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Positive solutions of singular semilinear elliptic problems

in NTA-cones

Lassaad Gharbi (�) – Mohamed Amine Ben Boubaker (��)

Abstract – We study the existence, the uniqueness and the asymptotic behavior of positive

solutions of the nonlinear equation

�v C f .:; v/ D 0;

in an NTA-cone in R
n.n � 3), when a positive Borel measurable function f .:; :/ is

continuous and non-increasing with respect to the second variable and satis�es a certain

condition related to a Kato class.
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1. Introduction

We work in the Euclidean space Rn, where n � 3. By �, we denote an NTA-cone

of vertex 0 (see [14] for the de�nition), and by G�.x; y/, the Green function for

the Laplacian in �. We write ı�.z/ for the distance from z in � to the Euclidean

boundary @� of �. By B.x; r/ we denote the open ball of centre x and radius r .

We write B.r/ D B.0; r/ for simplicity. Let z0 be a �xed point in �. As proved

in [1] and [14], for each � 2 @� [ ¹1º there exists exactly one Martin Kernel

K�.:; �/ on �, that is, a positive harmonic function on � vanishing continuously
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on @� [ ¹1º n ¹�º and satisfying K�.z0; �/ D 1. Moreover, from [[14], p. 472],

there exist a nonnegative constant ˛ and a positive bounded continuous function

! on � \ S.0; 1/ such that

(1.1) K�.x; 0/ D jxj
2�n�˛ !

� x

jxj

�

and K�.x;1/ D jxj
˛ !

� x

jxj

�

;

where S.0; 1/ is the unit sphere in R
n. In this paper, we study the existence, the

uniqueness and the asymptotic behavior of positive solutions of the nonlinear

elliptic problem

(1.2)

8

ˆ

ˆ

<

ˆ

ˆ

:

�v C f .:; v/ D 0 in �;

v > 0 in �;

v D 0 on @�:

Note that the existence results of problem (1.2) have been extensively studied

for the special nonlinearity f .x; t/ D p.x/ q.t/, for both bounded and un-

bounded domain D in R
n .n � 2/ with smooth compact boundary (see for ex-

ample [4, 6, 8, 9, 12, 15, 16, 17]). In [12] Edelson studied (1.2) in R
2, when

f .x; t/ D p.x/t� ; 0 <  < 1. He proved the existence of an entire positive

solution with the growth ln j:j near in�nity. In [9] Crandall, Rabinowitz and Tatar

studied (1.2) on a bounded open domain, where they proved existence of solu-

tions, and continuity properties of the solutions if f .x; t/ does not depend on

x, by using the method of sub- and supersolutions. Lazer and MacKenna [17]

also dealt the problem (1.2), when f .x; t/ D p.x/t� ;  > 0 on a bounded

open domain, with p a continuous function, proving existence and regularity re-

sults at the boundary for the solutions. In [15], Lair and Shaker proved the re-

sult of [17] in R
n .n � 3/. These results were generalized later by Lair and

Shaker in [16]. They studied (1.2) on a bounded smooth domain � � R
n .n � 1/

when f .x; t/ D p.x/ q.t/, q is a positive non-increasing and di�erentiable func-

tion on �0;C1Œ which is integrable near 0. They proved that the problem (1.2)

has a unique weak positive solution v 2 H 1
0 .�/, provided that q is a non-

trivial, nonnegative L2.�/ function. In [4] Boccardo and Orsina studied (1.2)

when f .x; t/ D p.x/t� ;  > 0 on a bounded open set of R
n .n � 2/, with

p is a nonnegative function. They proved existence, regularity and non exis-

tence results which depends on the summability of p in some Lebesgue spaces,

and on the value of  . Recently in [6] Canino and Sciunzi prove the unique-

ness of the solution for the problem studied by Boccardo and Orsina in [4]. Yet

recently in [8] Carmona and Martinez-Aparicio studied (1.2) when f .x; t/ D

p.x/ t�.x/ on an open bounded set of R
n .n � 2/, with .x/ is a positive
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continuous function and p is a positive function that belongs to a certain Lebesgue

space. Inspired by [4], they proved existence results for the problem (1.2). In [20]

X. Wang, P. Zhao and Li Zhang studied (1.2), when f .x; t/ D �tˇ Cp.x/t� in a

bounded smooth domain �, with 1 < ˇ; 0 <  < 1 and p 2 C
˛
0 .

x�/ .0 < ˛ < 1/.

