Automorphisms of finite order of nilpotent groups IV

B. A. F. Wehrfritz (*)

ABSTRACT – Let ϕ be an automorphism of finite order of the nilpotent group G of class c and m and r positive integers with $\phi^m = 1$. Consider the two (not usually homomorphic) maps ψ and γ of G given by

 $\psi: g \longmapsto g \cdot g\phi \cdot g\phi^2 \cdot \ldots \cdot g\phi^{m-1}$ and $\gamma: g \longmapsto g^{-1} \cdot g\phi$ for $g \in G$.

We prove that the subgroups

$$X = \langle x\alpha : x \in \ker \psi, \alpha \in \operatorname{Aut} G, x^r \in \bigcup_{s \ge 0} (G\gamma)^s \rangle,$$

$$Y = \langle g\gamma\alpha : g \in G, \alpha \in \operatorname{Aut} G, (g\gamma)^r \in \ker \gamma \rangle,$$

$$X^* = \langle x^r \alpha : x \in \ker \psi, \epsilon \alpha \in \operatorname{Aut} G, x^r \in \bigcup_{s \ge 0} (G\psi)^s \rangle,$$

$$Y^* = \langle (g\gamma)^r \alpha : g \in G, \alpha \in \operatorname{Aut} G, (g\gamma)^r \in \ker \gamma \rangle = \langle ((G\gamma)^r \cap \ker \gamma) \operatorname{Aut} G \rangle$$

of G all have finite exponent bounded in terms of c, m and r only. This yields alternative proofs of the theorem of [4] and its related bounds.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20F18, 20F28, 20E36.

KEYWORDS. Nilpotent group, automorphism of finite order.

Let ϕ be an automorphism of finite order of the group *G* and *m* a positive integer with $\phi^m = 1$. There are certain maps η (not usually homomorphisms) of *G* into itself that one frequently needs to consider (so in particular $G\eta$ and ker $\eta = \{g \in G : g\eta = 1\}$ are not usually subgroups of *G*). There are just two maps η that interest us here, namely the maps

 $\psi: g \longmapsto g \cdot g \phi \cdot g \phi^2 \cdot \ldots \cdot g \phi^{m-1}$ and $\gamma: g \longmapsto g^{-1} \cdot g \phi$ for $g \in G$.

(*) *Indirizzo dell'A*.: School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London El 4NS, England E-mail: b.a.f.wehrfritz@qmul.ac.uk

B. A. F. Wehrfritz

In a series of papers we have discussed in some detail these two maps for nilpotent FAR groups. – Soluble FAR (short for "finite abelian ranks") groups are defined and discussed in the book [1]. An equivalent definition, more convenient for our purposes, is given by the following. A soluble group is an FAR group if and only if it has finite Hirsch number and satisfies min-q, the minimal condition on q-subgroups, for every prime q. A group has finite Hirsch number if it has a series of finite length whose factors are infinite cyclic or locally finite, the number of infinite cyclic factors in such a series being its Hirsch number.

Let *G* be a nilpotent FAR group. In [3] we proved that $G\psi \cdot \ker \psi$ and $G\gamma \cdot \ker \gamma$ are both very large subsets of *G* in that they contain characteristic subgroups of *G* of finite index. In [4] we proved that $\langle G\psi \cap \ker \psi \rangle$ and $\langle G\gamma \cap \ker \gamma \rangle$ are both very small; they are finite π -groups, where π is the set of prime divisors of *m*. Firstly our proofs in [3] require us to study $G\gamma \cdot (\ker \gamma)^m$ and not just $G\gamma \cdot \ker \gamma$. Secondly in [3] we have a version of the theorem that requires no rank restrictions. Specifically if *G* is just nilpotent of class *c* and if *m*, *r* and *s* are positive integers and if ϕ is an automorphism of *G* with $\phi^m = 1$, then there is a positive integer *f* such that

$$\langle G^f \rangle \subseteq (G\gamma)^r (\ker \gamma)^s \cap (\ker \psi)^r (\ker \gamma)^s \cap (\ker \psi)^r (G\psi)^s \cap (G\gamma)^r (G\psi)^s.$$

