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Local loop near-rings

Damir Franetič (�)

Abstract – We study loop near-rings, a generalization of near-rings, where the additive

structure is not necessarily associative. We introduce local loop near-rings and prove a

useful detection principle for localness.
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Introduction

This paper evolved from a number of algebraic results that proved to be useful in

the study of decompositions of H- and coH-spaces by the author and his advisor

in [6] and [7]. Generalizing the notion of localness from rings to loop near-

rings, we were able to prove powerful uniqueness-of-decompostion results for

H- and coH-spaces, which are analogous to the classical Krull–Schmidt–Remak–

Azumaya theorem for modules.

A near-ring is a generalization of the notion of a ring, where one does not as-

sume the addition to be commutative, and only one distributivity law holds. This

is a well-studied algebraic structure, see [10], [9], [4]. Loop near-rings were in-

troduced in [11] as a generalization of near-rings. In a loop near-ring N one does

not even require the addition to be associative, instead N is only assumed to be

an algebraic loop under addition. To justify the study of such an obscure algebraic

structure, we note that homotopy endomorphisms of connected H-spaces are ex-

amples of genuine loop near-rings, which are often not near-rings [7, Examples 1.4

and 1.5].
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The paper is divided into three sections. In Section 1 we recall the de�nitions

of loops, loop near-rings, their modules, and module homomorphisms. Relevant

substructures are then de�ned naturally as kernels and images of those homomor-

phisms. There are no new results, we do, however, reprove several known facts in

a novel and concise manner. In Section 2 two (of the several) possible generaliza-

tions of the Jacobson radical to loop near-rings are de�ned. We introduce quasireg-

ular elements and show that in certain important cases both Jacobson radical-like

objects coincide with the largest quasiregular ideal. Finally, in Section 3, local

loop near-rings are introduced, and it is shown that many known properties of

local rings also hold in the loop near-ring setting.

1. Loops and loop near-rings

A loop is a generalization of the notion of a group. Associativity requirement

is dropped from the de�nition, but one still requires the existence of an identity

element and replaces the existence of inverses by existence of unique solutions to

certain equations. A loop near-ring is a generalization of a ring. Two requirements

are omitted from the de�nition of a ring: commutativity and associativity of

addition, and right or left distributivity. Nevertheless, a surprising amount of

common concepts and theorems from ring theory generalizes to this setting. Loop

near-rings were �rst introduced by Ramakotaiah in [11]. We recall the de�nitions

and state relevant results.

Definition 1.1. An algebraic structure .G;C/, where C denotes a binary

operation on the setG, is a quasigroup if, for all a; b 2 G, the equations aCx D b

and y C a D b have unique solutions x; y 2 G. If a quasigroup .G;C/ has a two-

sided zero, i.e. an element 0 2 G such that 0C a D a C 0 D a for all a 2 G, we

call G a loop.

Every group is a loop, and a loop is essentially a ‘non-associative group’.

Existence of unique solutions to the two equations implies that left and right

cancellation laws hold in a loop. The unique solution of the equation a C x D b

will be denoted by x D aXb, and the unique solution of the equation y C a D b

by y D b Xa. The operations X and Xare called the left and the right di�erence

respectively.

There are two kinds of substructures that will interest us. A subset I of a loop

H is called a subloop if it is closed under the operations C,X, and XonH . Notation

I � H will stand for ‘I is a subloop of H ’. The de�nition of a normal subloop is

more complicated due to lack of associativity. Given a loop G a subloop K � G
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is a normal subloop if for all a; b 2 G we have

aCK D K C a, .a C b/CK D a C .b CK/

and
.K C a/C b D K C .a C b/.

Notation K E G will stand for ‘K is a normal subloop of G’. Whenever K is a

normal subloop ofG, the quotientG=K admits a natural loop structure determined

by .aCK/C .b CK/ WD .aC b/CK.

