Automorphisms of finite order of nilpotent groups IV

B. A. F. Wehrfritz (*)

Abstract - Let ϕ be an automorphism of finite order of the nilpotent group G of class c and m and r positive integers with $\phi^{m}=1$. Consider the two (not usually homomorphic) maps ψ and γ of G given by

$$
\psi: g \longmapsto g \cdot g \phi \cdot g \phi^{2} \cdot \ldots \cdot g \phi^{m-1} \quad \text { and } \quad \gamma: g \longmapsto g^{-1} \cdot g \phi \quad \text { for } g \in G .
$$

We prove that the subgroups

$$
\begin{aligned}
X & =\left\langle x \alpha: x \in \operatorname{ker} \psi, \alpha \in \operatorname{Aut} G, x^{r} \in \bigcup_{s \geq 0}(G \gamma)^{s}\right\rangle \\
Y & =\left\langle g \gamma \alpha: g \in G, \alpha \in \operatorname{Aut} G,(g \gamma)^{r} \in \operatorname{ker} \gamma\right\rangle \\
X^{*} & =\left\langle x^{r} \alpha: x \in \operatorname{ker} \psi, \in \alpha \in \operatorname{Aut} G, x^{r} \in \bigcup_{s \geq 0}(G \psi)^{s}\right\rangle \\
Y^{*} & =\left\langle(g \gamma)^{r} \alpha: g \in G, \alpha \in \operatorname{Aut} G,(g \gamma)^{r} \in \operatorname{ker} \gamma\right\rangle=\left\langle\left((G \gamma)^{r} \cap \operatorname{ker} \gamma\right) \operatorname{Aut} G\right\rangle
\end{aligned}
$$

of G all have finite exponent bounded in terms of c, m and r only. This yields alternative proofs of the theorem of [4] and its related bounds.

Mathematics Subject Classification (2010). 20F18, 20F28, 20 E36.
Keywords. Nilpotent group, automorphism of finite order.

Let ϕ be an automorphism of finite order of the group G and m a positive integer with $\phi^{m}=1$. There are certain maps η (not usually homomorphisms) of G into itself that one frequently needs to consider (so in particular $G \eta$ and $\operatorname{ker} \eta=\{g \in G: g \eta=1\}$ are not usually subgroups of G). There are just two maps η that interest us here, namely the maps

$$
\psi: g \longmapsto g \cdot g \phi \cdot g \phi^{2} \cdot \ldots \cdot g \phi^{m-1} \quad \text { and } \quad \gamma: g \longmapsto g^{-1} \cdot g \phi \quad \text { for } g \in G .
$$

(*) Indirizzo dell'A.: School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England
E-mail: b.a.f.wehrfritz@qmul.ac.uk

In a series of papers we have discussed in some detail these two maps for nilpotent FAR groups. - Soluble FAR (short for "finite abelian ranks") groups are defined and discussed in the book [1]. An equivalent definition, more convenient for our purposes, is given by the following. A soluble group is an FAR group if and only if it has finite Hirsch number and satisfies min- q, the minimal condition on q-subgroups, for every prime q. A group has finite Hirsch number if it has a series of finite length whose factors are infinite cyclic or locally finite, the number of infinite cyclic factors in such a series being its Hirsch number.

Let G be a nilpotent FAR group. In [3] we proved that $G \psi \cdot \operatorname{ker} \psi$ and $G \gamma \cdot \operatorname{ker} \gamma$ are both very large subsets of G in that they contain characteristic subgroups of G of finite index. In [4] we proved that $\langle G \psi \cap \operatorname{ker} \psi\rangle$ and $\langle G \gamma \cap \operatorname{ker} \gamma\rangle$ are both very small; they are finite π-groups, where π is the set of prime divisors of m. Firstly our proofs in [3] require us to study $G \gamma \cdot(\operatorname{ker} \gamma)^{m}$ and not just $G \gamma \cdot \operatorname{ker} \gamma$. Secondly in [3] we have a version of the theorem that requires no rank restrictions. Specifically if G is just nilpotent of class c and if m, r and s are positive integers and if ϕ is an automorphism of G with $\phi^{m}=1$, then there is a positive integer f such that

$$
\left\langle G^{f}\right\rangle \subseteq(G \gamma)^{r}(\operatorname{ker} \gamma)^{s} \cap(\operatorname{ker} \psi)^{r}(\operatorname{ker} \gamma)^{s} \cap(\operatorname{ker} \psi)^{r}(G \psi)^{s} \cap(G \gamma)^{r}(G \psi)^{s}
$$