Moreover f can be chosen only to depend on c, m and the least common multiple of r and s and to be divisible only by primes dividing cmrs. (If S is a subset of some group and if n is a positive integer, then here S^n denotes the subset $\{s^n : s \in S\}$ and not the more usual $\langle s^n : s \in S \rangle$.) We did not consider this more general situation in [4], if only because the obvious analogue is false (example below). However a very slight weakening does hold and this is the main content of this current paper. Moreover it turns out still to be strong enough that the results of [4] can be recovered from it and thus it gives an alternative, and I feel a better, approach to those results. The following is the main theorem of this paper. (Note that whenever we have a group $G, m \ge 1$ and $\phi \in \text{Aut } G$ with $\phi^m = 1$, the maps ψ and γ are always defined as above.)

THEOREM. Let G be a nilpotent group of class c, m and r positive integers and ϕ an automorphism of G with $\phi^m = 1$. With ψ and γ defined from ϕ and m as usual, set

$$X = \langle x\alpha : x \in \ker \psi, \alpha \in \operatorname{Aut} G, x^r \in \bigcup_{s \ge 0} (G\gamma)^s \rangle,$$

$$Y = \langle g\gamma\alpha : g \in G, \alpha \in \operatorname{Aut} G, (g\gamma)^r \in \ker \gamma \rangle,$$

$$X^* = \langle x^r \alpha \colon x \in \ker \psi, \in \alpha \in \operatorname{Aut} G, x^r \in \bigcup_{s \ge 0} (G\psi)^s \rangle,$$

$$Y^* = \langle (g\gamma)^r \alpha \colon g \in G, \alpha \in \operatorname{Aut} G, (g\gamma)^r \in \ker \gamma \rangle = \langle ((G\gamma)^r \cap \ker \gamma) \operatorname{Aut} G \rangle$$

Then X and Y have exponents dividing $(mr)^c$ and X^* and Y^* have exponents dividing $m(mr)^{c-1}$ (meaning 1 if $G = \langle 1 \rangle$).

Trivially $\bigcup_{s\geq 0} (\ker \gamma)^s = \ker \gamma$. The point of this theorem is that $\langle (\ker \psi)^r \cap (G\psi)^s \rangle \subseteq X^*$ and $\langle (G\gamma)^r \cap (\ker \gamma)^s \rangle \subseteq Y^*$. Further below we will see that if *G* is abelian, then $\exp X$ (= the exponent of *X*) and $\exp Y$ divide *m*, if *m* = 2, then $\exp X^*$ and $\exp Y^*$ divide 2^c , if *X* is abelian, then $\exp X^*$ divides m^c and $\exp X$ divides m^r .

With the hypotheses of the theorem above, assume that π is a finite set of primes such that *G* satisfies min-*q* for all primes *q* in π and that *m* and *r* are π -numbers (meaning that all the prime divisors of *mr* lie in π). Then $T = O_{\pi}(G)$ is a Chernikov group. Let *A* denote the finite residual of *T*, *d* the rank of *A*, *t* the order of *T*/*A* and *e* the exponent of *T*/*A*. Let *k* be minimal such that $[A, _kG] = \langle 1 \rangle$ (note that $k \leq c$ and $k \leq d$).

COROLLARY. The groups X and Y have exponents dividing $(mr)^k te$ and orders dividing $(mr)^{dk}t^{d+1}$, the group X* has exponent dividing $m^k te$ and order dividing $m^{dk}t^{d+1}$ and the group Y* has exponent dividing mte and order dividing $m^d t^{d+1}$.

The proofs

Our notation below is accumulative and reflects the notation of the theorem and its corollary.

a) Let N be a normal subgroup of a group M such that $N^m \subseteq [N, M]$ for some positive integer m. Then $[N, i-1M]^m \subseteq [N, iM]$ for all $i \ge 1$. In particular if M is nilpotent of class c, then N has finite exponent $\exp(N)$ dividing m^c .

