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Example of minimizer of the average-distance problem

with non closed set of corners

Lu, Xin Yang (�)

Abstract – The average-distance problem, in the penalized formulation, involves mini-

mizing

E�
�.†/ WD

Z

Rd

inf
y2†

jx � yjd�.x/ C �H1.†/;

among compact, connected sets †, where H
1 denotes the 1-Hausdor� measure, d � 2,

� is a given measure and � a given parameter. Regularity of minimizers is a delicate

problem. It is known that even if � is absolutely continuous with respect to Lebesgue

measure, C 1 regularity does not hold in general. An interesting question is whether the

set of corners, i.e. points where C 1 regularity does not hold, is closed. The aim of this

paper is to provide an example of minimizer whose set of corners is not closed, with

reference measure � absolutely continuous with respect to Lebesgue measure.
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1. Introduction

The average-distance problem, in the penalized formulation, was introduced by

Buttazzo, Mainini and Stepanov in [1]:

Problem 1.1. Given d � 2, a measure �, and a parameter � > 0, minimize

E�
�WA �! R; E�

�.†/ WD F�.†/ C �H1.†/;

where H
1 denotes the 1-Hausdor� measure and

F�WA �! R; F�.†/ WD

Z

Rd

d.x; †/d�; d.x; †/ WD inf
y2†

jx � yj;

A WD ¹† � R
d W † compact and connectedº:

An earlier variant is the constrained formulation, �rst studied by Buttazzo,

Oudet and Stepanov in [2]:

Problem 1.2. Given d � 2, a measure �, and a parameter L � 0, minimize

min
†2A; H1.†/�L

F�.†/:

Existence of minimizers (for both Problems 1.1 and 1.2) follows (see for instance

[1, 2, 3]) from Blaschke selection theorem and Golab theorem. The functional F�

will be often referred as average-distance functional, and Problem 1.1 as average

distance problem. In the following, any considered measure will be assumed

nonnegative, compactly supported, probability measures. The choice to work with

probability measures is done for the sake of simplicity.

The average-distance problem originally stemmed from mathematical model-

ing of optimization problems. A classic application is found in urban planning:

let

� � be the distribution of passengers in a given region,

� † (the unknown) be the transport network to be built.

In this case F�.†/ is the average distance of passengers from the network (thus

smaller values of F�.†/ imply that † is easily accessible), and �H1.†/ is the cost

to build such network. Thus minimizing E�
� is determining the network which best

serves the passengers, under cost considerations.
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A recent application is found in data approximation: let

� � be the distribution of data points,

� † (the unknown) be a one-dimensional set which approximates the data.

In this case F�.†/ is the approximation error, while �H1.†/ is the cost associated

to its complexity. Thus minimizing E�
� is determining the best approximation,

which balances approximation error and cost. In data approximation the regularity

of † is important: indeed it has been proven (Slepčev [9]) that, outside triple

points, a positive amount of mass is projected on any point for which C 1 regularity

fails. This corresponds to a loss of information, and is undesirable.

Regularity of minimizers of both Problems 1.1 and 1.2 is quite a delicate

problem. It is known that

� C 1 regularity is false in general (Slepčev [9]);

� minimizers are �nite union of at most Œ1=�� (with Œ�� denoting the integer part

mapping) Lipschitz regular curves, in any dimension (Slepčev et al. [8]);

� the sum of the total curvature measure of each branch is uniformly bounded

from above by j�j=�, with j�j denoting the total mass of the reference

measure � (Slepčev et al. [8]).

For future reference, given † 2 A, a point p 2 † of degree two (i.e. †n¹pº has

exactly two connected components, see De�nition 2.3) for which C 1 regularity

fails will be referred as corner. Since the approach used in [9] is only suited for

constructing minimizers with �nitely many corners, it is unclear if (for minimiz-

ers) the set of corners is generally closed, or even �nite. The aim of this paper is

to provide an example of minimizer whose set of corners is not closed. The main

result is the following one.

Theorem 1.3. InR
2, there exists a measure �, a parameter �, and a minimizer

† 2 argmin E�
� satisfying:

� † is a simple curve,

� there exists a sequence ¹vnº � † such that C 1 regularity fails at vn for any

n (i.e. vn is a corner for any n),

� there exists point v 2 † such that ¹vnº ! v 2 †, and † is C 1 regular in v

(i.e. v is not a corner).

We will prove a stronger result (Theorem 3.21), with quantitative estimates on

the jump of the tangent derivative at vn, n D 1; 2; : : : . As corollary we have:
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Corollary 1.4. The minimizer † from Theorem 1.3 is also minimizer for the

constrained problem

(1) min
†02A; H1.†0/�H1.†/

F�.†0/:

We will use the construction from [7], i.e. we will approximate the reference

measure with discrete measures, analyze minimizers in the discrete case (Subsec-

tion 3.2), and pass to the limit (Subsection 3.3). However, since the aim is to con-

struct in�nitely many corners, we need several additional estimates on the mutual

distance between corners of minimizers of the discrete problem. This allows to

deduce that minimizers of the discrete problem have in�nitely many corners, and

passing to the continuum limit, we still have in�nitely many corners. This strongly

exploits the two-dimensional structure (in particular in Lemmas 3.15 and 3.17),

and cannot be extended to higher dimensional domains. Note that Theorem 1.3

states only the existence of a minimizer with the above properties. However it

does not preclude the existence of other minimizers †0 2 argmin E�
� containing

only �nitely many (or even zero) points at which C 1 regularity fails. This paper

will be structured as follows.

� In Section 2 we recall preliminary results.

� In Section 3 we construct an explicit example of minimizer of Problem 1.1

whose set of corners is not closed. In particular:

– in Subsection 3.1 we determine the main elements of our construction,

including the reference measure � and parameter �,

– in Subsection 3.2 we approximate the reference measure with a se-

quence of discrete measures, and analyze minimizers of the discrete

case,

– in Subsection 3.3 we pass to the continuum limit.

� In Section 4 we prove some technical lemmas used in Section 3.

2. Preliminary results

The main goal of this section is to introduce some notations and recall well known

results used in Section 3. The average-distance functional satis�es the following

well known properties:

(1) given a measure � and � > 0, the mapping † 7! E�
�.†/ is lower semicon-

tinuous with respect to dH (Hausdor� distance),
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(2) given † 2 A and � > 0, the mapping � 7! E�
�.†/ is continuous with respect

to weak-* convergence of measures,

(3) if ¹�nº
�
*�, then for any � > 0, it holds ¹E�

�n
º

�
! E�

�, that is

� for any † and sequence ¹†nº
dH

!† it holds

lim inf
n!C1

E�
�.†n/ � E�

�.†/;

� for any † there exists a sequence ¹†nº
dH

!† such that

lim sup
n!C1

E�
�.†n/ � E�

�.†/;

(4) consider a sequence ¹�nº
�
*� and for any n choose †n 2 argmin E�

�n
. Then

there exists † 2 argmin E�
� such that (upon subsequence) ¹†nº

dH

!†.

For further details (including proofs), we refer to [2, 3, 4, 9].

Recall that given a set of points … WD ¹P1; : : : ; Pj º � R
2, a Steiner graph for

… is a path-wise connected set with minimal length (among the family of path-

wise connected sets containing …). Steiner graphs are not unique in general. The

next result proves an intrinsic connection between Steiner graphs and minimizers

of the average distance functional.

Proposition 2.1. Given a discrete probability measure � WD
Pn

iD1 aiıxi
on

R
2, with a1; : : : ; an � 0 and ı denoting the Dirac measure supported on the

subscripted point, a parameter � > 0, then any minimizer † 2 argmin E�
� is

a Steiner graph.

Proof. For the proof we refer to [9]. �

Definition 2.2. Given a discrete probability measure � WD
Pn

iD1 aiıxi
on

R
2, � > 0, and a minimizer † 2 argmin

A
E�

�, a point v 2 † is a vertex if there

exists i 2 ¹1; : : : ; nº such that d.xi ; †/ D jxi � vj. (See Figure 1.)

Next we de�ne the notion of degree of a point.

Definition 2.3. Given † 2 A, consider a point v 2 † such that †n¹vº

has �nitely many connected components. Then the degree of v is de�ned as the

number of connected components of †n¹vº.
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x1 v1

x2 D v2

x3 D v3

x4

v4

x5 D v5

†

Figure 1. Some examples of vertices (¹v1; : : : ; v5º in �gure). The grey dots denote the

support (¹x1; : : : ; x5º in �gure) of the reference measure. Here d.xi ; †/ D jxi � vi j,

i D 1; : : : ; 5.

