A note on *S*-semipermutable subgroups of finite groups

HAORAN YU (*)

ABSTRACT – In this note, we obtain some criteria for *p*-supersolvability of a finite group and extend some known results concerning weakly *S*-semipermutable subgroups.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20D10.

KEYWORDS. *p*-supersolvablity, weakly *S*-semipermutable subgroups.

1. Introduction

Throughout the paper, we suppose *G* is a finite group and *p* is a prime. Let $\pi(G)$ be the set of all the prime divisors of |G|. Let $O^p(G) = \bigcap \{N \mid N \leq G \text{ and } G/N \text{ is a } p\text{-group}\}$. To state our results, we need to recall some notation. According to Kegel (see [6]), let *H* be a subgroup of a finite group *G*; then *H* is called an *S*-permutable subgroup of *G* if *H* permutes with every Sylow subgroup of *G*. According to Chen (see [2]), let *H* be a subgroup of a finite group *G*; then *H* is said to be *S*-semipermutable in *G* if HQ = QH for all Sylow *q*-subgroups *Q* of *G* for all primes *q* not dividing |H|. According to Li et al. (see [7]), let *H* be a subgroup of *G* if there exist $T \leq G$ and $H_1 \leq G$ such that G = HT, $H \cap T \leq H_1 \leq H$ and H_1 is *S*-semipermutable in *G*. Following Yakov Berkovich and I. M. Isaacs (see [1]), if *G* is a finite group and *p* is a prime divisor of |G|, we write G_p^* to denote the unique smallest normal subgroup of *G* for which the corresponding factor group is abelian of exponent dividing p - 1. It is well known that *G* is *p*-supersolvable if and only if G_p^* is *p*-nilpotent (see Lemma 3.6 of [1]).

E-mail: sylowtheorem@pku.edu.cn

^(*) Indirizzo dell'A.: School of Mathematics, Jilin University, No. 2699 Qianjin Street, Changchun, China.

Yu, H.

Recently, we proved the following theorem.

THEOREM 1.1 (Theorem 1.2, [9]). Let p be a prime dividing the order of a finite group G, e be a positive integer and $P \in Syl_p(G)$ with $|P| \ge p^{e+1}$. Then G is p-supersolvable if and only if $|P \cap O^p(G_p^*)| \le p^e$ and $P_1 \cap O^p(G_p^*)$ is S-permutable in G for all subgroups $P_1 \le P$ with $|P_1| = p^e$.

In this note, at first, we generalize Theorem 1.2 of [9] as follows.

THEOREM 1.2. Let p be a prime dividing the order of a finite group G, e be a positive integer, $P \in \text{Syl}_p(G)$ with $|P| \ge p^{e+1}$ and $L \trianglelefteq G$ with $O^p(G_p^*) \le$ $L \le G$. Suppose that $|P \cap L| \le p^e$ and $P_1 \cap L$ is S-semipermutable in G for all subgroups $P_1 \trianglelefteq P$ with $|P_1| = p^e$. Then G is p-supersolvable.

Using Theorem 1.2, we prove the following results which generalize Theorem 1.3 and Theorem 1.4 of [9].

THEOREM 1.3. Let p be a prime dividing the order of a finite group G, $e \ge 2$ be an integer, $P \in \text{Syl}_p(G)$ with $|P| \ge p^{e+1}$ and $L \le G$ with $O^p(G_p^*) \le L \le G$. Suppose that $P_1 \cap L$ is S-semipermutable in G for all subgroups $P_1 \le P$ with $|P_1| = p^e$. Then G is p-supersolvable.

Let *p* be a prime and *P* be a nonidentity *p*-group with $|P| = p^n$. We define the set $\Omega(P)$. If p = 2 and *P* is non-abelian, let

 $\Omega(P) = \{P_1 \mid P_1 \le P \text{ and } |P_1| = 2\}$ $\cup \{P_2 \mid P_2 \le P \text{ and } P_2 \text{ is a cyclic subgroup of order 4}\}.$

Otherwise, let $\Omega(P) = \{P_1 \mid P_1 \leq P \text{ and } |P_1| = p\}.$

THEOREM 1.4. Let *p* be a prime dividing the order of a finite group *G*, $P \in \text{Syl}_p(G)$ and $L \leq G$ with $O^p(G_p^*) \leq L \leq G$. Suppose that $P_1 \cap L$ is *S*-semipermutable in *G* for all subgroups $P_1 \in \Omega(P)$. Then *G* is *p*-supersolvable.

