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1. Introduction

This paper is part of a program to study Berezin transforms and Stratonovich–

Weyl correspondences associated with holomorphic representations. The notion

of Stratonovich–Weyl correspondence was introduced in [31] in order to extend the

usual Weyl correspondence between functions on R
2n and operators on L2.Rn/

(see [1] and [21]) to the general setting of a Lie group acting on a homoge-

neous space. Stratonovich–Weyl correspondences were systematically studied by

J. M. Gracia-Bondìa, J. C. Vàrilly, and various co-workers, see in particular [23],

[20], [18], and [22]. The following de�nition is taken from [22].

Definition 1.1. LetG be a Lie group and � a unitary representation ofG on a

Hilbert spaceH. LetM be a homogeneousG-space and� a (suitably normalized)

G-invariant measure on M . Then a Stratonovich–Weyl correspondence for the

triple .G; �;M/ is an isomorphismW from a vector space of operators on H to a

vector space of (generalized) functions on M satisfying the following properties:
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(1) W maps the identity operator of H to the constant function 1;

(2) reality: the function W.A�/ is the complex-conjugate of W.A/;

(3) covariance: we have W.�.g/A�.g/�1/.x/ D W.A/.g�1 � x/;

(4) unitarity: we have

Z

M

W.A/.x/W.B/.x/ d�.x/ D Tr.AB/:

In this context, M is generally a coadjoint orbit of G which is associated

with � by the Kirillov–Kostant method of orbits [25]. For instance, consider

the case when G is the .2n C 1/-dimensional Heisenberg group Hn. Each non-

degenerate coadjoint orbitM of G is then di�eomorphic to R
2n and is associated

with a Schrödinger representation � of Hn on L2.Rn/. In this case, the classical

Weyl correspondence gives a Stratonovich–Weyl correspondence for the triple

.Hn; �;M/, [21] and [22].

In the case when G is a quasi-Hermitian Lie group and � is a unitary repre-

sentation of G (on a Hilbert space H) which is holomorphically induced from a

unitary character of a compactly embedded subgroup K of G, we can apply an

idea of [20] and we obtain a Stratonovich–Weyl correspondence by modifying

suitably the Berezin correspondence S [14] (see also [2] and [3]).

More precisely, recall that S is an isomorphism from the Hilbert space of all

Hilbert-Schmidt operators on H (endowed with the Hilbert-Schmidt norm) onto

a space of square integrable functions on a homogeneous complex domain [32].

The map S satis�es (1), (2), and (3) of De�nition 1.1 but not (4). A Stratonovich–

Weyl correspondenceW is then obtained by taking the isometric part in the polar

decomposition of S , that is, W WD .SS�/�1=2S . Let us mention that B WD SS�

is then the so-called Berezin transform which have been studied by many authors,

see in particular [19], [27], [28], [32], and [33].

In [14], we considered the case when the Lie algebra g of G is reductive. In

this case, we proved that B can be extended to a class of functions which contains

S.d�.X1X2 : : : Xp// for X1; X2; : : : ; Xp 2 g and that the restrictions to each

simple ideal of g of the mappings X ! S.d�.X// and X ! W.d�.X// are

proportional (see also [12] and [13]).

The case when g is not reductive is more delicate. In [16] we investigated the

case of the diamond group and, in [17], we studied B and W in the case of the

Jacobi group.
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The aim of the present paper is to generalize the results of [17] to the case

of the multi-dimensional Jacobi group, which is technically more complicated.

The multi-dimensional Jacobi group plays a central role in di�erent areas of Math-

ematics and Physics and its holomorphic unitary representations were studied in-

tensively, see [26], [9], [10], [4], and [6]. In particular, the metaplectic factoriza-

tion should be used to reduce the study of the highest weight representations of a

quasi-Hermitian Lie group to that of some generalized multi-dimensional Jacobi

group [26]. Then the study of the case of the multi-dimensional Jacobi group can

be considered as a �rst step towards the general case.

In this paper, we begin by some generalities on the multi-dimensional

Jacobi group (Section 2) and its holomorphic representations (Section 3). Then

we introduce the Berezin correspondence S , the Berezin transform B and the

Stratonovich–Weyl correspondence W (Section 4). In Section 5, we show that,

under some technical assumptions, the Berezin transform of S.d�.X1X2 : : :Xp//

is well-de�ned for each X1; X2; : : : ; Xp 2 g. In Section 6, we identify a class of

functions which is stable under B and contains S.d�.X// for each X 2 g. We

also give an expression of W.d�.X// in terms of some integrals of Hua’s type

(see [24]).

2. The multi-dimensional Jacobi group

The material of this section and of the following section is essentially taken

from [21], Chapter 4, [26], Chapters VII and XII and [15].

Consider the symplectic form ! on C
n � C

n de�ned by

!..z; w/; .z0; w0// D
i

2

n
X

kD1

.zkw
0
k � z0

kwk/:

for z; w; z0; w0 2 C
n. The .2nC 1/-dimensional real Heisenberg group is

H WD ¹..z; Nz/; c/W z 2 C
n; c 2 Rº

endowed with the multiplication

..z; Nz/; c/ � ..z0; Nz0/; c0/ D
�

.z C z0; Nz C Nz0/; c C c0 C
1

2
!..z; Nz/; .z0; Nz0//

�

:

Then the complexi�cation H c of H is

H c WD ¹..z; w/; c/W z; w 2 C
n; c 2 Cº

and the multiplication of H c is obtained by replacing .z; Nz/ by .z; w/ and .z0; Nz0/

by .z0; w0/ in the preceding equality. We denote by h and hc the Lie algebras ofH

and H c.
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Now consider the group S WD Sp.n;C/ \ SU.n; n/ ' Sp.n;R/, see [26],

p. 501, and [21], p. 175. Then S consists of all matrices

h D

�

P Q
xQ xP

�

; P;Q 2 Mn.C/; PP ? �QQ? D In; PQt D QP t

and S c D Sp.n;C/.