Note that the degree of a v depends also on †. However for the sake of brevity

we will omit writing such dependency if no risk of confusion arises. While it is

possible to de�ne the degree of v even when †n¹vº has in�nitely many connected

components (see [4, De�nition 2.2]), but for our purposes this is not required.

For future reference, given two points p and q, let

Jp; qK WD ¹.1 � s/p C sqW s 2 Œ0; 1�º:

In view of Proposition 2.1, a segment with endpoints in two vertices and containing

no other vertices will be referred as edge. The following classical result (see for

instance [5, 6]) proves several geometrical properties about Steiner graphs:

Proposition 2.4. Given a Steiner graph G, it holds:

� G is a tree,

� if Ju; vK and Jv; wK are edges, with a common vertex v, then buvw � 2�=3,

� the maximal degree of any vertex is 3,

� if v is a vertex of degree 3, denoting by Jui ; vK, i D 1; 2; 3 the 3 di�erent

edges containing v, then the angle between any two such edges is 2�=3, and

these edges are coplanar.

Similarly to [9], in view of Propositions 2.1 and 2.4, the following de�nition

will be useful:

Definition 2.5. Given a discrete measure �, a parameters � > 0, and † 2

argmin
A

E�
�, a vertex v 2 † is called:
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� endpoint if it has degree 1,

� triple junction if it has degree 3.

If v is a vertex of degree 2, denoting by w; z the two vertices such that Jw; vK and

Jv; zK are edges, the turning angle in v is de�ned as

TA.v/ WD � � bwvz:

Similarly, given a subset A � †, the turning angle of A is de�ned as

TA.A/ WD
X

u2A; u vertex of degree 2

TA.u/:

For brevity, if A D ¹vº is a singleton, we will write TA.v/ instead of TA.¹vº/.

Note that the turning angle TA.v/ describes the curvature of † at v. Lemma 3.7

proves a connection between vertices of degree 2 and corners. Given a discrete

measure � and † 2 A, for the sake of brevity, the following expressions will be

used (v 2 † is a vertex, while x is a generic point):

� v is tied to x: the vertex v coincides with some point x 2 supp.�/,

� v is free: the vertex v coincides with no point x 2 supp.�/,

� v talks to x or x projects on v: both mean d.x; †/ D jx � vj, with the

former (resp. latter) used when v (resp. x) is the main object of analysis in

the context,

� v talks to some mass: v talks to some point in supp.�/,

� TM.�; v; †/ (TM.v/ when there is no risk of confusion) denotes the total

mass of projecting on v — for a detailed discussion see [8, Lemma 2.1],

� H mass projects on v, where H � 0: this means TM.�; v; †/ D H .

The last 4 expressions will be used even for non discrete measures �. The follow-

ing assertions are the main tools used to analyze minimizers, when the reference

measure is discrete.

Proposition 2.6. Given a discrete measure �, a parameter � > 0, and

† 2 argmin E�
�, it holds:

(1) if v 2 † is a triple junction, then TM.�; v; †/ D 0,

(2) if di�erent vertices v; v0 talk to some point y 2 supp.�/, then there exist

x; x0 2 supp.�/ such that v is tied to x and v0 is tied to x0,

(3) if v 2 † is an endpoint then TM.�; v; †/ � �,
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(4) if v 2 † is a vertex of degree 2, denoting by w; z the two vertices such that

Jw; vK and Jv; zK are edges, then

(2) TA.v/ �
�

2�
TM.�; v; †/:

For the proof we refer to Lemma 9, Corollary 10 and Lemma 11 of [9]. Note

that given a subset A � †, inequality (2) holds for any vertex of v 2 A of degree 2,

hence

(3) TA.A/ �
�

2�

X

v2A; v vertex of degree 2

TM.�; v; †/:

If † is itself a curve, then

TA.†/ �
�

2�

X

v vertex of degree 2

TM.�; v; †/I

using Proposition 2.6, zero mass projects on triple junctions, and zero mass

projects on the interior of the edges, thus all the mass projects on endpoints or

vertices of degree 2. Denoting by P0 and P1 the two endpoints of † (the case †

being a singleton is trivial), it holds

TA.†/ �
�

2�

X

v vertex of degree 2

TM.�; v; †/

�
�

2�
.1 � TM.�; P0; †/ � TM.�; P1; †//

�
�

2�
.1 � 2�/;

where the last inequality follows from Proposition 2.6.

A similar result has been proven (in [8], to which to refer for the proof) for

generic measures:

Lemma 2.7. Given a measure �, a parameter � > 0 and † 2 argmin E�
�,

for any subset A � † (A can be a singleton) it holds

X

j

k˛0
j kT V �

�

2�
TM.A/;

with TM.A/ denoting the total mass projecting on points of A, and j̨ W Œ0; 1� ! A

denoting the arc-length parameterizations of branches making up A.
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Finally we recall a classical convergence result:

Lemma 2.8. Given a sequence of curves ¹kºW Œ0; 1� ! K, with K � R
2 a

given compact set, satisfying

sup
k

k 0
kkBV < C1; sup

k

H
1.k.Œ0; 1�// < C1;

then there exists a curve  W Œ0; 1� ! K, such that (upon subsequence) it holds:

(1) ¹kº !  in C ˛ for any ˛ 2 Œ0; 1/,

(2) ¹ 00
k
º

�
* 00 in the space of signed Borel measures.

For the proof we refer to [9]. For the sake of brevity, we will never relabel

subsequences if no risk of confusion arises.

3. Counterexample

The aim of this section is to construct an explicit example of minimizer whose set

of corners is not closed. Our construction will require a lot of technicalities, and

careful choice of constants. Many strange looking constants will appear through

the section, and their choice is often very arbitrary, but acceptable for our purposes.

The reference measure will be

(4) � WD �heavy C �light

where

(5) �heavy WD
1 � �

2��2
.L2

xB..�L;h/;�/ C L
2
xB..L;h/;�//;

(6) �light WD

C1
X

nD1

mn

�%2
n

L
2
xBn

;

and Bn WD B..cn; 0/; %n/. Parameter � will be determined in Subsection 3.1, while

h, L, �, mn, cn, %n are chosen such that

(C1) h WD 1, � WD
P1

nD1 mn, � 2
�

1�3�
2

; 1�2�
2

�

, su�ciently small c1, su�ciently

large L > 109, %n, mn, cn de�ned inductively such that

%n � 100�nmn; mn � 100�ncn;

%nC1 � 100�n%n; mnC1 � 100�nmn; cnC1 � 100�ncn;

and
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(1) �.1 � 2�/=.2�/ � 0:001, hence ��=� � 0:001,

(2) for any n0 it holds

1

5h
�

cn0

2
>

�

4�

X

n�n0

mn;

and
5h�

4�
mn0

C %n0
.1 C tan 0:01/ �

cn0

10
;

(3) for any n1 < n2 it holds

5h�

2�

n2
X

nDn1

mn < 0:01jcn1
� cn2

j;

(4) � � 2 arctan
L C h=3

2h=3 � 1=10
>

�

2�
.1 � 2�/,

(5) inf¹n 2 NW 0:09=4ms > 2�%s for any s � nº D 1,

(6)
h

10
C

2h.L � 1/

L
> 2h, 2h �

2h.L � 1/

L
<

h

10
.

Clearly %n, mn, cn can be easily chosen satisfying (a), (b), (c) and (e). Choosing

su�ciently large L ensures (f). Finally note that the left-hand side term in (d)

roughly corresponds to 2=L for very large L, while the right-hand side term

�.1 � 2�/=.2�/ depends only on � 2
�

1�3�
2

; 1�2�
2

�

, hence (d) can be ensured

by further reducing the values of mn (and consequently �, and eventually %n, cn).

These conditions, while quite strange looking, will be used in many proofs:

� condition (a) will be used to ensure the smallness of several angles, so

several technical results (such as Lemmas 3.16 and 3.8) are applicable (see

for instance the last inequality in (16)),

� condition (b) will be used in Lemmas 3.13 (to deduce the contradiction after

(11)) and 3.18 (last inequality in (29)),

� condition (c) will be used in Lemmas 3.14 to deduce the contradiction after

(14), and in Lemma 3.19 (inequality (32)),

� condition (d) will be used in Lemma 3.3 to deduce the contradiction after

(14),

� condition (e) will be used in Lemma 3.17, immediately after (18),

� condition (f) will be used in Lemma 3.10 (inequalities (25) and (26)).
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The choice of using h (instead of simply “1”) is done to make clearer where such

quantity appears (mostly as length). The values 0:001, 100�n, 109 are very arbi-

trary, but su�cient for the purposes of this paper. Moreover, with our construc-

tion we de�nitely need to choose some values such parameters (explicit values

simplify proofs, and there is no point in determining the optimal values), to sat-

isfy the (technical) results of this section. Moreover, we will often use non sharp

(but formally simpler) estimates in the proofs when possible. Note that due to our

choice of %n, mn, cn, for �light it holds:

� the distance between two distinct balls Bn1
and Bn2

(assume n2 > n1) is much

larger (note the factor 100�n in (C1)) than
Pn2

nDn1
mn (which is roughly the

combined masses of the balls in between);

� for each ball Bn, the mass supported on it (i.e. mn) is much larger (by a factor

least 100n) than its own radius (i.e. %n). Hence the density of Bn is high.

