On finite p-groups minimally of class greater than two

Rolf Brandl (*) - Gabriella Corsi Tani (**) - Luigi Serena (***)

In memory of Mario Curzio and Guido Zappa

Abstract - Let G be a finite nilpotent group of class three whose proper subgroups and proper quotients are nilpotent of class at most two. We show that G is either a 2 -generated p-group or a 3-generated 3-group. In the first case the groups of maximal order with respect to a given exponent are all isomorphic except in the cases where $p=2$ and $\exp (G)=2^{r}, r \geq 4$. If G is 3-generated, then we show that there is a unique group of maximal order and exponent 3 ; but a similar result is not valid for exponent 9 .

Mathematics Subject Classification (2010). 20D15, 20E10, 20F45, 20F12, 20 F 14.
Keywords. Finite p-groups, varieties of groups, relatively free groups.

1. Introduction

Let \mathcal{K} be a class of finite groups. The finite group G is called a minimal non- \mathcal{K} group (we write $G \in \operatorname{Min}(\mathcal{K})$), if $G \notin \mathcal{K}$ but every proper subgroup and every proper quotient of G belongs to \mathcal{K}.

For the class $\mathcal{K}=\mathcal{A}$ of all abelian groups, the structure of the groups in $\operatorname{Min}(\mathcal{A})$ can easily be derived from results of Miller-Moreno and Rédei (see [1, p. 281] and [1, p. 309]) and Lemma 2.1 below. Indeed, it is easy to see that such a group G
(*) Indirizzo dell'A.: Institut für Mathematik, Campus Hubland Nord, 97074 Würzburg, Germany
E-mail: brandl-verlag@t-online.de
(**) Indirizzo dell'A.: Largo F.lli Alinari n. 15, 50123 Firenze, Italy
E-mail: gabycorsi26@gmail.com
(***) Indirizzo dell'A.: Dipartimento di Matematica e Informatica U. Dini, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
E-mail: luigi.serena@unifi.it
is either a semidirect product $G=[N] Q$ of a minimal normal subgroup N by a complement Q of prime order, or it is one of the following groups:
i) $G_{r}=\left\langle a, b \mid a^{p^{r}}=b^{p}=1, a^{b}=a^{1+p^{r-1}}\right\rangle, r \geq 2$;
ii) $G=\left\langle a, b \mid a^{p}=b^{p}=1,[a, b]=c, c^{p}=1,[a, c]=[b, c]=1\right\rangle, p$ odd;
iii) the quaternion group Q_{8}.
G_{r} is of exponent p^{r}, and from i), ii), and iii) it follows that, for every exponent $p^{r} \neq 2$, 4, there exists precisely one p-group $G \in \operatorname{Min}(\mathcal{A})$ of exponent p^{r}. If $p^{r}=4$ we get two groups: the dihedral group D_{4} and the quaternion group Q_{8}, while the case $p^{r}=2$ does not allow any such group.

In this paper, we discuss the minimal non- \mathcal{N}_{2}-groups, where \mathcal{N}_{2} denotes the class of all nilpotent groups of class ≤ 2. The structure of non-nilpotent groups $G \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ follows immediately from the aforementioned results of MillerMoreno and Rédei. Hence we will restrict attention to finite p-groups.

We prove that the p-groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ are either 2-generated or 3-generated 2-Engel. In order to give information on the p-groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ we determine the structure of the 2 -generated free groups in the variety \mathbf{W} of all nilpotent groups of exponent $p^{r}(r \geq 2)$ and class three, satisfying the law $[x, y, z]^{p}=1$, and the structure of the 3-generated free groups in the variety \mathbf{V} of all 2-Engel groups of exponent 3^{r}. We prove that there is a unique 2 -generated group of exponent p in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$: its order is p^{4} with $p \geq 5$. If G is a 2 -generated group in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent p^{r} with $r \geq 2$ and p odd we see that $|G| \leq p^{3 r}$; if $p=2, r \geq 3$ then $|G| \leq 2^{3(r-1)}$; and if $p=2$ and $r=2$ then $|G| \leq 2^{3 r-1}$. We give an explicit construction of the groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent p^{r} and maximal order and we show that such groups are all isomorphic except in the case $p=2$ and $r \geq 4$. If G is a 3 -generated group of exponent 3 in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$, we show that $|G|=3^{7}$ and G is isomorphic to the 3 -generated relatively free group in the variety of all groups of exponent 3 but the groups of exponent 9 of maximal order in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ are not isomorphic.

In the following the notation is standard. $G=[N] Q$ indicates the semidirect product of the normal subgroup N by the subgroup Q, and $d(G)$ indicates the minimal number of generators of G. Moreover $o(x)$ is the order of the element x. If \mathbf{V} is a variety, $F r_{n}(\mathbf{V})$ denotes the relatively free group of rank n in \mathbf{V}.

All groups considered in this paper are finite.