Moreover f can be chosen only to depend on c, m and the least common multiple of r and s and to be divisible only by primes dividing cmrs. (If S is a subset of some group and if n is a positive integer, then here S^{n} denotes the subset $\left\{s^{n}: s \in S\right\}$ and not the more usual $\left\langle s^{n}: s \in S\right\rangle$.) We did not consider this more general situation in [4], if only because the obvious analogue is false (example below). However a very slight weakening does hold and this is the main content of this current paper. Moreover it turns out still to be strong enough that the results of [4] can be recovered from it and thus it gives an alternative, and I feel a better, approach to those results. The following is the main theorem of this paper. (Note that whenever we have a group $G, m \geq 1$ and $\phi \in$ Aut G with $\phi^{m}=1$, the maps ψ and γ are always defined as above.)

Theorem. Let G be a nilpotent group of class c, m and r positive integers and ϕ an automorphism of G with $\phi^{m}=1$. With ψ and γ defined from ϕ and m as usual, set

$$
\begin{aligned}
& X=\left\langle x \alpha: x \in \operatorname{ker} \psi, \alpha \in \operatorname{Aut} G, x^{r} \in \bigcup_{s \geq 0}(G \gamma)^{s}\right\rangle \\
& Y=\left\langle g \gamma \alpha: g \in G, \alpha \in \operatorname{Aut} G,(g \gamma)^{r} \in \operatorname{ker} \gamma\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& X^{*}=\left\langle x^{r} \alpha: x \in \operatorname{ker} \psi, \in \alpha \in \operatorname{Aut} G, x^{r} \in \bigcup_{s \geq 0}(G \psi)^{s}\right\rangle \\
& Y^{*}=\left\langle(g \gamma)^{r} \alpha: g \in G, \alpha \in \operatorname{Aut} G,(g \gamma)^{r} \in \operatorname{ker} \gamma\right\rangle=\left\langle\left((G \gamma)^{r} \cap \operatorname{ker} \gamma\right) \operatorname{Aut} G\right\rangle
\end{aligned}
$$

Then X and Y have exponents dividing $(m r)^{c}$ and X^{*} and Y^{*} have exponents dividing $m(m r)^{c-1}$ (meaning 1 if $G=\langle 1\rangle$).

Trivially $\bigcup_{s \geq 0}(\operatorname{ker} \gamma)^{s}=\operatorname{ker} \gamma$. The point of this theorem is that $\left\langle(\operatorname{ker} \psi)^{r} \cap\right.$ $\left.(G \psi)^{s}\right\rangle \subseteq X^{*}$ and $\left\langle(G \gamma)^{r} \cap(\operatorname{ker} \gamma)^{s}\right\rangle \subseteq Y^{*}$. Further below we will see that if G is abelian, then $\exp X(=$ the exponent of $X)$ and $\exp Y$ divide m, if $m=2$, then $\exp X^{*}$ and $\exp Y^{*}$ divide 2^{c}, if X is abelian, then $\exp X^{*}$ divides m^{c} and $\exp X$ divides $m^{c} r$, and if Y is abelian then $\exp Y^{*}$ divides m and $\exp Y$ divides $m r$.

With the hypotheses of the theorem above, assume that π is a finite set of primes such that G satisfies min- q for all primes q in π and that m and r are π-numbers (meaning that all the prime divisors of $m r$ lie in π). Then $T=O_{\pi}(G)$ is a Chernikov group. Let A denote the finite residual of T, d the rank of A, t the order of T / A and e the exponent of T / A. Let k be minimal such that $\left[A,{ }_{k} G\right]=\langle 1\rangle$ (note that $k \leq c$ and $k \leq d$).

Corollary. The groups X and Y have exponents dividing $(m r)^{k}$ te and orders dividing $(m r)^{d k} t^{d+1}$, the group X^{*} has exponent dividing m^{k} te and order dividing $m^{d k} t^{d+1}$ and the group Y^{*} has exponent dividing mte and order dividing $m^{d} t^{d+1}$.

The proofs

Our notation below is accumulative and reflects the notation of the theorem and its corollary.
a) Let N be a normal subgroup of a group M such that $N^{m} \subseteq[N, M]$ for some positive integer m. Then $\left[N,{ }_{i-1} M\right]^{m} \subseteq\left[N,{ }_{i} M\right]$ for all $i \geq 1$. In particular if M is nilpotent of class c, then N has finite exponent $\exp (N)$ dividing m^{c}.