This will be crucial for our construction, and it will result from the construction

that corners arise exactly due to the presence of such density peaks.

x

y

0

¹x D 10º¹x D �10º

¹y D 2hº

¹y D h=10º

¹y D h=100º

Figure 2. This is a representation (highly not to scale) of the supports of �heavy (grey) and

�light (black). The represented lines will be relevant for our construction.

Note that � depends on several parameters appearing in (5) and (6). For the

sake of brevity (unless otherwise speci�ed) we omit writing such dependencies.

Intuitively:

� supp.�heavy/ is union of two small and distant balls, each of which contains

slightly less than one half of the total mass;

� supp.�light/ is union of balls Bn, n � 1, each of which containing mass mn.

As will be clear in the following, �light is the measure that generates corners, while

the role of �heavy is to force minimizers to have large length and little curvature.
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3.1 – Choosing parameters

The aim of this subsection is to choose a suitable parameter �. The proofs of Lem-

mas 3.1, 3.2, and 3.3 are available in Section 4. This is done for reader’s conve-

nience, since those are mostly technical lemmas, whose proofs do not contain

ideas signi�cant to our main purposes.

Lemma 3.1. There exists �0 > 0 such that for any � 2 .0; �0/, any minimizer

of E�
� is a simple curve with positive length.

Lemma 3.2. For any " > 0 there exists �0 > 0 such that for any � 2 .0; �0/,

any minimizer of E�
� contains points p; q such that

max¹jp � .�L; h/j; jq � .L; h/jº < ":

Lemma 3.3. There exists �0 > 0 such that for any � 2 .0; �0/, any minimizer

of E�
� is contained in the half-plane ¹y > h=10º.

The choice ¹y > h=10º is quite arbitrary, but since by construction (and (C1))

it holds supp.�light/ � ¹y < h=100º, a crucial consequence is:

(C2) for any minimizer † 2 argmin E�
� it holds

inf
z2supp.�light/

d.z; †/
(C1)
�

1

10
�

1

100
D 0:09 > 0:

The same argument (the proof is available in Section 4) also proves that for

such � and �, any minimizer is contained in the half-plane ¹y < 2hº. Choose

� � 1 such that the conclusions of Lemmas 3.1, 3.2, and 3.3 hold. Moreover we

impose

(C3) for any minimizer † 2 argmin E�
�, there exist points p; q 2 † such that

jp � .�L; h/j � 1=4, jq � .L; h/j � 1=4.

This is possible in view of Lemma 3.2. Note that after choosing �, the reference

measure � is uniquely determined. Thus we have proven:

Lemma 3.4. There exist � such that any minimizer of E�
� is contained in the

strip ¹h=10 < y < 2hº and (C2) holds.
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Note that (in view of Lemma 3.2 and for suitable choice of �) since L has

been chosen su�ciently large, there exists a vertical strip „ such that points in

B..�L; h/; �/ cannot project on any point z 2 † \ „: indeed letting

„ WD ¹�10 � x � 10º

(here the values �10 and 10 are quite arbitrary, but acceptable for the purposes of

this paper), it holds

jx � zj � L � h � 10
(C1)
> 109 � 11 > 5=4 � � C h=4 � jx � pj

for all x 2 B..�L; h/; �/; z 2 „; for some p given by Lemma 3.2. The same

argument proves that points in B..L; h/; �/ cannot project to any point in „.

Until now we have proven (for our choice of parameters):

� for any minimizer †, any point in B..�L; h/; �/[B..L; h/; �/cannot project

on † \ „,

� any minimizer contains points p; q satisfying

jp � .�L; h/j � h=4; jq � .L; h/j � h=4;

� any minimizer is contained in the strip ¹h=10 < y < 2hº.

Combining these facts with (C3), only points in supp.�light/ can project on †\„.

Recall that by construction the total mass in supp.�light/ is �.

Definition 3.5. Let v1; v2 be non zero vectors of R2. The angle between v1

and v2, which we will denote by †.v1; v2/, is de�ned as1

†.v1; v2/ WD arccos
hv1; v2i

jv1jjv2j
2 Œ0; ��;

Given segments/half-lines/lines l1 and l2, the angle between l1 and l2 (which we

denote by †.l1; l2/) is de�ned as

†.l1; l2/ WD min
v1kl1; v2kl2

†.v1; v2/:

1 Here h; i denotes the standard Euclidean scalar product of R2.
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p

q

¹y D 0º
v

l1

l2

Figure 3. Angle between a segment Jp; qK and ¹y D 0º (left, the dotted lines represent the

line containing Jp; qK); and between two half-lines l1 and l2 with common vertex v (right).

We will often use the angle between a segment/half-line/line and ¹y D

0º=¹x D 0º, and expressions such as

†.l; ¹y D 0º/; †.l; ¹x D 0º/; †.Jp1; p2K; ¹y D 0º/; : : : :

The parameter � will have little importance in the following, as its role is

to ensure that minimizers contain points close to .˙L; h/ (i.e. p and q from

Lemma 3.2). In the following, it will be clear that corners will arise due to measure

�light. Since supp.�light/ (along with all points talking to points in supp.�light/) is

contained in the strip „, we will tacitly assume (unless explicitly stated) that we are

working only in „, and all statements will tacitly assume that quantities involved

are contained in „.

3.2 – Discrete measures

The �rst step involves approximating � with discrete measures. Similarly to [9],

given three points v1; v2; v3, de�ne the wedge V.v2/ as follows:

(1) if v1; v2; v3 are collinear, then V.v2/ is the unique line passing through v2

and orthogonal to v3 � v2,

(2) otherwise, let

�i WD
viC1 � vi

jviC1 � vi j
(i D 1; 2),

� WD
�2 C �1

j�2 C �1j
; b WD

�2 � �1

j�2 � �1j
;
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ˇ WD TA.v2/=2;

and

V.v2/ WD v2 C ¹x 2 R
2W jh�; xij � hb; xi tan ˇº;

where h; i denotes the standard Euclidean scalar product of R2.

v1

v3

v2

V .v2/

l1

l2

Figure 4. An example of wedge V .v2/. Here l1?Jv1; v2K, l2?Jv2; v3K.

Note that if TA.v/ > 0, by de�nition the wedge V.v/ is itself an angle (intended

as part of the plane contained between two half-lines starting at the same point).

Thus expressions like bisector of V.v/, amplitude of V.v/, etc. will be used. Note

also that its border @V .v/ is the union of two half-lines; although @V .v/ will play

an important role in many proofs, it is almost never important to distinguish the

half-lines forming it, thus in the following we will often use expressions like

@V .v/ is the union of two half-lines l˙, without stating precisely which half-line

corresponds to l� (nor which half-line corresponds to lC).

Let

�j WD
X

i

1 � �

2 � ]
�

B..�L; h/; �/ \ %n

j
Z2

�ı
q

j

i

C
X

i

1 � �

2 � ]
�

B..L; h/; �/ \ %n

j
Z2

�ı
Qq

j

i

C

1
X

nD1

X

i

mn

]
�

Bn \ %n

j
Z2

�ı
p

j

i;n

;

(7)

where ¹p
j
i;nº (resp. ¹q

j
i º, ¹ Qq

j
i º) are the (�nitely many) points of the lattice Bn\ %n

j
Z

(resp. B..�L; h/; �/ \ 1
j
Z

2, B..L; h/; �/ \ 1
j
Z

2). Intuitively, the mass supported
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in Bn (resp. B..�L; h/; �/, B..L; h/; �/) is being uniformly distributed on the

(uniform) lattice Bn \ %n

j
Z

2 (resp. B..�L; h/; �/ \ 1
j
Z

2, B..L; h/; �/ \ 1
j
Z

2).