In the present paper we prefer to characterize substructures naturally (in the

sense of category theory). A map of loops �WG ! H is a loop homomorphism if

�.a C b/ D �.a/ C �.b/ holds for all a; b 2 G. Since �.0/ C �.0/ D �.0/,

cancellation in H gives �.0/ D 0. Similarly; �.a X b/ D �.a/ X �.b/ and

�.a Xb/ D �.a/ X�.b/. The category of loops has loops as objects and loop

homomorphisms as morphisms. It is a category with a zero object, namely the

trivial loop 0 consisting of the zero element only. Hence, there is the zero homo-

morphism 0WG ! H between any two loops G andH mapping every element of

G to 0 2 H . The kernel of a loop homomorphism �WG ! H is the preimage of

0 2 H , i.e. ker� D ��1.0/. This ker� is the equalizer of � and 0WG ! H , so

ker� is in fact a category-theoretic kernel. The image of a loop homomorphism is

the set im� D �.G/. Observe that normal subloops are precisely kernels, while

subloops are precisely images. Speci�cally,K E G if and only ifK is the kernel of

some loop homomorphism, and I � H if and only if I is the image of some loop

homomorphism. This kind of characterization of substructures will be used as the

de�ning property later in this paper. It has the advantage of avoiding (often com-

plicated) element-by-element de�ning conditions, and streamlines many proofs.

See [2, Chapter IV] for a detailed treatment of loops, their homomorphisms, and

corresponding substructures.

Recall that .S; �/ is a semigroup if the binary operation � on S is associative.

Definition 1.2. A loop near-ring N is an algebraic structure .N;C; �/ such

that

� .N;C/ is a loop,

� .N; �/ is semigroup,

and multiplication � is either left or right distributive over addition C. If we have

� m.n1 C n1/ D mn1 C mn2 for all m; n1; n2 2 N , we call N a left loop

near-ring,

� .m1 C m2/n D m1n C m2n for all m1; m2; n 2 N , we call N a right loop

near-ring.

If .N;C/ is a group, .N;C; �/ is a near-ring.
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A common example of a right near-ring is the near-ring of all functions

f WG ! G of a group .G;C/, commonly denoted by M.G/. When G is merely

a loop, M.G/ is a loop near-ring [11, Example 1.2]. Restricting to only those

functions f WG ! G for which f .0/ D 0 we obtain M0.G/ – the zero-symmetric

part of M.G/.

We will restrict our discussion to right loop near-rings. Right distributivity

in N implies that right multiplication �nWN ! N , m 7! mn, by n is an

endomorphism of the loop .N;C/, and it follows that .m1Xm2/n D m1nXm2n,

.m1 Xm2/n D m1n Xm2n, and 0n D 0 for all m1; m2; n 2 N .

Note that n0 ¤ 0 in general. However, for arbitrary n 2 N , the solution y of

the equation n D y C n0 does satisfy y0 D 0, since n0 D .y C n0/0 D y0C n0.

Therefore N D N0 C Nc , where N0 D ¹y 2 N W y0 D 0º, Nc D N0 D ¹n0W n 2

N º, and N0 \ Nc D 0. We call N0 the zero-symmetric part and Nc the constant

part of N , respectively. Also, a loop near-ring N will be called zero-symmetric if

N D N0, i.e. n0 D 0 holds for all n 2 N .

A loop near-ring N is unital if there is an element 1 2 N (called the identity),

such that 1n D n1 D n for all n 2 N . An element u 2 N in a unital loop near-ring

N is called a unit (or invertible) if there is a u�1 2 N (the inverse of u), such that

uu�1 D u�1u D 1. The group of all units of N will be denoted by U.N/. A loop

near-ring N is a loop near-�eld if U.N/ D N n ¹0º.

Definition 1.3. A loop G is a left module over a (right) loop near-ring N if

there is an action

N � G �! G, .n; a/ 7�! na

such that m.na/ D .mn/a, and .m C n/a D ma C na hold for all a 2 G and

m; n 2 N . If N is unital, we also require the action to be unital, i.e. 1a D a for all

a 2 G. To emphasize that G is a left N -module, we will often write GN .

A loop G is a right module over a (right) loop near-ringM if there is an action

G �M �! G, .a;m/ 7�! am

such that a.nm/ D .an/m, and .a C b/n D an C bn hold for all a; b 2 G and

m; n 2 M . If 1 2 M , we also require a1 D a for all a 2 G. We will denote right

M -modules by GM .