Proof. If $g \in M$, then $x[N, M] \mapsto[x, g]\left[N,{ }_{2} M\right]$ is a homomorphism of $N /[N, M]$ into $[N, M] /\left[N,{ }_{2} M\right]$. In particular $[x, g]^{m} \in\left[x^{m}, g\right]\left[N,{ }_{2} M\right]=$ $\left[N,{ }_{2} M\right]$ for all $x \in N$ and $g \in M$. Therefore $[N, M]^{m} \subseteq\left[N,{ }_{2} M\right]$. A simple induction completes the proof.
b) Let G be a nilpotent group of class c, m and r positive integers and ϕ an automorphism of G with $\phi^{m}=1$. Set

$$
X=\left\langle x \alpha: x \in \operatorname{ker} \psi, \alpha \in \operatorname{Aut} G, x^{r} \in \bigcup_{s \geq 0}(G \psi)^{s}\right\rangle
$$

and

$$
Y=\left\langle g \gamma \alpha: g \in G, \alpha \in \operatorname{Aut} G,(g \gamma)^{r} \in \operatorname{ker} \gamma\right\rangle
$$

Then X and Y have finite exponents dividing $(m r)^{c}$.
Proof. Let $x \in \operatorname{ker} \psi, g \in G$ and $s \geq 1$ with $x^{r}=(g \psi)^{s}$. Of course $X /[X, G]$ is abelian and ψ induces an endomorphism on it. Thus $1=(x \psi)^{r} \in\left(x^{r} \psi\right)[X, G]$. Also for $i \geq 1$, if $g(i)=g \cdot g \phi \cdot g \phi^{2} \cdot \ldots \cdot g \phi^{i-1}$, then

$$
x^{r} \phi^{i}=\left((g \psi)^{s}\right) \phi^{i}=\left(g \psi \phi^{i}\right)^{s}=\left((g \psi)^{g(i)}\right)^{s}=\left((g \psi)^{s}\right)^{g(i)}=\left(x^{r}\right)^{g(i)}
$$

Thus $x^{r} \psi=x^{r} \cdot\left(x^{r}\right)^{g(1)} \cdot \ldots \cdot\left(x^{r}\right)^{g(m-1)} \in x^{m r}[X, G]$. Hence $x^{m r} \in[X, G]$, so each $(x \alpha)^{m r} \in[X, G]$ and therefore $X^{m r} \subseteq[X, G]$. Consequently a) yields that X has exponent dividing $(m r)^{l}$, where l is minimal such that $\left[X,{ }_{l} G\right]=\langle 1\rangle$ and in particular that $\exp X$ divides $(m r)^{c}$.

Now let $g \in G$ with $(g \gamma)^{r} \in \operatorname{ker} \gamma=C_{G}(\phi)$. Then $\left((g \gamma)^{r}\right) \psi=(g \gamma)^{m r}$. Also $Y /[Y, G]$ is abelian, so modulo $[Y, G]$ we have $(g \gamma)^{r} \psi \equiv(g \gamma \psi)^{r}=1$. Thus $(g \gamma)^{m r} \in[Y, G],(g \gamma \alpha)^{m r}=\left((g \gamma)^{m r}\right) \alpha \in[Y, G]$ and $Y^{m r} \subseteq[Y, G]$. Consequently the exponent of Y divides $(m r)^{l^{\prime}}$ and hence also $(m r)^{c}$, where l^{\prime} is minimal with $\left[Y, l^{\prime} G\right]=\langle 1\rangle$.
c) Continuing with the notation of b), set

$$
X^{*}=\left\langle x^{r} \alpha: x \in \operatorname{ker} \psi, \alpha \in \operatorname{Aut} G, x^{r} \in \bigcup_{s \geq 0}(G \psi)^{s}\right\rangle
$$

and

$$
Y^{*}=\left\langle(g \gamma)^{r} \alpha: g \in G, \alpha \in \operatorname{Aut} G,(g \gamma)^{r} \in \operatorname{ker} \gamma\right\rangle
$$

Then X^{*} has exponent dividing $m(m r)^{l-1}(1$ if $X=\langle 1\rangle)$ and $m(m r)^{c-1}(1$ if $G=\langle 1\rangle$). Also Y^{*} has exponent dividing $m(m r)^{l^{\prime}-1}(1$ if $Y=\langle 1\rangle)$ and $m(m r)^{c-1}$ (1 if $G=\langle 1\rangle$).

