful and feasible.

EXAMPLE 1.1. Let $G = S_4$, the symmetric group on 4 letters. Then

- (1) the Sylow 3-subgroup of order 3 is not a BNA-subgroup of G;
- (2) each cyclic subgroup of order 4 is a BNA-subgroup of G, but is neither normal nor abnormal in G.

In fact, let $P = \langle (123) \rangle$ and x = (34). Obviously, $P^x \neq P$ and $\langle P, P^x \rangle = A_4$, but $x \notin A_4$. Hence, P is not a BNA-subgroup of G.

We know that S_4 has exactly three cyclic subgroups of order 4. Suppose that C is one of them. Then $\langle C, C^y \rangle = C$ or G for any $y \in G$. Therefore C is a BNA-subgroup of G (note that C is neither normal nor abnormal in G).

There has been an interest to investigate the structure of a group G under the assumption that minimal subgroups of G have some properties in G. Itô proved that if the center of a group G of order odd contains all minimal subgroups, then G is nilpotent. Later Buckley [3] proved that if G is a group of order odd whose minimal subgroups are normal in G, then the group G is supersoluble.

In this paper, as a generalization, we consider the finite groups all of whose minimal subgroups are BNA-subgroups. Our main result is as follows.

MAIN THEOREM. Suppose that all minimal subgroups of G are BNA-subgroups of G. Then the following statements hold:

- (1) G is soluble;
- (2) G = TH, where T is a Sylow 2-subgroup of G, H is a Hall 2'-subgroup of G;
- (3) *G* is *p*-supersoluble for each odd prime *p* dividing |G|;
- (4) the derived subgroup $G' = T_1 \rtimes H_1$, where $T_1 \leq T$ and $H_1 \leq H$;
- (5) the Fitting height of G is bounded by 4;
- (6) for each odd prime p dividing |G|, the p-length of G is 1, that is,

$$G = O_{p'pp'}(G).$$

2. Preliminaries

In this section, we state some lemmas which are useful for our main result.

LEMMA 2.1. Let $H \leq K \leq G$ and $N \leq G$. Suppose that H is a BNA-subgroup of G. Then

- (1) H is a BNA-subgroup of K;
- (2) HN is a BNA-subgroup of G;
- (3) HN/N is a BNA-subgroup of G/N;
- (4) Any maximal subgroup of G is a BNA-subgroup of G.

PROOF. (1) Let x be an element of K such that $H \neq H^x$. Then $x \in \langle H, H^x \rangle$ by Definition 1.1 and so H is a BNA-subgroup of K.

(2) Let x be an element of G. If $H = H^x$, then $(HN)^x = HN$. If $x \notin N_G(H)$, then $x \in \langle H, H^x \rangle$. Since $\langle H, H^x \rangle \leq \langle HN, (HN)^x \rangle$, then $x \in \langle HN, (HN)^x \rangle$. Thus HN is a BNA-subgroup of G.

(3) It is easy to see $N_{G/N}(HN/N) \ge N_G(H)N/N$. If $xN \notin N_{G/N}(HN/N)$, then $x \notin N_G(H)$. As *H* is a BNA-subgroup of *G*, then $x \in \langle H, H^x \rangle$. Therefore $xN \in \langle HN/N, H^xN/N \rangle = \langle HN/N, (HN/N)^{xN} \rangle$. Definition 1.1 implies that HN/N is a BNA-subgroup of G/N.

(4) Definition 1.1 implies (4).

LEMMA 2.2. Let $H \leq G$ and be a BNA-subgroup of G. Then

(1) the normal closure $H^G = H$ or $H^G = G$;

(2) if, in addition, H is subnormal in G, then H is normal in G.

PROOF. (1) If $H^G < G$, then there exists some element x of G such that $x \notin H^G$. Since $H^x \leq H^G$ for all $x \in G$, then $\langle H, H^x \rangle \leq H^G$ and it follows that x is not in $\langle H, H^x \rangle$. Thus, $x \in N_G(H)$ by Definition 1.1. Consequently, $G = H^G \cup N_G(H)$, which implies that $N_G(H) = G$. Therefore $H^G = H$.

(2) It follows from (1).