A loop G is a .N;M/-bimodule if G is both a left N -module and a right M -

module, and .na/m D n.am/ holds for all a 2 G, n 2 N , m 2 M . Notation:

GN M .
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Every loop near-ring N is an .N;N/-bimodule with the action de�ned by

loop near-ring multiplication. Also, we view every left N -module G as an .N; 0/-

bimodule, where 0 is the trivial loop near-ring, and every right M -module G as

a .0;M/-bimodule. Both trivial actions are de�ned by a0 D 0 and 0a D 0 for all

a 2 G. Therefore, every loop G is, trivially, a .0; 0/-bimodule.

In the next de�nition we de�ne substructures in an unconventional, but natural

way.

Definition 1.4. For left N -modules G and H , we call a map �WG ! H a

homomorphism of leftN -modules if �.aCb/ D �.a/C�.b/ and �.na/ D n�.a/

holds for all a; b 2 G and all n 2 N . Homomorphisms of right M -modules are

de�ned analogously. A map is a homomorphism of .N;M/-bimodules if it is a left

N -module and a right M -module homomorphism simultaneously.

If K D ker� � G is the kernel of a homomorphism of left N -modules

�WG ! H , we call K a left N -submodule and write K EN G. If I D im � � H

is the image of a homomorphism �, we call I a leftN -subloop and write I �N H .

We de�ne right M -submodules K EM G and right M -subloops I �M H

analogously, i.e. as kernels and images of right M -module homomorphisms. It

should be clear, what is meant by .N;M/-submodule, K EN M G, and .N;M/-

subloop, I �N M H .

A subset J � N in a loop near-ring N is a left ideal if J is a left N -submodule

in NN , a right ideal if J is a right N -submodule in NN , and an ideal if J is an

.N;N/-submodule in NN N .

Note that left N -subloops are left N -modules on their own right, while leftN -

submodules are not leftN -modules unlessN is zero-symmetric. For if n0 ¤ 0 for

some n 2 N then n0 … ker� since �.n0/ D n�.0/ D n0. Here �WG ! H is a left

N -module homomorphism and 0 denotes the zero inN ,G, orH as required. Right

structures exhibit nicer behavior: right M -submodules and right M -subloops are

right M -modules.

Remark 1.5. A word of caution regarding naming conventions. In the near-

ring setting Pilz [10] calls our left N -modules N -groups, our left N -submodules

are called ideals, while our left N -subloops are (for our convenience) renamed

as N -subgroups. On the other hand, Meldrum [9] and Clay [4] use the same

name as we do for left N -modules, while our left N -subgroups are called N -

submodules, and our left N -submodules are called (N -)ideals. It seems that right

structures have not yet been extensively studied, but Clay [4, De�nition 13.2]

does de�ne them and calls our right M -modules M -comodules. Admittedly, our

naming convention is a little confusing in view of the fact described above. To our

defense, let us just say that the confusion disappears if N is zero-symmetric.
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Remark 1.6. A map �WN ! M is a homomorphism of loop near-rings if

�.n1Cn2/ D �.n1/C�.n2/ and �.n1n2/ D �.n1/�.n2/ holds for all n1; n2 2 N .

If N and M are unital, we add the requirement �.1/ D 1. Kernels of such

homomorphisms are ideals in the sense of De�nition 1.4, since M can be viewed

as an .N;N/-bimodule with the two actions de�ned by n � m WD �.n/m and

m � n WD m�.n/ for n 2 N , m 2 M .

Since �.0/ D 0 for any loop homomorphism �WG ! H , we can view � as

a homomorphism of .0; 0/-bimodules. Hence, a normal subloop K E G is the

same as a .0; 0/-submodule K E0 0 G, and a subloop I � H is the same as a

.0; 0/-subloop I �0 0 H . Also: K EN G , K E0 N G, I �N H , I �0 N H ,

K EM G , K EM 0 G, and I �M H , I �M 0 H .

