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Automorphisms of finite order of nilpotent groups IV

B. A. F. WEHRFRITZ (%)

ABSTRACT — Let ¢ be an automorphism of finite order of the nilpotent group G of class ¢ and
m and r positive integers with ¢'” = 1. Consider the two (not usually homomorphic)
maps ¥ and y of G given by

m—1 1

Vigr—g-gh-gp’-... g and y:gr—>g  -gp forgeG.
We prove that the subgroups
X = (xa:x ekeryy,a € Aut G, x" € | J;-0(Gy)®),
Y = (gyo:g € G,a € AutG, (gy)" € kery),
X*=(x"a:xekery,ea € AutG,x" € ;- 0(GY)*),
Y* ={(gy) a:g € G,a € AutG, (gy)" € kery) = (((Gy)" Nkery) AutG)

of G all have finite exponent bounded in terms of ¢, m and r only. This yields alternative
proofs of the theorem of [4] and its related bounds.
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Let ¢ be an automorphism of finite order of the group G and m a positive
integer with ¢ = 1. There are certain maps 1 (not usually homomorphisms)
of G into itself that one frequently needs to consider (so in particular Gn and
kern = {g € G:gn = 1} are not usually subgroups of G). There are just two
maps 7 that interest us here, namely the maps

w:g|—>g'g¢'g¢2-...-g¢m_l and y:g|—>g_1-g¢ for g € G.
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In a series of papers we have discussed in some detail these two maps for nilpotent
FAR groups. — Soluble FAR (short for “finite abelian ranks”) groups are defined
and discussed in the book [1]. An equivalent definition, more convenient for our
purposes, is given by the following. A soluble group is an FAR group if and
only if it has finite Hirsch number and satisfies min-g, the minimal condition on
g-subgroups, for every prime ¢. A group has finite Hirsch number if it has a series
of finite length whose factors are infinite cyclic or locally finite, the number of
infinite cyclic factors in such a series being its Hirsch number.

Let G be anilpotent FAR group. In [3] we proved that Gy -ker ¢ and Gy -ker y
are both very large subsets of G in that they contain characteristic subgroups of
G of finite index. In [4] we proved that (G Nkery) and (Gy N ker y) are both
very small; they are finite w-groups, where r is the set of prime divisors of m.
Firstly our proofs in [3] require us to study Gy - (ker y)™ and not just Gy - ker y.
Secondly in [3] we have a version of the theorem that requires no rank restrictions.
Specifically if G is just nilpotent of class ¢ and if m, r and s are positive integers
and if ¢ is an automorphism of G with ¢ = 1, then there is a positive integer f
such that

(G7) € (Gy) (kery)’ N (ker ) (kery)* N (ker )" (GY)* N (Gy) (GY)*.

Moreover f can be chosen only to depend on ¢, m and the least common multiple
of r and s and to be divisible only by primes dividing cmrs. (If S is a subset of some
group and if n is a positive integer, then here S” denotes the subset {s":s € S} and
not the more usual (s”:s € S).) We did not consider this more general situation
in [4], if only because the obvious analogue is false (example below). However
a very slight weakening does hold and this is the main content of this current
paper. Moreover it turns out still to be strong enough that the results of [4] can be
recovered from it and thus it gives an alternative, and I feel a better, approach to
those results. The following is the main theorem of this paper. (Note that whenever
we have a group G, m > 1 and ¢ € AutG with ¢ = 1, the maps ¥ and y are
always defined as above.)

THEOREM. Let G be a nilpotent group of class c, m and r positive integers and
¢ an automorphism of G with ¢ = 1. With  and y defined from ¢ and m as
usual, set

X = (xa:x ekery,a € Aut G, x" € | J;5o(Gy)*),
Y = (gya:g € G,a € AutG, (gy)" € kery),
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X* = (x"a:x ekery, €@ € Aut G, x" € Jo(GY)*),
Y*={((gy)a:g € G,aecAutG, (gy) €kery) = (((Gy)" Nkery) AutG)

Then X and Y have exponents dividing (imr)¢ and X* and Y* have exponents
dividing m(mr)~1 (meaning 1 if G = (1)).