The group S acts on H by

h � ..z; Nz/; c/ D .h.z; Nz/; c/ D .P z CQ Nz; xQz C xP Nz; c/

where the elements of Cn and C
n �C

n are considered as column vectors. Then we

can form the semi-direct productG WD H ÌS called the multi-dimensional Jacobi

group. The elements of G can be written as ..z; Nz/; c; h/where z 2 C
n, c 2 R and

h 2 S . The multiplication of G is thus given by

..z; Nz/; c; h/�..z0; Nz0/; c0; h0/ D
�

.z; Nz/Ch.z0; Nz0/; cCc0C
1

2
!..z; Nz/; h.z0; Nz0//; hh0

�

:

The complexi�cation Gc of G is then the semi-direct product

Gc D H c
Ì Sp.n;C/

whose elements can be written as ..z; w/; c; h/ where z; w 2 C
n, c 2 C,

h 2 Sp.n;C/ and the multiplication of Gc is obtained by replacing Nz and Nz0 by

w and w0 in the preceding formula.

We denote by s, sc , g and gc the Lie algebras of S , S c, G and Gc . The Lie

brackets of gc are given by

Œ..z; w/; c; A/; ..z0; w0/; c0; A0/�

D .A.z0; w0/ � A0.z; w/; !..z; w/; .z0; w0//; ŒA; A0�/:

Let � denotes conjugation over the real form g of gc . For X 2 gc , we set

X� D ��.X/. We can easily verify that if X D
�

.z; w/; c;
�

A B
C �At

��

2 gc then we

have

X� D

�

.� Nw;�Nz/;�Nc;

�

xA
t

� xC

� xB � xA

��

:

Also, we denote by g ! g� the involutive anti-automorphism of Gc which is

obtained by exponentiating X ! X� to Gc .

LetK be the subgroup ofG consisting of all elements
�

.0; 0/; c;
�

P 0
0 xP

��

where

c 2 R and P 2 U.n/. Then the Lie algebra k of K is a maximal compactly

embedded subalgebra of g and the subalgebra t of k consisting of all elements
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of the form ..0; 0/; c; A/ where A is diagonal is a compactly embedded Cartan

subalgebra of g [26], p. 250. Following [26], p. 532, we set

pC D

²�

.y; 0/; 0;

�

0 Y

0 0

��

W y 2 C
n; Y 2 Mn.C/; Y

t D Y

³

and

p� D

²�

.0; v/; 0;

�

0 0

V 0

��

W v 2 C
n; V 2 Mn.C/; V

t D V

³

:

Then we have the decomposition gc D pC ˚ kc ˚ p�.

Henceforth we denote by a.y; Y / the element
�

.y; 0/; 0;
�

0 Y
0 0

��

of pC. Also, we

denote by ppC , pkc and pp� the projections of gc onto pC, kc and p� associated

with the above direct decomposition.

Let PC and P� be the analytic subgroups of Gc with Lie algebras pC and p�.

Then we have

PC D

²�

.y; 0/; 0;

�

In Y

0 In

��

W y 2 C
n; Y 2 Mn.C/; Y

t D Y

³

and

P� D

²�

.0; v/; 0;

�

In 0

V In

��

W v 2 C
n; V 2 Mn.C/; V

t D V

³

:

In particular, we see that G is a group of the Harish-Chandra type [26], p. 507

(see also [30]), that is, the following properties are satis�ed:

(1) gc D pC ˚ kc ˚ p� is a direct sum of vector spaces, .pC/� D p� and

Œkc ; p˙� � p˙;

(2) the multiplication mapPCKcP� ! Gc , .z; k; y/ ! zky is a biholomorphic

di�eomorphism onto its open image;

(3) G � PCKcP� and G \KcP� D K.

We can easily verify that g D
�

.z0; w0/; c0;
�

A B
C D

��

2 Gc has a PCKcP�-de-

composition

g D

�

.y; 0/; 0;

�

In Y

0 In

��

�

�

.0; 0/; c;

�

P 0

0 .P t /�1

��

�

�

.0; v/; 0;

�

In 0

V In

��

if and only if Det.D/ 6D 0 and, in this case, we have y D z0 � BD�1w0,

Y D BD�1, v D D�1w0, V D D�1C , P D A � BD�1C D .Dt /�1 and

c D c0 � .1=4/i.z0 � BD�1w0/
tw0.

We denote by

�WPCKcP� �! PC; �WPCKcP� �! Kc; �WPCKcP� �! P�

the projections onto PC-, Kc- and P�-components.
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We can introduce an action (de�ned almost everywhere) of Gc on pC as

follows. ForZ 2 pC and g 2 Gc with g expZ 2 PCKcP�, we de�ne the element

g � Z of pC by

g �Z WD log �.g expZ/:

From the above formula for the PCKcP�-decomposition, we deduce that the

action of g D
�

.z0; w0/; c0;
�

A B
C D

��

2 Gc on a.y; Y / 2 pC is given by

g � a.y; Y / D a.y0; Y 0/

where Y 0 WD .AY C B/.CY CD/�1 and

y0 WD z0 C Ay � .AY C B/.CY CD/�1.w0 C Cy/:

This implies that

D WD G � 0 D ¹a.y; Y / 2 pCW In � Y xY > 0º Š C
n � B:

where B WD ¹Y 2 Mn.C/ W Y t D Y; In � Y xY > 0º.

Now we introduce a useful section Z ! gZ for the action of G on D. Let

Z D a.y; Y / 2 D. De�ne gZ WD
�

.z0; Nz0/; 0;
�P Q

xQ xP

��

2 G as follows. We set

z0 D .In � Y xY /�1.y C Y Ny/; P D .In � Y xY /�1=2; Q D .In � Y xY /�1=2Y:

Then one has gZ � 0 D Z.

From the above formula for the action ofG on D, we can deduce the G-invari-

ant measure � on D. Let �L be the Lebesgue measure on D ' C
n � B. Thus, we

easily obtain that d�.Z/ D Det.In � Y xY /�.nC2/ d�L.y; Y /, see for instance [5].

