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On the Theriault conjecture for self homotopy equivalences

Badr Ben El Krafi (�) – My Ismail Mamouni (��)

Abstract – Our main purpose in this paper is to resolve, in a rational homotopy theory
context, the following open question asked by S. Theriaul: given a topological space
X , what one may say about the nilpotency of aut1.X/ when the cocategory of its
classifying space Baut1.X/ is �nite? Here aut1.X/ denotes the path component of the
identity map in the set of self homotopy equivalences of X . More precisely, we prove
that

HnilQ.aut1.X// 6 cocatQ.Baut1.X//;

when X is a simply connected CW-complex of �nite type and that the equality holds
when Baut1.X/ is coformal. Many intersections with other popular open questions will
be discussed.
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1. Introduction

Here we are interested to a homotopic invariant of topological spaces, the so-called
cocategory. However "weakly" dual to the popular LS-category ([7]) introduced
in 1934 by Lusternik and Schnirelmann (motivated by developing a Morse theory
in the degenerate case), the cocategory as a concept is less studied. Maybe because
it is not yet related to other invariants as well as LS-category is. In fact, for some
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reasonable spaces X (like CW-complexes), cat.X/ (de�ned to be the least integer
n, or in�nite, such that X can be covered by n C 1 open subsets contractible in X)
is well related to a lot of well known other invariants like: Crit.X/ (the minimum
number of critical point for any smooth function on a smooth compact manifold),
the cup-length, the topological complexity. LS-category is also required for some
other popular results as Poincaré conjecture or Borsuk–Ulam Theorem.

To compensate this defect, our main purpose on this paper is to relate the
cocategory as an invariant to another one, more precisely to the homotopical
nilpotency.

As well as for LS-category, we know many de�nitions of the cocategory:
cocatQ (rational version de�ned by Sbaï in [34]), Hcocat (Hovey version, [23]),
indcocat (inductive version de�ned by Ganea in [17]), wcocat (Whitehead ap-
proach de�ned by Hopkins in [22]) and �nally cocat (de�ned by Aniceto and
Viruel in [29]).

If all known LS-category versions are equivalent (namely the original one,
the Whitehead approach described in [39], the inductive version and the �bration
characterization given by Ganea in [17] and [18]), nevertheless this not holds for
the cocategory. In fact, according to Hovey ([23], page 225) Murillo and Viruel
([29], Proposition 3.10 and Remark 3.16), given a rational space X we have

wcocat.X/ � cocat.X/ � indcocat.X/ � Hcocat.X/ � cocatQ.X/:

Note that cocategory and category are Eckmann–Hilton dual in many cases.

� The dual of the original de�nition of LS-category (that using open covering)
is the one developed by Hopkins. One have to think of a covering as a
(homotopy) colimit (view every inclusion as a co�bration), thus the dual of a
covering has to be a (homotopy) limit (where every projection is a �bration);

� Both Hovey and Murillo-Viruel de�nitions of cocategory give rise to respec-
tive dual to the LS-category Whitehead version, and to the weak version one;

� Sbaï rational de�nition of cocategory is dual of the standard (rational) model
category proposed by Félix and Halperin in [12]. However, Sbaï rational
cocategory is not an algebraic model of the rationalization of Murillo-Viruel
cocategory.

In this paper, we focus on the rational version of the cocategory given by
Sbaï in terms of Quillen models. Before doing it, a brief overview on Quillen
and Sullivan models is outlined here above. For further details on this rational
homotopy theory famous gadgets, we refer the interested reader to the standard
references [13] or [16]. Note �rst that rational homotopy theory focus on maps and
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spaces that are invariant under rational homotopy equivalence and that any simply
connected space can be "rationally" modelled by a simply connected and rational
CW-complex with no 0 or 1-cells.

A minimal Sullivan model is a free commutative di�erential graded algebra
(CDGA) of the form .ƒV; d/. Here V is a graded Q-vector space generated by a
well-ordered indexed basis .vi/ verifying

dvi 2 ƒ�2¹vj ; jvj j < jvi jº:

The following basic vocabularies will be used in the sequel:

� .ƒV; d/ is called elliptic, when dim V < 1 and dim H �.ƒV; d/ < 1;

� .ƒV; d/ is called a F0-model, when it is elliptic with H odd.ƒV; d/ D 0;

� .ƒV; d/ is said to be formal, when .ƒV; d/ ' .H �.ƒV; d/; 0/;

� .ƒV; d/ is said to be coformal, when d D d2 (i.e., d is purely quadratic).