Our de�nition of substructures is of little use when one wants to do element-

by-element computations. In the next proposition we translate De�nition 1.4 into

conventional element-wise de�ning conditions. The proof is a routine exercise, so

we omit it.

Proposition 1.7. LetN andM be loop near-rings andG D GN M an .N;M/-

bimodule. The following assertions hold:

(a) K � G is a left N -submodule if and only if K is a normal subloop in .G;C/

and n.aC k/CK D naCK holds for all k 2 K, a 2 G and n 2 N ;

(b) K � G is a right M -submodule if and only if K is a normal subloop in

.G;C/ and MK � K;

(c) I � G is a leftN -subloop if and only if I is a subloop in .G;C/ andNI � I ;

(d) I � G is a right M -subloop if anf only if I is a subloop in .G;C/ and

IM � I ;

(e) if N is zero-symmetric, then every left N -submodule in G is also an

N -subloop.

Absence of left distributivity is the reason for the lack of symmetry between the

element-wise characterizations of leftN -submodules and rightM -submodules in

Proposition 1.7. Over right loop near-rings left modules will play a pivotal role in

the radical theory. Over left loop near-rings the roles of left and right modules are

reversed.

For an .N;M/-submoduleK EN M G the loopG=K admits a natural .N;M/-

bimodule structure with the two actions de�ned by n.a C K/ WD na C K and

.a C K/m WD am C K. Also, for an ideal J E N , the quotient N=J becomes a

loop near-ring with multiplication de�ned by .nCJ /.mCJ / WD nmCJ . Again,

we deliberately omit both veri�cations.
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If �WG ! H is a homomorphism of .N;M/-bimodules G and H , then the

preimage ��1.K/ of an .N;M/-submodule K EN M H is a .N;M/-submodule

in G, since ��1.K/ is the kernel of the composition G ! H � H=K. Similarly,

the preimage ��1.I / of an .N;M/-subloop I �N M H , is an .N;M/-subloop in

G. (This is a routine veri�cation using Proposition 1.7.)

We obtain the following ‘correspondence theorem’.

Proposition 1.8. Let �WG ! H be a homomorphism of .N;M/-bimodules.

Then � induces an isomorphism N�WG= ker� ! im�, which determines a bijective

correspondence between .N;M/-subloops or .N;M/-submodules in im � and

those .N;M/-subloops or .N;M/-submodules in G, which contain ker�.

Proposition 1.9. Let G be an .N;M/-bimodule, K an .N;M/-submodule in

G, and I an .N;M/-subloop in G. Then K C I D I C K and K C I is an

.N;M/-subloop in G.

Proof. Write K D ker� for some homomorphism �WG ! H . For all

k 2 K and i 2 I we have �.k C i/ D �.k/ C �.i/ D �.i/ 2 �.I /, hence

K C I � ��1.�.I //. Also, for any a 2 ��1.�.I // there is an i 2 I , such that

�.i/ D �.a/. If y is the solution of the equation y C i D a, then �.y/ D 0, hence

y 2 K, and it follows that a 2 KCI . Conclusion:KCI D ��1.�.I //. The proof

that I CK equals ��1.�.I // is completely analogous. Note that any preimage of

an .N;M/-subloop is an .N;M/-subloop by Proposition 1.7, so ��1.�.I // is an

.N;M/-subloop in G. �

Lemma 1.10. The intersection of an arbitrary family of .N;M/-submodules

or .N;M/-subloops in an .N;M/-bimodule G is an .N;M/-submodule or an

.N;M/-subloop, respectively.

Proof. Let Ki D ker.�i WG ! Hi / be .N;M/-submodules in G. Denote

by �WG !
Q
i .G/i the diagonal, and by

Q
i �i W

Q
i .G/i !

Q
i Hi the product

homomorphism. Then
T
i Ki D ker�, where � is the composite

�WG
�

�!
Y

i

.G/i

Q
i �i

���!
Y

i

Hi , a 7�! .�i.a//i ,

hence
T
i Ki is an .N;M/-bimodule.