The particular form of discretization in (7) has no relevant role, but we just

need one to work with. It su�ces that supp.�j / � supp.�/. For future reference,

any measure �j will refer to the (family of) measures de�ned in (7). Recall that

� was �xed towards the end of Subsection 3.1. We will �rst work with discrete

measures �j , then take the limit j ! C1. The key points of our proof are the

following:

(1) vertices of degree 2 are corners (Lemma 3.7),

(2) for any j , any minimizer † 2 argmin E�
�j

is a graph in „, with an upper

bound on its curvature (Lemmas 3.9 and 3.10),

(3) for any j , any minimizer † 2 argmin E�
�j

contains in�nitely many corners

(Lemmas 3.13 and 3.14); moreover we will give a lower bound estimate on

the turning angle of such corners (Lemma 3.17, the most crucial result of

Subsection 3.2),

(4) these corners are distant (Lemma 3.19).

All results are valid with both discrete (i.e. �j ) and non-discrete reference mea-

sures (i.e. �). However the proofs of Lemmas 3.7 and 3.17 require to work with

discrete measures, hence for simplicity we will always work with discrete mea-

sures.

The �rst result is an analogous of Lemma 3.4 for minimizers of E�
�j

:

Lemma 3.6. For any index j , any minimizer of E�
�j

is contained in the strip

¹h=10 < y < 2hº.

Proof. The same arguments used in the proof of Lemma 3.4 can be applied

without any modi�cation to minimizers of E�
�j

. �

The next result proves that vertices of degree 2 have positive turning angle.

Lemma 3.7. For any index j , minimizer † 2 argmin E�
�j

, if a point v 2 †

satis�es TM.�j ; v; †/ > 0, then TA.v/ > 0. In particular v is a corner.

Proof. Note that Lemma 3.6 implies † � ¹y � h=10º, while supp.�light/ �

¹y � h=100º.

Assume TA.v/ D 0, hence V.v/ is a line. Hypothesis TM.�j ; v; †/ > 0

implies the existence of an index n such that v receives mass from Bn. Let

†s WD .†nJv1; v2K/ [ .Jv1; vsK [ Jv2; vsK/:
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v1 v2v

vs

Bn

V .v/

Figure 5. This is a schematic representation of the variation used in the proof of Lemma 3.7.

Here .v1 � v2/?.vs � v/, and jvs � vj D s.

Then the same argument from [7, Lemma 3.4] holds: direct computation gives that

for s ! 0 it holds

F�j
.†/ � F�j

.†s/ � s TM.�j ; v; †/ D O.s/; H
1.†s/ � H

1.†/ D O.s2/;

thus the minimality of † is contradicted. �

The proofs of the next �ve lemmas (Lemmas 3.8, 3.9, 3.10, 3.11, and 3.12) are

quite technical, and do not contain ideas relevant to our main construction. Thus

for reader’s convenience, these proofs are presented in Section 4.

Lemma 3.8. Let p; p0; p00 be a triple of points satisfying:

(1) p0; p00 2 ¹y D 0º, p 2 ¹0 < y � 2hº,

(2) 1p0pp00 D 2� , with � � 0:01,

(3) †.ˇ; ¹x D 0º/ � � � 0:01, where ˇ denotes the bisector of 1p0pp00).

Then it holds jp0 � p00j � 5h� .

Here the value 0:01 is arbitrary, and chosen to ensure that � and � are small.

This is su�cient, since we will mostly work with angles whose value does not

exceed 0:01.

Lemma 3.9. For any index j , minimizer † 2 argmin E�
�j

, l 2 Œ�L=2; L=2�,

the intersection † \ ¹x D lº is a singleton.
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Lemma 3.10. For any index j , minimizer † 2 argmin E�
�j

, there exists no

couple of points v1, v2 2 † \ ¹�L=2 � x � L=2º such that †.Jv1; v2K; ¹y D 0º/

is greater than 4h=L C ��=�. Moreover for all s 2 Œt0; t1� such that f 0.s/ is

well de�ned it holds j arctan f 0.s/j � 4h=L C ��=�, where f W Œ0; 1� ! † is

an arbitrary bijective, constant speed parameterization, and t0, t1 are the unique

times such that f .t0/ 2 ¹x D �L=2º, f .t1/ 2 ¹x D L=2º.

The bound 4h=LC ��=� is small, since 4h=LC ��=�
(C1)
< 4=109 C 0:001. The

quantity 4h=L C ��=� will often appear as angle, and for future reference let

(8) #� WD 4h=L C ��=�:

Moreover, given a point p, the notation px (resp. py), or .p/x (resp. .p/y) if p has

subscripted indices, will denote the x (resp. y) coordinate of p.

Lemma 3.11. For any index j , minimizer † 2 argmin E�
�j

and corner v 2 †,

it holds V.v/ \ † D ¹vº.

Lemma 3.12. Let j be a given index, and † 2 argmin E�
�j

a given minimizer.

Let v1; v2 2 † be corners such that vi talks to points in Bni
(i D 1; 2) with

n1 > n2. Then .v1/x < .v2/x .

Lemma 3.13. For any index j and minimizer † 2 argmin E�
�j

, no corner

v 2 † satis�es V.v/ 3 .0; 0/.

Proof. Assume the opposite, i.e. there exist j , † 2 argmin E�
�j

and a corner

v 2 † satisfying .0; 0/ 2 V.v/. Proposition 2.6 forces TM.�j ; v; †/ > 0, hence

V.v/ \ Bn ¤ ; for some n, and let

n0 WD inf¹nW V.v/ \ Bn ¤ ;º < C1:

Lemma 3.4 gives vy � 2h, and let � WD †.ˇ; ¹y D 0º/, with ˇ denoting the

bisector of V.v/. Note that � 2 Œ�
2

� #�; �
2

C #�� in view of Lemma 3.10. Since

V.v/ \ Bn ¤ ;, V.v/ \ ¹y D 0º contains a point with x coordinate at least cn0
=2

(the factor 1=2 is not optimal, but acceptable for the purposes of the proof). Let

� WD TA.v/=2, Lemma 3.8 gives
cn0

2
� 5h� , i.e.

(9) � D
TA.v/

2
�

1

5h
�

cn0

2
:



Example of minimizer of the average-distance problem 37

By construction, v can talk only to points in the union
S

n�n0
Bn, which satis�es

(10) �j

�

[

n�n0

Bn

�

�
X

n�n0

mn:

Combining estimate (9), (10) with Proposition 2.6 gives

(11)
1

5h
�

cn0

2
� � �

�

4�

X

n�n0

mn;

which is a contradiction (independently of n0) in view of (C1). �

The next result proves that no corner receives mass from distinct balls Bn1
,

Bn2
, n1 ¤ n2.

Lemma 3.14. For index j and minimizer † 2 argmin E�
�j

, there exists no

corner v 2 † and indices n1 < n2 such that both V.v/ \ Bn1
and V.v/ \ Bn2

are

non empty.

Proof. Assume the opposite, i.e. there exists a corner v 2 † and indices

n1 < n2 such that

V.v/ \ Bn1
¤ ;; V .v/ \ Bn2

¤ ;:

Q�Q�

�

v

V .v/

†

Bn�

BnC

¹y D 0º

Figure 6. If v talks to points in two distinct balls, L1.V .v/ \ ¹y D 0º/ is large, thus the

turning angle TA.v/ is large. But there is not enough mass to allow for such large turning

angle. Here we omitted representing the balls (if these exist) Bn with n� < n < nC. The

relation between � and Q� is 2� D � � 2 Q� D � � TA.v/.
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Let

n� WD inf¹nW V.v/ \ Bn ¤ ;º; nC WD sup¹nW V.v/ \ Bn ¤ ;º:

The contradiction assumption ensures n� < nC. Note that this gives

L
1.V .v/ \ ¹y D 0º/ � .cn�

� cnC
/=2

(again factor 1=2 is not optimal but acceptable for the purposes of the proof) since:

� V.v/ intersects both Bn�
and BnC

,

� †.ˇ; ¹x D 0º/ � #� (with ˇ de�ned as the bisector of V.v/) in view of

Lemma 3.10 (hence ˇ is almost orthogonal to ¹y D 0º).

Lemma 3.8 gives

(12) 4h �
TA.v/

2
�

4

5
L

1.V .v/ \ ¹y D 0º/ �
2

5
.cn�

� cnC
/:

However, since by construction v can talk only to points in
SnC

nDn�
Bn, Proposi-

tion 2.6 gives

(13) TA.v/ �
�

2�
�j

�

nC
[

nDn�

Bn

�

D
�

2�

nC
X

nDn�

mn;

thus

(14)
�

�

nC
X

nDn�

mn D 2h �
�

2�

nC
X

nDn�

mn

(13)

� 2h TA.v/
(12)

�
2

5
.cn�

� cnC
/:

This is a contradiction (in view of (C1)) for any n� and nC. �

Combining Lemmas 3.13 and 3.14, we obtain:

� for any index j , any minimizer † 2 argmin E�
�j

contains in�nitely many

corners.