Note that Theorem 1.3 and Theorem 1.4 also generalize Theorem 3.5 of [7] and Theorems 3.1 and 3.4 of [8].

2. Preliminaries

LEMMA 2.1. Let *p* be a prime dividing the order of a finite group *G*. Then the following results hold.

- (a) (Lemma 3.1, [1]) Let $P_1 \leq G$ be a p-group and $N \leq G$. If P_1 is S-semipermutable in G, then P_1N/N is S-semipermutable in G/N.
- (b) (Lemma 3.2, [1]) Let P₁ ≤ G be a p-group and N be a normal p-subgroup of G. If P₁ is S-semipermutable in G, then P₁ ∩ N is normalized by O^p(G). In particular, if P₁ ≤ N, then P₁ is normalized by O^p(G).
- (c) (Lemma 3.3, [1]) Let $X \le H \le G$. If X is S-semipermutable in G, then X is S-semipermutable in H.

LEMMA 2.2 (Lemma 2.1, [9]). Let p be a prime dividing the order of a finite group $G, P \in \text{Syl}_p(G), N \trianglelefteq G$ and let e be a positive integer. Write $P_1 = P \cap N$. Assume that $P_1 \trianglelefteq N$ and N is not p-nilpotent. Also assume that $|P_1| \le p^e$ and $|P| \ge p^{e+1}$. Then P has a normal subgroup P_2 of order p^e with $[P_1 : P_1 \cap P_2] = p$.

LEMMA 2.3 (Lemma 2.2, [9]). Let p be a prime dividing the order of a finite group G and $P \in Syl_p(G)$. Write $\hat{P} = P \cap O^p(G_p^*)$. Assume that $\hat{P} > 1$ and \hat{P} has a maximal subgroup T with $T \leq G$. Then $\hat{P} \leq G$.

LEMMA 2.4 (Lemma 2.8, [9]). Let p be a prime dividing the order of a finite group G and P_1 be a p-subgroup of G. Let $L \leq G$ and N be a normal p'-subgroup of G. Then $P_1N/N \cap LN/N = (P_1 \cap L)N/N$.

LEMMA 2.5 (Lemma 2.9, [9]). Let *p* be a prime dividing the order of a finite group *G* and $N \leq G$. Then $(G/N)_p^* = G_p^* N/N$, $O^p(G/N) = O^p(G)N/N$ and $O^p((G/N)_p^*) = O^p(G_p^*)N/N$.

Recently, I. M. Isaacs proved the following significant theorem.

LEMMA 2.6 (Theorem A, [5]). Let p be a prime dividing the order of a finite group G and P_1 be an S-semipermutable p-subgroup of G. Then P_1^G is solvable.

Recently, Yakov Berkovich and I. M. Isaacs proved the following powerful results.

LEMMA 2.7 (Yakov Berkovich and I. M. Isaacs). Let *p* be a prime and *P* be a nonidentity finite *p*-group. Let *A* act on *P* via automorphisms.

- (a) (Lemma 2.1(a), [1]) If P is cyclic, then $O^p(A_p^*)$ acts trivially on P.
- (b) (Theorem A, [1]) Fix an integer $e \ge 3$. If P is a noncyclic p-group with $|P| \ge p^{e+1}$ and every noncyclic subgroup of P with order p^e is stabilized by $O^p(A)$, then $O^p(A_p^*)$ acts trivially on P.

(c) (Corollary B, [1]) If P is a noncyclic p-group with $|P| \ge p^3$ and every subgroup of P with order p^2 is stabilized by $O^p(A)$, then $O^p(A_p^*)$ acts trivially on P.

LEMMA 2.8 (Yakov Berkovich and I. M. Isaacs). Let p be a prime dividing the order of a finite group G and $P \in Syl_p(G)$.

- (1) (Lemma 3.8, [1]) If P is cyclic and some nonidentity subgroup $U \le P$ is S-semipermutable in G, then G is p-supersolvable.
- (2) (Theorem D, [1]) Fix an integer $e \ge 3$. If P is a noncyclic p-group with $|P| \ge p^{e+1}$ and every noncyclic subgroup of P with order p^e is S-semipermutable in G, then G is p-supersolvable.
- (3) (Corollary E, [1]) If P is a noncyclic p-group with $|P| \ge p^3$ and every subgroup of P with order p^2 is S-semipermutable in G, then G is p-super-solvable.