This result can be also deduced from the general formula for the invariant measure,

see [26], p. 538.

In the rest of the paper, we �x the normalization of the Lebesgue measure

as follows. For y 2 C
n, write y D .a1 C ib1; a2 C ib2; : : : ; an C ibn/ with

aj ; bj 2 R for j D 1; 2; : : : n. Then we take the measure Lebesgue on C
n to

be dy WD da1db1da2db2 : : : dandbn. Similarly, writing Y 2 B as Y D .ykl /, we

denote by dY the Lebesgue measure on B de�ned by dY WD
Q

kl dykl . Thus we

set d�L.y; Y / WD dy dY .

Now we aim to compute the adjoint and coadjoint actions of Gc . First, we

compute the adjoint action of Gc as follows. Let g D .v0; c0; h0/ 2 Gc where

v0 2 C
2n, c0 2 C and h0 2 S c D Sp.n;C/ and X D .w; c; U / 2 gc where

w 2 C
2n, c 2 C and U 2 sc . We set exp.tX/ D .w.t/; c.t /; exp.tU //. Then, since
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the derivatives of w.t/ and c.t/ at t D 0 are w and c, we �nd that

Ad.g/X D
d

dt
.g exp.tX/g�1/

ˇ

ˇ

ˇ

tD0

D
�

h0w � .Ad.h0/U /v0; c C !.v0; h0w/

�
1

2
!.v0; .Ad.h0/U /v0/;Ad.h0/U

�

:

On the other hand, let us denote by � D .u; d; '/, where u 2 C
2n, d 2 C and

' 2 .sc/�, the element of .gc/� de�ned by

h�; .w; c; U /i D !.u; w/C dc C h'; U i:

Moreover, for u; v 2 C
2n, we denote by v � u the element of .sc/� de�ned by

hv � u; U i WD !.u; Uv/ for U 2 sc .

Let � D .u; d; '/ 2 .gc/� and g D .v0; c0; h0/ 2 Gc . Then, by using the

relation hAd�.g/�; Xi D h�;Ad.g�1/Xi for X 2 gc , we obtain

Ad�.g/� D
�

h0u � dv0; d;Ad�.h0/' C v0 � .h0u �
d

2
v0/
�

By restriction, we also get the formula for the coadjoint action ofG. The following

lemma will be needed later.

Lemma 2.1 ([15]). The elements �0 of g� �xed byK are the elements of the form

.0; d; '�/ where d; � 2 R and '� 2 s� is de�ned by h'�;
�

A B
C D

�

i D i�Tr.A/.

3. Holomorphic representations

The holomorphic representations of the multi-dimensional Jacobi group were

studied by many authors, see in particular [26], [9], [10], [4], [5], and [6].

We follow here the general presentation of [26], Chapter XII (see also [14]).

Let � be a unitary character of K. The extension of � to Kc is also denoted by

�. We set K�.Z;W / WD �.�.expW � expZ//�1 for Z; W 2 D and J�.g; Z/ WD

�.�.g expZ// for g 2 G and Z 2 D. We consider the Hilbert space H� of all

holomorphic functions f on D such that

kf k2
� WD

Z

D

jf .Z/j2K�.Z;Z/
�1c�d�.Z/ < C1

where the constant c� is de�ned by

c�1
� D

Z

D

K�.Z;Z/
�1 d�.Z/:
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We shall see that, under some hypothesis on �, c� is well-de�ned andH� ¤ .0/.

In that case, H� contains the polynomials [26], p. 546. Moreover, the formula

��.g/f .Z/ D J�.g
�1; Z/ f .g�1 �Z/

de�nes a unitary representation of G on H� which is a highest weight representa-

tion [26], p. 540.

The space H� is a reproducing kernel Hilbert space. More precisely, if we set

eZ.W / WD K�.W;Z/ then we have we have the reproducing property f .Z/ D

hf; eZi� for each f 2 H� and each Z 2 D [26], p. 540. Here h�; �i� denotes the

inner product on H�.

Here we �x � as follows. Let  2 R and m 2 Z. Then, for each k D
�

.0; 0/; c;
�

P 0
0 xP

��

2 K, we set �.k/ WD eic.DetP /m.

We need the following lemma.

Lemma 3.1 ([24]). Let � 2 R. The integral

Jn.�/ WD

Z

B

Det.In � Y xY /�dY

is convergent if � > �1 and in this case we have

Jn.�/ D �n.nC1/=2�.2�C 3/�.2�C 5/ : : : �.2�C 2n� 1/

�
;

where

� WD .�C 1/.�C 2/ : : : .�C n/�.2�C nC 2/�.2�C nC 3/ : : : �.2�C 2n/:

Then we have the following result.

Proposition 3.2. (1) Let Z D a.y; Y / 2 D and W D a.v; V / 2 D. We set

E.y; v; Y; V / WD 2yt .In � xV Y /�1 NvCyt .In � xV Y /�1 xV yC NvtY.In � xV Y /�1 Nv:

Then we have

K�.Z;W / D Det.In � Y xV /m exp
�

4
E.y; v; Y; V /

�

:

(2) We have H� 6D .0/ if and only if  > 0 and mC n C 1=2 < 0. In this case,

we also have c�1
� D .2�/n�nJn.�m � n � 3=2/.
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(3) For each g D
�

.z0; Nz0/; c0;
� P Q

xQ xP

��

2 G and eachZ D a.y; Y / 2 D, we have

J.g; Z/ D eic0 Det. xQY C xP /�m exp
�

4

�

zt
0 Nz0 C 2 Nz0

tPy C ytP t xQy

� . Nz0 C xQy/t .PY CQ/. xQY C xP /�1. Nz0 C xQy/
��

Proof. We can verify (1) and (3) by computations based on the formula for �

given in Section 2. To prove (2), recall that, by [26], Theorem XII.5.6, we have

H� 6D .0/ if and only if

I� WD

Z

D

K�.Z;Z/
�1 d�.Z/ < 1:

