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Wavelet transform of Beurling–Björck type ultradistributions

Ram Shankar Pathak (�) (†) – Abhishek Singh (��)

Abstract – Wavelet transform of a distribution in M
0

! involving wavelet of infraexponen-

tial decay (subexponential decay) is studied. An inversion formula is obtained which is

valid in the weak topology of D
0

. A discussion on extension of the results to ultradis-

tribution space of compact support is also given.
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1. Introduction

Wavelet analysis has been used for intrinsic characterizations of important func-

tion and distribution spaces ([10], [11]). Recently, the wavelet transform has been

extended to distributions, and inversion formulae have been established in distri-

bution setting by Pathak [13, 14], Pathak et al [16, 17, 18] and Pandey [12] using

duality arguments.

Wavelets of subexponential decay whose Fourier transform have compact sup-

port i.e. band limited wavelets, were investigated by Dziubański and Hernández

[7]. Pathak and Singh [17] extended the work of Dziubański and Hernández and

studied wavelets with more general decay (infraexponential decay) whose Fourier

transforms have compact support. The aim of the present paper is to develop the
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theory of wavelet transform involving these wavelets using ultradistribution theory

of Beurling [3] and Björck [4].

Now, we recall de�nitions and properties of the desired test function and

ultradistribution spaces from [4], [6], [9], and [19]. Let M be the set of all real-

valued functions ! on R which can be represented as !.x/ D �.jxj/, where �.t/

is an increasing continuous concave function on Œ0;1/ satisfying the following

conditions [9, p. 14]:

.˛/ 0 D !.0/ � !.� C �/ � !.�/C !.�/; for all �; � 2 RI(1)

.ˇ/

Z

R

�.�/

.1C j�j/2
d � < 1I(2)

there exists real number p and positive real number q such that

./ �.�/ � p C q log.1C t /; t � 0:(3)

Let ! 2 M. We denote by M! the set of all functions  .t/ 2 C1.R/ which

satisfy

(4) Pk;�. / D sup
t2R

¹e�!.t/jDk .t/jº < 1

for all non-negative integers k and all non-negative real �. The topology on M!

is de�ned by the semi-norms ¹Pk;�º. It can be readily seen that M! is a vector

space. A sequence ¹ �º
1
�D1 is a Cauchy sequence in M! if for each non-negative

integer m and k, Pk;�. � �  �/ ! 0 as �; � ! 1 independently of each other.

The space M! is a sequentially complete space and therefore it is a complete

countably multinormed space and so a Fréchet space. The dual of M! is denoted

by M!
0 ; it is a distribution space [6, p. 170]. The Schwartz space D.R/ consisting

of C1�functions of compact support is a subspace of M!.R/ and M
0

! � D
0

.

Suppose that the Fourier transform of  2 M! , de�ned by

y .�/ D

Z 1

�1

e�ix� .x/ dx;

satis�es

(5) �k;�. / D sup
�2R

¹e�!.�/jDk y .�/jº < 1; � � 0; k 2 N0:

Then the space of all functions  2 L1.R/ such that  ; y 2 C1.R/ and (4)

and (5) hold, is denoted by S! the topology of S! is de�ned by the seminorms

Pk;� and �k;�, see [4, p. 377].



Wavelet transform of Beurling–Björck type ultradistributions 213

LetK be a compact subset of R. The space D! (K) is the set of all  in L1.R/

such that  has support in K and

(6) k k� WD

Z

R

j y .�/je�!.�/ d � < 1; for all � > 0:

Let ¹Knº be a sequence of compact set in R such that
S1

nD1Kn D R and Kn

is contained in the interval of KnC1 for all n. Then D!.R/ D lim ind D!.Kn/.

SinceD! � S! and the topology ofD! is stronger than that induced on D! by S! ,

it follows that the restriction of any f 2 S
0

! to D! is in D
0

! . The elements of D
0

!

are called ultradistributions [6].

Now we recall from [5] some de�nitions and results related to wavelet trans-

form needed in the present investigation.