Trivially (. (ker y)* = kery. The point of this theorem is that ((ker )" N
(Gy)s) C X* and ((Gy)" N (kery)*) C Y*. Further below we will see that if G
is abelian, then exp X (= the exponent of X) and exp Y divide m, if m = 2, then
exp X* and exp Y * divide 2¢, if X is abelian, then exp X* divides m¢ and exp X
divides m€r, and if Y is abelian then exp Y * divides m and exp Y divides mr.

With the hypotheses of the theorem above, assume that 7 is a finite set of
primes such that G satisfies min-g for all primes g in = and that m and r are
sw-numbers (meaning that all the prime divisors of mr lie in 7). Then T = O, (G)
is a Chernikov group. Let A denote the finite residual of 7', d the rank of A, ¢ the
order of T/ A and e the exponentof T/ A. Let k be minimal such that[A4,  G] = (1)
(note that k < cand k < d).

COROLLARY. The groups X and Y have exponents dividing (mr)*te and or-
ders dividing (mr)4* 14+, the group X* has exponent dividing m*te and order
dividing m3%* 4 +1
md [d—i—l‘

and the group Y * has exponent dividing mt e and order dividing

The proofs

Our notation below is accumulative and reflects the notation of the theorem and
its corollary.

a) Let N be a normal subgroup of a group M such that N™ C [N, M] for some
positive integer m. Then [N, ;—i M|™ C [N,;M] for all i > 1. In particular if M
is nilpotent of class c, then N has finite exponent exp(N) dividing m€.

Proor. If g € M, then x[N, M] — [x, g][N,2M] is a homomorphism of
N/[N, M] into [N, M]/[N,.M]. In particular [x, g]" € [x™, g][N,.M] =
[N,,M] for all x € N and g € M. Therefore [N, M|" < [N,,M]. A simple
induction completes the proof. O
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b) Let G be a nilpotent group of class c, m and r positive integers and ¢ an
automorphism of G with ¢ = 1. Set

X = (xa:x ekery,a € Aut G, x" € (J5(GY)*)
and

Y = (gya:g € G,a € AutG, (gy)" € kery).
Then X and Y have finite exponents dividing (mr)°.

Proor. Letx € kery, g € Gands > 1 with x” = (gy)°. Of course X/[X, G]
is abelian and v induces an endomorphism on it. Thus 1 = (x¥)" € (x"¥)[X, G].
Alsofori > 1,ifg(i) =g -g¢-gp>-...-g¢p'~!, then

X9t = ((g¥))¢ = (gv9')* = (g¥)*D) = (g9))* P = (x")*®.
Thus x" ¢ = x” - (x")8W .. .. (x")8"=D ¢ x™"[X, G]. Hence x™" € [X, G], so
each (xa)™" € [X, G] and therefore X" C [X, G]. Consequently a) yields that
X has exponent dividing (mr)’, where [ is minimal such that [X,;G] = (1) and
in particular that exp X divides (mr)°.

Now let g € G with (gy)” € kery = Cg(¢). Then ((gy)")¥ = (gy)™ .
Also Y/[Y, G] is abelian, so modulo [Y, G] we have (gy)'v = (gyy)” = 1.
Thus (gy)™" € [Y,G], (gy)™" = ((gy)"")e € [Y.G] and Y™ C [V, G].
Consequently the exponent of ¥ divides (mr)!" and hence also (mr)¢, where I’ is
minimal with [Y, ;G] = (1). |

¢) Continuing with the notation of b), set
X* = (xa:x ekeryy,a € Aut G, x" € ;- o(GY))

and
Y*={((gy)'a:g € G,a € AutG, (gy)" € kery).
Then X* has exponent dividing m(mr)'~' (1 if X = (1)) and m(mr)¢~ (1 if
G = (1)). Also Y * has exponent dividing m(mr)" = (1if Y = (1)) and m(mr)°~!
(1if G = (1)).
Proor. Assume X # (1). Now a) and the proof of b) yields that [X, G] has
exponent dividing (mr)'~! and also that x”" € [X, G] for all x as in the definition

of X*. It follows that (X*)"™ C [X, G]. Therefore the exponent of X* divides
m(mr)' =1, The proof for Y * is similar. O

d) CoroLLARY. If G is abelian, then the exponents of X* and Y* divide m.

e) If m = 2, then the exponents of X* and Y* divide 2¢.
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Proor. Letx € kery. Thenx-x¢p = 1,x¢ = x~!,x"¢p = x " andx” € ker .
Thus

X* < (xa:x ekeryy,a € AutG,x € ;o (GY)*)

and the latter has exponent dividing m¢ = 2¢ by b).