Then we have to study the convergence of I�. By taking into account the expres-

sion of � given in Section 2, we get

I� D

Z

D

exp
�

�


4
E.y; y; Y; Y /

�

Det.In � Y xY /�m�n�2d�L.y; Y /

and, by making the change of variables y ! .In � Y xY /1=2y whose Jacobian is

Det.In � Y xY /, we �nd that

I� D

Z

Cn�B

Det.In � Y xY /�m�n�1 exp
�

�


4
.2yt Ny C yt xY y C NytY Ny/

�

dy dY:

But by [21], p. 258, we have

I� D
�2�



�n
Z

B

Det.In � Y xY /�m�n�3=2 dY

for  > 0. The result then follows from Lemma 3.1 �

Note that we can deduce from (3) of Proposition 3.2 an explicit but rather

complicated expression for ��.g/. Now we consider the derived representation

d��.

Here we use the following notation. If L is a Lie group and X is an element of

the Lie algebra of L then we denote by XC the right invariant vector �eld on L

generated by X , that is, XC.h/ D d
dt
.exp tX/hjtD0 for h 2 L.

By di�erentiating the multiplication map from PC �Kc �P� onto PCKcP�,

we can easily prove the following result.
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Lemma 3.3. Let X 2 gc and g D z k y where z 2 PC; k 2 Kc and y 2 P�.

We have

(1) d�g.X
C.g// D .Ad.z/ ppC.Ad.z�1/ X//C.z/;

(2) d�g.X
C.g// D .pkc .Ad.z�1/ X//C.k/;

(3) d�g.X
C.g// D .Ad.k�1/ pp�.Ad.z�1/ X//C.y/.

From this, we easily deduce the following proposition (see also [26], p. 515).

Proposition 3.4. For X 2 gc , f 2 H� and Z 2 D, we have

d��.X/f .Z/ D d�.pkc.e� ad Z X// f .Z/� .df /Z.ppC.e� ad Z X//:

In particular, we have

(1) if X 2 pC then d��.X/f .Z/ D �.df /Z.X/I

(2) if X 2 kc then d��.X/f .Z/ D d�.X/f .Z/C .df /Z.ŒZ;X�/I

(3) if X 2 p� then

d��.X/f .Z/ D .d� ı pkc /
�

� ŒZ; X�C
1

2
ŒZ; ŒZ;X��

�

f .Z/

� .dfZ ı ppC/
�

� ŒZ; X�C
1

2
ŒZ; ŒZ;X��

�

:

Now we need to introduce some notation. As usual, we write Z 2 D as

Z D a.y; Y / where y D .yj /1�j �n 2 C
n and Y D .ykl /1�k;l�n 2 B. De�ne

I WD ¹1; 2; : : : ; nº [ ¹.k; l/W 1 � k; l � nº

and consider i 2 I. Then we de�ne @i as follows. If i 2 ¹1; 2; : : : ; nº then @i is the

partial derivative with respect to yi and if i D .k; l/ then @i is the partial derivative

with respect to ykl . Moreover, we say that P.Z/ is a polynomial of degree � q if

P.a.y; Y // is a polynomial of degree � q in the variables yj and ykl .

From the preceding proposition we deduce the following result.

Proposition 3.5. For each X1; X2; : : : ; Xq 2 gc , d��.X1X2 : : :Xq/ is a sum

of terms of the form P.Z/@i1@i2 : : : @ir where r � q, i1; i2; : : : ; ir 2 I and P.Z/ is

a polynomial of degree � 2q.

Proof. By Proposition 3.4 we see that, for each X 2 gc , d��.X/ is of the

form P 0.Z/C
P

i P
i.Z/@i where P 0.Z/; P i .Z/ are polynomials of degree � 2.

The result then follows by induction on q. �
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4. Generalities on the Stratonovich–Weyl correspondence

In this section, we review some general facts about the Berezin correspondence,

the Berezin transform and the Stratonovich–Weyl correspondence.

First at all, recall that the Berezin correspondence on D is de�ned as follows.

Consider an operator (not necessarily bounded) A on H� whose domain contains

eZ for each Z 2 D. Then the Berezin symbol of A is the function S�.A/ de�ned

on D by

S�.A/.Z/ WD
hAeZ ; eZi�

heZ ; eZi�

:

We can verify that each operator is determined by its Berezin symbol and that

if an operator A has adjoint A� then we have S�.A
�/ D S�.A/, see [7] and [8].

Moreover, for each operator A on H� whose domain contains the coherent states

eZ for each Z 2 D and each g 2 G, the domain of ��.g
�1/A��.g/ also contains

eZ for each Z 2 D and we have

S�.��.g/
�1A��.g//.Z/ D S�.A/.g � Z/;

that is, S� is G-equivariant, see [14]. We have also the following result.

Proposition 4.1 ([14]). (1) For g 2 G and Z 2 D, we have

S�.��.g//.Z/ D �.�.expZ�g�1 expZ/�1�.expZ� expZ//:

(2) For X 2 gc and Z 2 D, we have

S�.d��.X//.Z/ D d�.pkc.Ad.�.expZ� expZ/�1 expZ�/ X/:

Let � be the linear form on gc de�ned by � D �id� on kc and � D 0 on

p˙. Then we have �.g/ � R and the restriction �� of � to g is an element of g�.

In the notation of Section 2 we have �� D .0; ;�m'0/ where '0 2 s� is de�ned

by
˝

'0;
� P Q

xQ xP

�˛

D i Tr.P /.

We denote by O.��/ the orbit of �� in g� for the coadjoint action of G. This

orbit is said to be associated with �� by the Kostant–Kirillov method of orbits,

see [25] and [14]. Moreover, we have the following result.

Proposition 4.2 ([14]). (1) For each Z 2 D, let

‰�.Z/ WD Ad�.exp.�Z�/ �.expZ� expZ// ��:

Then, for each X 2 gc and each Z 2 D, we have

S.d��.X//.Z/ D ih‰�.Z/; Xi:
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(2) For each g 2 G and each Z 2 D, we have ‰�.g �Z/ D Ad�.g/‰�.Z/.