For .N;M/-subloops Ik D im. k WFk ! G/ in the .N;M/-bimodule G we

have
T
k Ik D ��1.im

Q
k  k/. �
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Definition 1.11. Let G be a left N -module. For subsets A;B � G de�ne

.A W B/ D .A W B/N WD ¹n 2 N W nB � Aº.

For singletons A D ¹aº or B D ¹bº we will write .a W B/ or .A W b/, respectively.

The annihilator of B in N is Ann.B/ WD .0 W B/ D ¹n 2 N W nB D 0º.

Lemma 1.12. Let G be a left N -module, and B � G an arbitrary subset. If

A is a subloop (normal subloop, left N -subloop, left N -submodule) in G, then

.A W B/ is a subloop (normal subloop, left N -subloop, left ideal) in NN .

Proof. Note that .A W
S
i Bi / D

T
i .A W Bi /. For b 2 B we have the left

N -module homomorphism �bWN ! G, n 7! nb, and .A W b/ D ��1
b
.A/ holds.

Now .A W B/ D
T
b2B.A W b/, and Proposition 1.8 and Lemma 1.10 imply that

.A W B/ in N is a substructure of the same kind as A is in G. �

It is easy to check that .K W G/ is an ideal in N for any left N -submodule

K EN G, and we obtain the following corollary.

Corollary 1.13. For any left N -module G and any a 2 G, Ann.a/ is a left

ideal in N , and Ann.G/ is a (two-sided) ideal in N .

2. Jacobson radicals, quasiregularity, and local homomorphisms

The Jacobson radical J.R/ of a ringR is de�ned as the intersection of all maximal

left ideals in R or annihilators of all simple left R-modules. If R is unital, then

J.R/ is also characterized as the largest quasiregular ideal in R. There are several

possible generalizations of simplicity to left modules over (right) loop near-rings

N , each of which comes with its corresponding ‘Jacobson radical’. Of course, all

of these coincide whenN is a ring. We recall two of them below, which will su�ce

for our purposes. In order to have a well-behaved J -radical theory, we restrict our

attention to unital, zero-symmetric loop near-rings N .

A left, right or two-sided ideal K E N is maximal if K ¤ N and there is no

ideal of the same kind between K and N , i.e. for any ideal L E N of the same

kind the containments K � L � N imply either L D K or L D N . Maximal

left N -subloops are de�ned analogously. A left ideal K EN N will be called

N -maximal if K is a maximal left N -subloop.

De�ne

J2.N / WD
\

¹KWK EN N is N -maximalº,
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and

R.N/ WD
\

¹I W I �N N is maximalº,

i.e. J2.N / is the intersection of all N -maximal left ideals, and R.N/ is the

intersection of all maximal left N -subloops. If N is a ring, both de�nitions

coincide with the de�nition of the Jacobson radical ofN , hence J.N/ D J2.N / D

R.N/ for a ring N .

For an N -maximal left ideal K EN N the quotient G WD N=K is a nontrivial

left N -module, which contains no proper nontrivial left N -subloops, i.e. 0 and

G are the only left N -subloops in G (Proposition 1.8). We will call such left N -

modules N -simple (as in [10, De�nition 1.36]). Every N -simple left N -module

G (over unital N ) is generated by any nonzero a 2 G, since Na is a nontrivial

left N -subloop, hence Na D G. Also, for an N -simple G, the kernel of the left

N -module homomorphism �aWN ! G, n 7! na is an N -maximal left ideal,

whenever a 2 G is nonzero. In fact, everyN -maximal left ideal arises in this way,

and, since Ann.G/ D
T
a2G Ann.a/ D

T
a2G ker�a, we can write

J2.N / D
\

¹Ann.G/WG an N -simple left N -moduleº.

While not as direct as our original de�nition, this shows that J2.N / is a two-sided

ideal by Corollary 1.13 and Lemma 1.10. We clearly haveR.N/ � J2.N /. It follows

from Zorn’s lemma (and the fact thatN is unital), that every proper leftN -subloop

is contained in a maximal one, hence R.N/ is always a proper left N -subloop in

N . On the other hand, N may not have any N -maximal left ideals, in which case

J2.N / D N .