They proved that (1.2) has at least two positive solutions. Thus, our �rst aim in

this paper is to extend the results of [12], [15], [16], and [20] to a more general

problem on NTA-cones in R
n.n � 3/. In [13], K. Hirata studied (1.2) in uniform

cones inR
n .n � 3/, where f .x; t/ is a Borel measurable function on �� �0;C1Œ,

continuous with respect to the second variable such that

jf .x; t/j � t  .x; t /; for all .x; t / 2 �� �0;C1Œ ;

where  is a nonnegative Borel measurable function satisfying, for each x 2 �,

 .x; :/ is nondecreasing in �0;C1Œ and limt�!0C  .x; t/ D 0. By applying

sharp estimates for the Green function, he proved the existence of in�nitely many

continuous solutions with growth as the Martin kernel at in�nity. On the other

hand, Zhang and Zhao [21] studied (1.2) in a bounded Lipschitz domain containing

the origin. They showed the existence of singular solutions with the growth j � j2�n

near the origin. The existence of bounded solutions in an unbounded domain with

a compact Lipschitz boundary was investigated in [22]. In [5] Brezis and Kamin

study the sublinear elliptic equation:

�uC p.x/.u.x// D 0 in R
n;

with 0 <  < 1 and p is a nonnegative measurable function satisfying some

appropriate conditions. They proved the existence and the uniqueness of positive

solution. In [3] M. A. Ben Boubaker combine a singular term and a sublinear term

in the nonlinearity and studied (1.2), where f .x; t/ D '.x; t/C  .x; t/, ' and  

are required to satisfy some appropriate hypothesis related to the Kato classK.�/

which are di�erent to those considered to study the problem (1.2) in this paper.

Bachar, Mâagli, and Mâatoug [2] studied (1.2) inD D ¹.x1; x2/ 2 R
2W x2 > 0º and

showed the existence of solutions with the growth x2 near in�nity. Their discussion

was based on the explicit expression of the Green function. Thus our second aim

is to extend their result to NTA- cones � in R
n.n � 3/, by applying the sharp

estimates for the Green function established by K. Hirata in [13]. In particular, we

show the existence and uniqueness of solutions with the same growth as the Martin

kernel at in�nity. Our tools are based essentially on same results established by

K. Hirata in [13].
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Definition 1.1 (Kato class, see[13]). We say that a Borel measurable function

' in � belongs to the extended Kato class K.�/ if ' satis�es the following

conditions:

(1.3) lim
r�!0

�

sup
x2�

Z

�\B.x;r/

K�.y;1/

K�.x;1/
G�.x; y/ j'.y/j dy

�

D 0;

(1.4) lim
R�!C1

�

sup
x2�

Z

�nB.R/

K�.y;1/

K�.x;1/
G�.x; y/ j'.y/j dy

�

D 0:

Example 1.2 (see[13]). Suppose that 0 � ˛ < 1 and !.z/ ' ı�.z/, and let

J.y/ D .1C jyj/˛p�q jyj
p.1�˛/ ı�.y/

�p:

Then J 2 K.�/ if and only if p < 2 < q:

We impose the following conditions on f :

(H1) f W�� �0;C1Œ�! �0;C1Œ is a measurable, continuous and non-increasing

function with respect to the second variable.

(H2) for all c > 0; f .:; c/ 2 K.�/;

(H3) for all c > 0; V .f .:; c// > 0; where V D .��/�1 is the potential kernel

associated to �.