Consider an index j and a minimizer † 2 argmin E�
�j

: let Cn be the set of corners

(of †) talking to points in Bn. Combining Lemmas 3.12 and 3.14 gives:

� for any indices n�; nC with n� � nC, any point in
SnC

nDn�
Cn can talk only

to points in
SnC

nDn�
Bn.

The next result proves that given two corners v1 ¤ v2, then their wedges are

disjoint.

Lemma 3.15. For any index j and minimizer † 2 argmin E�
�j

, and distinct

corners v1; v2 2 †, the intersection V.v1/ \ V.v2/ is empty.
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Proof. The proof follows by applying the exact same arguments from Lemma 3.7

of [7] to corners of †. �

The next result estimates the optimal turning angle in relation to the mass

projecting on a corner. In particular it gives a crucial lower bound estimate.

Lemma 3.16. For any index j , minimizer † 2 argmin E�
�j

and corner v 2 †,

let TM.v/ WD TM.�j ; v; †/. Then it holds

2� sin
TA.v/

2
� TM.v/ � 2� tan

TA.v/

2
:

Moreover, if TA.v/ � 0:01 then

TA.v/

TM.v/=�
�

1

2
:

Note that we will mostly consider corners v talking to points in supp.�light/,

and Proposition 2.6 gives that the amplitude of the wedge V.v/ does not exceed
��
2�

� 0:01.

Proof. The proof uses the exact same arguments from [7, Lemma 3.5]. �

The next result proves that there exist in�nitely many indices n for which there

exists a corner vn receiving a positive fraction of the mass supported in Bn.

Lemma 3.17. For any index j and † 2 argmin E�
�j

it holds:

� for any n there exists a corner vn 2 † satisfying TM.�j ; vn; †/ � mn=4.

Moreover, TA.vn/ � mn=4.

Proof. Let † be an arbitrary minimizer of E�
�j

. The proof follows by applying

the exact same construction (and related arguments) from [7, Lemma 3.8] to

corners of †j . Here we present a brief sketch. Let ¹viº be the corners talking to

points in Bn, f a parameterization of †, ti WD f �1.vi/ and Mi WD TM.�j ; vi ; †/.

Assume

(15) Mi1 C Mi2 � mn=2 for all i1; i2 2 ¹1; : : : ; H º; i1 ¤ i2:

The goal is to prove that assumption (15) cannot hold for su�ciently large n.

Claim. For any index i , except at most two, both l˙
i must intersect the bor-

der @Bn.



40 Lu, X. Y.

This is proven by using the exact same arguments from the proof of Lemma 3.8

of [7]. Elementary geometric arguments (for further details we refer to Lemma 3.8

of [7]) give

d.vi ; Bn/ � h=10 � h=100 D 0:09h .i D 1; : : : ; H/;

min
z2l�

i
; jz�vi j�0:09h

d.z; lC
i / � 0:09h sin TA.vi/;

hence

(16) min
z2l�

i
; jz�vi j�0:09h

d.z; lC
i / � 0:09h sin TA.vi/ �

0:09

2
h TA.vi/:

The last inequality holds since (C1) gives �mn=.2�/ � ��=.2�/ � 0:001=2, and

for any x 2 Œ0; 0:001=2� it holds sin x � x=2. Since for any index i , except at most

two (which we denote by i 0 and i 00), both l˙
i intersect @Bn, choose points

w˙
i 2 l˙

i \ @Bn i D 1; : : : ; H; i … ¹i 0; i 00º:

Clearly V.vi/ \ @Bn contains an arc connecting w�
i and wC

i . Thus

H
1.V .vi/ \ @Bn/ � min

z2l�
i

; jz�vi j�0:09h
d.z; lC

i /

(16)

�
0:09

2
h TA.vi /

Lemma 3.16
�

0:09h

2

Mi

2�
�<1=2; hD1

�
0:09

2
Mi ;

(17)

Lemma 3.15 gives V.vi1/ \ V.vi2/ D ; whenever i1 ¤ i2. Summing over indices

i 2 ¹1; : : : ; H ºn¹i 0; i 00º gives

(18) H
1.@Bn/ �

H
X

iD1; i¤i 0;i 00

H
1.V .vi/ \ @Bn/

(17)

�

H
X

iD1; i¤i 0;i 00

0:09

2
hMi

(15)

�
0:09mn

4
:

Note that (C1) gives inf¹n 2 NW 0:09
4

ms > 2�%s for any s � nº D 1. Thus

H
1.@Bn/ �

H
X

iD1; i¤i 0;i 00

H
1.V .vi/ \ @Bn/

(18)

�
0:09

4
hmn > 2�%n D H

1.@Bn/ for all n;
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which is a contradiction. Thus (for any n � 1) assumption (15) cannot hold,

and (for any n) there exist indices i�
n ; i��

n such that Mi�
n

C Mi��
n

� mn=2, i.e.

max¹Mi�
n

; Mi��
n

º � mn=4. Since � < 1=2, using Lemma 3.16 gives

max¹TA.vi�
n
/; TA.vi��

n
/º � max¹Mi�

n
; Mi��

n
º=2� � mn=4;

and the proof is complete. �

3.3 – Passing to the limit

Now we have to pass to the limit j ! C1. The crucial step is to prove that corners

are far apart. This will be achieved over two lemmas. For reader’s convenience,

the proofs of Lemmas 3.18 and 3.19 are presented in Section 4.

Lemma 3.18. For any index j , minimizer † 2 argmin E�
�j

, index n and corner

v talking to some point in Bn, it holds:

� V.v/ \ ¹y D 0º does not contain points q with jqx � cnj > cn=10.

Here the constant 1=10 (appearing in jqx � cnj > cn=10) is quite arbitrary, and

its role is to ensure that V.v/ contains only points with x coordinate close to cn.

Lemma 3.19. For any index j , minimizer † 2 argmin E�
�j

, and corners vni

(i D 1; 2) talking to points in Bni
(i D 1; 2), it holds

jvn1
� vn2

j � 0:8cmin¹n1;n2º:

The constant 0:8 (appearing in 0:8cmin¹n1;n2º) is quite arbitrary, but acceptable

for our purposes since it ensures that vn1
and vn2

are far apart for any j .

Now we can pass to the limit j ! C1: for any index j choose a minimizer

†j 2 argmin E�
�j

, and let fj W Œ0; 1� ! †j a constant speed bijective parameteri-

zation. Since ¹�j º
�
*�, upon subsequence it holds (using Lemma 2.8) ¹fj º ! f

uniformly, for some † 2 argmin E�
� and parameterization f W Œ0; 1� ! †. Thus

¹†j º
dH

�!† 2 argmin E�
�:

Lemma 3.17 proves the existence of n0 (independent of j ) such that for any

n � n0, each minimizer †j contains a corner v
j
n satisfying TA.v

j
n/ � mn=4.

In other words, the measure f 00
j has an atom of measure at least mn=4 at time

t
j
n WD f �1

j .v
j
n/. Again passing to the limit j ! C1, it holds (upon subsequence)
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¹t
j
n º ! tn and ¹f 00

j º
�
*f 00, thus f 00 has an atom of measure at least mn=4 in tn. Note

that an atom for the measure f 00 corresponds to a jump for the tangent derivative

f 0, i.e. a corner for †.

Lemma 3.19 ensures that vn1
¤ vn2

whenever n1 ¤ n2, hence † has in�nitely

many corners. Consider a sequence ¹vnº � † of corners, not de�nitely constant.

Let v be an accumulation point of ¹vnº. It remains to prove that (upon choosing

suitable sequence ¹vnº) such v is not a corner itself.

Lemma 3.20. Consider an arbitrary sequence ¹vsº such that vs talks to points

in Bs , i.e. jvs � zs j D d.zs ; †/. Then it admits an accumulation point v which is

not a corner itself.

Proof. The same argument from Lemma 3.9 proves that the intersection

† \ ¹x D lº is a singleton for any l 2 Œ�L=2; L=2�. The same argument from

Lemma 3.12 proves that if there exist v1; v2 2 † and z1 2 Bn1
, z2 2 Bn2

with

n1 > n2 such that jvi � zi j D d.zi ; †/ (i D 1; 2), then .v1/x < .v2/x. Thus it

is possible to choose a sequence ¹vsº � † such that vs talks to some zs 2 Bs

(i.e. jvs � zs j D d.zs ; †/), hence ¹.vs/xº is strictly decreasing. Let v be an

accumulation point of ¹vsº. It remains to prove that such v is not a corner itself.