LEMMA 2.9 (Lemma 2.12, [9]). Let p be a prime and P be a nonidentity finite p-group. Let A act on P via automorphisms. Assume that for all $P_1 \in \Omega(P)$, P_1 is stabilized by $O^p(A)$. Then $O^p(A_p^*)$ acts trivially on P.

3. Main results

PROOF OF THEOREM 1.2. Suppose that *G* is a counterexample with minimal order; we complete the following steps to obtain a contradiction. Since *G* is not *p*-supersolvable, it follows that $O^p(G_p^*)$ is not *p*-nilpotent.

Step 1. $P \cap L \ge P \cap O^p(G_p^*) > 1$.

Since $O^p(G_p^*)$ is not *p*-nilpotent, it follows that $P \cap O^p(G_p^*) > 1$. Since $L \ge O^p(G_p^*)$, it follows that $P \cap L \ge P \cap O^p(G_p^*) > 1$.

Step 2. $O_{p'}(G) = 1.$

By Lemma 2.1(a), Lemma 2.4 and Lemma 2.5, the hypotheses are inherited by $G/O_{p'}(G)$. If $O_{p'}(G) > 1$, then $G/O_{p'}(G)$ is *p*-supersolvable, and thus *G* is *p*-supersolvable. This is a contradiction. Hence $O_{p'}(G) = 1$. STEP 3. Let $\hat{P} = P \cap O^p(G_p^*)$. Then $\hat{P} \leq G$.

Let $U = P \cap L$. Then $U \leq P$ and $|U| \leq p^e$. Hence P has a normal subgroup P_1 of order p^e with $U \leq P_1$. By the hypotheses, $U = P_1 \cap L$ is S-semipermutable in G. By Lemma 2.6, U^G is solvable. By Step 1, $U^G \geq U > 1$. By Step 2, $O_{p'}(U^G) = 1$. Since U^G is solvable, it follows that $O_p(U^G) > 1$. Let $N = O_p(U^G)$. Since $U^G \leq L$, it follows that $N \leq U$. Hence $|N| \leq |U| \leq p^e$.

Assume that $1 < |N| < p^e$. Recall that $N \le P \cap L$. By Lemma 2.1(a) and Lemma 2.5, the hypotheses are inherited by G/N. Hence G/N is *p*-supersolvable. By Lemma 2.5, it follows that $O^p(G_p^*)N/N = O^p((G/N)_p^*)$ is a *p'*-group, and thus $N \cap O^p(G_p^*)$ is the normal Sylow *p*-subgroup of $O^p(G_p^*)$. Hence $\hat{P} = N \cap O^p(G_p^*)$, and thus $\hat{P} \le G$.

Assume that $|N| = p^e$. Since $N \leq U$ and $|U| \leq p^e$, it follows that U = N is a normal subgroup of G. Hence $\hat{P} = P \cap O^p(G_p^*) = U \cap O^p(G_p^*) \leq G$.

STEP 4. The final contradiction.

Recall that \hat{P} is the normal Sylow *p*-subgroup of $O^p(G_p^*)$ (Step 3), $O^p(G_p^*)$ is not *p*-nilpotent, $|P| \ge p^{e+1}$ and $1 < |\hat{P}| \le |U| \le p^e$. By Lemma 2.2, *P* has a normal subgroup P_2 of order p^e with $[\hat{P}: \hat{P} \cap P_2] = p$. Note that $\hat{P} \cap P_2 \le P$. By the hypotheses, $P_2 \cap L$ is *S*-semipermutable in *G*. By Lemma 2.1(b), $\hat{P} \cap P_2 =$ $\hat{P} \cap P_2 \cap L$ is normalized by $O^p(G)$. Hence $\hat{P} \cap P_2 \le G$. By Lemma 2.3, $\hat{P} \ne G$. This is a contradiction since $\hat{P} \le G$. Hence we obtain the final contradiction. \Box