The following notations will be adopted.

i) We denote f ' g if there exists A � 1 such that for all x 2 �, .1=A/g.x/ �

f .x/ � Ag.x/:

ii) B.�/ is the set of Borel measurable functions in � and BC.�/ is the set of

non negative one.

iii) C.�/ denotes the space of all bounded continuous functions in � endowed

with the uniform norm k : k1.

iv) C0.x� [ ¹1º/ D ¹v 2 C.x� [ ¹1º/W limx�!@� v.x/ D limx�!1 v.x/ D 0º.

v) By the symbol A, we denote an absolute positive constant whose value is

unimportant and may change from line to line.

We de�ne the potential kernel V on BC.�/ by

V'.x/ D

Z

�

G�.x; y/ '.y/ dy:

We note that, for any ' 2 BC.�/ such that ' 2 L1
loc.�/ and V' 2 L1

loc.�/, we

have in the distributional sense

(1.5) �.V'/ D �' in �:
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We point out that for any ' 2 BC.�/ such that V' 6� C1;we have V' 2 L1
loc.�/,

(see [7], p 51). Let us recall that V satis�es the complete maximum principle, i.e.

for each ' 2 BC.�/ and a nonnegative superharmonic function u on � such that

V' � u in ¹' > 0º we have V' � u in �; (cf. [18], Theorem 3.6, p 175). Our main

results are the following.

Theorem 1.3. Assume (H1)–(H3). Then for b > 0, the problem (1.2) has at

least one positive solution vb continuous on x� and satisfying for all x in �,

b K�.x;1/

� vb.x/

� bK�.x;1/C min

�

�;

Z

�

G�.x; y/ f .y; b K�.y;1// dy

�

;

where � D inf�>0.� C kVf .:; �/k1/: In particular limt�!C1
vb.tx/

K�.tx;1/
D b.

Theorem 1.4. Assume (H1)–(H3). Then the problem (1.2) has a unique positive

solution v 2 C0.x� [ ¹1º/, satisfying, for all x in �,

A
K�.x;1/

.jxj C 1/nC2˛�2
� v.x/ � min

�

�;

Z

�

G�.x; y/ f .y; A
K�.y;1/

.jyj C 1/nC2˛�2
/ dy

�

;

where � is as in Theorem 1.3.

This paper consists of 4 sections devoted to the following topics. In Section 2,

we recall some results, established by K. Hirata in [13], that will be necessary

throughout this paper. In Section 3, we prove Theorem 1.3. In Section 4 we prove

Theorem 1.4. Finally we give an interesting example.

2. Preliminaries

Corollary 2.1. For x; y 2 � with 2 jyj � jxj ;

G�.x; y/ ' jxj
2�n�2˛ K�.x;1/K�.y;1/ D K�.x; 0/K�.y;1/;

where the constant of comparison depends only on �.

Theorem 2.2 (3-G inequalities). There exists a constant A depending only on

� such that for x; y; z 2 �,

(2.1)
G�.x; y/G�.y; z/

G�.x; z/
� A

�K�.y;1/

K�.x;1/
G�.x; y/C

K�.y;1/

K�.z;1/
G�.y; z/

�

:
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Lemma 2.3. Let r > 0 and R > 0. Then there exists a constant A depending

only on r; R and � such that for x; y 2 � \ B.R/ with jx � yj � r;

(2.2) G�.x; y/ � AK�.x;1/K.y;1/:

Lemma 2.4. There exists a constant A > 0 depending only on � such that for

all x; y 2 �

K�.x;1/K�.y;1/ � A max.jxj ; jyj/n�2C2˛ G�.x; y/

� A..1C jxj/ .1C jyj//n�2C2˛ G�.x; y/:

Proposition 2.5. If ' 2 K.�/, then

k'kH D sup
x2�

Z

�

K�.y;1/

K�.x;1/
G�.x; y/ j'.y/j dy < C1:

Moreover, for each R > 0;

Z

�\B.R/

K�.y;1/2 j'.y/j dy < C1:

Corollary 2.6. Let ' 2 K.�/. Then, for each R > 0;

(2.3)

Z

�\B.R/

K�.y;1/ j'.y/j dy < C1:

Lemma 2.7. Let ' 2 K.�/. Then, for each x0 2 x�;

lim
r�!0

Z

�\B.x0;r/

K�.y;1/2 j'.y/j dy D 0:

3. Proof of Theorem 1.3

Proposition 3.1. Let ' 2 K.�/ and h be a positive superharmonic function

in �.

a) We have

(3.1) lim
r�!0

sup
x2�

�

1

h.x/

Z

B.x0;r/\�

G�.x; y/ h.y/ j'.y/j dy

�

D 0

for all x0 2 x�, and

(3.2) lim
M �!C1

sup
x2�

�

1

h.x/

Z

�nB.M /

G�.x; y/ h.y/ j'.y/j dy

�

D 0:
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b) For all x 2 � and A as in Theorem 2.2,

(3.3)

Z

�

G�.x; y/ h.y/ j'.y/j dy � 2A k'kH h.x/:

Proof. Let h be a positive superharmonic function in �. Then by [[15], Theo-

rem 2.1, p. 164], there exists a sequence .fn/n2N of positive measurable functions

in � such that

h.y/ D sup
n2N

Z

�

G�.y; z/ fn.z/ dz:

Hence we need to verify (3.1), (3.2), and (3.3) only for h.y/ D G�.y; z/, uniformly

for z 2 �:

a) Let r > 0. By using Theorem 2.2, we get

1

G�.x; z/

Z

B.x0;r/\�

G�.x; y/G�.y; z/ j'.y/j dy

� 2A sup
z2�

Z

B.x0;r/\�

K�.y;1/

K�.z;1/
G�.z; y/ j'.y/j dy:

Let " > 0: Since ' 2 K.�/; there exist positive numbers r1 and R1 such that

sup
z2�

Z

�\B.z;r1/

K�.y;1/

K�.z;1/
G�.z; y/ j'.y/j dy � "

and

sup
z2�

Z

�nB.R1/

K�.y;1/

K�.z;1/
G�.z; y/ j'.y/j dy � ":

Let r > 0 and z 2 �: Then we have by Lemma 2.3
Z

�\B.x0;r/

K�.y;1/

K�.z;1/
G�.z; y/ j'.y/j dy

� 2"C

Z

�\B.x0;r/\B.R1/nB.z;r1/

K�.y;1/

K�.z;1/
G�.z; y/ j'.y/j dy

� 2"C A

Z

�\B.x0;r/

K�.y;1/2 j'.y/j dy:

Hence (3.1) follows from Lemma 2.7. On the other hand, we have

1

G�.x; z/

Z

�nB.M /

G�.x; y/G�.y; z/ j'.y/j dy

� 2A sup
z2�

Z

�nB.M /

K�.y;1/

K�.z;1/
G�.z; y/ j'.y/j dy

and from (1.4) it converges to zero as M �! C1: This gives (3.2).
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b) By using Theorem 2.2, we obtain

1

G�.x; z/

Z

�

G�.x; y/G�.y; z/ j'.y/j dy � 2A k'kH : �

Corollary 3.2. Let ' 2 K.�/. Then we have

(3.4) sup
x2�

Z

�

G�.x; y/ j'.y/j dy < C1;

(3.5)

Z

�

K�.y;1/

.1C jyj/nC2˛�2
j'.y/j dy < C1:

Proof. Inequality (3.4) is a consequence of (3.3) with h D 1 in � and

Proposition 2.5. Let x0 2 �. Then by Lemma 2.4 and (3.4) we get

Z

�

K�.y;1/

.jyj C 1/nC2˛�2
j'.y/j dy

� A
.jx0j C 1/nC2˛�2

K�.x0;1/
sup
x2�

Z

�

G�.x; y/ j'.y/j dy

< C1: �

Proposition 3.3. Let ' 2 K.�/. Then, the function V' is in C0.x� [ ¹1º/:

Proof. Let x0 2 x�, ı > 0 and x; x0 2 � \ B.x0;
ı
2
/. Then

jV'.x/ � V'.x0/j

� 2 sup
x2�

Z

�nB.ı�1/

G�.x; y/ j'.y/j dy

C 2 sup
x2�

Z

�\B.x0;ı/

G�.x; y/ j'.y/j dy

C

Z

�\B.ı�1/nB.x0;ı/

jG�.x; y/ �G�.x
0; y/j j'.y/j dy:

By (3.1) and (3.2), the �rst two quantities of the right hand side are bounded by "

whenever ı is su�ciently small. For ı su�ciently small, G�.:; y/ can be extended

continuously to B.x0;
ı
2
/ \ x� whenever y 2 � n B.x0; ı/. Moreover, by (2.2)

and (1.1), there exists A > 0 such that

G�.x; y/ � AK�.y;1/;
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for all .x; y/ 2 .B.x0;
ı
2
/ \ x�/ � .� \ B.ı�1/ n B.x0; ı//. Then by (2.3) and

Lebesgue’s theorem, we have
Z

.�\B.ı�1//nB.x0 ;ı/

jG�.x; y/ � G�.x
0; y/j j'.y/j dy ������!

jx�x0j!0
0:

Hence, V' is continuous in x� and limx�!x0
V'.x/ D 0 when x0 2 @� because

G�.:; / vanishes continuously on @� .

Now we will show that limjxj�!C1 V'.x/ D 0: Let M > 0. Then

jV'.x/j �

Z

�\B.M /

G�.x; y/ j'.y/j dy C

Z

�nB.M /

G�.x; y/ j'.y/j dy:

By (3.2), the second term of the right hand side is bounded by " uniformly for x,

wheneverM is su�ciently large. Using (1.1) and Corollary 2.1 , we get

G�.x; y/ � A
K�.y;1/

jxj
n�2C˛

; for x 2 � n B.2M/ and y 2 � \ B.M/:

It follows from Corollary 2.6 that limjxj�!C1 jV'.x/j D 0: �

Theorem 3.4. Assume (H1)-(H3). Let � and b be strictly positive numbers.

Then the Problem

P�;b D

8

ˆ

ˆ

<

ˆ

ˆ

:

�v C f .:; v/ D 0 in �;

v > 0 in �;

v D � on @�;

has at least one positive solution v�;b 2 C.x�/ satisfying

lim
x�!1

v�;b.x/

� C b K�.x;1/
D 1;

in particular for each �xed z 2 �

lim
t�!C1

v�;b.tz/

K�.tz;1/
D b:

The proof is based on the Schauder �xed point argument. In the sequel, we

suppose that � is an NTA-cone in R
n with n � 3 and f satis�es (H1)–(H3). Let

� > 0. It follows from (H2) and Proposition 3.3 that Vf .:; �/ 2 C0.x�[¹1º/. So in

the sequel, we denote F� D ¹w 2 C.x� [ ¹1º/W � � w � ˇ D � C kVf .:; �/k1º.

For w 2 F� , we de�ne

Tw.x/ D � C
�

� C b K�.x;1/

Z

�

G�.x; y/ f
�

y;
� C b K�.y;1/

�
w.y/

�

dy;

for all x 2 �.
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Lemma 3.5. The class ¹TwWw 2 F�º is equicontinuous in x� [ ¹1º.

Moreover we have ¹TwWw 2 F� º � C.x� [ ¹1º/.

Proof. As in the proof of Proposition 3.3, we show that ¹TwWw 2 F� º is

equicontinuous in .x�[¹1º/. In particular, for allw 2 F� ; T w 2 C.x�[¹1º/: �

Lemma 3.6. T .F� / � F� : Moreover, T .F� / is relatively compact in C.x� [

¹1º/.

