Cyclic non-*S*-permutable subgroups and non-normal maximal subgroups

Gholamreza R. Rezaeezadeh (*) – Zahra Aghajari (**)

ABSTRACT – A finite group G is said to be a T-group (resp. PT-group, PST-group) if normality (resp. permutability, S-permutability) is a transitive relation. Ballester-Bolinches et al. gave some new characterizations of the soluble T-, PT- and PSTgroups. A finite group G is called a T_c -group (resp. PT_c -group, PST_c -group) if each cyclic subnormal subgroup is normal (resp. permutable, S-permutable) in G. The present work defines the NNM_c -, PNM_c -, and SNM_c -groups and presents new characterizations of the wider classes of soluble T_c -, PT_c -, and PST_c -groups.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20F16, 20E28, 20E15.

KEYWORDS. Finite groups, permutability, sylow-permutability, maximal subgroups, supersolubility.

1. Introduction

In the present work, all groups are finite. Recall that a subgroup H of a group G is said to be S-permutable (or S-quasinormal) if HP = PH for all Sylow subgroups P of G. Kegel proved that every S-permutable subgroup is subnormal. A group G is a PST-group if S-permutability is a transitive relation (i.e., if H and K are subgroups of G such that H is S-permutable in K and K is S-permutable in G, then H is S-permutable in G). It follows from Kegel's result that PST-groups are exactly those groups in which every subnormal subgroup is S-permutable.

E-mail: rezaeezadeh@sci.sku.ac.ir

(**) *Indirizzo dell'A*.: Department of Pure Mathematics, Shahrekord University, P.O. Box 115, Shahrekord, Iran E-mail: Z.Aghajari@stu.sku.ac.ir

^(*) *Indirizzo dell'A*.: Department of Pure Mathematics, Shahrekord University, P. O. Box 115, Shahrekord, Iran

Similarly, groups in which permutability (normality) is transitive relation are called PT-groups (T-groups) and can be identified with groups in which subnormal subgroups are always permutable (normal). Recall that a group G is a PST_c -group if each cyclic subnormal subgroup is S-permutable in G. The classes of PT_c -groups and T_c -groups similarly defined as groups in which cyclic subnormal subgroups are permutable or normal, respectively. Kaplan [8] characterized soluble T-groups by means of their maximal subgroups and some classes of pre-Frattini subgroups. He proved a necessary and sufficient condition for a group G to be a soluble T-group as follows: G is a soluble T-group if and only if every non-normal subgroup of every subgroup H of G is contained in a non-normal maximal subgroup of H.

Ballester-Bolinches *et al.* [3] extended the results from Kaplan [8] and presented new characterizations for soluble PT- and PST-groups. The starting point of their results was the following: let H be a proper permutable (resp. *S*-permutable) subgroup of a soluble group G. Using Kegel's result, H is subnormal in G and so H is contained in a maximal subgroup of G that is normal in G. Following Ballester-Bolinches *et al.* [3] a group G is said to be a PNM-group (resp. SNM-group) if every non-permutable (resp. non-*S*-permutable) subgroup of Gis contained in a non-normal maximal subgroup of G. Many interesting results can be obtained using these concepts. For example, they proved that a group G is a soluble PT-group (resp. PST-group) if and only if every subgroup of G is a PNM-group (resp. SNM-group). They also showed that if G is an SNM-group, then the nilpotent residual $G^{\mathfrak{N}}$ is supersoluble if and only if G is supersoluble. Consequently, if G is a group whose non-nilpotent subgroups are SNM-groups, then G is supersoluble.

Now, we define that a group G is a PNM_c -groups (resp. SNM_c -groups) if every cyclic non-permutable (resp. non-S-permutable) subgroup is contained in a non-normal maximal subgroup. The aim of this paper is to present new characterizations of the wider classes of soluble T_c -, PT_c -, and PST_c -groups. We begin with the following definition.

DEFINITION 1.1. A group G is called an NNM_c -group (resp. PNM_c -group, SNM_c -group) if every cyclic non-normal (resp. non-permutable, non-S-permutable) subgroup of G is contained in a non-normal maximal subgroup of G.

2. Preliminaries

We first collect results from Ballester-Bolinches *et al.* [3], as the starting point of our results.