PROOF. If $g \in M$, then $x[N, M] \mapsto [x, g][N, _2M]$ is a homomorphism of N/[N, M] into $[N, M]/[N, _2M]$. In particular $[x, g]^m \in [x^m, g][N, _2M] = [N, _2M]$ for all $x \in N$ and $g \in M$. Therefore $[N, M]^m \subseteq [N, _2M]$. A simple induction completes the proof.

B. A. F. Wehrfritz

b) Let G be a nilpotent group of class c, m and r positive integers and ϕ an automorphism of G with $\phi^m = 1$. Set

$$X = \langle x\alpha : x \in \ker \psi, \alpha \in \operatorname{Aut} G, x^r \in \bigcup_{s \ge 0} (G\psi)^s \rangle$$

and

$$Y = \langle g \gamma \alpha \colon g \in G, \alpha \in \operatorname{Aut} G, (g \gamma)^r \in \ker \gamma \rangle.$$

Then X and Y have finite exponents dividing $(mr)^c$.

PROOF. Let $x \in \ker \psi$, $g \in G$ and $s \ge 1$ with $x^r = (g\psi)^s$. Of course X/[X, G] is abelian and ψ induces an endomorphism on it. Thus $1 = (x\psi)^r \in (x^r\psi)[X, G]$. Also for $i \ge 1$, if $g(i) = g \cdot g\phi \cdot g\phi^2 \cdot \ldots \cdot g\phi^{i-1}$, then

$$x^{r}\phi^{i} = ((g\psi)^{s})\phi^{i} = (g\psi\phi^{i})^{s} = ((g\psi)^{g(i)})^{s} = ((g\psi)^{s})^{g(i)} = (x^{r})^{g(i)}.$$

Thus $x^r \psi = x^r \cdot (x^r)^{g(1)} \cdot \ldots \cdot (x^r)^{g(m-1)} \in x^{mr}[X, G]$. Hence $x^{mr} \in [X, G]$, so each $(x\alpha)^{mr} \in [X, G]$ and therefore $X^{mr} \subseteq [X, G]$. Consequently a) yields that X has exponent dividing $(mr)^l$, where l is minimal such that $[X, {}_{l}G] = \langle 1 \rangle$ and in particular that $\exp X$ divides $(mr)^c$.

Now let $g \in G$ with $(g\gamma)^r \in \ker \gamma = C_G(\phi)$. Then $((g\gamma)^r)\psi = (g\gamma)^{mr}$. Also Y/[Y,G] is abelian, so modulo [Y,G] we have $(g\gamma)^r\psi \equiv (g\gamma\psi)^r = 1$. Thus $(g\gamma)^{mr} \in [Y,G]$, $(g\gamma\alpha)^{mr} = ((g\gamma)^{mr})\alpha \in [Y,G]$ and $Y^{mr} \subseteq [Y,G]$. Consequently the exponent of Y divides $(mr)^{l'}$ and hence also $(mr)^c$, where l' is minimal with $[Y, {}_{l'}G] = \langle 1 \rangle$.

c) Continuing with the notation of b), set

$$X^* = \langle x^r \alpha : x \in \ker \psi, \alpha \in \operatorname{Aut} G, x^r \in \bigcup_{s \ge 0} (G\psi)^s \rangle$$

and

$$Y^* = \langle (g\gamma)^r \alpha \colon g \in G, \alpha \in \operatorname{Aut} G, (g\gamma)^r \in \ker \gamma \rangle.$$

Then X^* has exponent dividing $m(mr)^{l-1}$ (1 if $X = \langle 1 \rangle$) and $m(mr)^{c-1}$ (1 if $G = \langle 1 \rangle$). Also Y^* has exponent dividing $m(mr)^{l'-1}$ (1 if $Y = \langle 1 \rangle$) and $m(mr)^{c-1}$ (1 if $G = \langle 1 \rangle$).