Proof. Assume $X \neq\langle 1\rangle$. Now a) and the proof of b) yields that $[X, G]$ has exponent dividing $(m r)^{l-1}$ and also that $x^{m r} \in[X, G]$ for all x as in the definition of X^{*}. It follows that $\left(X^{*}\right)^{m} \subseteq[X, G]$. Therefore the exponent of X^{*} divides $m(m r)^{l-1}$. The proof for Y^{*} is similar.
d) Corollary. If G is abelian, then the exponents of X^{*} and Y^{*} divide m.
e) If $m=2$, then the exponents of X^{*} and Y^{*} divide 2^{c}.

Proof. Let $x \in \operatorname{ker} \psi$. Then $x \cdot x \phi=1, x \phi=x^{-1}, x^{r} \phi=x^{-r}$ and $x^{r} \in \operatorname{ker} \psi$. Thus

$$
X^{*} \leq\left\langle x \alpha: x \in \operatorname{ker} \psi, \alpha \in \operatorname{Aut} G, x \in \bigcup_{s \geq 0}(G \psi)^{s}\right\rangle
$$

and the latter has exponent dividing $m^{c}=2^{c}$ by b).
If $g \in G$, then $g \gamma \phi=g^{-1} \phi \cdot g \phi^{2}=g^{-1} \phi \cdot g=(g \gamma)^{-1}$. Hence $(g \gamma)^{r} \phi=$ $(g \gamma)^{-r}$. If also $(g \gamma)^{r} \in \operatorname{ker} \gamma$, then $(g \gamma)^{r} \phi=(g \gamma)^{r},(g \gamma)^{-r}=(g \gamma)^{r}$ and $(g \gamma)^{2 r}=1$. Consequently Y^{*} is generated by involutions and therefore Y^{*} has exponent dividing $2 l^{\prime}$ and hence also 2^{c}.
f) If X is abelian then $\left(X^{*}\right)^{m} \subseteq\left[X^{*}, G\right], \exp X^{*}$ divides m^{c} and $\exp X$ divides $m^{c} r$. Also if Y is abelian, then $\left(Y^{*}\right)^{m}=\langle 1\rangle$ and $\exp Y$ divides $m r$.

Proof. Let $x \in \operatorname{ker} \psi, g \in G$ and $s \geq 0$ with $x^{r}=(g \psi)^{s}$. Since X is abelian ψ induces an endomorphism on X. Thus $x^{r} \psi=(x \psi)^{r}=1$. Also, as in the proof of b) we have that

$$
x^{r} \psi=x^{r} \cdot\left(x^{r}\right)^{g(1)} \cdot \ldots \cdot\left(x^{r}\right)^{g(m-1)} \in x^{m r}\left[X^{*}, G\right]
$$

Therefore $x^{m r} \in\left[X^{*}, G\right]$. It follows easily that $\left(X^{*}\right)^{m} \subseteq\left[X^{*}, G\right]$. Now apply a).
Now let $g \in G$ with $(g \gamma)^{r} \in \operatorname{ker} \gamma$. Since Y is abelian, so $\left.\psi\right|_{Y}$ is an endomorphism of Y and $(g \gamma)^{r} \psi=(g \gamma \psi)^{r}=1$. Also $(g \gamma)^{r} \in C_{G}(\phi)$, so $(g \gamma)^{r} \psi=(g \gamma)^{m r}$. It follows that $(g \gamma)^{m r}=1$ and that $\left(Y^{*}\right)^{m}=\langle 1\rangle$. The conclusions for X and Y are now immediate.

Again continuing with the notation of b) let π denote the (finite) set of prime divisors of $m r$. Suppose G satisfies min- q for each q in π. Then $T=O_{\pi}(G)$ is a Chernikov group. Let A denote the finite residual of T, d the rank of A, t the order of T / A and e the exponent of T / A. Let k be minimal such that $\left[A,{ }_{k} G\right]=\langle 1\rangle$. Then $k \leq c$ and also (by [4], Lemma 4) $k \leq d$. By b) both X and Y are contained in T. Then with this notation and hypotheses we have the following.
g) The groups X and Y have exponents dividing $(m r)^{k}$ te and $(m r)^{d}$ te resp. and orders dividing $(m r)^{d k} t^{d+1}$. The group X^{*} has exponent dividing m^{k} te and order dividing $m^{d k} t^{d+1}$. The group Y^{*} has exponent dividing mte and order dividing $m^{d} t^{d+1}$.