Proof. Let w 2 F� ; by (H1)

(3.6) f
�

y;
� C b K�.y;1/

�
w.y/

�

� f .y; �/; for all y 2 �:

Then for w 2 F�

� � Tw.x/ � ˇ; for all x 2 �:

By using Lemma 3.5, we deduce that T .F�/ � F� : Since ¹TwWw 2 F�º is

uniformly bounded in x� [ ¹1º; it follows by Ascoli’s theorem, that T .F� / is

relatively compact in C.x� [ ¹1º/. �

Lemma 3.7. T is continuous in F� :

Proof. Let .wn/n2N be a sequence in F� which converges uniformly to w 2

F� in x� [ ¹1º. Then we have

jTwn.x/ � Tw.x/j

�
�

� C bK�.x;1/

Z

�

G�.x; y/

ˇ

ˇ

ˇ

ˇ

f
�

y;
� C b K�.y;1/

�
wn.y/

�

� f
�

y;
� C b K�.y;1/

�
w.y/

�

ˇ

ˇ

ˇ

ˇ

dy:

It follows from (H1), (H2), (3.6), (3.4), and Lebesgue’s convergence theorem that

for each x 2 �;

lim
n�!C1

Twn.x/ D Tw.x/:

Hence, Twn converges pointwisely to Tw in � as n �! C1: Since T .F� / is

relatively compact in C.x�[¹1º/; the pointwise convergence implies the uniform

convergence. Thus limn�!C1 kTwn � Twk1 D 0: Hence, T is continuous

on F� : �
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Proof of Theorem 3.4. Let � > 0. Note that F� is a nonempty bounded

closed convex set in C.x� [ ¹1º/. Since T is a compact mapping from F� into

it self, it follows from the Schauder �xed point theorem that there exists w� 2 F�

such that w� D T .w�/, that is for all x 2 �

w� .x/ D � C
�

� C b K�.x;1/

Z

�

G�.x; y/ f
�

y;
� C b K�.y;1/

�
w� .y/

�

dy:

Put

v�;b.x/ D
� C b K�.x;1/

�
w� .x/;

for x 2 �. Then for all x 2 �

(3.7) v�;b.x/ D � C b K�.x;1/C

Z

�

G�.x; y/ f .y; v�;b.y// dy:

By using (H1), we get for all y 2 �

f .y; v�;b.y// � f .y; �/:

It follows from (H2) and Proposition 2.5 that the function y 7�! f .y; v�;b.y//

belongs toL1
loc.�/ and by Proposition 3.3, we get thatVf .:; v�;b/ 2 C0.x�[¹1º/ �

L1
loc.�/. Hence,

�v�;b C f .:; v�;b/ D 0 in � (in the sense of distribution).

Moreover,

lim
x�!1

v�;b.x/

� C bK�.x;1/
D 1C lim

x�!1

Vf .:; v�;b/.x/

� C b K�.x;1/
D 1

and limx�!@� v�;b.x/ D � . Thus, v�;b 2 C.x�/ and v�;b is a positive continuous

solution of the problem .P�;b/: �

Proposition 3.8. Let �1; �2; b1; b2 be real numbers such that 0 � �1 � �2

and 0 � b1 � b2. Then,

0 � v�2;b2
.x/ � v�1;b1

.x/ � �2 � �1 C .b2 � b1/K�.x;1/; for all x 2 �:

Proof. Let h be the function de�ned on � by

h.x/ D

8

ˆ

<

ˆ

:

f .x; v�1;b1
.x// � f .x; v�2;b2

.x//

v�2;b2
.x/ � v�1;b1

.x/
if v�2;b2

.x/ ¤ v�1;b1
.x/;

0 if v�2;b2
.x/ D v�1;b1

.x/:
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Let us put g.x/ D v�2;b2
.x/ � v�1;b1

.x/ and denote by

gC D max.g; 0/; g� D max.�g; 0/:

It is easy to see that g 2 B.�/, h 2 BC.�/ and

g C V.h g/ D �2 � �1 C .b2 � b1/K�.x;1/:

Since

V.h jgj/ � V.f .:; v�1;b1
//C V.f .:; v�2;b2

//

� v�1;b1
C v�2;b2

< 1;

we have

gC.x/C V.hgC/.x/ D �2 � �1 C .b2 � b1/K�.x;1/C g� C V.hg�/.x/;

for all x 2 �. As a consequence, we get

V.hgC/.x/ � .�2 � �1/C .b2 � b1/K�.x;1/C V.hg�/.x/

on the set ¹x 2 �W gC.x/ > 0º. As �2 � �1 C .b2 � b1/K�.x;1/C V.h g�/ is a

non negative superharmonic function in �, then the complete maximum principle

implies that

V.hgC/ � .�2 � �1/C .b2 � b1/K�.x;1/C V.hg�/ in �;

that is

V hg.x/ � ..�2 � �1/C .b2 � b1/K�.x;1// D g C V.hg/.x/; for all x 2 �:

This implies that

0 � g.x/ � .�2 � �1/C .b2 � b1/K�.x;1/; for all x 2 �: �

Proof of Theorem 1.3. Let .�n/n2N be a sequence of positive real numbers,

converging decreasingly to zero. Then, for each n 2 N, the problem .P�n;b/ has a

continuous solution v�n;b satisfying for each x 2 �

v�n;b.x/ D �n C bK�.x;1/C

Z

�

G�.x; y/ f .y; v�n;b.y// dy:



Positive solutions of singular semilinear elliptic problems in NTA-cones 277

By Proposition 3.8, we deduce that the sequence .v�n;b/n2N decreases to a function

vb. On the other hand, for all x 2 �

v�n;b.x/ � �n D bK�.x;1/C

Z

�

G�.x; y/ f .y; v�n;b.y// dy

� bK�.x;1/

> 0:

It follows from (H1) that the sequence .v�n;b��n/n2N increases to vb and so vb > 0

in �: Finally,

vb D inf
n2N

v�n;b D sup
n2N

.v�n;b � �n/

is a positive continuous function in x�: By using (H1) and the monotone conver-

gence theorem, we get

(3.8) vb.x/ D b K�.x;1/C

Z

�

G�.x; y/ f .y; vb.y// dy; for all x 2 �:

This implies that Vf .:; vb/ 2 L1
loc.�/. Moreover, by using Proposition 2.5

and (H2) we obtain that f .:; vb/ 2 L1
loc.�/: Since K�.:;1/ is harmonic in �,

we see, by (3.8), that vb is a distributional solution to

�vb C f .:; vb/ D 0 in �:

Thus vb 2 C.x�/ and vb is a positive solution of the problem (1.2).

Now, let

� D inf
�>0

.� C kVf .:; �/k1/:

By (H3) and (H1), we see that � > 0 and by .3.7/, we get

� C b K�.x;1/ � v�;b.x/ � ˇ C b K�.x;1/; for all x 2 �:

This implies that for all x 2 �

bK�.x;1/ � vb.x/ � b K�.x;1/C �:

By (H1) and (3.8), we obtain

b K�.x;1/ � vb.x/ � b K�.x;1/C

Z

�

G�.x; y/ f .y; b K�.y;1// dy;

for all x 2 �. Finally, we deduce that

b K�.x;1/ � vb.x/

� b K�.x;1/C min

�

�;

Z

�

G�.x; y/ f .y; b K�.y;1// dy

�

: �
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4. Proof of Theorem 1.4

Proposition 4.1 (uniqueness). Assume that (H1) is satis�ed. Then, the prob-

lem (1.2) has at most one positive solution in C0.x� [ ¹1º/.

Proof (see [11]). Assume that there exist two positive solutions u; v of (1.2)

with u ¤ v. Suppose that there exists x0 2 � such that v.x0/ > u.x0/. Put

w D v � u 2 C0.�/. Then, we have

�w C f .:; v/� f .:; u/ D 0; in �:

Let U D ¹x 2 �Ww.x/ > 0º: ThenU is an open nonempty set. Since, the function

f satis�es (H1), we deduce that

8

<

:

�w � 0; in U;

w D 0; on @U:

Hence by the maximum principle (see [10], pp. 465–466), we getw � 0 inU: This

is a contradiction to the de�nition of U . �

Proof of Theorem 1.4. Let � > 0 and .bn/n2N be a sequence of positive

real numbers converging decreasingly to zero. Then for each n 2 N the problem

.P�;bn
/ has a continuous solution v�;bn

satisfying

(4.1)

v�;bn
.x/ D � C bnK�.x;1/C

Z

�

G�.x; y/ f .y; v�;bn
.y// dy; for all x 2 �:

Moreover, for each n 2 N, the problem .1.2/, has a continuous solution vbn

satisfying

(4.2) vbn
.x/ D bn K�.x;1/C

Z

�

G�.x; y/ f .y; vbn
.y// dy; for all x 2 �:

By Proposition 3.8, we deduce that the sequence .vbn
/n2N decreases to a function

v and by (H1) the sequence .vbn
� bnK�.x;1// increases to v. Hence, v is a

positive continuous function in x�. By using the monotone convergence theorem,

we get

v.x/ D

Z

�

G�.x; y/f .y; v.y// dy; for all x 2 �:

Moreover, from Proposition 3.8 and (3), we have

(4.3) v.x/ � v�;bn
.x/ � � C bnK�.x;1/C Vf .:; �/.x/; for all x 2 �:
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Then it follows from Proposition 3.3, that

lim
x�!@�

v.x/ D lim
x�!1

v.x/ D 0:

Thus v 2 C0.x� [ ¹1º/ and v is a positive solution of the problem (1.2).

By (H1) and (4.3), we obtain for all x 2 �

Z

�

G�.x; y/ f .y; �/ dy � v.x/ � �:

Then it follows from Lemma 2.4 that for all x 2 �

1

A

K�.x;1/

.jxj C 1/n�2C2˛

Z

�

K�.y;1/

.jyj C 1/n�2C2˛
f .y; �/ dy � v.x/:

Since K�.:;1/ is a positive harmonic function on the open connected set �, van-

ishing continuously on @�, it follows from the minimum principle that K�.:;1/

is strictly positive on � and from (H1), we conclude that K� .:;1/

.j:jC1/n�2C2˛
f .:; �/ is

strictly positive on �. Hence we deduce from (H2) and .3.5/ that

0 <

Z

�

K�.y;1/

.jyj C 1/n�2C2˛
f .y; �/ dy < C1

and therefore we get for all x 2 �;

A
K�.x;1/

.jxj C 1/nC2˛�2
� v.x/:

Since f is non-increasing with respect to the second variable, then we have

v.x/ � min

�

�;

Z

�

G�.x; y/ f
�

y; A
K�.y;1/

.jyj C 1/nC2˛�2

�

dy

�

: �

Example 4.2. Let 0 � ˛ < 1, p < 2 < q, ‰W �0;C1Œ�! �0;C1Œ be a

continuous and non-increasing function and suppose that !.x/ ' ı�.x/, then the

problem

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�v.x/C‰.v.x//
.1C jxj/˛p�q

jxj
p.˛�1/ ı�.x/p

D 0 x 2 �;

v.x/ > 0 x 2 �;

v D 0 on @�;

(4.4)
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has a unique positive solution v 2 C0.x� [ ¹1º/, satisfying for all x 2 �,

1

A

jxj
p2.1�˛/ ı�.x/

.1C jxj/nC2˛�2

� v.x/

� min

�

�;

Z

�

G�.x; y/ '
� 1

A

jyj
p2.1�˛/ ı�.y/

.1C jyj/nC2˛�2

� .1C jyj/˛p�q

jyj
p.˛�1/ ı�.y/p

dy

�

:

(4.5)

Proof. From [13] (Example 4.9),

J.x/ D
.1C jxj/˛p�q

jxj
p.˛�1/ ı�.x/p

belongs to the Kato class K.�/. Moreover, we have

K�.x;1/ ' jxj
p2.1�˛/ ı�.x/:(4.6)

It is clear that f .x; t/ D J.x/‰.t/ satis�es the hypothesis (H1)–(H3), thus by

theorem 1.4 the problem (4.4) has a unique positive solutions satisfying for all

x 2 �,

A
K�.x;1/

.jxj C 1/nC2˛�2

� v.x/

� min

�

�;

Z

�

G�.x; y/ J.y/‰
�

A
K�.y;1/

.jyj C 1/nC2˛�2

�

dy

�

:

By using (4.6) and the fact that ‰ is non-increasing the inequality (4.5) follows.

�
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