PROOF. Assume $X \neq \langle 1 \rangle$. Now a) and the proof of b) yields that [X, G] has exponent dividing $(mr)^{l-1}$ and also that $x^{mr} \in [X, G]$ for all x as in the definition of X^{*}. It follows that $(X^*)^m \subseteq [X, G]$. Therefore the exponent of X^{*} divides $m(mr)^{l-1}$. The proof for Y^{*} is similar.

d) COROLLARY. If G is abelian, then the exponents of X^* and Y^* divide m.

e) If m = 2, then the exponents of X^* and Y^* divide 2^c .

PROOF. Let $x \in \ker \psi$. Then $x \cdot x\phi = 1$, $x\phi = x^{-1}$, $x^r\phi = x^{-r}$ and $x^r \in \ker \psi$. Thus

$$X^* \leq \langle x\alpha \colon x \in \ker \psi, \alpha \in \operatorname{Aut} G, x \in \bigcup_{s>0} (G\psi)^s \rangle$$

and the latter has exponent dividing $m^c = 2^c$ by b).

If $g \in G$, then $g\gamma\phi = g^{-1}\phi \cdot g\phi^2 = g^{-1}\phi \cdot g = (g\gamma)^{-1}$. Hence $(g\gamma)^r\phi = (g\gamma)^{-r}$. If also $(g\gamma)^r \in \ker \gamma$, then $(g\gamma)^r\phi = (g\gamma)^r, (g\gamma)^{-r} = (g\gamma)^r$ and $(g\gamma)^{2r} = 1$. Consequently Y^* is generated by involutions and therefore Y^* has exponent dividing 2l' and hence also 2^c .

f) If X is abelian then $(X^*)^m \subseteq [X^*, G]$, $\exp X^*$ divides m^c and $\exp X$ divides $m^c r$. Also if Y is abelian, then $(Y^*)^m = \langle 1 \rangle$ and $\exp Y$ divides mr.

PROOF. Let $x \in \ker \psi$, $g \in G$ and $s \ge 0$ with $x^r = (g\psi)^s$. Since X is abelian ψ induces an endomorphism on X. Thus $x^r \psi = (x\psi)^r = 1$. Also, as in the proof of b) we have that

$$x^r \psi = x^r \cdot (x^r)^{g(1)} \cdot \ldots \cdot (x^r)^{g(m-1)} \in x^{mr}[X^*, G].$$

Therefore $x^{mr} \in [X^*, G]$. It follows easily that $(X^*)^m \subseteq [X^*, G]$. Now apply a).

Now let $g \in G$ with $(g\gamma)^r \in \ker \gamma$. Since Y is abelian, so $\psi|_Y$ is an endomorphism of Y and $(g\gamma)^r \psi = (g\gamma\psi)^r = 1$. Also $(g\gamma)^r \in C_G(\phi)$, so $(g\gamma)^r \psi = (g\gamma)^{mr}$. It follows that $(g\gamma)^{mr} = 1$ and that $(Y^*)^m = \langle 1 \rangle$. The conclusions for X and Y are now immediate.

Again continuing with the notation of b) let π denote the (finite) set of prime divisors of mr. Suppose *G* satisfies min-*q* for each *q* in π . Then $T = O_{\pi}(G)$ is a Chernikov group. Let *A* denote the finite residual of *T*, *d* the rank of *A*, *t* the order of *T*/*A* and *e* the exponent of *T*/*A*. Let *k* be minimal such that $[A, _kG] = \langle 1 \rangle$. Then $k \leq c$ and also (by [4], Lemma 4) $k \leq d$. By b) both *X* and *Y* are contained in *T*. Then with this notation and hypotheses we have the following.

g) The groups X and Y have exponents dividing $(mr)^k te$ and $(mr)^d te$ resp. and orders dividing $(mr)^{dk}t^{d+1}$. The group X* has exponent dividing $m^k te$ and order dividing $m^{dk}t^{d+1}$. The group Y* has exponent dividing mte and order dividing $m^d t^{d+1}$.

These bounds depend only on *m* and the structure constants of $O_{\pi}(G)$ and not for example on the class *c* of *G*.