These bounds depend only on m and the structure constants of $O_{\pi}(G)$ and not for example on the class c of G.

Proof. Suppose $T=A$. Since $X \subseteq A$ by b), we have $l \leq k$. The proof of \mathbf{b}) yields that $\exp X$ divides $(m r)^{k}$. In general there is a characteristic subgroup K of G with $K A=T$, with $\exp K$ dividing $t e$ and with $|K|$ dividing t^{d+1}, see [4], Lemma 2. Applying the ' $T=A$ ' case to G / K yields that in general $\exp X$ divides $(m r)^{k} t e$ and $|X|$ divides $(m r)^{d k} t^{d+1}$. The proof for Y is similar.

For X^{*} and Y^{*} apply f) and a) to G / K. Then $X^{*} K / K$ has exponent dividing m^{k} and $Y^{*} K / K$ has exponent dividing m. The remaining claims of g) follow from the properties of K.

The theorem of [4] and the various bounds computed in connection with it (in [4] see the introduction, the proof of the theorem and the remarks following that proof) all follow from the above. Further the above applied to the ϕ-invariant finitely generated subgroups of the group under consideration yields the following generalization and strengthening of Lemma 3 of [4].
h) Let G be a locally nilpotent group, m a positive integer and ϕ an automorphism of G with $\phi^{m}=1$. With ψ and γ defined from ϕ and m in the usual way, then the subgroups

$$
\left\langle x: x \in \operatorname{ker} \psi \text { and } x^{r} \in \bigcup_{s \geq 0}(G \psi)^{s} \text { for some } r \geq 1\right\rangle
$$

and

$$
\left\langle g \gamma: g \in G \text { and }(g \gamma)^{r} \in \operatorname{ker} \gamma \text { for some } r \geq 1\right\rangle
$$

are periodic. Further if $x \in \operatorname{ker} \psi$ and $g \in G$ are such that $x^{r}=(g \psi)^{s}$ for some positive integers r and s, then x has order dividing some power of $m r$ and if $m=2$, then x^{r} is a 2 -element. If $g \in G$ with $(g \gamma)^{r} \in \operatorname{ker} \gamma$ for some positive integer r, then $g \gamma$ also has order dividing some power of $m r$ and if $m=2$, then also $(g \gamma)^{r}$ is a 2 -element.

Examples. In general $(\operatorname{ker} \psi)^{r} \cap G \psi$ need not have exponent dividing some power of m and nor need $\left(G_{\gamma}\right)^{r} \cap \operatorname{ker} \gamma$, even if the group G is finite and even though they do have exponents dividing some power of mr and their exponents do divide some power of m if $m=2$ or if G is abelian. Of course ker $\psi \cap G \psi$ and $G \gamma \cap \operatorname{ker} \gamma$ do have exponents dividing some power of m.

Proof. The smallest examples will have to have class at least 2 and m at least 3 . Let $D=\langle a, b\rangle$ be dihedral of order 8 , where $a^{b}=a^{-1}$. Let $x \mapsto x_{i}$ be an isomorphism of D onto D_{i} for $i=1,2,3$ and let P be the central product of D_{1}, D_{2} and D_{3} where the a_{i}^{2} are amalgamated to $z,\langle z\rangle$ being the centre of P.

Let $\phi \in$ Aut P permute the D_{i} cyclically; specifically let $x_{i} \phi=x_{i+1}$ for each $x \in D$ and each i, where $x_{4}=x_{1}$. Trivially ϕ has order 3 , so set $m=3$. Consider $x=b_{1} a_{2} b_{3} a_{3}^{-1}$. Simple calculations show that $x \psi=1, x^{2}=z$ and $z \psi=z \neq 1$. Thus $x^{2} \in(\operatorname{ker} \psi)^{2} \cap P \psi$ and x^{2} has order 2 , so $(\operatorname{ker} \psi)^{2} \cap P \psi$ cannot have exponent dividing a power of $m=3$.

Let $Q=\langle i, j\rangle$ be the quaternion group of order 8 in its usual representation in the real quaternion algebra. Then Q has an automorphism ϕ of of order 3 given by $i \phi=j, j \phi=i j$ (and $(i j) \phi=i$ and $(-1) \phi=-1)$. Set $m=3$. Then $i \gamma=-i j,(i \gamma)^{2}=-1$ and $(-1) \gamma=1$. Thus $-1 \in(Q \gamma)^{2} \cap \operatorname{ker} \gamma$, so the exponent of $(Q \gamma)^{2} \cap$ ker γ does not divide any power of $m=3$.