Let  2 L2.R/. De�ne

(7)  b;a.t / WD
1

p

jaj
 

� t � b

a

�

; t 2 R; b 2 R; a 2 R0 D Rn¹0º:

The wavelet transformW.b; a/ of f 2 L2.R/with respect to the wavelet b;a.t / 2

L2.R/ is de�ned by

(8) W.b; a/ WD

Z

R

f .t/ b;a.t / d t

and the corresponding wavelet inversion formula is given by

(9)
1

C 

Z

R

Z

R0

1
p

jaj
W.b; a/ 

�x � b

a

�d b d a

a2
D f .x/;

where

C D

Z

R

j y .w/j2

jwj
dw < 1 ([5, p. 9]):

In the present work we shall investigate properties of the wavelet  b;a.t / 2

M!.R/. Wavelet transform of f 2 M
0

! will be studied and the inversion for-

mula (9) will be extended to distribution space M
0

! . It has been noted by Constan-

tinescu et al [6, p. 169] that the Schwartz space S.R/ and Gelfand-Shilov space

S˛;A are special cases of the space M! . Therefore, some of the results obtained

in this paper are more general than those derived in [13] and [16].

2. Wavelet transform on M
0

!

In this section, certain basic properties of the wavelets in M! and wavelet trans-

form of f 2 M
0

! are obtained.

Lemma 2.1. If  2 M! , then  . t�b
a
/ 2 M! for arbitrary but �xed b; a 2 R,

a ¤ 0.
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Proof. Let a and b be �xed real numbers. Then for k D 0; 1; 2; : : : ;

sup
�1<t<1

ˇ

ˇ

ˇe
�!.t/Dk 

� t � b

a

�ˇ

ˇ

ˇ

D sup
�1<t<1

ˇ

ˇ

ˇe�!.
t�b

a
/ .k/

� t � b

a

�� 1

ak

�ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e�!.t/

e�!.
t�b

a
/

ˇ

ˇ

ˇ

ˇ

:

Then by Property .˛/ we get

sup
�1<t<1

ˇ

ˇ

ˇe
�!.t/Dk 

� t � b

a

�ˇ

ˇ

ˇ �
1

jajk
Pk;�. / sup

�1<t<1

ˇ

ˇ

ˇ

ˇ

e�!.
t�b

a
C

b

a
/

e�!.
t�b

a
/

ˇ

ˇ

ˇ

ˇ

(by (4))

� Pk;�. /
� 1

jajk

�

e�!.
b

a
/ < 1 (by (1)),

for all �xed real numbers b and a ¤ 0. �

In what follows we shall assume that  2 M!.R/ is the basic function

generating the wavelet  b;a.t / given by (7). Since function  . t�b
a
/ belongs to

M! for �xed b and a ¤ 0 as a function of t under conditions of Lemma 2.1, for

f 2 M
0

! the wavelet transform W.b; a/ of f is de�ned by

(10) W.b; a/ D
1

p

jaj

D

f .t/;  
� t � b

a

�E

D hf .t/;  b;a.t /i; a ¤ 0; a; b 2 R:

Theorem 2.2. For real b and a ¤ 0 letW.b; a/ be de�ned by (10), then under

conditions of Lemma 2.1, there exists m 2 N0 such that

jW.b; a/j � C.m; /.jaj�m�1=2 exp.m!.b=a///; for some m 2 N0:

Proof. To very f 2 M
0

! there exists a non-negative integer m and a constant

C > 0 such that, for all  2 M! ,

jW.b; a/j D
ˇ

ˇ

ˇ

1
p

jaj

D

f .t/;  
� t � b

a

�Eˇ

ˇ

ˇ

�
C

p

jaj
max
0�k�m

sup
b;t2R

ˇ

ˇ

ˇem!.
t
a
/Dk

t  
� t � b

a

�ˇ

ˇ

ˇ

D
C

p

jaj
max
0�k�m

sup
b;t2R

ˇ

ˇ

ˇe
m!. t�b

a
/ .k/

� t � b

a

�� 1

ak

�ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

em!.
t

a
/

em!.
t�b

a
/

ˇ

ˇ

ˇ

ˇ

D
C

p

jaj

�

sup
b;t2R

ˇ

ˇ

ˇ

ˇ

em!.
t

a
/

em!.
t�b

a
/

ˇ

ˇ

ˇ

ˇ

�

� 1

jajm

�

max
0�k�m

Pk;m. /

� C max
0�k�m

Pk;m. /
em!.

b

a
/

jajmC1=2

by using property .˛/, as in the Lemma 2.1. This gives the required result. �
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3. Inversion of the wavelet transform on M
0

!