B. A. F. Wehrfritz

PROOF. Suppose T = A. Since $X \subseteq A$ by b), we have $l \leq k$. The proof of b) yields that $\exp X$ divides $(mr)^k$. In general there is a characteristic subgroup K of G with KA = T, with $\exp K$ dividing te and with |K| dividing t^{d+1} , see [4], Lemma 2. Applying the 'T = A' case to G/K yields that in general $\exp X$ divides $(mr)^k te$ and |X| divides $(mr)^{dk} t^{d+1}$. The proof for Y is similar.

For X^* and Y^* apply f) and a) to G/K. Then X^*K/K has exponent dividing m^k and Y^*K/K has exponent dividing m. The remaining claims of g) follow from the properties of K.

The theorem of [4] and the various bounds computed in connection with it (in [4] see the introduction, the proof of the theorem and the remarks following that proof) all follow from the above. Further the above applied to the ϕ -invariant finitely generated subgroups of the group under consideration yields the following generalization and strengthening of Lemma 3 of [4].

h) Let G be a locally nilpotent group, m a positive integer and ϕ an automorphism of G with $\phi^m = 1$. With ψ and γ defined from ϕ and m in the usual way, then the subgroups

$$\langle x: x \in \ker \psi \text{ and } x^r \in \bigcup_{s>0} (G\psi)^s \text{ for some } r \ge 1 \rangle$$

and

$$\langle g\gamma : g \in G \text{ and } (g\gamma)^r \in \ker \gamma \text{ for some } r \geq 1 \rangle$$

are periodic. Further if $x \in \ker \psi$ and $g \in G$ are such that $x^r = (g\psi)^s$ for some positive integers r and s, then x has order dividing some power of mr and if m = 2, then x^r is a 2-element. If $g \in G$ with $(g\gamma)^r \in \ker \gamma$ for some positive integer r, then $g\gamma$ also has order dividing some power of mr and if m = 2, then also $(g\gamma)^r$ is a 2-element.

EXAMPLES. In general $(\ker \psi)^r \cap G\psi$ need not have exponent dividing some power of *m* and nor need $(G_{\gamma})^r \cap \ker \gamma$, even if the group *G* is finite and even though they do have exponents dividing some power of mr and their exponents do divide some power of *m* if m = 2 or if *G* is abelian. Of course ker $\psi \cap G\psi$ and $G\gamma \cap \ker \gamma$ do have exponents dividing some power of *m*.

PROOF. The smallest examples will have to have class at least 2 and *m* at least 3. Let $D = \langle a, b \rangle$ be dihedral of order 8, where $a^b = a^{-1}$. Let $x \mapsto x_i$ be an isomorphism of *D* onto D_i for i = 1, 2, 3 and let *P* be the central product of D_1 , D_2 and D_3 where the a_i^2 are amalgamated to z, $\langle z \rangle$ being the centre of *P*. Let $\phi \in \text{Aut } P$ permute the D_i cyclically; specifically let $x_i\phi = x_{i+1}$ for each $x \in D$ and each i, where $x_4 = x_1$. Trivially ϕ has order 3, so set m = 3. Consider $x = b_1 a_2 b_3 a_3^{-1}$. Simple calculations show that $x\psi = 1$, $x^2 = z$ and $z\psi = z \neq 1$. Thus $x^2 \in (\ker \psi)^2 \cap P\psi$ and x^2 has order 2, so $(\ker \psi)^2 \cap P\psi$ cannot have exponent dividing a power of m = 3.

Let $Q = \langle i, j \rangle$ be the quaternion group of order 8 in its usual representation in the real quaternion algebra. Then Q has an automorphism ϕ of of order 3 given by $i\phi = j$, $j\phi = ij$ (and $(ij)\phi = i$ and $(-1)\phi = -1$). Set m = 3. Then $i\gamma = -ij$, $(i\gamma)^2 = -1$ and $(-1)\gamma = 1$. Thus $-1 \in (Q\gamma)^2 \cap \ker \gamma$, so the exponent of $(Q\gamma)^2 \cap \ker \gamma$ does not divide any power of m = 3.