PROOF OF THEOREM 1.3. We proceed by induction on |G|. By Lemma 2.1(a), Lemma 2.4 and Lemma 2.5, the hypotheses are inherited by $G/O_{p'}(G)$. If $O_{p'}(G) > 1$, by induction, $G/O_{p'}(G)$ is *p*-supersolvable, and thus *G* is *p*-supersolvable. So we can assume $O_{p'}(G) = 1$. Let $U = P \cap L$. If $|U| \le p^e$, by Theorem 1.2, *G* is *p*-supersolvable. Assume that $|U| \ge p^{e+1}$. For any subgroup $P_1 \le U$ with $|P_1| = p^e$, P_1 is *S*-semipermutable in *G*. By Lemma 2.1(c), P_1 is *S*-semipermutable in *L*. By Lemma 2.8, *L* is *p*-supersolvable, and thus *L* is *p*-solvable with *p*-length 1. Since $O_{p'}(G) = 1$, it follows that *U* is the normal Sylow *p*-subgroup of *L*, and thus $U \le G$. Note that for all subgroups $P_1 \le U$ with $|P_1| = p^e$, P_1 is *S*-semipermutable in *G*. By Lemma 2.1(b), it follows that P_1 is normalized by $O^p(G)$. By Lemma 2.7, *U* is centralized by $O^p(G_p^*)$. Let $\hat{P} = P \cap O^p(G_p^*)$. Note that $\hat{P} = U \cap O^p(G_p^*)$, and thus $\hat{P} \le Z(O^p(G_p^*))$. By Burnside's Theorem (see Theorem 5.13 of [4]), $O^p(G_p^*)$ is *p*-nilpotent, i.e., G_p^* is *p*-nilpotent. Hence *G* is *p*-supersolvable.

PROOF OF THEOREM 1.4. By Lemma 2.1(a), Lemma 2.4 and Lemma 2.5, it is no loss to assume that $O_{p'}(G) = 1$. Assume G is not p-supersolvable; we work to obtain a contradiction. Since G is not p-supersolvable, it follows that $O^p(G_p^*)$ is not p-nilpotent. Let $\hat{P} = P \cap O^p(G_n^*)$. Then $\hat{P} > 1$. Since $O^p(G_n^*) \leq L$, it follows that for any $P_1 \in \Omega(\hat{P})$, P_1 is S-semipermutable in G. By Lemma 2.6, P_1^G is solvable. Let $M = \prod_{P_1 \in \Omega(\widehat{P})} P_1^G$. Then M is a solvable normal subgroup of G and $M \leq O^p(G_p^*)$. Since $\hat{P} > 1$ and for any $P_1 \in \Omega(\hat{P}), P_1 \leq M$, it follows that M > 1. Since $O_{p'}(G) = 1$ and $M \leq G$, we have $O_{p'}(M) = 1$. Since M > 1is solvable and $O_{p'}(M) = 1$, we have $O_p(M) > 1$. Note that $O_p(M) \leq P \cap L$. Hence for any $P_2 \in \Omega(O_p(M))$, P_2 is S-semipermutable in G. By Lemma 2.1(b), P_2 is normalized by $O^p(G)$. By Lemma 2.9, $O_p(M)$ is centralized by $O^p(G_p^*)$. Recall that $M \leq O^p(G_p^*)$. Hence $O_p(M) \leq Z(M)$. Since M is solvable and $O_{p'}(M) = 1$, by Hall-Higman's Lemma (see Theorem 3.21 of [4]), it follows that $M = O_p(M)$. Hence M is centralized by $O^p(G_p^*)$. Recall that for any $P_1 \in \Omega(\hat{P})$, $P_1 \leq M$. Hence for any $P_1 \in \Omega(\hat{P})$, P_1 is centralized by $O^p(G_p^*)$. By Satz IV.5.5 of [3], $O^p(G_p^*)$ is *p*-nilpotent. This is the desired contradiction. Hence G is *p*-supersolvable.

4. Final remarks

Theorem 1.3 and Theorem 1.4 have the following corollaries.

COROLLARY 4.1. Let p be a prime dividing the order of a finite group G, $e \ge 2$ be an integer and $P \in Syl_p(G)$ with $|P| \ge p^{e+1}$. Suppose that $P_1 \cap O^p(G)$ is S-semipermutable in G for all subgroups $P_1 \le P$ with $|P_1| = p^e$. Then G is p-supersolvable.