Remark 2.1. The reader may be wondering, why not simply de�ne a left N -

module G to be simple if it contains no proper nontrivial left N -submodules.

A valid point, with an additional complication. As it turns out, simplicity of G is

not enough, one has to require thatG is also monogenic, i.e. there is an a 2 G such

that Na D G. (While N -simple left N -modules are automatically monogenic,

simple left N -modules are not.) Then one de�nes

J0.N / WD
\

¹Ann.G/WG a simple, monogenic left N -moduleº.

This radical too has an ‘internal’ description

J0.N / D
\

¹.K W N/WK EN N is maximalº,

since we can write G Š N=K for some maximal left ideal K EN N and

Ann.G/ D Ann.N=K/ D .0 W N=K/ D .K W N/ holds. Unlike J2.N /, J0.N /
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is di�erent from the intersection of all maximal left ideals, which is often denoted

by

D.N/ WD
\

¹KWK EN N is maximalº.

Moreover, most authors of near-ring literature call simple, monogenic left

N -modules modules of type 0, and N -simple left N -modules modules of type 2

[10, De�nition 3.5], [9, De�nition 3.4]. Of course, there are also left modules of

type 1 with their corresponding J1.N /. All three radicals are di�erent for general

N . (The equality J1.N / D J2.N / holds for unitalN though.) See [10] and [11] for

a precise treatment of those radical-like ideals and left N -subloops for a near-ring

N . We will remain focused on R.N/ and J2.N /.

Definition 2.2. An element q 2 N is quasiregular if y D 1 Xq, the solution

of yCq D 1, has a left inverse inN , i.e. there exists an element y� 2 N , such that

y�y D 1. A subsetQ � N is quasiregular if all of its elements are quasiregular.

When N is a near-ring, i.e. .N;C/ is a group, our de�nition of a quasiregular

element coincides with [1, De�nition 1], but it is di�erent from [8, De�nition 5.19].

Quasiregularity in the sense of [8] for loop near-rings was considered in [11]. We

note however that [11, De�nition 4.1] seems a bit unnatural in the loop near-ring

setting, as it considers the left invertibility of 1C .0 Xq/, which is di�erent from

1 Xq if .N;C/ is a proper loop.

Remark 2.3. Assume that an idempotent e 2 N is quasiregular. Let y be

the solution of the equation y C e D 1. Multiplying this equation by e from the

right and using right distributivity we obtain ye C e D e or ye D 0. Hence

e D y�ye D y�0 D 0, i.e. 0 is the unique quasiregular idempotent.

Lemma 2.4. The intersection of all maximal left N -subloops R.N/ is a

quasiregular left N -subloop and every quasiregular left ideal Q EN N is con-

tained in R.N/. In particular D.N/ � R.N/.

Proof. Pick an r 2 R.N/, and let y be the solution of the equation yC r D 1.

Suppose Ny ¤ N . Then there is a maximal left N -subloop I ŒN N containing

the left N -subloop Ny. Now r 2 R.N/ � I implies 1 D y C r 2 I , which is a

contradiction. Hence Ny D N . In particular y�y D 1 for some y� 2 N .

For the second statement, assume that Q ª R.N/. Then there is a maximal

left N -subloop I ŒN N , such that Q ª I , which implies I CQ D N , as I CQ

is a left N -subloop by Proposition 1.9. In particular i C q D 1 for some i 2 I and

q 2 Q. Hence, i has a left inverse i� 2 N , which implies 1 D i�i 2 Ni � I , a

clear contradiction. �
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Corollary 2.5. Every quasiregular left ideal in N is contained in J2.N /.

The radical J2.N / is quasiregular if and only if J2.N / D R.N/, and J2.N / is the

largest quasiregular ideal in this case.

Lemma 2.6. LetQ EN N be a quasiregular left ideal, q 2 Q, and y D 1 Xq.

Then y is invertible, i.e. y 2 U.N/, and y� D y�1.