REMARKS. Obviously in the example *P* above ker ψ is not a union of subgroups, although *G* is a 2-group and even although quite generally ker ψ always is a union of subgroups if m = 2 (since if m = 2 then ker $\psi = \{g \in G : g\phi = g^{-1}\}$). This is not just because 3 = m and the exponent 4 of *G* are coprime.

Let *G* be the wreath product of a cyclic group of order 9 and a cyclic group of order 3. Specifically let $G = \langle a_1, a_2, a_3, b \rangle$, where the a_i commute and have order 9, *b* has order 3 and conjugation by *b* permutes the a_i cyclically. Let ϕ denote conjugation by *b*, so ϕ has order 3, and set m = 3. Then ker ψ is not a union of subgroups. For let $x = b^2 a_1^{-1} a_2$. Then simple calculations show that $x\psi = 1$, $x^2 = ba_2 a_3^{-1}$ and $(x^2)\psi = a_1^3 a_2^{-3} \neq 1$. Hence x^2 lies in $(\ker \psi)^2$, does not lie in ker ψ and *x* but not $\langle x \rangle$ is contained in ker ψ .

Also $G\psi$ and $G\gamma$ need not be unions of subgroups. For consider a dihedral group $G = \langle a, b \rangle$, where $a^b = a^{-1}$. First suppose *a* has order 4. Now *G* has an automorphism ϕ of order 2 given by $a\phi = a^{-1}$ and $b\phi = ba$. Set m = 2. Then $\langle a \rangle \psi = \{1\}$ and $(ba^i)\psi = a^{1-2i}$, so $b\psi = a$ and $(b\psi)^2 = a^2 \notin G\psi$. Therefore $G\psi$ is not a union of subgroups.

Continue with $G = \langle a, b \rangle$ as above, but now assume that *a* has order 8. Let ϕ denote conjugation by *a*, so $|\phi| = 4$. Set m = 4. Then $\langle a \rangle \gamma = \{1\}$ and $(ba^i)\gamma = a^2$. Thus here $G\gamma = \{1, a^2\}$, which clearly cannot be a union of subgroups.

Now consider the quaternion group Q and its automorphism ϕ of order 3 = m as in the example above. Then ϕ permutes cyclically the three involutions of $Q/\langle -1 \rangle$ and hence $-1 \notin (Q \setminus \langle -1 \rangle)\gamma$. Also $\langle -1 \rangle \gamma = \{1\}$. Thus $-1 \notin Q\gamma$, so clearly $Q\gamma$ is not a union of subgroups. So far for $G\gamma$ we have not considered the case where m = 2. In this case quite generally $G\gamma$ is always a union of subgroups. This follows at once from the following formulae.

If *n* is a positive integer, *G* is any group and ϕ is an automorphism of *G* with $\phi^2 = 1$, then for each $g \in G$ the following hold:

$$(g\gamma)^{2n+1} = (g(g\phi\gamma)^n)\gamma, \quad (g\gamma)^{2n} = ((g\phi\gamma)^n)\gamma, \quad (g\gamma)^{-1} = g\phi\gamma$$

The third formula here is the case n = 1 of the following more general result:

$$g\phi\gamma^{n} = (g\gamma)^{h}$$
 for $h = (-1)^{n}2^{n-1}$.

References

- J. C. LENNOX D. J. S. ROBINSON, *The theory of infinite soluble groups*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2004.
- [2] B. A. F. WEHRFRITZ, Automorphisms of finite order of nilpotent groups, Ric. Mat. 63 (2014), no. 2, pp. 261–272.
- B. A. F. WEHRFRITZ, Automorphisms of finite order of nilpotent groups II, Studia Sci. Math. Hungar. 51 (2014), no. 4, pp. 547–555.
- [4] B. A. F. WEHRFRITZ, Automorphisms of finite order of nilpotent groups III, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109 (2015), no. 2, pp. 295–301.

Manoscritto pervenuto in redazione il 30 luglio 2014.

68