LEMMA 2.3. Let H be a BNA-subgroup of G. Then

- (1) $N_G(H) \leq \langle H, H^x \rangle$ whenever $H^x \neq H$;
- (2) if $N_G(H) \leq K \leq G$, then K is an abnormal subgroup of G.

PROOF. (1) Suppose that $H^x \neq H$ for some $x \in G$. By Definition 1.1, we have $x \in \langle H, H^x \rangle$. Let *n* be an arbitrary element of $N_G(H)$, then $H^{nx} = H^x \neq H$. Similarly, we can get that $nx \in \langle H, H^{nx} \rangle = \langle H, H^x \rangle$. This implies $n \in \langle H, H^x \rangle$ and so $N_G(H) \leq \langle H, H^x \rangle$, as desired.

(2) Let x be an element of G, then we have $\langle H, H^x \rangle \leq \langle N_G(H), N_G(H^x) \rangle \leq \langle K, K^x \rangle$. If $x \in N_G(H)$, then $x \in \langle K, K^x \rangle$ holds obviously. If $x \notin N_G(H)$, Definition 1.1 implies that $x \in \langle H, H^x \rangle$. Therefore $x \in \langle K, K^x \rangle$ holds.

LEMMA 2.4. Let G be a finite non-soluble group all of whose proper subgroups are soluble. Then $G/\Phi(G)$ is a minimal simple group, where $\Phi(G)$ is the Frattini subgroup of G.

PROOF. Let M be an arbitrary normal subgroup of G containing $\Phi(G)$. If $M \not\subseteq \Phi(G)$, then there exists a maximal subgroup H of G such that G = MH. By the hypotheses, H is soluble and hence $G/M \cong H/M \cap H$ is soluble. Because G is non-soluble, M is not soluble. We thus deduce that M = G and so we can get that $G/\Phi(G)$ is a minimal simple group. \Box

LEMMA 2.5 ([14]). Let G be a minimal non-abelian simple group (a nonabelian simple group all of whose proper subgroups are soluble). Then G is one of the following groups:

- (1) PSL(3,3);
- (2) the Suzuki group $S_z(2^r)$ where r is an odd prime;
- (3) PSL(2, p) where p is a prime with p > 3 and $p^2 \neq 1 \mod (5)$;
- (4) $PSL(2, 2^r)$ where r is a prime;
- (5) $PSL(2, 3^r)$ where *r* is an odd prime.

Recall that a normal subgroup H of G is supersolvably embedded in G provided that every chief factor of G contained in H is cyclic.

LEMMA 2.6 ([1]). Let H be a normal subgroup of G. Suppose that all subgroup of prime order and cyclic subgroups of order 4(if any) of H are normal in G. Then H is supersolvably embedded in G.

LEMMA 2.7 ([2] or [11], P_{719}). If the normal subgroup H of G (not necessary soluble) is supersolvably embedded in G, then $G/C_G(H)$ is supersoluble.

LEMMA 2.8. Let G be a p-soluble group for some odd prime $p \in \pi(G)$ and P a Sylow p-subgroup of G. If every subgroup of P of order p is normal in $N_G(P)$, then G is p-supersoluble.

PROOF. This is a special case of Theorem 1.1 of [12]. \Box

LEMMA 2.9 ([11]). If G is a p-supersoluble group, then G' is p-nilpotent. If G is a supersoluble group, then G' is nilpotent.

3. Proof of main theorem

The proof of the main theorem will be finished by showing the following theorem.

THEOREM 3.1. Suppose that all minimal subgroups of G are BNA-subgroups of G. Then G is soluble.

In fact, we can show the following stronger result:

THEOREM 3.2. Suppose that all minimal subgroups of G of order odd are BNA-subgroups of G. Then G is soluble.

PROOF. Assume that the theorem is false and let *G* be a counterexample of minimal order. It follows from Lemma 2.1 that the condition is inherited by subgroups of *G*, so every proper subgroup of *G* is soluble by the choice of *G*. It follows by Lemma 2.4 that $G/\Phi(G)$ is a minimal simple group and so *G* is one of groups of Lemma 2.5.

(1) All minimal subgroups of $\Phi(G)$ of order odd are in Z(G).