Cyclic non-S-permutable subgroups and non-normal maximal subgroups 95

THEOREM 2.1. A group G is a soluble PST-group if and only if every subgroup of G is an SNM-group.

LEMMA 2.2. Every subgroup of a group G is a PNM-group if and only if every subgroup of G is an SNM-group and all Sylow subgroups of G are Iwasawa groups.

It can be concluded by applying Theorem 2.1 and Lemma 2.2 that:

COROLLARY 2.3. A group G is a soluble PT-group if and only if every subgroup of G is a PNM-group.

Every subgroup of a group G is an NNM-group if and only if every subgroup of G is an SNM-group and all Sylow subgroups are Dedekind; thus, it can be concluded:

COROLLARY 2.4. A group G is a soluble T-group if and only if every subgroup of G is an NNM-group.

THEOREM 2.5. If G is an SNM-group, then the nilpotent residual $G^{\mathfrak{N}}$ is supersoluble if and only if G is supersoluble.

For the sake of easy reference, theorems from Robinson [9] have been provided. These results provide detailed information on the structure of a soluble PST_c -group.

THEOREM 2.6. Let G be a soluble PST_c -group with F = Fit(G) and $L = \gamma_{\infty}(G)$. Then the following hold:

- 1) *L* is an abelian group of odd order;
- 2) p'-elements of G induce power automorphisms in L_p for all primes p;
- 3) $F = C_G(L);$
- 4) G splits conjugately over L;
- 5) $F = \overline{Z}(G) \times L;$
- 6) $\pi(L) \cap \pi(F/L) = \emptyset;$
- 7) G is supersoluble.

Where $\gamma_{\infty}(G)$ is the hypercommutator subgroup or the limit of the lower central series, Fit(G) is the Fitting subgroup, and $\pi(G)$ is the set of prime divisors of the group order.

The class of soluble PST_c -groups is neither subgroup nor quotient closed, which is in contrast to the behavior of soluble PST-groups. Robinson [9] proved:

THEOREM 2.7. If every subgroup of a group G is a PST_c -group, then G is a soluble PST-group.

THEOREM 2.8. Let G be a soluble group. If every quotient of G is a PST_c -group, then G is a PST-group.

3. Main Results

THEOREM 3.1. (1) Let every non-normal maximal subgroup M of a group G does not have a non-cyclic supplement in G. If every subgroup of G is an SNM_c -group, then G is a soluble PST_c -group.

(2) If every subgroup of G is a PST_c -group, then every subgroup of G is an SNM_c -group.

PROOF. (1) Assume that the theorem is not true and let *G* be a counterexample of minimal order. Then every proper subgroup of *G* is a soluble PST_c -group. Using Theorem 2.6(7), every proper subgroup of *G* is supersoluble and so *G* is soluble.

On the other hand, there exists a cyclic subnormal subgroup H of G which is not S-permutable. Let M be a maximal normal subgroup of G containing H. There exists a non-normal maximal subgroup L of G containing H, since G is an SNM_c -group. It is clear that G = ML. Since H is not S-permutable in G, it follows that there exists a Sylow p-subgroup P of G such that P does not permute with H. The choice of the minimality of G implies that H is S-permutable in Mand L. Using Corollary 1.3.3 of [1], there exist Sylow p-subgroups M_0 of M and L_0 of L where $P_0 = M_0L_0$ is a Sylow p-subgroup of G. Let $g \in G$ such that $P^g = P_0$. Hence H permutes with both M_0 and L_0 and so H permutes with P_0 . Let N be a minimal normal subgroup of G contained in M. Since the factor group G/N satisfies the hypothesis and |G/N| < |G|, then HN permutes with P. If (HN)P is a proper subgroup of G, then H will permute with P. This is a contradiction. Therefore, G = P(HN) and g = xy such that $x \in P$ and $y \in HN$. Using Lemma 14.3.A of [5], H is a normal subgroup of HN. Since $HP^g = P^g H$, it follows that $H^{y^{-1}} = H$ permutes with P, which is contrary to the assumption.

(2) It is clear.

LEMMA 3.2. Every subgroup of a group G is a PNM_c -group if and only if every subgroup of G is an SNM_c -group and all Sylow subgroups of G are Iwasawa groups.