Proof. We are going to prove that y� has a left inverse. SinceQ is a left ideal,

nCQ D n.yC q/CQ D nyCQ holds for all n 2 N by Proposition 1.7. Picking

n D y� we obtain y� C Q D 1 C Q. Hence, if x D y�X1 solves the equation

y� C x D 1, then x 2 Q, so x is quasiregular and y� has a left inverse. �

Definition 2.7. A homomorphism  WN ! M , of loop near-rings N andM ,

is local if  .u/ 2 U.M/ implies u 2 U.N/.

The following theorem states that quasiregular ideals in N are precisely the

kernels of local homomorphisms.

Theorem 2.8. The kernel of a local homomorphism is a quasiregular ideal.

An ideal Q E N is quasiregular if and only if the quotient homomorphism

N ! N=Q is local.

Proof. Let  WN ! M be a local homomorphism. Pick any k 2 ker and

let y D 1 Xk. Then  .y/ D  .1 Xk/ D  .1/ X .k/ D 1 X0 D 1, which is a unit.

Hence y is a unit and k is quasiregular.

It remains to prove the ‘only if’ part of the second statement. If u C Q is

invertible in N=Q, then there is a v 2 N , such that uv CQ D vuCQ D 1CQ.

Hence uv C p D 1 and vuC q D 1 for some p; q 2 Q. Since Q is a quasiregular

(left) ideal it follows from Lemma 2.6 that uv 2 U.N/ and vu 2 U.N/, which

implies u 2 U.N/. �

Remark 2.9. In [6] and [7] local homomorphisms were called unit-re�ecting

homomorphisms. The author is grateful to the referee for making him aware that

‘local homomorphism’ is the accepted term in ring theory. Local homomorphisms

between rings in the generality of De�nition 2.7 have already been used in [3]

and [5].

3. Local loop near-rings

Local near-rings were introduced by Maxson in [8]. His main de�nition is di�erent

from ours below, but equivalent to it in caseN is a near-ring, see [8, Theorem 2.8].

Our discussion will be restricted to unital, zero-symmetric loop near-rings.
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Definition 3.1. A loop near-ring N is local if it has a unique maximal left

N -subloop.

For N local, we will usually denote the unique maximal left N -subloop by m,

and also write .N;m/ to emphasize the role of m.

In a local loop near-ring .N;m/, the elements of m do not have left inverses,

since m is a proper left N -subloop in N . On the other hand, for any u 2 N nm we

have Nu D N , hence u�u D 1 for some u� 2 N . Every element not contained in

m is left invertible.

Suppose that some n 2 m is right invertible, i.e. there is an n� 2 N such that

nn� D 1. As n�n 2 m, it follows that 1 Xn�n … m, since 1 … m. Let u be a left

inverse of 1 Xn�n. Then n� D u.1 Xn�n/n� D u.n� Xn�/ D u0 D 0, a contradiction.

Elements of m do not even have right inverses.

Proposition 3.2. If .N;m/ is local, then N is the disjoint union m [ U.N/.

Proof. It follows from above discussion that every u 2 N nm has a left inverse

u� 2 N n m, hence N n m � U.N/. The reverse inclusion is clear, and we can

conclude N n U.N/ D m or N D m [ U.N/. �

Theorem 3.3. Let N be a loop near-ring, such that J2.N / ¤ N , i.e. N has at

least one N -maximal left ideal. The following properties are then equivalent:

(a) .N;m/ is local, i.e. N has a unique maximal left N -subloop m ŒN N .

(b) N has a unique N -maximal left ideal K EN N and this K is quasiregular.

(c) J2.N / is quasiregular and N=J2.N / is a loop near-�eld.

(d) N n U.N/ is an ideal in N .

(e) N n U.N/ is a subloop in .N;C/.

(f) mC n 2 U.N/ implies m 2 U.N/ or n 2 U.N/.

Moreover, in any of the above cases the equalities m D R.N/ D J2.N / D

N n U.N/ hold.

Proof. (a) H) (b). EveryN -maximal left idealK is contained inm. SinceK

is also maximal as a left N -subloop, it follows K D m D R.N/. Quasiregularity

now follows from Lemma 2.4.