Suppose that some minimal subgroup X of $\Phi(G)$ of order odd is not in Z(G). Then $C_G(X) < G$ and so $C_G(X)$ is soluble. Furthermore, X is subnormal in G and X is also a BNA-subgroup of G by the hypotheses of the theorem, it follows by Lemma 2.2 (2) that X is normal in G. So $C_G(X)$ is normal in G and hence $G/C_G(X)$ is cyclic. Thus we can get that G is soluble, a contradiction. (2) Let *H* be a Hall 2'-subgroup of $\Phi(G)$, then $H \leq Z(G)$.

By (1), all minimal subgroups of H are in Z(G), so by Lemma 2.6, H is supersolvably embedded in G. It follows from Lemma 2.7 that $G/C_G(H)$ is supersoluble. If $C_G(H) < G$, then $C_G(H)$ is soluble and so G is soluble, a contradiction. Thus we have that $C_G(H) = G$, and so $H \le Z(G)$.

(3) $\Phi(G)$ is a group of order odd and $\Phi(G) \leq Z(G)$.

Let Z be a Sylow 2-subgroup of $\Phi(G)$. It follows from Lemma 2.1 that G/Z satisfies the hypotheses of the theorem. If $Z \neq 1$, then G/Z is soluble and so G is soluble by the choice of G, a contradiction. Thus Z = 1, that is, $\Phi(G)$ is a 2'-group and so $\Phi(G) \leq Z(G)$.

(4) $\Phi(G) = 1$, that is, G is a minimal simple group.

Since $Z(G)/\Phi(G) \leq G/\Phi(G)$ and $G/\Phi(G)$ is a minimal simple groups, $\Phi(G) = Z(G)$. So G is a quasisimple group with the center of order odd. We claim that $\Phi(G) = 1$, that is, Z(G) = 1. It will suffice to show that the Schur multiplier of each of the minimal simple groups is a 2-group. Indeed, this is true by checking the list on the Schur multipliers of the known simple groups ([9], P₃₀₂).

(5) G can not be PSL(2, p), $PSL(2, 3^r)$ or PSL(3, 3).

Indeed, each of PSL(2, p), PSL(2, 3^r) and PSL(3, 3) contains a subgroup which is isomorphic to A_4 , the alternating group of degree 4. Let P be a Sylow 3-subgroup of A_4 . It follows from Lemma 2.3 that $N_G(P) \leq \langle P, P^x \rangle$ for all $x \in G$ such that $x \notin N_G(P)$. In particular, let x be an arbitrary element of A_4 of order 2, then we have that $N_G(P) \leq A_4$. So $N_G(P) = P \leq C_G(P)$. Therefore P has to be a Sylow 3-subgroup of G. By Burnside theorem, we can get that G is 3-nilpotent, hence G would not be a non abelian simple group, a contradiction. Therefore we conclude that G is not any one of PSL(2, p), PSL(2, 3^r) or PSL(3, 3).

(6) G can not be $PSL(2, 2^r)$ or $S_z(2^r)$.

Suppose that $G \cong PSL(2, 2^r)$ or $S_z(2^r)$. By ([8], P₄₆₆), we know that *G* is a Zassenhaus group of odd degree and the stabilizer M = [T]H of a point is a Frobenius group with kernel *T* and with a complement *H*. For PSL(2, 2^r), the kernel *T* is an elementary 2-group of order 2^r and *H* is cyclic of order 2^r - 1. For $S_z(2^r)$, *T* is a special 2-group of order 2^{2r} and *H* is cyclic of order $2^r - 1$. Let *Q* be a Sylow *q*-subgroup of *H* and *L* a minimal subgroup of *Q* for some prime *q* dividing |H|. It follows from Lemma 2.3 that $N_G(L) \leq \langle L, L^x \rangle \leq M$ for any 2-element *x* of *M*. As *M* is a Frobenius group, then $N_G(L)$ is a 2'-subgroup of *M* and so $N_G(L) \leq H$ is cyclic. Thus $N_G(L) = C_G(L) = H$. Since $C_G(Q) \leq N_G(Q) \leq N_G(L) = C_G(L) = H$, then Q is also a Sylow q-subgroup of G and so $C_G(Q) = N_G(Q) = H$. By Burnside theorem, G is q-nilpotent, hence G would not be a non abelian simple group, a contradiction. Therefore G can not be any one of PSL(2, 2^r) or $S_z(2^r)$ as well.