(3) The map ‰� is a di�eomorphism from D onto O.��/.

In order to make the expression of‰� more explicit, we introduce the following

notation. For ' 2 s�, let ˛.'/ be the unique element of s such that h';Xi D

Tr.˛.'/X/ for eachX 2 s. In particular, one has ˛.'0/ D 1
2

�

iIn 0
0 �iIn

�

. Moreover,

for u D .x; Nx/ 2 C
2n and u D .y; Ny/ 2 C

2n we have

�.v � u/ D
1

2

�

�iy Nxt iyxt

�i Ny Nxt i Nyxt

�

:

Note also that � intertwines Ad� and Ad. Then we have the following result.

Proposition 4.3 ([15]). The map  �WD ! O.��/ is given by

 �.a.y; Y // D .�d.y1; Ny1/; ; '.y; Y //

where y1 D .In � Y xY /�1.y C Y Ny/ and

'.y; Y / WD �mAd�

�

.In � Y xY /�1=2 .In � Y xY /�1=2Y

.In � xY Y /�1=2 xY .In � xY Y /�1=2

�

'0

�


2
.y1; Ny1/ � .y1; Ny1/:

Moreover, we have

˛.'.y; Y // D �


4

 

�iy1 Nyt
1 iy1y

t
1

�i Ny1 Nyt
1 i Ny1y

t
1

!

�
m

2
i

 

A.Y / B.Y /

�B.Y / �A.Y /

!

:

where

A.Y / WD.In C Y xY /.In � Y xY /�1=2.In � xY Y /�1=2I

B.Y / WD � 2Y.In � xY Y /�1=2.In � Y xY /�1=2:

Now we recall brie�y the construction of the Stratonovich–Weyl correspon-

dence [20], [13], and [14]. Denote by L2.H�/ the space of all Hilbert-Schmidt

operators on H� and by �� the G-invariant measure on D de�ned by d��.Z/ D

c�d�.Z/. Then the map S� is a bounded operator from L2.H�/ into L2.D; ��/

which is one-to-one and has dense range [29], [32]. Moreover, the Berezin trans-

form is the operator on L2.D; ��/ de�ned by B� WD S�S
�
� . We can easily verify

that we have the following integral formula for B�:

(4.1) B�F.Z/ D

Z

D

F.W /
jheZ ; eW ij2�

heZ ; eZi�heW ; eW i�

d��.W /

(see [7], [32], and [33] for instance).
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Let � be the left-regular representation of G on L2.D; ��/. As a consequence

of the equivariance property for S�, we see that B� commute with �.g/ for each

g 2 G.

Consider the polar decomposition of S�:

S� D .S�S
�
�/

1=2W� D B1=2
� W�;

where W� WD B
�1=2
� S� is a unitary operator from L2.H�/ onto L2.D; ��/. Note

that, by (2) of Proposition 4.2, the measure �0 WD .‰�1
� /�.��/ is a G-invariant

measure on O.��/. The following proposition is then immediate.

Proposition 4.4. 1) The map W� W L2.H�/ ! L2.D; ��/ is a Stratonovich–

Weyl correspondence for the triple .G; ��;D/, that is, we have

(1) W�.A
�/ D W�.A/;

(2) W�.��.g/ A��.g/
�1/.Z/ D W�.A/.g

�1 �Z/;

(3) W� is unitary.

2) Similarly, the map W�WL2.H�/ ! L2.O.��/; �0/ de�ned by

W�.A/ D W�.A/ ı‰�1
�

is a Stratonovich–Weyl correspondence for the triple .G; ��;O.��//.

Note that we have relaxed here (1) of De�nition 1.1 which is not adapted to the

present setting since I is not Hilbert-Schmidt. However, this requirement should

be hold in some generalize sense, see for instance [22].

5. Extension of the Berezin transform

The aim of this section is to extend the Berezin transform to a class of functions

which contains S�.d��.X// for each X 2 gc , in order to de�ne and study

W�.d��.X//. This question was already investigated in [14] in the case of a

reductive Lie group and in [17] in the case of the Jacobi group.

For Z; W 2 D, we set lZ.W / WD log �.expZ� expW / 2 p�.

Lemma 5.1. (1) For each Z; W 2 D and V 2 pC, we have

d

dt
eZ.W C tV /

ˇ

ˇ

ˇ

tD0

D �eZ.W / .d� ı pkc /
�

ŒlZ.W /; V �C
1

2
ŒlZ.W /; ŒlZ.W /; V ��

�

:



82 B. Cahen

(2) For each Z; W 2 D and V 2 pC, we have

d

dt
lZ.W C tV /

ˇ

ˇ

ˇ

tD0
D pp�

�

ŒlZ.W /; V �C
1

2
ŒlZ.W /; ŒlZ.W /; V ��

�

:

(3) For each i1; i2; : : : ; iq 2 I and Z 2 D, the function .@i1@i2 : : : @iqeZ/.W / is

of the form eZ.W /Q.lZ.W // where Q is a polynomial on p� of degree � 2q.

(4) For each X1; X2; : : : ; Xq 2 gc , the function S�.d��.X1X2 : : : Xq//.Z/ is

a sum of terms of the form P.Z/Q.lZ.Z// where P and Q are polynomials of

degree � 2q.

Proof. The proof of this lemma is similar to those of Lemma 6.2 of [14] and

Lemma 5.2 of [17]. Note that the proof of (1) is essentially based on Lemma 3.3,

that (3) is a consequence of (1) and (2) and, �nally, that (4) follows from (3) and

Proposition 3.5. �

We can then establish the main result of this section.

Proposition 5.2. If q < .1=4/.�m � 2n/ then for each X1; X2; : : : ; Xq 2 gc ,

the Berezin transform of S�.d��.X1X2 : : : Xq// is well-de�ned.