COROLLARY 4.2. Let p be a prime dividing the order of a finite group Gand $P \in Syl_p(G)$. Suppose that $P_1 \cap O^p(G)$ is S-semipermutable in G for all subgroups $P_1 \in \Omega(P)$. Then G is p-supersolvable.

Note that Corollary 4.1 and Corollary 4.2 generalize Theorem 3.5 of [7].

REMARK 4.3. For any odd prime p and any positive integer e, there exists a finite group G with p an odd prime divisor of |G|, $P \in \text{Syl}_p(G)$ and $|P| \ge p^{e+1}$ such that for every subgroup P_1 of P with order p^e , $P_1 \cap O^p(G)$ is *S*-semipermutable in G, but P has a subgroup P_3 of order p^e such that P_3 is not weakly *S*-semipermutable in G. Hence our Corollary 4.1 and Corollary 4.2 are stronger than Theorem 3.5 of [7]. See the following example. EXAMPLE 4.4. Let *n* be an integer with n > e, *p* be an odd prime and $T = \langle a, b \mid a^{p^n} = b^2 = 1, b^{-1}ab = a^{-1} \rangle \cong D_{2p^n}$. There exists $c \in \operatorname{Aut}(T)$ such that $a^c = a$ and $b^c = ba$. Consider $G = T \rtimes \langle c \rangle \cong \langle a, b, c \mid a^{p^n} = b^2 = c^{p^n} = 1, b^{-1}ab = a^{-1}, c^{-1}ac = a, c^{-1}bc = ba \rangle$.

Let $P = \langle a \rangle \times \langle c \rangle$. Then P is the normal Sylow p-subgroup of G with order p^{2n} . Then $b \in O^p(G)$, so $ba = b^c \in O^p(G)$. Hence $a \in O^p(G)$, so $O^p(G) = T$. Hence for any subgroup P_1 of P with order p^e , $P_1 \cap O^p(G)$ is normal in G, and thus S-semipermutable in G. Let $\tilde{c} = c^{p^{n-e}}$. Consider $\langle \tilde{c} \rangle$. Note that $|\langle \tilde{c} \rangle| = p^e$. Then $\langle \tilde{c} \rangle$ is not weakly S-semipermutable in G. To see this, assume that $\langle \tilde{c} \rangle$ is weakly S-semipermutable in G, since $\langle \tilde{c} \rangle \leq \Phi(\langle c \rangle)$, it follows that $\langle \tilde{c} \rangle$ is S-semipermutable in G. Hence $\langle \tilde{c} \rangle$ normalizes $\langle b \rangle$. This is a contradiction since $\tilde{c}^{-1}b\tilde{c} = ba^{p^{n-e}}$. Hence $\langle \tilde{c} \rangle$ is not weakly S-semipermutable in G.

Acknowledgment. The author is grateful to the referee who provided his/her valuable suggestions and detailed report.

References

- Y. BERKOVICH I. M. ISAACS, *p-Supersolvability and actions on p-groups stabilizing certain subgroups*, J. Algebra 414 (2014), pp. 82–94.
- [2] Z. M. CHEN, On a theorem of Srinivasan, J. Southwest Normal Univ. Nat. Sci. 12(1) (1987), pp. 1–4.
- [3] B. HUPPERT, Endliche Gruppen, Vol. I, Springer-Verlag, Berlin, 1967.
- [4] I. M. ISAACS, *Finite Group Theory*, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, R.I., 2008.
- [5] I. M. ISAACS, Semipermutable π -subgroups, Arch. Math. (Basel) **102(1)** (2014), pp. 1–6.
- [6] O. H. KEGEL, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), pp. 205–221.
- [7] Y. LI S. QIAO N. SU Y. WANG, On weakly s-semipermutable subgroups of finite groups, J. Algebra 371 (2012), pp. 250–261.
- [8] N. TANG X. LI, On weakly s-semipermutable subgroups of finite groups, Algebra Colloq. 21 (2014), pp. 541–550.
- [9] H. YU, Some sufficient and necessary conditions for p-supersolvability and p-nilpotence of a finite group, J. Algebra Appl., 16 (2017), no. 3, 1750052, 9 pp.

Manoscritto pervenuto in redazione il 7 aprile 2016.