Any simply connected CW-complex of �nite type, X , can be rationally modelled
by a minimal Sullivan algebra .ƒV; d/, unique up to isomorphism, in the sense
that

H �.X IQ/ Š H �.ƒV; d/ as graded commutative algebras;

��.X/ ˝ Q Š HomQ.V;Q/ as vector spaces.

X is said to be elliptic (resp. F0-space, formal, coformal) when its model .ƒV; d/

is. X is called an H-space, when d D 0.

The Minimal Quillen model is the Eckmann–Hilton dual to the Sullivan min-
imal model and involves free di�erential graded Lie algebras (DGLA) .LW ; @/,
in opposite of CDGA. Here W is a graded vector space W , and LW is equipped
with a decomposable di�erential (i.e., @WLW ! L

�2
W ), where Lk

W designates the
set of brackets of length k. Any simply connected and rational CW-complex of �-
nite type, X , admits a minimal Quillen model .LW ; @/, unique up to isomorphism,
which encodes the rational homotopy type as follows:

H�.LW ; d / Š ��C1.X/ ˝ Q;

W Š QH�C1.X IQ/:

In particular, @LW � L2
W when X is formal, and LW ' ��C1.X/ ˝ Q in the

coformal case.
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Félix and Halperin proved in [12] that the rational LS-category of X is the
smallest integer (or in�nite) such that the projection

.ƒV; d/ �! .ƒV=ƒ�nC1; d /

admits a retract. Dually, Sbaï de�ned in [34] the rational cocategory of X , denoted
throughout this paper by cocatQ.X/, to be the smallest integer (or in�nite) such
that the projection

.LW ; @/ �! .LW =L
�nC1
W ; @/

admits a retract. In particular we have:

� cocatQ.X/ D 0 if and only if X is contractible;

� cocatQ.X/ D 1 if and only if X has the rational homotopy type of Eilenberg–
MacLane space;

� cocatQ.S2nC1/ D 1 and cocatQ.S2n/ D 2.

Given X , a topological space, aut.X/ denotes the set of its self homotopy equiva-
lences, that are maps f W X ! X which admits a homotopy inverse (i.e., aut.X/ is
the set of automorphism of X in the pointed homotopy category). aut1.X/ denotes
the identity path component. S. Theriault asked the following:

Conjecture 1.1 (Theriault open question). Is it true that Hnil.aut1.X// is

�nite whenever cocat.Baut1.X// is?

Here, Hnil.aut1.X// denotes the homotopical nilpotency of aut1.X/, viewed
as a connected grouplike space. That is the invariant de�ned by Berstein and
Ganea (see [5]) to be the least integer n such that the .n C 1/-th commutator
cnC1 is nullhomotopic. Note that the iterated commutators cnW Gn ! G are
inductively de�ned, using the homotopy inverse, as follows: c1 is the identity,
c2.a; b/ WD aba�1b�1 and cn WD c2 ı .cn�1; c1/.

We will answer positively to this Theriault’s question in a rational homotopy
theory setting. More precisely we prove the following result.

Theorem 1.2. Let X be a simply connected CW-complex of �nite type. If

cocatQ.Baut1.X// is �nite, then HnilQ.aut1.X// is also. Moreover, we have

HnilQ.aut1.X// 6 cocatQ.Baut1.X//:

and that
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Proposition 1.3. Let X be a simply connected CW-complex of �nite type, such

that Baut1.X/ is coformal. If cocatQ.Baut1.X// is �nite, then HnilQ.aut1.X// is

also. Moreover, we have

HnilQ.aut1.X// D cocatQ.Baut1.X//:

The formal case will be discussed in

Proposition 1.4. Let X be a simply connected CW-complex of �nite type, such

that Baut1.X/ is formal. If cocatQ.Baut1.X// is �nite, then HnilQ.aut1.X// is also.

Moreover, we have

HnilQ.aut1.X// 6 2:

The remaining of the paper is organized as follows: Section 2 is devoted to
prove our main results (namely Theorem 1.2, Propositions 1.3 and 1.4). In Section 3
we will discuss intersections with some other well known open problems, like
the still open question if Baut1.X/ is a rational H-space (see Problem 3.2, [36]).
By the end, we will ask, in term of �brations, what about Theriault’s conjecture?

2. Proofs

Both aut1.X/ and its classifying space Baut1.X/ play a crucial role in topology
and geometry (Stashe�’s classi�cation for �bration over a given �ber [37], fake
Lie groups [30], the homotopy type of the space of di�eomorphisms on a smooth
manifold ([4]).