Proof. First, we �xZ 2 D and we make the change of variablesW ! gZ �W

in (4.1). Then we obtain

.B�F /.Z/ D

Z

D

F.gZ �W /heW ; eW i�1
� d��.W /:

We take F D S�.d��.X1X2 : : :Xq/ and we set

Yk WD Ad.g�1
Z /Xk

for k D 1; 2; : : : ; q. Then, by G-invariance of S�, we have

F.gZ �W / D S�.d��.Y1Y2 : : : Yq//.W /

for each W 2 D. Recall that, by the preceding lemma, the function

S�.d��.Y1Y2 : : : Yq//.W /

is a sum of terms of the form P.W /Q.lW .W // where P and Q are polynomials

of degree � 2q. Then we have to prove that, for each q < .1=4/.�m � 2n/ and

each polynomials P and Q of degree � 2q, the integral

I WD

Z

D

P.W /Q.lW .W //heW ; eW i�1
� d��.W /

is convergent.
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First, we note that if W D a.y; Y / then

lW .W / D

�

.0;�.In � xY Y /�1. Ny C xY y//; 0;

�

0 0

�.In � xY Y /�1 xY 0

��

:

Thus we have

I D c�

Z

D

P.y; Y /Q.�.In � xY Y /�1. Ny C xY y/;�.In � xY Y /�1 xY /

exp
�

�


4
.2yt .In � xY Y /�1 Ny

C yt .In � xY Y /�1 xY y C NytY.In � xY Y /�1 Ny/
�

Det.In � Y xY /�m�n�2 d�L.y; Y /:

As in the proof of Proposition 3.2, we make the change of variables

y 7�! .In � Y xY /1=2y

and we �nd that

I D c�

Z

D

P..In � Y xY /1=2y; Y /

Q.�.In � xY Y /�1=2. Ny C xY y/;�.In � xY Y /�1 xY /

exp
�

�


4
.2yt Ny C yt xY y C NytY Ny/

�

Det.In � Y xY /�m�n�1 d�L.y; Y /:

Now we make the following remarks.

(1) Since P is a polynomial of degree � 2q and B is bounded, there exists a

constant C0 > 0 such that

jP..In � Y xY /1=2y; Y /j � C0

X

r�2q

jyjr

for each .y; Y / 2 C
n � B.

(2) By using the classical formula for the inverse of a matrix, for each Y 2 B

we have

.In � xY Y /�1 D Det.In � xY Y /�1C.In � xY Y /t

where C.A/ denotes the cofactor matrix of a matrix A. From this we deduce that

there exists a constant C 0
0 > 0 such that

jQ.�.In � xY Y /�1.In � xY Y /1=2. Ny C xY y/;�.In � xY Y /�1 xY /j

� C 0
0 Det.In � Y xY /�2q

X

r�2q

jyjr

for each .y; Y / 2 C
n � B.
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(3) For each .y; Y / 2 C
n � B, we have

2yt Ny C yt xY y C NytY Ny D 2.yty C Re.yt xY y// � 2.1� kY k/jyj2:

Here k � k denotes the operator norm corresponding to the Hermitian norm on C
n.

By using these remarks, we can reduce the study of the convergence of I to

that of the integral

I 0 WD

Z

D

Det.In � Y xY /�2q�m�n�1jyj4qe�.=2/jyj2.1�kY k/ d�L.y; Y /:

We set

I.Y / WD

Z

Cn

jyj4qe� 
2

jyj2.1�kY k/ dy

and, passing to spherical coordinates, we see that there exists some constants

C; C 0 > 0 such that, for each Y 2 B, we have

I.Y / D C

Z C1

0

x4qC2n�1e�.=2/.1�kY k/x2

dx D C 0.1 � kY k/�2q�n:

Then we have to study the integral

I 00 WD

Z

B

Det.In � Y xY /�2q�m�n�1.1� kY k/�2q�n dY:

Now denote by �s.Y xY / the maximum of the eigenvalues of Y xY and recall that

kY k2 D �s.Y xY /. Then we have

Det.In � Y xY / � 1 � �s.Y xY / D 1 � kY k2 � 2.1 � kY k/

for each Y 2 B. Thus we obtain

Det.In � Y xY /�2q�m�n�1.1 � kY k/�2q�n � 22qCn Det.In � Y xY /�4q�m�2n�1

for each Y 2 B. But by Lemma 3.1, we see that Jn.�4q �m � 2n � 1/ hence I 00

converges if q < 1
4
.�m� 2n/. This ends the proof. �

6. Stratonovich–Weyl symbols of derived representation operators

Here we assume that �m > 2n C 4. Then, by Proposition 5.2, B�.S�.d��.X///

is well-de�ned for each X 2 gc . We aim to de�ne also W�.d��.X// for X 2 gc .

To this goal, we �rst introduce a space of functions on D which is stable underB�

and contains S�.d��.X// for each X 2 gc .
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Recall that, by Proposition 4.2 we have S�.d��.X//.Z/ D i�.Ad.g�1
Z /X/ for

each X 2 gc and Z 2 D. This leads us to introduce the vector space S generated

by the functions Z ! �0.Ad.g�1
Z /X/ where X 2 gc and �0 is an element

of .gc/� which is Ad�.K/-invariant. Such elements �0 were determined in [15],

see Lemma 2.1 above. The following proposition is analogous to Proposition 6.2

of [17].

Proposition 6.1. Let �WD � gc ! C be a function such that

(i) for each Z 2 D, the map X ! �.Z;X/ is linear;

(ii) for eachX 2 gc , g 2 G andZ 2 D, we have �.g �Z;X/ D �.Z;Ad.g�1/X/.