In order to study properties of the wavelet transform of f 2 M
0

! we obtain an

appropriate structure formula for f 2 M
0

! .

Assume that f 2 M
0

! then as in the proof of the above theorem there exists a

non-negative integer m and constant C > 0 such that for all � 2 M! ,

(11) jhf; �ij � C max
0�k�m

sup
t2R

jem!.t/Dk
t �.t/j:

Then following [8, p. 112] we have two cases.

Case I. For t > 0,

em!.t/jDk
t �.t/j D em!.t/

ˇ

ˇ

ˇ

ˇ

Z 1

t

d

dz
.Dk

z�.z// d z

ˇ

ˇ

ˇ

ˇ

� max
0�k�m

Z 1

t

em!.z/
ˇ

ˇ

ˇ

ˇ

d

dz
.Dk

z�.z// d z

ˇ

ˇ

ˇ

ˇ

� max
0�k�mC1

Z 1

�1

jem!.z/Dk
z�.z/j d z

� max
0�k�mC1

Z 1

�1

je�!.z/e.mC1/!.z/Dk
z�.z/j d z

� max
0�k�mC1

ke�!.z/k2 ke.mC1/!.z/Dk
z�.z/k2:

Case II. For t < 0,

em!.t/jDk
t �.t/j D em!.t/

ˇ

ˇ

ˇ

ˇ

Z t

�1

d

dz
.Dk

z�.z// d z

ˇ

ˇ

ˇ

ˇ

� max
0�k�m

Z t

�1

em!.z/
ˇ

ˇ

ˇ

ˇ

d

dz
.Dk

z�.z// d z

ˇ

ˇ

ˇ

ˇ

� max
0�k�mC1

Z 1

�1

jem!.z/Dk
z�.z/j d z

� max
0�k�mC1

Z 1

�1

je�!.z/e.mC1/!.z/Dk
z�.z/j d z

� max
0�k�mC1

ke�!.z/k2 ke.mC1/!.z/Dk
z�.z/k2:

Therefore, there exists C > 0 such that

(12) jhf; �ij � C max
0�k�mC1

ke.mC1/!.t/Dk
t �.t/k2; � 2 M! :
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Now, we show that the above L2�norm exists �nitely. Indeed, for some � > 0;

we have

max
0�k�mC1

�Z 1

�1

je.mC1/!.t/Dk
t �.t/j

2 d t

�
1
2

D max
0�k�mC1

�Z 1

�1

je��!.t/e.mC1C�/!.t/Dk
t �.t/j

2 d t

�
1

2

� max
0�k�mC1

Pk;mC1C�.�/

�Z 1

�1

e�2�ŒpCq log.1Ct/� d t

�
1

2

(by (3))

we can choose � large so that the last integral is �nite. Thus

max
0�k�mC1

ke.mC1/!.t/Dk
t �.t/k2 < 1:

Now, applying Hahn-Banach theorem and Riesz representation theorem to (12)

we get gk belonging to the space L2.R/ such that

jhf; �ij D

mC1
X

kD0

hgk.t /; e
.mC1/!.t/Dk

t �.t/i

D

mC1
X

kD0

hDk
t .e

.mC1/!.t/gk.t //; �.t/i:

Therefore desired structure formula is

(13) f D

mC1
X

kD0

Dk
t .e

.mC1/!.t/gk.t //;

where gk 2 L2.R/ and k D 0; 1; 2; 3; : : : .