If g € G, then gyp = g7 '¢p-g¢p> = g7'¢ - g = (gy)~'. Hence (gy)"¢ =
(gy)™". If also (gy)" € kery, then (gy)'¢ = (gy)".(gy)™" = (gy)" and
(gy)* = 1. Consequently Y * is generated by involutions and therefore Y * has
exponent dividing 2/’ and hence also 2¢. O

f) If X is abelian then (X*)™ C [X*, G], exp X * divides m® and exp X divides
mr. Also if Y is abelian, then (Y*)™ = (1) and exp Y divides mr.

Proor. Let x € keryr, g € G and s > 0 with x” = (g¥)*. Since X is abelian
Y induces an endomorphism on X. Thus x"¢» = (xy¥)" = 1. Also, as in the proof
of b) we have that

Xy =x" - (x)ED L (x7)EmD ey X% G

Therefore x™" € [X™, G]. It follows easily that (X *)” C [X*, G]. Now apply a).

Now let g € G with (gy)” € kery. Since Y is abelian, so |y is an en-
domorphism of Y and (gy)"¢v = (gyv)” = 1. Also (gy)" € Cg(¢), so
(gy) ¥ = (gy)™". It follows that (gy)™" = 1 and that (Y *)™ = (1). The conclu-
sions for X and Y are now immediate. O

Again continuing with the notation of b) let & denote the (finite) set of prime
divisors of mr. Suppose G satisfies min-g for each ¢ in 7. Then T = O,(G) is a
Chernikov group. Let A denote the finite residual of 7', d the rank of A4, ¢ the order
of T/ A and e the exponent of 7/ A. Let k be minimal such that [4,  G] = (1). Then
k < c and also (by [4], Lemma 4) k < d. By b) both X and Y are contained in T'.
Then with this notation and hypotheses we have the following.

@) The groups X and Y have exponents dividing (mr)¥te and (mr)?te resp.
and orders dividing (mr)®*t2+1. The group X* has exponent dividing m*te and
order dividing m®*td+1

dividing m?ta+1,

. The group Y* has exponent dividing mte and order

These bounds depend only on m and the structure constants of O, (G) and not
for example on the class ¢ of G.
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Proor. Suppose T' = A. Since X € A by b), we have / < k. The proof of b)
yields that exp X divides (mr)¥. In general there is a characteristic subgroup K
of G with KA = T, with exp K dividing re and with | K| dividing 141, see [4],
Lemma 2. Applying the ‘T = A’ case to G/ K yields that in general exp X divides
(mr)*te and | X | divides (mr)@*t4+1. The proof for Y is similar.

For X* and Y* apply f) and a) to G/ K. Then X*K /K has exponent dividing
mk and Y * K / K has exponent dividing m. The remaining claims of g) follow from
the properties of K. |

The theorem of [4] and the various bounds computed in connection with it
(in [4] see the introduction, the proof of the theorem and the remarks following
that proof) all follow from the above. Further the above applied to the ¢-invariant
finitely generated subgroups of the group under consideration yields the following
generalization and strengthening of Lemma 3 of [4].

h) Let G be a locally nilpotent group, m a positive integer and ¢ an automor-
phism of G with ¢ = 1. With ¥ and y defined from ¢ and m in the usual way,
then the subgroups

(x:x e keryy and x" €  J;5o(GY)* for some r > 1)
and

(gy:g € G and (gy)" € kery for somer > 1)

are periodic. Further if x € kery and g € G are such that x" = (gy)’ for
some positive integers r and s, then x has order dividing some power of mr and
ifm = 2, then x" is a 2-element. If g € G with (gy)" € kery for some positive
integer r, then gy also has order dividing some power of mr and if m = 2, then
also (gy)" is a 2-element.