PROOF. Assume that every subgroup of G is a PNM_c -group. It is clear that every subgroup of G is also an SNM_c -group. Moreover, every Sylow subgroup P of G is a nilpotent PNM_c -group. Let H be a subgroup of P such that H is not permutable in P. If H is cyclic, then there exists a non-normal maximal subgroup M_1 of P such that $H \subseteq M_1$, which is a contradiction. If H is noncyclic, then $H = M\langle x \rangle$ where M is a maximal subgroup of H of prime index and $x \in H - M$. Either M or $\langle x \rangle$ will not permute in P. If $\langle x \rangle$ does not permute, then there exists a non-normal maximal subgroup M_2 of P such that $\langle x \rangle \subseteq M_2$, which is a contradiction. If M does not permute in P, by the same argument, we have a contradiction. Hence H must be permutable in P. This means that P is an Iwasawa group.

Conversely, assume that every subgroup of *G* is an SNM_c -group and all Sylow subgroups of *G* are Iwasawa groups. Let *K* be a cyclic *S*-permutable subgroup of a subgroup *H* of *G*. Because all Sylow subgroups of *H* are also Iwasawa groups, we can apply Theorem 2.1.10 of [2] to conclude that *K* is permutable in *H*. Hence *H* is a *PNM*_c-group. Consequently every subgroup of *G* is a *PNM*_c-group. \Box

COROLLARY 3.3. (1) Let every non-normal maximal subgroup M of a group G does not have a non-cyclic supplement in G. If every subgroup of G is a PNM_c-group, then G is a soluble PT_c -group.

(2) If every subgroup of G is a soluble PT_c -group, then every subgroup of G is a PNM_c -group.

PROOF. (1) If every subgroup of G is a PNM_c -group, then every subgroup of G is an SNM_c -group according to Lemma 3.2 and so G is a soluble PST_c -group. This implies that every cyclic subnormal subgroup H of G is S-permutable in G. Applying Theorem 2.1.10 of [2], we see that H is permutable in G, since all Sylow subgroups of G are Iwasawa groups. Thus G is a soluble PT_c -group.

(2) It is clear.

LEMMA 3.4. Every subgroup of a group G is an NNM_c -group if and only if every subgroup of G is an SNM_c -group and all Sylow subgroups of G are Dedekind groups.

97

PROOF. Let every subgroup of G be an NNM_c -group. It is clear that G is an SNM_c -group. Let H be a non-normal subgroup of P where $P \in Syl(G)$. If H is cyclic, then there exists a non-normal maximal subgroup M_1 of P such that $H \subseteq M_1$, which is a contradiction. If H is non-cyclic, then $H = M\langle x \rangle$ where M is a maximal subgroup of H of prime index and $x \in H - M$. Either M or $\langle x \rangle$ is not normal in P, since H is not normal in P. If $\langle x \rangle$ is not normal maximal subgroup M_2 of P such that $\langle x \rangle \subseteq M_2$, which is a contradiction. If M is not normal in P, we have a similar contradiction. Thus P is a Dedekind group.

Conversely, let every subgroup of G be an SNM_c -group and every Sylow subgroup of G be a Dedekind group. Let K be an S-permutable subgroup of H such that $H \leq G$. Applying Theorem 2.1.10 of [2], we see that K is normal in H, since all Sylow subgroups of H are also Dedekind groups. Hence H is an NNM_c -group. The above argument implies that every subgroup of G is an NNM_c -group.

COROLLARY 3.5. (1) Let every non-normal maximal subgroup M of a group G does not have a non-cyclic supplement in G. If every subgroup of G is an NNM_c -group, then G is a soluble T_c -group.

(2) If every subgroup of G is a soluble T_c -group, then every subgroup is an NNM_c -group.

PROOF. (1) If every subgroup of G is an NNM_c -group, then every subgroup of G is an SNM_c -group and all Sylow subgroups of G are Dedekind groups. Thus G is a soluble PT_c -group. This implies that every cyclic subnormal subgroup H of G is permutable in G. Applying Theorem 2.1.10 of [2], we see that H is normal in G, since all Sylow subgroups of G are Dedekind groups. Thus G is a soluble T_c -group.

(2) It is clear.

THEOREM 3.6. Let G and each quotient group of G/N be an SNM_c -group. Then $G^{\mathfrak{N}}$ is supersoluble if and only if G is supersoluble.