The proof of the theorem is now complete.

DEFINITION 3.1 ([5]). Let *G* be a finite group. The Fitting series

$$F_n(G), n = 0, 1, 2, \dots$$

is defined inductively by $F_0(G) = 1$, $F_n(G)$ is the inverse image in G of $F(G/F_{n-1}(G))$, for $n \ge 1$.

Evidently each $F_n(G)$ is a characteristic subgroup of G. If G is solvable, then there is some integer $h \ge 0$ such that $F_h(G) = G$. We call the least such integer hthe Fitting height of G and denote it by h(G).

DEFINITION 3.2. ([10]) Let G be a finite p-soluble group for some prime p. Define the upper p-series

$$1 = P_0 \le N_0 < P_1 < N_1 < P_2 < \dots < P_l \le N_l = G$$

inductively by the rule that N_k/P_k is the greatest normal p'-subgroup of G/P_k , and P_{k+1}/N_k the greatest normal p-subgroup of G/N_k . The number l, which is the least integer such that $N_l = G$, is called the p-length of G, and we denote it by l_p , or, if necessary, $l_p(G)$.

Recall that a finite p-group is said to be a PN-group if its subgroups of order p are normal.

LEMMA 3.1 ([12], Lemma 1.4). Let G be a finite p-soluble group for an odd prime p. If a Sylow p-subgroup of G is a PN-group, then the p-length $l_p(G) \leq 1$.

Now we state and show the main theorem of this paper.

THEOREM 3.3. Suppose that all minimal subgroups of G are BNA-subgroups of G. Then the following statements hold:

- (1) G is soluble;
- (2) G = TH, where T is a Sylow 2-subgroup of G, H is a Hall 2'-subgroup of G;
- (3) *G* is *p*-supersoluble for each odd prime *p* dividing |G|;

- (4) the derived subgroup $G' = T_1 \rtimes H_1$, where $T_1 \leq T$ and $H_1 \leq H$;
- (5) the Fitting height of G is bounded by 4;
- (6) for each odd prime p dividing |G|, the p-length of G is 1, that is,

$$G = O_{p'pp'}(G).$$

PROOF. (1) is Theorem 3.1.

(2) Let *T* be a Sylow 2-subgroup of *G*. Applying a well known theorem of P. Hall, we have that *G* possesses a Hall 2'-subgroup *H*. Therefore (2) holds.

(3) For any odd prime p dividing |G|, let P be a Sylow p-subgroup of G. By Lemma 2.1, each subgroup X of P of order p is a BNA-subgroup of $N_G(P)$ and X is subnormal in $N_G(P)$. It follows from Lemma 2.2 that X is normal in $N_G(P)$. By (1), G is soluble, of course, is p-soluble. Thus we can apply Lemma 2.8 to see that G is p-supersoluble.

(4) Clearly, *G* is *p*-supersoluble for any odd primes *p* dividing |G| by (3). Thus *G'* is *p*-nilpotent by Lemma 2.9 for all odd primes *p* of $\pi(G)$. Let N(p) be the normal *p*-complement of *G'* for each odd prime *p* and set

$$T_0 = \bigcap_p N(p).$$

As N(p) is a p'-group for each odd prime p, it is easy to see that T_0 must be a 2-group. Since N(p) contains all Sylow 2-subgroups of G' for each odd prime p dividing |G|, T_0 is a Sylow 2-subgroup of G' and is normal in G. So $T_0 \leq T$. As G is soluble, of course, G' is also soluble, so there is a Hall 2'-subgroup H_0 of G'. Then $H_0 \leq H^x$ for some $x \in G$. Thus $G' = T_0 \rtimes H_0 = T_0 \rtimes H_0^{x^{-1}}$. Consequently, $H_0^{x^{-1}}$ is supersoluble and (4) holds.