2. Preliminaries

Lemma 2.1. A finite nilpotent group of class $c(c \geq 2)$ has all of its proper quotients of class at most $c-1$ if and only if $Z(G)$ is cyclic and the c-th term of the lower central series $\Gamma_{c}(G)$ is of order p.

Proof. Suppose that G has class c and that all proper quotients of G are of class at most $c-1$. Then G is monolithic. Indeed, if N_{1} and N_{2} are two distinct minimal normal subgroups, then $G=G / N_{1} \cap N_{2}$ is embedded in $G / N_{1} \times G / N_{2}$ which is nilpotent of class at most $c-1$. As G is monolithic, $Z(G)$ is cyclic. If N is the minimal normal subgroup of G, then G / N is nilpotent of class at most $c-1$. So $\Gamma_{c}(G)=N$.

Conversely let G be a nilpotent group of class c and assume that $Z(G)$ is cyclic and $\Gamma_{c}(G)$ is of order p. Then for every normal subgroup K of G, we have $\Gamma_{c}(G) \subseteq K$. So

$$
\Gamma_{c}(G / K)=\Gamma_{c}(G) K / K=1
$$

Lemma 2.2. Let G be a nilpotent group such that all of its proper subgroups have class at most c but G has not class c. Then $Z(G) \subseteq \Phi(G)$.

Proof. Let M be a maximal subgroup of G. Then $M \unlhd G$. Suppose that $Z(G) \nsubseteq M$. Then $G=Z(G) M$ and so G has class c, a contradiction.

Lemma 2.3. Let G be a p-group in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$. Then either G can be generated by two elements, or G is a 2-Engel 3-group generated by three elements.

Proof. Suppose that G cannot be generated by two elements. Then for all $x, y \in G$ we have that $\langle x, y\rangle$ is a proper subgroup of G. So it is nilpotent of class 2 . In particular G satisfies the 2-Engel condition. If $p \neq 3$ then G is nilpotent of class two ([1, p. 288]), a contradiction. So $p=3$. Moreover G is generated by three elements, otherwise all subgroups generated by three elements would be proper subgroups of G, and G would be nilpotent of class two, a contradiction.

We now give a sufficient criterion for a p-group generated by two elements to have all of its proper subgroups of class two.

Lemma 2.4. Let G be a p-group which can be generated by two elements. Assume that $[\Phi(G), G] \leq Z(G)$. Then every proper subgroup of G is nilpotent of class two.

Proof. It suffices to show that every maximal subgroup M of G is of class two. As G is generated by two elements, we have $G / \Phi(G) \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. So $M=\langle\Phi(G), x\rangle$ for some x in M. We get $M^{\prime}=\Phi(G)^{\prime} \cdot[\Phi(G), x]$. By hypothesis, both factors are contained in $Z(G)$, so that the class of M is two.

3. $\operatorname{Min}\left(\mathcal{N}_{2}\right)$-groups with two generators

We start with the smallest case:

Proposition 3.1. Let $G \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ be a group of prime exponent p. If $d(G)=2$, then $p \geq 5,|G|=p^{4}$ and $G \cong[N]\langle u\rangle$, where $N=\left\langle v_{1}\right\rangle \times\left\langle v_{2}\right\rangle \times\left\langle v_{3}\right\rangle \cong$ $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and the action of u on N is given by

$$
v_{1}^{u}=v_{1}, \quad v_{2}^{u}=v_{1} v_{2}, \quad v_{3}^{u}=v_{2} v_{3}
$$

Proof. As $\exp (G)=p$, we infer that $p \neq 2$ and $\left|G / G^{\prime}\right|=p^{2}$. Moreover $G^{\prime} / \Gamma_{3}(G)$ is cyclic of order p and by Lemma 2.1, we have $\left|\Gamma_{3}(G)\right|=p$. So we get $|G|=p^{4}$. An inspection of the groups of order p^{4} (see [1, p. 346]) yields the result.

A group G in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent p^{r} belongs to the variety \mathbf{W} of all groups of exponent p^{r} and nilpotent of class three satisfying the law $[x, y, z]^{p}=1$ (see Lemma 2.1).

We now collect some information of $F r_{2}(\mathbf{W})$.

Proposition 3.2. Let p^{r} be a power of a prime p and $r \geq 2$. Let $F=F r_{2}(\mathbf{W})$ with free generators x, y. Then
a) $F / F^{\prime} \simeq \mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{r}}$ and either $\left|F^{\prime} / \Gamma_{3}(F)\right|=p^{r}$ if $p \geq 3$ or $\left|F^{\prime} / \Gamma_{3}(F)\right|=$ 2^{r-1}. Moreover $\Gamma_{3}(F) \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and hence $|F|=p^{3 r+2}$ for $p \geq 3$; and $|F|=2^{3 r+1}$ if $p=2$;
b) $Z(F) \simeq \begin{cases}\mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} & \text { if } p \geq 3, \\ \mathbb{Z}_{2^{r-2}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \text { if } p=2 \text { and } r \geq 3, \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \text { if } p=2 \text { and } r=2 ;\end{cases}$
c) $\left[F^{p}, F\right] \leq Z(F)$;
d) every proper subgroup of F is nilpotent of class two.