PROOF. The sufficiency of the condition is evident; we need only prove the necessity of the condition. We use induction on the order of *G*. Let *N* be a minimal normal subgroup of *G*. Then $G^{\mathfrak{N}}N/N$ is the nilpotent residual of *G*/*N* according to Proposition 2.2.8 (1) of [4]. Moreover, $G^{\mathfrak{N}}N/N$ is supersoluble and according to the hypothesis, *G*/*N* is an *SNM*_c-group. By induction, *G*/*N* is supersoluble. Since the class of all supersoluble groups is a saturated formation, we can suppose

99

that *G* has an unique minimal normal subgroup *N* and $\Phi(G) = 1$. This means that $N = C_G(N)$ in addition G = MN, $M \cap N = 1$ and $\operatorname{Core}_G(M) = 1$. Let *p* be the prime dividing |N|. Then *N* has the structure of a semisimple $KG^{\mathfrak{N}}$ -module where *K* is the field of *p* elements. Therefore, *N* is a direct product of the minimal normal subgroups of $G^{\mathfrak{N}}$. Let *A* be a minimal normal subgroup of $G^{\mathfrak{N}}$ contained in *N*. Then *A* has order *p* because $G^{\mathfrak{N}}$ is supersoluble. If $AM^{\mathfrak{N}} = \langle a \rangle M^{\mathfrak{N}}$ is not *S*-permutable in *G*, then there exists a non-normal maximal subgroup *L* of *G* containing $AM^{\mathfrak{N}}$. Since $A \leq L \cap N$, it follows that *N* is contained in *L*. In particular, $G^{\mathfrak{N}}$ is contained in *L* and *L* is normal in *G*. This contradiction shows that $AM^{\mathfrak{N}}$ is *S*-permutable in *G*. It implies that $AM^{\mathfrak{N}}$ is subnormal in *G* and so *N* normalizes $AM^{\mathfrak{N}}$ according to Lemma 14.3.A of [5]. It follows that $[M^{\mathfrak{N}}, N] \leq AM^{\mathfrak{N}} \cap N = A$, which holds for every minimal normal subgroup of $G^{\mathfrak{N}}$ contained in *N*.

If A = N, then N is of prime order and G is supersoluble. Hence N is a direct product of at least two minimal normal subgroups of $G^{\mathfrak{N}}$. In this case, $M^{\mathfrak{N}}$ centralizes N and $M^{\mathfrak{N}} = 1$. Therefore, every subgroup of N is S-permutable in G. According to Lemma 2.1.3 of [2], it follows that N is of prime order. Hence G is supersoluble. This establishes the theorem.

Acknowledgements. The authors would like to thank the referees for helpful comments whose comments greatly improved the manuscript.

References

- B. AMBERG S. FRANCIOSI F. DE. GIOVANNI, *Products of groups*, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992.
- [2] A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO M. ASAAD, Products of finite groups, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter & Co., Berlin, 2010.
- [3] A. BALLESTER-BOLINCHES J. C. BEIDLEMAN R. ESTEBAN-ROMERO V. PÉREZ-CALABUIG, Maximal subgroups and PST-groups, Cent. Eur. J. Math. 11 (2013), no. 6, pp. 1078–1082.
- [4] A. BALLESTER-BOLINCHES L. M. EZQUERRO, *Classes of finite groups*, Mathematics and Its Applications (Springer), 584. Springer, Dordrecht, 2006.
- [5] K. DOERK T. HAWKES, *Finite soluble groups*, de Gruyter Expositions in Mathematics, 4, Walter de Gruyter & Co., Berlin, 1992.

- [6] W. GASCHÜTZ, Über die φ-Untergruppe endlicher Gruppen, Math. Z. 58 (1953), pp. 160–170.
- [7] B. HUPPERT, *Endliche Gruppen* I., Die Grundlehren der Mathematischen Wissenschaften, 134, Springer, Berlin etc., 1967.
- [8] G. KAPLAN, On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel) **96** (2011), no. 1, pp. 19–25.
- [9] D. J. S. ROBINSON, *Finite groups whose cyclic subnormal subgroups are permutable*, Algebra Colloq. **12** (2005), no. 1, pp. 171–180.

Manoscritto pervenuto in redazione il 23 febbraio 2015.