(5) We can get that $G' = T_1 \rtimes H_1$, where $T_1 \leq T$ and $H_1 \leq H$ by (4). Set $F_1 = T_1$, $F_2 = F_1(H_1)'$ and $F_3 = G'$. We can get that $[G'/T_1, G'/T_1] = [T_1H_1/T_1, T_1H_1/T_1] = [H_1T_1, H_1T_1]T_1/T_1$. Since $T_1 \leq G$, it follows from Lemma 1.10 of Chapter 3 in [11] that $[H_1T_1, H_1T_1] = [H_1, T_1](T_1)'(H_1)'$. By Lemma 1.6 of Chapter 3 in [11], we have that $[H_1, T_1] \leq T_1$. Therefore $G/T_1 \geq [G'/T_1, G'/T_1] = T_1(H_1)'/T_1$, so we have $F_2 \leq G$. Thus F_1, F_2 and F_3 are all normal in G and we have a chain of normal subgroups

$$1 = F_0 \trianglelefteq F_1 \trianglelefteq F_2 \trianglelefteq F_3 \trianglelefteq F_4 = G.$$

It follows by Lemma 2.9 that $(H_1)'$ is nilpotent. Now, it is easy to check that F_i/F_{i-1} is nilpotent, i = 1, 2, 3, 4. Therefore we conclude that the Fitting height of *G* is at most 4 by Definition 3.1.

(6) For any odd prime p dividing |G|, let P be a Sylow p-subgroup of G. By Lemma 2.1, each subgroup X of P of order p is a BNA-subgroup of P. As Xis subnormal in P, it follows by Lemma 2.2 that X is normal in P, so P is a PN-group. G is soluble, and of course, p-soluble. We apply Lemma 3.1 to see that $l_p(G) \leq 1$. If $l_p(G) = 0$, then G is a p'-group, a contradiction. Therefore $l_p(G) = 1$, and so $G = O_{p'pp'}(G)$.

The proof of the theorem is now complete.

QUESTION. Are there finite groups G that satisfy the condition of Theorem 3.3 with $l_2(G) \ge 2$?

Acknowledgements. Xuanli He was supported by NNSF of China(No.11401116, No.11361006), NSF of Guangxi (2014GXNSFBA118003). Shirong Li was supported by NNSF of China(No.11171243, No.11201385). Yanming Wang was supported by NNSF of China(No.11171353).

References

- M. ASAAD S. LI, On minimal subgroups of finite groups II, Comm. Algebra 24 (1996), pp. 4603–4606.
- [2] R. BAER, Supersoluble immersion, Can. J. Math. 11 (1959), pp. 353–369.
- [3] J. BUCKLEY, *Finite groups whose minimal subgroups are normal*, Math. Z. **116** (1970), pp. 15–17.
- [4] P. CUCCIA M. LIOTTA, A condition on the minimal subgroups of a finite group, Boll. Un. Mat. Ital. A 1 (1982), pp. 303–308.
- [5] E. C. DADE, Carter subgroups and Fitting heights of finite solvable groups, Illinois J. Math. 13 (1969), pp. 449–514.
- [6] G. EBERT S. BAUMAN, A note on subnormal and abnormal chains, J. Algebra 36 (1975), pp.frm-e287–293.
- [7] A. FATTAHI, Groups with only normal and abnormal subgroups, J. Algebra 28 (1974), pp. 15–19.
- [8] D. GORENSTEIN, Finite groups, Harper & Row, New York and London, 1968.
- [9] D. GORENSTEIN, *Finite simple groups*, An introduction to their classification, Plenum Press, New York, 1982.
- [10] P. HALL G. HIGMAN, On the *p*-length of *p*-soluble groups and reduction theorem for Burnside's problem, Proc. London Math. Soc. 6 (1956), pp. 1–42.
- [11] B. HUPPERT, Endliche Gruppen I, Springer, Berlin etc., 1967.

- [12] S. LI Q. ZHANG, A note on p-supersolvable groups, Acta Math. Hung. 116 (2007), pp. 27–34.
- [13] J. LIU S. LI J. HE, *CLT*-groups with normal or abnormal subgroups, J. Algebra **362** (2012), pp. 99–106.
- [14] J. G. THOMPSON, *Nonsoluble finite groups all of whose local subgroups are soluble* I, Bull. Amer. Math. Soc. **74** (1968), pp. 104–109.
- [15] G. J. WOOD, On pronormal subgroups of finite soluble groups, Arch. Math. 25 (1974), pp. 578–585.

Manoscritto pervenuto in redazione il 17 agosto 2014.