Remarks. Obviously in the example P above $\operatorname{ker} \psi$ is not a union of subgroups, although G is a 2-group and even although quite generally $\operatorname{ker} \psi$ always is a union of subgroups if $m=2$ (since if $m=2$ then $\operatorname{ker} \psi=\left\{g \in G: g \phi=g^{-1}\right\}$). This is not just because $3=m$ and the exponent 4 of G are coprime.

Let G be the wreath product of a cyclic group of order 9 and a cyclic group of order 3 . Specifically let $G=\left\langle a_{1}, a_{2}, a_{3}, b\right\rangle$, where the a_{i} commute and have order $9, b$ has order 3 and conjugation by b permutes the a_{i} cyclically. Let ϕ denote conjugation by b, so ϕ has order 3 , and set $m=3$. Then ker ψ is not a union of subgroups. For let $x=b^{2} a_{1}^{-1} a_{2}$. Then simple calculations show that $x \psi=1$, $x^{2}=b a_{2} a_{3}^{-1}$ and $\left(x^{2}\right) \psi=a_{1}^{3} a_{2}^{-3} \neq 1$. Hence x^{2} lies in $(\operatorname{ker} \psi)^{2}$, does not lie in ker ψ and x but not $\langle x\rangle$ is contained in ker ψ.

Also $G \psi$ and $G \gamma$ need not be unions of subgroups. For consider a dihedral group $G=\langle a, b\rangle$, where $a^{b}=a^{-1}$. First suppose a has order 4. Now G has an automorphism ϕ of order 2 given by $a \phi=a^{-1}$ and $b \phi=b a$. Set $m=2$. Then $\langle a\rangle \psi=\{1\}$ and $\left(b a^{i}\right) \psi=a^{1-2 i}$, so $b \psi=a$ and $(b \psi)^{2}=a^{2} \notin G \psi$. Therefore $G \psi$ is not a union of subgroups.

Continue with $G=\langle a, b\rangle$ as above, but now assume that a has order 8. Let ϕ denote conjugation by a, so $|\phi|=4$. Set $m=4$. Then $\langle a\rangle \gamma=\{1\}$ and $\left(b a^{i}\right) \gamma=a^{2}$. Thus here $G \gamma=\left\{1, a^{2}\right\}$, which clearly cannot be a union of subgroups.

Now consider the quaternion group Q and its automorphism ϕ of order $3=m$ as in the example above. Then ϕ permutes cyclically the three involutions of $Q /\langle-1\rangle$ and hence $-1 \notin(Q \backslash\langle-1\rangle) \gamma$. Also $\langle-1\rangle \gamma=\{1\}$. Thus $-1 \notin Q \gamma$, so clearly $Q \gamma$ is not a union of subgroups. So far for $G \gamma$ we have not considered the case where $m=2$. In this case quite generally $G \gamma$ is always a union of subgroups. This follows at once from the following formulae.

If n is a positive integer, G is any group and ϕ is an automorphism of G with $\phi^{2}=1$, then for each $g \in G$ the following hold:

$$
(g \gamma)^{2 n+1}=\left(g(g \phi \gamma)^{n}\right) \gamma, \quad(g \gamma)^{2 n}=\left((g \phi \gamma)^{n}\right) \gamma, \quad(g \gamma)^{-1}=g \phi \gamma
$$

The third formula here is the case $n=1$ of the following more general result:

$$
g \phi \gamma^{n}=(g \gamma)^{h} \quad \text { for } h=(-1)^{n} 2^{n-1}
$$

References

[1] J. C. Lennox - D. J. S. Robinson, The theory of infinite soluble groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2004.
[2] B. A. F. Wehrfritz, Automorphisms of finite order of nilpotent groups, Ric. Mat. 63 (2014), no. 2, pp. 261-272.
[3] B. A. F. Wehrfritz, Automorphisms of finite order of nilpotent groups II, Studia Sci. Math. Hungar. 51 (2014), no. 4, pp. 547-555.
[4] B. A. F. Wehrfritz, Automorphisms of finite order of nilpotent groups III, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109 (2015), no. 2, pp. 295-301.

Manoscritto pervenuto in redazione il 30 luglio 2014.