(b) H) (c). If K EN N is the unique N -maximal left ideal, J2.N / D K

and, since K is quasiregular, J2.N / is quasiregular. Also, K is a maximal left

N -subloop, so Nu D N for every u 2 N n K, in particular u�u D 1 for
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some u� 2 N . Hence, every nonzero class u C K 2 N=K has a left inverse

u� C K 2 N=K, which implies that N=K n ¹Kº is a group with respect to

multiplication.

(c) H) (b). If N=J2.N / is a loop near-�eld, N=J2.N / is N -simple when

viewed as a left N -module, hence J2.N / is an N -maximal left ideal, which is

clearly unique.

(b) H) (a). Suppose K is the unique N -maximal left ideal in N . Then

R.N/ � J2.N / D K. Moreover, K � R.N/ by Lemma 2.4, since K is quasireg-

ular. Hence K D R.N/ D m.

(c) H) (d). By Theorem 2.8 an element n 2 N is invertible if and only if

nCJ2.N / is invertible in N=J2.N /. By (c), U.N=J2.N // D N=J2.N /n¹J2.N /º,

hence U.N/ D N n J2.N / or N n U.N/ D J2.N /, which is an ideal.

(d) H) (e) H) (f). These are tautologies.

(f) H) (c). Since J2.N / ¤ N , we must have J2.N / � N nU.N/. Let y solve

the equation y C j D 1 for j 2 J2.N /. Since j … U.N/, (f) implies y 2 U.N/,

hence J2.N / is quasiregular.

Take any v … J2.N / and let K be an N -maximal left ideal, which does not

contain v. Note that K CNv is a left N -subloop by Proposition 1.9, and, since K

is a maximal leftN -subloop,KCNv D N . Therefore kCuv D 1 for some k 2 K

and u 2 N . Now, by (f), k … U.N/ implies uv 2 U.N/. We have just shown that

every nonzero class v C J2.N / has a left inverse, hence N=J2.N / n ¹J2.N /º is a

group with respect to multiplication. �

Remark 3.4. We note, without proof, that in a local loop near-ring .N;m/with

J2.N / ¤ N , all radical-like ideals and subsets are equal, i.e.

m D J0.N / D D.N/ D R.N/ D J1.N / D J2.N /.

As is the case for local rings, (zero-symmetric) local loop near-rings cannot

contain proper nontrivial idempotents.

Lemma 3.5. If e is an idempotent in a local loop near-ring .N;m/, then either

e D 0 or e D 1.

Proof. By Proposition 3.2 either e 2 m or e 2 U.N/. By Lemma 2.4 the N -

subloopm D R.N/ is quasiregular, so 0 is the only idempotent in m (Remark 2.3).

On the other hand, the identity 1 is the only idempotent in the multiplicative group

U.N/. �
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Lemma 3.6. Let  WN ! M be a local homomorphism of loop near-rings.

Assume J2.N / ¤ N and J2.M/ ¤ M . If M is local, then N is also local.

Proof. Pick m; n 2 N , such that m C n 2 U.N/. Then  .m C n/ D

 .m/ C  .n/ is a unit in M . By Theorem 3.3 either  .m/ or  .n/ is a unit in

M . Now,  is local, so either m or n is a unit in N , which shows that N is local

by another use of Theorem 3.3. �

If M is a ring, the assumption J2.N / ¤ N in Lemma 3.6 is unnecessary.

Lemma 3.7. AssumeN is a loop near-ring,R a nontrivial ring, and WN ! R

a loop near-ring homomorphism. Then J2.N / is a proper ideal in N .

Proof. Since  .0/ D 0 and  .1/ D 1, im is a nontrivial subring in R,

so J.im / D J2.im / ¤ im . Note that the preimage of a maximal left ideal

K Eim im is an N -maximal left ideal  �1.K/ EN N . This can be restated

as J2.N / �  �1.J.im //, and, since  �1.J.im // ¤ N , J2.N / ¤ N . �

Corollary 3.8. Assume there is a local homomorphism  WN ! R from a

loop near-ringN to a local ringR. Then J2.N / ¤ N ,N is a local loop near-ring,

and N=J2.N / is a division ring.
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