It su�ces to show that there exist no index n and point z 2 Bn such that jv � zj D

d.z; †/: if such couple n; z exists, then choose an index N > n and it holds

jvN � zN j D d.zN ; †/ but .vN /x > vx, which (by the same argument from

Lemma 3.12) is a contradiction. �

Thus we have proven:

Theorem 3.21. In R
2, there exists a measure �, a parameter �, and a mini-

mizer † 2 argmin E�
� satisfying:

� † is a simple curve,

� there exists a sequence ¹vnº � † such that TA.vn/ � mn=4 for any n,

� there exists point v 2 † such that ¹vnº ! v 2 †, and TA.v/ D 0.

As consequence, Theorem 1.3 is proven. Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. In [2] it has been proven that any minimizer z†

of (1) satis�es H
1.z†/ D H

1.†/, thus if † is not a minimizer of (1), choosing

†� minimizer of (1) would give

F�.†�/ < F�.†/; H
1.†�/ D H

1.†/;

contradicting † 2 argmin E�
�. �
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4. Appendix: proofs of lemmas from Section 3

4.1 – Lemmas from Subsection 3.1

Proof of Lemma 3.1. The proof will be split in two parts.

Claim 1. Any minimizer has at most 2 endpoints.

Proposition 2.6 proves that any minimizer contains at most Œ1=�� endpoints,

and (C1) implies Œ1=�� < 3, thus the claim is proven.

Claim 2. For su�ciently small �, any minimizer of E�
��

has positive length.

Consider the measure

(19) �0 WD �light C
1 � �

2
.ı.�L;h/ C ı.L;h//;

and clearly ¹��º
�
*�0 as � ! 0 (here we highlighted the dependency on �). For

any arbitrary point P WD .x0; y0/ it holds

E�
�0

.¹P º/ �
1 � �

2
.jP � .�L; h/j C jP � .L; h/j/ � .1 � �/L:

Let

(20) ƒ WD J.�L; h/; .L; h/K;

and

E�
�0

.ƒ/ � 2�L C 2h�
.C1/
� .1 � 2�/L C 2�

.C1/
< .1 � �/L � E�

�0
.¹P º/:

Thus any minimizer of E�
�0

has positive length.

Since ¹��º
�
*�0 as � ! 0, for sequences ¹�nº ! 0; ¹†n 2 argmin E�

��n
º,

there exists †1 2 argmin E�
�0

such that (upon subsequence) ¹†nº
dH

!†1, and we

just proved that such a †1 has positive length. Thus the proof is complete. �

Proof of Lemma 3.2. Let �0 be the measure de�ned in (19), and let † be an

arbitrary minimizer of E�
�0

.

Claim. Any minimizer † 2 argmin E�
�0

contains ¹.˙L; h/º.
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Choose an arbitrary point p0 2 argminz2† jz � .�L; h/j, and consider the

competitor
z† WD † [ Jp0; .�L; h/K:

By construction

F�0
.†/ � F�0

.z†/ � jp0 � .�L; h/j
1 � �

2
; H

1.z†/ � H
1.†/ C jp0 � .�L; h/j:

The minimality of † implies .1 � �/jp0 � .�L; h/j=2 � �jp0 � .�L; h/j, and since

�
(C1)
< 1=2�� < .1��/=2, it follows jp0 � .�L; h/j D 0. Thus the claim is proven.

Assume the thesis is false, i.e. there exists " > 0 and a sequence ¹�nº ! 0

such that for any n there exists a minimizer †n 2 argmin E�
��n

satisfying

d..�L; h/; †n/ � ":

Since ¹��n
º

�
*�0 as n ! 1, there exists †1 2 argmin E�

�0
such that (upon

subsequence) ¹†nº
dH

!†1. Thus we have

� d..�L; h/; †n/ � " for any n,

� .�L; h/ 2 †1, but ¹†nº
dH

!†1.

This is a contradiction. The proof for .L; h/ is analogous. �

Proof of Lemma 3.3. Lemmas 3.1 and 3.2 give the existence of �0 > 0 such

that for any � 2 .0; �0/ and � 2
�

1�3�
2

; 1�2�
2

�

, any minimizer † 2 argmin E�
��

satis�es:

� † is a simple curve with positive length,

� upon reducing the value of �0, † contains points p; q with jp � .�L; h/j,

jq � .L; h/j � h=4.

Choose an arbitrary minimizer †. Let f W Œ0; 1� ! † be a constant speed bijective

parameterization, and let tp WD f �1.p/, tq WD f �1.q/. Since the mass projecting

on each endpoint (i.e. f .0/ and f .1/) is at least �, the mass projecting on f ..0; 1//

is at most 1 � 2�. Moreover, the existence of p implies that any point z 2

B..�L; h/; �/ satis�es jz � pj � 2� C h=4. Since at least � mass projects on f .0/,

this forces (upon using parameterization gW Œ0; 1� ! †, g.t/ WD f .1 � t / instead

of f ) jf .0/ � .�L; h/j � h=4 C 2�, thus (upon further imposing �0 � h=12)

jf .0/ � .�L; h/j � h=4 C � � h=3:

Analogously jf .1/ � .L; h/j � h=3, hence f .0/ and f .1/ belong to the half-plane

¹y � 2h=3º.
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If f ..0; 1// contains a point f .T / 2 ¹y D h=10º, then

kf 0kT V � � � 7f .0/f .T /f .1/:

Combining with conditions

jf .0/ � .�L; h/j � h=3; jf .1/ � .L; h/j � h=3;

elementary geometry gives that the amplitude of angle 7f .0/f .T /f .1/ is bounded

from above by the amplitude of angle 3p�p0pC where

p� WD .�L � h=3; 2h=3/;

p0 WD .0; 1=10/;

pC W D .L C h=3; 2h=3/:

Direct computation gives

3p�p0pC D 2 arctan
L C h=3

2h=3 � 1=10

H) kf 0kT V..0;1// � � � 7f .0/f .T /f .1/ � � � 2 arctan
L C h=3

2h=3 � 1=10
:

Proposition 2.6 gives

kf 0kT V..0;1// �
�

2�
.1 � 2�/;

thus a necessary condition (for † \ ¹y D h=10º ¤ ;) is

(21) � � 2 arctan
L C h=3

2h=3 � 1=10
�

�

2�
.1 � 2�/;

which contradicts (C1). As f .0/; f .1/ 2 ¹y > h=10º, this ensures f .Œ0; 1�/ D † �

¹y > h=10º. �

4.2 – Lemmas from Subsection 3.2

Proof of Lemma 3.8. Assume without loss of generality p 2 ¹x D 0º.

Simple geometric considerations give that jp0 � p00j is maximized (see Figure 7)

when p 2 ¹y D 2hº.
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p

q

x

y

0 p0 p000 p00

ˇ

Figure 7. This is a schematic representation of the con�guration if � � � . The proof for

case � � � is identical.

Assume � � � . Let q 2 Jp; p00K satisfying jp � p0j D jp � qj, and denote by

p000 the intersection Jp; p0K \ ˇ. Direct computation gives

bqp0p D �=2 � �; 2pp000p0 D �=2 � �;

1p0qp00 D �=2 C �; 1p00p0p D �=2 � � � �;

2pp000p0 D �=2 � �; 2p000p0q D �;

bqp0p D �=2 � �; jp � p000j D 2h= cos �:

Applying sine theorem to triangles 4pp0p000 and 4pp0p00 gives

jp � p0j D jp � p000j �
sin2pp000p0

sin 2p000p0p
D

2h

cos.� � �/

and

jp � p00j D jp � p0j �
sin 2�

cos.� C �/
D

2h sin 2�

cos.� � �/ cos.� C �/

concluding the proof for case � � � . Case � � � is solved with the same

arguments.
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Since �; � � 0:01, inequality

2h sin 2�

cos.� � �/ cos.� C �/
� 5h�

holds (although this estimate is clearly not sharp, it is su�cient for the purposes

of this paper), concluding the proof. �

Proof of Lemma 3.9. Fix an index j and a minimizer † 2 argmin E�
�j

.

Let f W Œ0; 1� ! † be a bijective, constant speed parameterization.

Assume the opposite, i.e. there exist distinct times t0 < t1 and l 2 Œ�L=2; L=2�

such that ¹f .t0/; f .t1/º � ¹x D lº. Thus the tangent derivative f 0 turns by at least

� in the time interval Œt0; t1�. Since Lemma 2.6 gives kf 0jŒt0;t1�kT V � ��
2�

, this im-

plies the existence of t 2 Œt0; t1� such that f .t/ talks to points in supp.�heavy/.