Theorem 3.1. Let f 2 M
0

! ,  2 M! and W.b; a/ be de�ned by (10). Then

Dr
bW.b; a/ D

@rW

@br
D

D

f .t/;
@r

@br
1

p

jaj
 

� t � b

a

�E

;

and

Dr
aW.b; a/ D

@rW

@ar
D

D

f .t/;
@r

@ar
1

p

jaj
 

� t � b

a

�E

:
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Proof. Using the structure formula for f as given in (13) and following [12]

we have

W.b; a/ D hf .t/;  b;a.t /i

D
D

mC1
X

kD0

Dk
t .e

.mC1/!.t/gk.t //;  b;a.t /
E

D

�

gk.t /;

mC1
X

kD0

.e.mC1/!.t//.�1/kDk
t

�

 
�

t�b
a

�

p

jaj

��

:

Therefore, we have

@rW

@br
.b; a/ D

mC1
X

kD0

Z 1

�1

gk.t /e
.mC1/!.t/ @

r

@br
.�1/k.Dk

t  b;a.t // d t

D

mC1
X

kD0

Z 1

�1

gk.t /e
.mC1/!.t/.�1/kCrDkCr

t  b;a.t /d t

D

mC1
X

kD0

Z 1

�1

gk.t /e
.mC1/!.t/.�1/kDk

t

@r

@br
 b;a.t / d t

D

mC1
X

kD0

D

Dk
t .e

.mC1/!.t/gk.t //;
@r

@br
 b;a.t /

E

D
D

f .t/;
@r

@br
 b;a.t /

E

(by structure formula (13)):

Similarly result for di�erentiation with respect to a can be proved. �

In order to derive inversion formula for the wavelet transform of f 2 M
0

! we

de�ne function g�.t / as follows [1]:

g�.t / D

8

<

:

g.t/ if � � � t � �;

0 elsewhere.

Also de�ne f� 2 M
0

! by

(14) hf� ; �i D

mC1
X

kD0

hg�.t /; .e
.mC1/!.t/Dk

t �.t//i; � 2 D! ;

then g� ! g in L2.R/ as � ! 1 therefore, hf� ; �i ! hf; �i as � ! 1.
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Theorem 3.2. Assume that the wavelet transform W.b; a/ of f 2 M
0

! with

respect to  2 M! is de�ned by (10). Then

(15) lim
N!1
R!1

�

1

C 

Z R

�R

Z N

�N

W.b; a/ b;a.x/
d b d a

a2
; �.x/

�

D hf; �i;

for each � 2 D! and b; a 2 R, a ¤ 0 where  b;a.x/ is given by (7).

Proof. Using the structure formula for f� as given in (14) we have

.W f�/.b; a/ D hf�.t /;  b;a.t /i

D

Z 1

�1

g�.t /

mC1
X

kD0

e.mC1/!.t/Dk
t  b;a.t /d t:

(16)

We wish to derive the inversion formula

1

C 

Z 1

�1

Z 1

�1

.W f�/.b; a/ b;a.x/
dbda

a2
D f� ;

interpreting convergence in the weak topology of D
0

, i.e.

J �

�

1

C 

Z 1

�1

Z 1

�1

.W f�/.b; a/ b;a.x/
d b d a

a2
; �.x/

�

D hf� ; �i ;

for all � 2 D! . From (16) we have

J D

�

1

C 

Z 1

�1

Z 1

�1

Z 1

�1

g�.t /

mC1
X

kD0

e.mC1/!.t/Dk
t  b;a.t / b;a.x/

d t d b d a

a2
; �.x/

�

D

�

1

C 

Z 1

�1

� Z 1

�1

² Z 1

�1

g�.t /

mC1
X

kD0

e.mC1/!.t/.�1/kDk
b b;a.t /

³

 b;a.x/ d t

�

d b d a

a2
; �.x/

�

as Dt b;a.t / D �Db b;a.t /. Therefore, by integration by parts with respect to b

we have

J D

�

1

C 

Z 1

�1

Z 1

�1

Z 1

�1

g�.t /

mC1
X

kD0

e.mC1/!.t/ b;a.t /D
k
b b;a.x/

d t d b d a

a2
; �.x/

�

D

�

1

C 

Z 1

�1

Z 1

�1

Z 1

�1

g�.t /

mC1
X

kD0

e.mC1/!.t/ b;a.t /.�1/
kDk

x b;a.x/
d t d b d a

a2
; �.x/

�

:
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Hence, by distributional di�erentiation,