ExampLEs. In general (ker)” N Gy need not have exponent dividing some
power of m and nor need (G,)" N kery, even if the group G is finite and even
though they do have exponents dividing some power of mr and their exponents do
divide some power of m if m = 2 or if G is abelian. Of course ker ¢ N Gy and
Gy N kery do have exponents dividing some power of m.

Proor. The smallest examples will have to have class at least 2 and m at least 3.
Let D = (a,b) be dihedral of order 8, where a® = a7!'. Let x — x; be an
isomorphism of D onto D; fori = 1,2, 3 and let P be the central product of Dy,
D> and D3 where the al.2 are amalgamated to z, (z) being the centre of P.
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Let ¢ € Aut P permute the D; cyclically; specifically let x;¢p = x;, for each
x € D and each i, where x4 = x;. Trivially ¢ has order 3, so set m = 3. Consider
x = b,a,bya3z". Simple calculations show that xyy = 1,x2 = zand zyy = z # 1.
Thus x2 € (kery)? N Py and x? has order 2, so (kery)?> N Py cannot have
exponent dividing a power of m = 3.

Let Q = (i, j) be the quaternion group of order 8 in its usual representation
in the real quaternion algebra. Then Q has an automorphism ¢ of of order 3 given
by i¢ = j, j¢ = ij (and (ij)¢ = i and (—1)¢ = —1). Set m = 3. Then
iy =—ij,(iy)> = —land (—1)y = 1. Thus —1 € (Qy)? Nker y, so the exponent
of (Qy)? Nkery does not divide any power of m = 3. O

Remarks. Obviously in the example P above ker is not a union of sub-
groups, although G is a 2-group and even although quite generally ker ¢ always is
a union of subgroups if m = 2 (since if m = 2 thenkery = {g € G:gp = g~ 1}).
This is not just because 3 = m and the exponent 4 of G are coprime.

Let G be the wreath product of a cyclic group of order 9 and a cyclic group
of order 3. Specifically let G = (a1, a»,as, b), where the a; commute and have
order 9, b has order 3 and conjugation by b permutes the a; cyclically. Let ¢ denote
conjugation by b, so ¢ has order 3, and set m = 3. Then ker i is not a union of
subgroups. For let x = b?ay'a,. Then simple calculations show that xy = 1,
x? = ba,a3! and (x?)y = aja;> # 1. Hence x? lies in (ker ¥)?, does not lie in
ker ¢ and x but not (x) is contained in ker .

Also Gy and Gy need not be unions of subgroups. For consider a dihedral
group G = (a,b), where a® = a~'. First suppose a has order 4. Now G has an
automorphism ¢ of order 2 given by a¢ = a~! and b¢p = ba. Set m = 2. Then
(a)y = {1} and (ba’)y = a'=?',s0 by = a and (by/)? = a? ¢ Gr. Therefore
G is not a union of subgroups.

Continue with G = (a, b) as above, but now assume that a has order 8. Let
¢ denote conjugation by a, so |[¢p| = 4. Set m = 4. Then (a)y = {1} and
(ba')y = a?. Thus here Gy = {1,a?}, which clearly cannot be a union of
subgroups.

Now consider the quaternion group Q and its automorphism ¢ of order 3 = m
as in the example above. Then ¢ permutes cyclically the three involutions of
Q/{—1) and hence —1 ¢ (Q\(—1))y. Also {(—1)y = {1}. Thus —1 ¢ Qy, so
clearly Qv is not a union of subgroups. So far for Gy we have not considered the
case where m = 2. In this case quite generally Gy is always a union of subgroups.
This follows at once from the following formulae.
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If n is a positive integer, G is any group and ¢ is an automorphism of G with
¢? = 1, then for each g € G the following hold:

(ey)" = (g(gdy) . (V)" = ((gdpn)M)y. (gv)™' = goy.

The third formula here is the case n = 1 of the following more general result:

goy" = (gy)" forh = (—1)"2"".
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