Note that (C3) gives the existence of p1, p2 such that max¹jp1 � .�L; h/j,

jp2 � .L; h/jº � 1, hence for any point z 2 supp.�heavy/ it holds

min¹jz � p1j; jz � p2jº � 1 C 2�:

If f .t/ talks to points in supp.�heavy/, then there exists w 2 supp.�heavy/ such that

jw � f .t/j � 1 C 2�. Without loss of generality assume w 2 B..�L; h/; �/, and

f .0/ is the endpoint talking to points in B..�L; h/; �/. This gives f .t/ 2 ¹x �

�L C 1 C 2�º. Consider the competitor

†0 WD .†nf .Œt0; t1�// [ Jf .t0/; f .t1/K:

Since any point z 2 B..�L; h/; �/ satis�es d.z; †/ � jz � f .0/j � 1 C 2�,

it follows that any such z 2 B..�L; h/; �/ projecting on f .Œt0; t1�/ � † can now

project on f .0/ 2 †0, hence d.z; †0/ � d.z; †/ C 1 C 2� and

(22) F�j
.†0/ � F�j

.†/ � �j .B..�L; h/; �//.1 C 2�/ <
1

2
C �:

The last inequality is due to

�j .B..�L; h/; �//
(7)
D �.B..�L; h/; �// <

1

2
:

Since f .t0/; f .t1/ 2 ¹x D lº � ¹x � �L=2º, f .t/ 2 ¹x � �L C 1 C 2�º, and f

is injective, it follows

H
1.f .Œt0; t1�// D H

1.f .Œt0; t �// C H
1.f .Œt; t1�// � 2.L=2 � 1 � 2�/;

hence

H
1.†/ � H

1.†0/ � 2
�L

2
� 1 � 2�

�

� jf .t0/ � f .t1/j

� L � .2 C 4�/ �
�

2 �
1

10

�

h:

(23)
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Combining (22), (23), and (C1) gives E�
�j

.†0/ < E�
�j

.†/, contradicting the

minimality of † and concluding the proof. �

Proof of Lemma 3.10. Fix an index j and a minimizer † 2 argmin E�
�j

.

Let f W Œ0; 1� ! † be a bijective, constant speed parameterization. Lemma 3.4

gives † � ¹�h=10 < y < 2hº, and Lemma 3.2 implies that † \ ¹x D �L=2º and

† \ ¹x D L=2º are both singletons.

Lemma 3.9 gives that any point f .t/, t 2 Œt0; t1� can only talk to points in

supp.�light/. Since f is C 1 regular outside a countable set (since any corner

receives a positive amount of mass, see [9]), there exists a sequence ¹skº & t0

such that

� jf .sk/ � f .t0/j � 1 for any k,

� f is C 1 regular at sk for any k.

Claim. For any k it holds †.f 0.sk/; ¹y D 0º/ � #�=2.

We proof the claim by a contradiction argument. Proposition 2.6 gives that the

total variation of f 0
jŒsk ;t1�

satis�es

(24) kf 0
jŒsk ;t1�kT V �

��

2�
;

and if there exists sk such that †.f 0.sk/; ¹y D 0º/ > #�=2, then it follows:

� †.f 0.s/; ¹y D 0º/ � 2h=L, i.e. j arctan f 0.s/j � 2h=L for any s 2 Œsk ; t1�

where f 0.s/ is well de�ned,

� for any s 2 Œsk; t1� where f 0.s/ is not well de�ned, let f 0
�.s/ (resp. f 0

C.s/)

be the left (resp. right) tangent derivative, and both †.f 0
�.s/; ¹y D 0º/ and

†.f 0
C.s/; ¹y D 0º/ exceed 2h=L in view of (24) and j arctan f 0.sk/j � #�=2,

� arctan f 0.s/ cannot change sign, in view of (24) and j arctan f 0.sk/j � #�=2.

Since Lemma 3.4 gives f .sk/ 2 ¹h=10 < y < 2hº, the following dichotomy

arises.

� If arctan f 0.sk/ � #�=2, then

– arctan f 0.s/ � 2h=L for all s 2 Œsk; t1� where f 0.s/ is well de�ned,

– for any s 2 Œsk ; t1� where f 0.s/ is not well de�ned it holds

arctan f 0
�.s/ � 2h=L; arctan f 0

C.s/ � 2h=L:
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Since jf .sk/ � f .t0/j � 1, f .t0/ 2 ¹x D �L=2º, it follows

(25) f .t1/y �
h

10
C

2h

L
.L � 1/

(C1)
> 2h;

contradicting Lemma 3.4.

� Similarly, if arctan f 0.sk/ � �#�=2, then the same argument gives

(26) f .t1/y � 2h �
2h.L � 1/

L

(C1)
<

h

10
;

again contradicting Lemma 3.4.

Thus in both cases we obtain a contradiction, proving the claim. If there exist

v1; v2 2 † \ ¹�L=2 � x � L=2º such that †.Jv1; v2K; ¹y D 0º/ � #�, then

there exists a time t 0 such that the †.f 0.t 0/; ¹y D 0º/ > #�=2, contradicting the

arguments above. Thus the proof is complete. �

Proof Lemma 3.11. Fix an index j and a minimizer † 2 argmin E�
�j

. Let

f W Œ0; 1� ! † be a bijective, constant speed parameterization. Note that since

any point of † \ ¹�L=2 � x � L=2º can talk only to points in
S1

nD1 Bn, and

�j

�
S1

nD1 Bn

�

D �, hence Lemma 2.6 gives TA.v/ � ��
2�

. Let tv WD f �1.v/,

and for any w 2 V.v/, †.Jw; vK; f 0
C.v// (with f 0

C.v/ de�ned as the right tangent

derivative at v) is at least �
2

� ��
2�

. Let t0, t1 be the unique times such that

f .t0/ 2 ¹x D �L=2º. f .t1/ 2 ¹x D L=2º. Lemma 3.10 gives

� for any s 2 Œt0; t1� where f 0.s/ is well de�ned it holds j arctan f 0.s/j � #�,

i.e. †.f 0.s/; ¹y D 0º/ � #�,

� for any s 2 Œt0; t1� where f 0.s/ is not well de�ned, it holds j arctan f 0
�.s/j�#�

and j arctan f 0
C.s/j � #�, where f 0

�.s/ denotes the left tangent derivative, i.e.

†.f 0
�.s/; ¹y D 0º/ � #� and †.f 0

C.s/; ¹y D 0º/ � #�.

Thus

†.Jw; vK; ¹y D 0º/ �
�

2
�

��

2�
� #� > #�;

contradicting Lemma 3.10, and concluding the proof. �

Proof of Lemma 3.12. Fix an index j and a minimizer † 2 argmin E�
�j

.

Let f W Œ0; 1� ! † be a constant speed bijective parameterization. Assume the

thesis is false, i.e. there exist corners v1; v2 2 † such that vi talks to points in Bni

(i D 1; 2) with n1 > n2 and .v1/x � .v2/x. This implies the existence of points

z1 2 Bn1
, z2 2 Bn2

(thus hypothesis n1 > n2 gives .z2/x > .z1/x), such that

d.zi ; †/ D jzi � vi j, i D 1; 2.
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Case .v1/x D .v2/x . This implies that † intersects ¹x D .v1/xº in at least

two points (v1 and v2), contradicting Lemma 3.9.

Case .v1/x > .v2/x . Lemma 3.11 gives Jz1; v1K\† D ¹v1º and Jz2; v2K\† D

¹v2º. Since vi talks to zi (i D 1; 2) it follows zi 2 V.vi/ (i D 1; 2). Let l be the axis

of Jv1; v2K, and let Ri be the half-plane (with boundary l) containing vi (i D 1; 2).

l

†

R2

R1

¹x D cº

z1

z2

v1

v2

Figure 8. A schematic representation of case l ¬ ¹x D cº.

Since

z1 2 Bn1
D B..cn1

; 0/; %n1
/; z2 2 Bn2

D B..cn2
; 0/; %n2

/; n1 > n2;

there exists c 2 .cn1
C %n1

; cn2
� %n2

/ ((C1) gives cn1
C %n1

< cn2
� %n2

for

any n1 > n2) such that z1 2 ¹x < cº, z2 2 ¹x > cº. Lemma 3.10 implies

†.Jv1; v2K; ¹y D 0º/ � #�, hence †.l; ¹x D cº/ � #�.