Then

(1) the element �0 of .gc/� de�ned by �0.X/ WD �.0; X/ is �xed by K;

(2) for each X 2 gc and Z 2 D, we have

�.Z;X/ D �0.Ad.g�1
Z /X/

and

�.Z;X/ D �0.Ad.�.expZ� expZ/�1 expZ�/X/

D .�0 ı pkc /.Ad.�.expZ� expZ/�1 expZ�/X/I

(3) for each X 2 gc , the function  WD � gc ! C given by

 .�; X/ D B�.�.�; X//

is well-de�ned and satis�es (i) and (ii);

(4) the vector space S is generated by all the functions Z ! �.Z;X/ for � as

above and X 2 gc . Moreover, S is stable under B�.

Proof. (1) By (ii), for each k 2 K and X 2 gc , we have

.Ad�.k/�0/.X/ D �0.Ad.k�1/X/ D �.0;Ad.k�1/X/

D �.k � 0; X/ D �.0; X/ D �0.X/:

Then �0 is �xed by K.

(2) The �rst assertion follows from (ii). To prove the second assertion, recall

that by [15], there exists kZ 2 K such that gZ D exp.�Z�/�.expZ� expZ/k�1
Z .

Then we have

�.Z;X/ D �0.Ad.kZ�.expZ� expZ/�1 expZ�/X/

D �0.Ad.�.expZ� expZ/�1 expZ�/X/
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and, noting that �0j
p˙ D 0 by Lemma 2.1, we can conclude that

�.Z;X/ D .�0 ı pkc/.Ad.�.expZ� expZ/�1 expZ�/X/:

(3) By using the same arguments as in the proof of Proposition 5.2, we can

verify that, for each X 2 gc , the Berezin transform of �.�; X/ is well-de�ned. The

second assertion follows from the fact that B� commutes to the �.g/, g 2 G.

(4) This follows from the preceding statements. �

Now we need the following lemmas.

Lemma 6.2. For each Y 2 B, we have

I1.Y / W D

Z

Cn

yt Ny exp
�

�


4

�

2yt Ny C yt xY y C NytY Ny
�

�

dy

D
2



�2�



�n

Det.In � Y xY /�1=2 Tr..In � Y xY /�1/

I2.Y / W D

Z

Cn

yt xY y exp
�

�


4

�

2yt Ny C yt xY y C NytY Ny
��

dy

D
2



�2�



�n

Det.In � Y xY /�1=2.n � Tr..In � Y xY /�1//:

Proof. For s 2 Œ0; 1� and Y 2 B, let us introduce

Js.Y / D

Z

Cn

exp
�

�


4
.2yt Ny C syt xY y C s NytY Ny/

�

dy:

By [21], p. 258, we have

Js.Y / D
�2�



�n

Det.In � s2Y xY /�1=2:

Then, by computing the derivative of Js.Y / at s D 1, we get

Z

Cn

.yt xY y C NytY Ny/ exp
�

�


4
.2yt Ny C yt xY y C NytY Ny/

�

dy

D �
4



�2�



�n

Det.In � Y xY /�1=2 Tr..In � Y xY /�1Y xY /:

Thus we have

(6.1) I2.Y /C I2.Y / D �
4



�2�



�n

Det.In � Y xY /�1=2 Tr.�In C .In � Y xY /�1/:
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On the other hand, by integrating by parts, we get

J1.Y / D �

Z

Cn

yk

@

@k

�

exp
�

�


4
.2yt Ny C yt xY y C NytY Ny/

��

dy



4

Z

Cn

yk.2 Nyk C 2et
k

xY y/ exp
�

�


4
.2yt Ny C yt xY y C NytY Ny/

�

dy

for each k D 1; 2; : : : ; k. By summing up over k, we obtain

(6.2) nJ1.Y / D


2
.I1.Y /C I2.Y //:

This last equation implies that I2.Y / is real since J1.Y / and I1.Y / are real.

Consequently, (6.1) gives the desired value for I2.Y / hence (6.2) provides the

desired value for I1.Y /. �

The following lemma gives a useful expression for K�.Z;Z/ which will be

used in the proof of Proposition 6.4 .

Lemma 6.3. For each Z D a.y; Y /, let z0 WD .In � Y xY /�1.yCY Ny/. Then we

have

K�.Z;Z/ D exp
�

4
.2zt

0 Nz0 � zt
0

xY z0 � Nz0
tY Nz0/

�

Det.In � Y xY /m:

Proof. The result follows from Proposition 3.2 by a routine computation.

Alternatively, by [14], Lemma 4.1, we have

heZ ; eZi� D hegZ �0; egZ �0i� D hJ.gZ ; 0/�.gZ/e0; J.gZ; 0/�.gZ/e0i�

D jJ.gZ ; 0/j
2 D j�.�.gZ//j

2

and, by taking into account the expressions of � and gZ , we then recover the

desired formula for K�.Z;Z/. �

Let us introduce the following integral of Hua’s type:

Kn.�/ WD

Z

B

Tr..In � Y xY /�1/Det.In � Y xY /�dY:

Since the maximum of the eigenvalues of .In �Y xY /�1 is .1��s.Y xY //�1, we have

Tr..In � Y xY /�1/ � n.1 � �s.Y xY //�1 � nDet.In � Y xY /�1

and then we see that Kn.�/ converges for � > 2 since Jn.�/ converges for � > 1,

see Lemma 3.1.

Also, we denote by �1 and �2 the elements of S de�ned by �1
0 D .0; 1; 0/ and

�2
0 D .0; 0; '0/. We are now in position to establish the following proposition.
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Proposition 6.4. Let

�n WD
c�

n

�2�



�n

Kn

�

�m � n �
3

2

�

I

�n WD �1C
2c�

n

�2�



�n

Kn

�

�m � n �
3

2

�

:

Let � 2 S de�ned by �0 D .0; d; �'0/ with d; � 2 C. Let  2 S such that

 .�; X/ D B�.�.�; X// for each X 2 gc . Then we have  0 D .0; d; d�n C ��n/.

Proof. We will use the formula

 0.X/ D

Z

D

�0.Ad.g�1
Z /X//K�.Z;Z/

�1c�d�.Z/

in order to compute the Berezin transforms  1.�; X/ and  2.�; X/ of �1.�; X/ and

�2.�; X/.