The respective Sullivan and Quillen minimal models of both aut1.X/ and
Baut1.X/ are well and deeply described in terms of derivations (see [14] and [6]).
Indeed, by a derivation of degree n on a CDGA .A; d/, we mean any linear self
map � W A� ! A��n (i.e., reducing degrees by n) satisfying

�.ab/ D �.a/b � .�1/j� j:jaja�.b/:

The graded space of all derivations on A, denoted throughout this paper by Der.A/,
has a DGLA structure. The commutator bracket and the di�erential are given by

(1) Œ�1; �2� WD �1 ı �2 � .�1/j�1j:j�2j�2 ı �1; D.�/ WD Œd; ��:

If .ƒV; d/ is a Sullivan minimal model of X , then (see §11 of [38]) that of aut1.X/

is given by

(2) ��.aut1.X// ˝ Q Š H�.Der.ƒV /ID/;
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and the Quillen minimal model of Baut1.X/ is known to be DGLA-isomorphic
to Der.ƒV /. On the other hands, HnilQ.aut1.X// equals the length of the longest
nontrivial bracket in H�.Der.ƒV /ID/. Many computations of HnilQ.aut1.X// are
done (see for example [33], [35], [24]).

Proof of Theorem 1.2. First, note that aut1.X/ is topologized with the open
compact topology as a subspace of map.X; X/. We know from (Proposition 2.2,
[14]), that aut1.X/ has the homotopy type of a CW-complex and the H-homotopy
type of a loop space. On the other hands, aut1.X/ is strictly a associative monoid
and so admits a Dold–Lashof classifying space Baut1.X/. Moreover, we have ([11],
Satz, 7.3)

(3) aut1.X/ ' �Baut1.X/:

Baut1.X/ is also simply connected, and hence rational homotopy machinery
works well. In particular, Baut1.X/ admits a rationalization Baut1.X/Q.

On the other hands, it is well known that each grouplike structure on a con-
nected space G induces on ��.G/, a natural bilinear pairing Œ�; ��; the Samelson

product. .��.G/ ˝ Q; Œ�; ��/ is called the Samelson Lie algebra of G. If in ad-
dition, G is equipped with a multiplication, then .G; �/ admits a rationalization
.GQ; �Q/ which is also a grouplike.

The rational homotopical nilpotency HnilQ.G/ of G D .G; �/ is de�ned
to be the homotopical nilpotency of GQ D .GQ; �Q/. Hnil.��.G// denotes
the usual nilpotency of the Samelson bracket Œ�; ��, while WL.X/ denotes the
longest Whitehead bracket in ��.X/ and WLQ.X/ that of its rationalization (i.e.,
WLQ.X/ WD WL.XQ//.

All this invariants are well related in Proposition 2.3 of [14] which states that if
G is a connected grouplike of CW loop space type (i.e., G ' �X for some simply
connected CW-complex X), then

(4) HnilQ.G/ D Hnil.��.G/ ˝ Q/ D WLQ.X/:

Given a simply connected CW complex of �nite type X , cocatQ.X/ is de�ned in
terms of Quillen models (see [34]) to be the least integer n (or in�nity) such that
the canonical projection �nWLW ! LW =L

�nC1
W admits a homotopical retract. On

of the main results of Sbaï is that

(5) Hnil.��.�X/ ˝ Q/ � cocatQ.X/ (Theorem 11.5, [34]):
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Thus, from (3), (4) and (5), we deduce that

cocatQ.Baut1.X// � Hnil.��.�Baut1.X// ˝ Q/

D Hnil.��.aut1.X// ˝ Q/(6)

D HnilQ.aut1.X//: �

Remark 2.1 (proofs of Propositions 1.3 and 1.4). � Following Theorem II.5
of [34], the equality holds in (5) when Baut1.X/ is coformal. Thus (6) gives

HnilQ.aut1.X// D cocatQ.Baut1.X//

and this achieves the proof of Proposition 1.3.

� By Proposition III.1.6.2 and Corollaire III.1.7 of [34], we have

cocat.Baut1.X// D 2;

when Baut1.X/ is formal with a �nite cocategory. Theorem 1.2 achieves the proof
of Proposition 1.4.

3. Related results and open questions

The �rst open problem with what our results intersect nicely is that of the for-
mality or coformality of Baut1.X/. When Baut1.X/ is of �nite rational cocat-
egory, then Proposition 1.3 states that the situation where HnilQ.aut1.X// ¤

cocatQ.Baut1.X// is an obstruction of the coformality of Baut1.X/, while the in-
equality HnilQ.aut1.X// > 2 can be considered (thanks to Proposition 1.4) as an
obstruction of the formality of Baut1.X/. This agrees nicely with a Smith’s result
(Theorem 4.1, [36]) wherein the formality of Baut1.X/, viewed as an universal
cover of Baut.X/, is well and deeply studied.