� Case l k ¹x D cº . This implies that the line through v1; v2 is parallel to

¹y D 0º, then z1 2 ¹x < cº and .v1/x > .v2/x imply jz1 � v2j < jz1 � v1j,

which is a contradiction.

� Case l ¬ ¹x D cº . Conditions jz1 �v1j � jz1 �v2j and jz2 �v2j � jz2 �v1j

imply z1 2 R1, and z2 2 R2. Hence z1 2 R1 \ ¹x < cº, z2 2 R2 \ ¹x > cº.

Note that since †.l; ¹x D cº/ � #�, it follows †.Jz1; z2K; ¹x D cº/ � #�,

hence †.Jz1; z2K; ¹y D 0º/ 2 Œ�=2 � #�; �=2 C #��. This is a contradiction
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since

Bni
WD B..cni

; 0/; %ni
/ � Œcni

� %ni
; cni

C %ni
� � Œ�%ni

; %ni
�; i D 1; 2;

and direct computations (using elementary analytic geometry) gives that the

angle between any line intersecting both Œcni
� %ni

; cni
C %ni

� � Œ�%ni
; %ni

�

(i D 1; 2) and ¹y D 0º does not exceed

%n2
C %n1

cn2
� %n2

� .cn1
C %n1

/

.C1/
<

�

2
� #� < †.Jz1; z2K; ¹y D 0º/:

Thus in both cases a contradiction arises, and the proof is complete. �

4.3 – Lemmas from Subsection 3.3

Proof of Lemma 3.18. Fix an index j , a minimizer † 2 argmin E�
�j

,

and corner v 2 †. Since v talks to points in Bn, it follows V.v/ \ Bn ¤ ;.

Lemma 3.14 gives that v talks only to points in Bn, and denoting by �˙
v the

left/right tangent derivative in v (the exact order is not relevant), Lemma 3.10 gives

†.��
v ; ¹y D 0º/ � #�, †.�C

v ; ¹y D 0º/ � #�, hence the bisector of V.v/ (which

we denote by ˇ) is almost orthogonal to ¹y D 0º, that is †.ˇ; ¹x D 0º/ � #�.

ƒ

v

V .v/

w

¹x D cn � %nº

¹x D cn � %nº

x
Bn

¹y D %nº

¹y D �%nº

Figure 9. Representation of an extremal case, when V .v/ \ ¹y D 0º can contain points

farthest from .cn; 0/.
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Since v talks only to points Bn, Lemma 3.16 implies that the amplitude of V.v/

does not exceed �mn

2�
. Lemma 3.8 gives

(27) L
1.V .v/ \ ¹y D 0º/ �

5h�

4�
mn:

Since V.v/ \ Bn ¤ ;, and by construction

Bn D B..cn; 0/; %n/ � Œcn � %n; cn C %n� � Œ�%n; %n�

it follows V.v/ \ Œcn � %n; cn C %n� � Œ�%n; %n� ¤ ;, and elementary geometry

gives that

inf
x2V.v/\¹yD0º;

z2Œcn�%n;cnC%n��Œ�%n;%n�

jx � yj

is maximum (i.e. V.v/ \ ¹y D 0º is farthest from Œcn � %n; cn C %n� � Œ�%n; %n�,

and V.v/ \ ¹y D 0º can contain points farthest away from .cn; 0/) when

V.v/ \ Œcn � %n; cn C %n� � Œ�%n; %n�

is a singleton, either ¹.cn � %n; �%n/º or ¹.cn C %n; �%n/º. Consider the case

V.v/ \ Œcn � %n; cn C %n� � Œ�%n; %n� D ¹.cn � %n; �%n/º. Denote by ƒ � V.v/

the half-line (starting in v) through .cn � %n; �%n/, and let w WD ƒ \ ¹y D 0º

(ƒ ¬ ¹y D 0º since †.ƒ; ¹x D 0º/ � #� < �=2). Synthetic geometric

considerations give jw � .cn � %n; 0/j � %n tan #�, hence

(28) jw � .cn; 0/j � %n.1 C tan #�/;

and for any z 2 V.v/ \ ¹y D 0º it holds

jz � .cn; 0/j � jz � wj C jw � .cn; 0/j � L
1.V .v/ \ ¹y D 0º/ C jw � .cn; 0/j

(27), (28)

�
5h�

4�
mn C %n.1 C tan #�/:

Note that #� � 0:01, hence

(29)
5h�

4�
mn C %n.1 C tan #�/ �

5h�

4�
mn C %n.1 C tan 0:01/

(C1)
�

cn

10
for all n:

The proof for case V.v/ \ Œcn � %n; cn C %n� � Œ�%n; %n� D ¹.cn C %n; �%n/º is

analogous. �
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Proof of Lemma 3.19. Assume n1 < n2, let f W Œ0; 1� ! † be a constant

speed, bijective parameterization, and let tni
WD f �1.vni

/, i D 1; 2. Proposi-

tion 2.6 gives

kf 0
jŒtn1

;tn2
�kT V �

�

2�

n2
X

nDn1

mn:

Let ˇi be the bisector of V.vni
/, i D 1; 2. It holds †.ˇ1; ˇ2/ � �

2�

Pn2

nDn1
mn

since any point f .t/ (t 2 .tn1
; tn2

/) can only talk to points in
Sn2

nDn1
Bn. Let

� ˇ3 the half-line starting in vn1
and parallel to ˇ2;

� qi WD ˇ1 \ ¹y D 0º, i D 1; 2; 3. Such q1 exists since ˇ1 ¬ ¹y D 0º as

†.ˇ1; ¹x D 0º/ � #� < �=2; similarly for the existence of q2 and q3;

� w 2 ˇ3 such that Jvn2
; wK k ¹y D 0º, hence the quadrilateral q2q3vn2

w is a

parallelogram.

vn1

vn2
w

q1q3q2

ˇ1ˇ2ˇ3

Figure 10. The construction and relevant quantities.

By construction jw � vn2
j D jq2 � q3j, and

(30) 3vn1
wvn2

2 Œ�=2 � #�; �=2 C #��

since Jvn2
; wK k ¹y D 0º and †.ˇ3; ¹x D 0º/ � #�. Thus 3vn2

vn1
w 2 Œ�=2 � 2#�,

�=2 C #��. Applying sine theorem to triangle 4vn1
vn2

w gives

(31)
jvn2

� vn1
j

sin 3vn1
wvn2

D
jvn2

� wj

sin 3vn2
vn1

w
D

jq2 � q3j

sin 3vn2
vn1

w
:

We need a lower bound estimate on jq2 � q3j. Note that 2q3vn1
q1 D †.ˇ1; ˇ2/ �

�
2�

Pn2

nDn1
mn. Since †.ˇ3; ¹x D 0º/ � #�, Lemma 3.8 gives

(32) jq3 � q1j � 5h 2q3vn1
q1 �

5h�

2�

n2
X

nDn1

mn

(C1)
� 0:01jcn1

� cn2
j:
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Note that (C1) gives cn2
� 0:01cn1

. Since by de�nition qi 2 V.vni
/ \ ¹y D 0º

(i D 1; 2), Lemma 3.18 gives j.qi /x � cni
j � cni

=10 (i D 1; 2), thus

.q1/x � 0:9cn1
;

and

.q2/x � 1:1cn2

(C1)
� 0:011cn1

�! jq1 � q2j � .0:9 � 0:011/cn1
D 0:889cn1

:

Combining with (32) gives

jq1 � q2j

jq1 � q3j
�

0:889cn1

0:01cn1

D 88:9 �! jq2 � q3j �
88:9

89:9
jq1 � q2j;

since clearly the value of jq2 � q3j is minimum when q3 2 Jq1; q2K. Combining

with (31) gives

jvn2
� vn1

j

sin 3vn1
wvn2

D
jq2 � q3j

sin 2vn2vn1
w

�
88:9

89:9
�

jq1 � q2j

sin 3vn2
vn1

w
;

and since 3vn1
wvn2

(resp. 3vn2
vn1

w) is valued in Œ�=2 � #�; �=2 C #�� (resp.

Œ�=2 � 2#�; �=2 C #��), while #� D 4h=L C ��=� � 4=109 C 0:001, it follows

88:9

89:9
�
sin 3vn1

wvn2

sin 3vn2
vn1

w
� 0:889 �

88:9

89:9
sin

��

2
� 2.4 � 10�9 C 0:001/

�

� 0:889 � 0:8;

hence

jvn2
� vn1

j �
88:9

89:9
�
sin 3vn1

wvn2

sin 3vn2
vn1

w
� jq1 � q2j � 0:8cn1

:

Thus the proof is complete. �
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