We write  1
0 D .0; d1; �1'0/ with d1; �1 2 C. Let H1 WD ..0; 0/; 1; 0/. Then

we have Ad.g�1
Z /H1 D H1 hence �1

0.Ad.g�1
Z /H1/ D 1 for each Z 2 D. This

gives

 1
0 .H1/ D

Z

D

K�.Z;Z/
�1c�d�.Z/ D 1:

On the other hand, we also have  1
0 .H1/ D d1. Then we �nd d1 D 1.

Now, let H2 WD
�

.0; 0/; 0;
�

In 0
0 �In

��

. Then, for each Z 2 D, we have

Ad.g�1
Z /H2 D

�

?;
i

2
zt

0 Nz0;

�

.In � Y xY /�1.In C Y xY / ?

? ?

��

where, as usual, z0 D .In � Y xY /�1.y C Y Ny/. Consequently, we have

�1
0.Ad.g�1

Z /H2/ D
i

2
zt

0 Nz0:

Thus, by Lemma 6.3, we get

 1
0 .H2/ D

ic�

2

Z

D

zt
0 Nz0 exp

�

�


4
.2zt

0 Nz0 � zt
0

xY z0 � Nz0
tY Nz0/

�

Det.In � Y xY /�m�n�2 dy dY

and we make the change of variables

y D z0 � Y Nz0
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whose Jacobian is Det.In � Y xY /. Hence, by using Lemma 6.2, we obtain

 1
0 .H2/ D

ic�



�2�



�n

Kn

�

�m � n�
3

2

�

:

On the other hand, it is clear that  1
0 .H2/ D i�1n. Finally, we �nd that

�1 D
c�

n

�2�



�n

Kn

�

�m � n�
3

2

�

D �n:

Similarly, we write  2
0 D .0; d2; �2'0/. Since we have �2

0.Ad.g�1
Z /H1/ D 0

for each Z 2 D, we �rst obtain d2 D  2
0 .H1/ D 0. Moreover, for each Z D

a.y; Y / 2 D, we also have

�2
0.Ad.g�1

Z /H2/ D i Tr.In � Y xY /�1.In C Y xY /

D i.�nC 2Tr
�

.In � Y xY /�1
�

/:

Then, changing variables y ! .In � Y xY /1=2y, we get

 2
0 .Ad.g�1

Z /H2/ D � inC 2ic�

Z

B�Cn

exp
�

�


4

�

2yt Ny C yt xY y C NytY Ny
�

�

Tr..In � Y xY /�1/Det.In � Y xY /�m�n�1 dy dY:

Thus, by using [21], p. 248, we obtain

 2
0 .Ad.g�1

Z /H2/ D �inC 2ic�

�2�



�n

Kn

�

�m � n �
3

2

�

:

Also, we have  2
0 .Ad.g�1

Z /H2/ D i�2n. This gives

�2 D �1C
2c�

n

�2�



�n

Kn

�

�m � n �
3

2

�

D �n:

This �nishes the proof. �

Recall that c� can be expressed in terms of the Hua’s integral Jn.�m�n�3=2/

which can be explicitly computed, see Proposition 3.2 and Lemma 3.1. However,

it seems di�cult to compute Kn.�m� n � 3=2/ similarly.

Now we give the matrix of B� in a suitable basis of S. First, we consider the

basis of gc consisting of the elements

Xi D ..ei ; 0/; 0; 0/;

Yj D ..0; ej /; 0; 0/;



90 B. Cahen

Fij D

�

.0; 0/; 0;

�

0 Eij

0 0

��

;

Gij D

�

.0; 0/; 0;

�

0 0

Eij 0

��

;

H1 D ..0; 0/; 1; 0/;

Aij D

�

.0; 0/; 0;

�

Eij 0

0 �Ej i

��

;

for i; j D 1; 2; : : : ; n, Eij denoting the n� n complex matrix whose ij -th entry is

1 and all of whose other entries are 0.

Note that �2.�; Xi/ D �2.�; Yj / D �2.�; H1/ D 0. Then, from the preceding

proposition, we easily deduce the following result.

Corollary 6.5. The functions �1.�; Xi/, �
1.�; Yj /, �

1.�; H1/, �
1.�; Fij /,

�1.�; Gij /, �
1.�; Aij /, �

2.�; Fij /, �
2.�; Gij / and �2.�; Aij / form a basis for S in

which B� has matrix
0

@

I2nC1 O O

O I3n2 O

O �nI3n2 �nI3n2

1

A :

Recall that for each X 2 gc , we have S�.d��.X// 2 S. Consequently, we see

that W�.d��.X// D B
�1=2
� .S�.d��.X/// is well-de�ned. Moreover, we have the

following proposition.

Proposition 6.6. For each X 2 SpanC¹H1; Xi ; Yj ; 1 � i; j � nº, we have

W�.d��.X// D S�.d��.X//. For each X 2 SpanC¹Fij ; Gij ; Aij ; 1 � i; j � nº,

we have

W�.d��.X// D S�.d��.X//C i.1 � ��1=2
n /

� �n

1 � �n

Cm
�

�2.�; X/:

Proof. For each X 2 gc we have

S�.d��.X// D d�.Ad.g�1
Z /X/ D i�1.�; X/ � im�2.�; X/:

Now, by using the preceding corollary, we see that the matrix ofB
�1=2
� with respect

to the above basis of S is
0

B

B

B

B

@

I2nC1 O O

O I3n2 O

O �
�n�

�1=2
n

1C �1=2
n

I3 �
�1=2
n I3n2

1

C

C

C

C

A

:
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This implies that for X 2 ¹H1; Xi ; Yj ; 1 � i; j � nº, we have W�.d��.X// D

S�.d��.X// and, for X 2 ¹Fij ; Gij ; Aij ; 1 � i; j � nº, we have

W�.d��.X// D i
�

�1.�; X/�
�n�

�1=2
n

1C �
1=2
n

�2.�; X/
�

� im��1=2
n �2.�; X/:

Hence the result follows. �
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