J D

�

1

C 

Z 1

�1

Z 1

�1

Z 1

�1

g�.t /

mC1
X

kD0

e.mC1/!.t/ b;a.t / b;a.x/
d t d b d a

a2
; Dk

x�.x/

�

:

(17)

The integrand

Dk
x�.x/ b;a.x/ b;a.t /g�.t /

e.mC1/!.t/

a2

is absolutely integrable with respect to x and t in the x; t -plane and so Fubini’s

theorem is applicable with respect to integration by x and t . Therefore (17) yields

J D
1

C 

mC1
X

kD0

Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1

Dk
x�.x/ b;a.x/ b;a.t /g�.t /e

.mC1/!.t/d x d t d b d a

a2

D
1

C 

mC1
X

kD0

Z 1

�1

Z 1

�1

Z 1

�1

h

W ¹Dk
x�.x/º.b; a/ b;a.t /

d b d a

a2

i

g�.t /e
.mC1/!.t/ d t

D

mC1
X

kD0

Z 1

�1

Dk
t �.t/g�.t /e

.mC1/!.t/ d t (by inversion formula (9))

D

mC1
X

kD0

hg�.t /; .�1/
ke.mC1/!.t/Dk

t �.t/i

D
D

mC1
X

kD0

Dk
t .e

.mC1/!.t/g�.t //; �.t/
E

D hf� ; �i (by structure formula (14))

�! hf; �i as � ! 1:

This completes the proof of the theorem. �

4. Wavelet transform on S
0

!

In this section we assume that wavelets are of infraexponential decay so that their

Fourier transforms are of compact support. To deal with such wavelets we suppose
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that  2 S!.R/, then  b;a 2 S! for �xed a; b 2 R, a ¤ 0. Now, we extend the

wavelet transform in Fourier space de�ned by

(18) W.b; a/ D
1

2�

Z

R

eib! Of .!/ y .a!/d!:

Assume that Of .!/ 2 D
0

!.R/ and y .!/ 2 S!.R/ is of compact support, then

y .a!/ Of .!/ 2 E
0

!.R/ [2, pp. 121–127]. Now, we de�ne generalized wavelet trans-

form of f 2 Z
0

!.R/ [2, pp. 127] as generalized Fourier transform of Of .�/ y .a�/:

W.b; a/ D
1

2�
h Of .!/; y .a!/eib!i

D
1

2�
h Of .!/ y .a!/; eib!i

D
1

2�
h
1

a
Of .u=a/ y .u/; ei�u=ai

D
1

2�a
hga.u/; e

i�u=ai:

(19)

where ga.u/ D Of .u=a/ y .u/; a ¤ 0.

Assume that supp y .u/ D Œ�ˇ; ˇ�; ˛ > 0. Then suppga.u/ D Œ�ˇ; ˇ�; ˇ > 0.

Theorem 4.1. If y .u/ Of .u=a/ 2 E
0

!.R/, its wavelet transform is aC1 function

in R given by

(20) W.b; a/ D
1

2�a
hg˛.u/; e

ibu=ai:

Moreover, W.b; a/ can be extended to the complex space C as an entire analytic

function given by

(21) W.�; a/ D
1

2�a
hg˛.u/; e

i�u=ai:

Proof. In (20), ga is a distribution with compact support while eibu=a is a

C1-function of u. Thus, the right-hand side of (20) is well de�ned. Also, by [2,

Theorem 4.6, p. 124] it follows that the right-hand side of (20) is a C1-function

of b 2 R and W.b; a/ can be extended to the complex plane as an entire analytic

function given by (21).

Further proof is very similar to that given in [2, p. 124] in the case of Fourier

transform of distributions. �

Remark 4.2. Relation (21) can be used to study Paley–Wiener–Schwartz the-

orem for wavelet transform of ultradistribution of compact support.
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