Note also that H-spaces are formal, and that still yet opened a more general
question, that if Baut1.X/ is a rational H-space (see Problem 3.2, [36]). Smith
pointed out in Problem 3.2, [36], that Baut1.G/ is rarely H-space when G is a
topological group. Indeed, we have

Proposition 3.1. If G is a topological group such that Baut1.G/ is a rational

H-space with a �nite rational cocategory, then

Hnil.G/ � 2:
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Proof. Since cocatQ.Baut1.G// is �nite, then (following Proposition 1.4,
Examples 2.5 and 2.7 in [14] and Proposition 7 in [33]) Baut1.G/ may be H-space
only if Hnil.G/ � 2 (i.e. G homotopically trivial or abelian or its inner automor-
phism group is abelian). �

Class of 2-nilpotent groups have generated many interest among geometers
(see [21]). For more detailed results on groups of rational homotopical nilpo-
tency 2, we refer the reader to both [19] and [20]).

Another basic and famous open problem on self homotopy equivalences
wherewith our results intersect, is that asked some 50 years ago about the realiz-

ability of aut.X/ (see [2] and [25]). It was asked:

Conjecture 3.2 (realizability open question). For a given group G, is there

any CW-complex X such that aut.X/ Š G?

However, deeply studied in a lot of surveys ([1], [10], [25], [26], [32]), this
long-standing open problem continues to give rise to many of research interests.
A rational and light version was proposed by Arkowitz and Lupton in [3].

Conjecture 3.3 (realizability open question, rational version). Given a �nite

group G, is there a rational 1-connected CW-complex X such that aut.X/ Š G?

A complete and positive answer was given in [9]. Our Theorem 1.2 combined
with that of Costoya and Viruel (Theorem 1.1-[9]) leads to the following:

Proposition 3.4. If G is a �nite group, with a classifying space BG of a �nite

rational cocategory, then G is of �nite rational homotopical nilpotency. Moreover

we have

HnilQ.G/ � cocatQ.BG/:

Note that the problem of the realization has not been asked only of self homo-
topy equivalences but also for their classifying spaces. In fact, Schlessinger asked
(see [13], p. 519):

Conjecture 3.5 (realizability open question, Baut1.X/ version). Which sim-

ply connected spaces Y have the rational homotopy type of some Baut1.X/?

The a�rmed cases known until now (see [27], [36], [28], [40]) converge to
the fact that Baut1.X/ may have the rational homotopy type of a �nite product of
some Eilenberg–Mac Lane spaces.
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Finally, and before closing this overview by posing the Theriault’s question
in terms of �brations pW X ! B , let us recall that aut.p/ denotes conventionally
the monoid of all �brewise self homotopy equivalences f W X ! X satisfying
pıf D p. aut1.p/ denotes the identity component. One can recover the precedent
case of aut1.X/ by taking B D �.

Conjecture 3.6 (Theriault open question, �brations version). Let pW X ! B

be a �bration of connected CW-complexes with a connected �bre F . Is it true that

Hnil.aut1.p// is �nite whenever cocat.Baut1.p// is?

Theriault’s question can also be asked for aut#.X/ (resp. aut?.X/); the set of
self homotopy equivalences that induce the identity on ��.X/ (resp. H �.X IQ/).
This �brewise setting is interesting, because one can control not only the �bre F

but also the �bration. For example, whenever X or B is �nite, we have:

� aut.p/ has the homotopy type of a CW-complex and the H-homotopy type
of a loop-space (see Proposition 2.2, [14]);

� HnilQ.aut1.p// D nil.��.aut1.p// ˝ Q/ � card¹n j �n.F / ˝ Q D 0º (see
Proposition 2.2-[14] and Theorem 5.2-[14]);

� Sullivan minimal model of aut1.p/ is given in Theorem 1-[14] by

��.aut1.p// ˝ Q Š H�.DerƒV .ƒV ˝ ƒW //:

Here ƒV ! ƒV ˝ ƒW is the Koszul-Sullivan model of the �bration
pW X ! B and DerƒV .ƒV ˝ ƒW / denotes the space of derivation on
ƒV ˝ ƒW that vanish on ƒV ;

� DerƒV .ƒV ˝ ƒW / is the Quillen model for Baut1.p/ (see Theorem 1-[6]);

� nilpotency and localization of aut#.X/ are well studied respectively in [8]
and in [28];

� some interesting computations or bounds of Hnil are given for aut1.p/ and
for aut#.X/, respectively in [24] and in [15];

� some interesting interpretations of HnilQ of both Baut1.X/; Baut#.X/ and
Baut?.X/ are discussed in Section 4 of [33];

� the open problem of the realizability of aut#.X/ is partially resolved in [3]
and in [31].
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