Proof. a) As $\exp (F)=p^{r}$, we infer that $\left|F / F^{\prime}\right| \leq p^{2 r}$. Moreover, $F^{\prime} / \Gamma_{3}(F)=\left\langle[x, y] \Gamma_{3}(F)\right\rangle$ is cyclic of exponent dividing p^{r} if $p \neq 2$ and 2^{r-1} otherwise (we have $1=(x y)^{2^{r}} \equiv x^{2^{r}} y^{2^{r}}[y, x]\binom{\left(2^{r}\right.}{2}\left(\bmod \Gamma_{3}(F)\right)$, so $\left.[y, x]^{2^{r-1}} \equiv 1\left(\bmod \Gamma_{3}(F)\right)\right)$. Then $\left|F^{\prime} / \Gamma_{3}(F)\right| \leq p^{r}$ if $p \neq 2$ or $\leq 2^{r-1}$ otherwise. Finally, we have $\left|\Gamma_{3}(F)\right| \leq p^{2}$, because there are only two basic commutators of weight 3 . This implies $|F| \leq p^{3 r+2}$ if $p \neq 2,|F| \leq 2^{3 r+1}$ otherwise.

We now construct a group F_{0}, belonging to the variety \mathbf{W}, which has order either $p^{3 r+2}$ if $p \geq 3$, or $2^{3 r+1}$. So it will be $F_{0} \simeq F r_{2}(\mathbf{W})$.

Let $N=[A]\langle x\rangle$ be the semidirect product of the abelian group

$$
A=\langle u\rangle \times\left\langle v_{1}\right\rangle \times\left\langle v_{2}\right\rangle,
$$

with the cyclic group $\langle x\rangle$ of order p^{r}; where

$$
o\left(v_{1}\right)=o\left(v_{2}\right)=p
$$

and

$$
o(u)= \begin{cases}p^{r} & \text { if } p \geq 3 \\ 2^{r-1} & \text { otherwise }\end{cases}
$$

The action of x on A is given by

$$
u^{x}=u v_{1}, \quad v_{1}^{x}=v_{1}, \quad v_{2}^{x}=v_{2} .
$$

Then we consider the group $F_{0}=[N]\langle y\rangle$, where y is a cyclic group of order p^{r} and the action of y on N is given by

$$
x^{y}=x u, \quad u^{y}=u v_{2}, \quad v_{1}^{y}=v_{1}, \quad v_{2}^{y}=v_{2}
$$

We can immediately verify that

$$
u=[x, y], \quad v_{1}=[u, x]=[x, y, x], \quad v_{2}=[u, y]=[x, y, y]
$$

So $F_{0}=\langle x, y\rangle$. Moreover

$$
\begin{array}{lll}
F_{0}^{\prime}=A, & F_{0} / F_{0}^{\prime}=\left\langle x F_{0}^{\prime}\right\rangle \times\left\langle y F_{0}^{\prime}\right\rangle \simeq \mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{r}}, & F_{0}^{\prime} / \Gamma_{3}\left(F_{0}\right)=\left\langle u \Gamma_{3}\left(F_{0}\right)\right\rangle, \\
& \Gamma_{3}\left(F_{0}\right)=\left\langle v_{1}\right\rangle \times\left\langle v_{2}\right\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}, & \Gamma_{3}\left(F_{0}\right) \leq Z\left(F_{0}\right)
\end{array}
$$

We observe that, if $p \geq 3$, then $\left\langle u \Gamma_{3}\left(F_{0}\right)\right\rangle \simeq \mathbb{Z}_{p^{r}}$, while if $p=2$, then $\left\langle u \Gamma_{3}\left(F_{0}\right)\right\rangle \simeq \mathbb{Z}_{2^{r-1}}$. By the above conditions we deduce that F_{0} is nilpotent of class three with $\left|F_{0}\right|=p^{3 r+2}$ if $p \geq 3$ while, if $p=2$ then $\left|F_{0}\right|=2^{3 r+1}$.

It remains to show that the exponent of F_{0} is p^{r} for all p.

First of all we prove that the exponent of N is p^{r} for all p. (We note that for $p \geq 3$ we have $\exp (N)=p^{r}$, and for $p \geq 5$ we have $\exp \left(F_{0}\right)=p^{r}$ by the regularity of these groups).

Let $w \in N$ where $w=a x^{k}$ with $a \in A$. Since N is of class two we have

$$
w^{n}=\left(a x^{k}\right)^{n}=a^{n} x^{k n}\left[x^{k}, a\right]{ }^{\binom{n}{2}} .
$$

Since $\left[x^{k}, a\right] \in \Gamma_{3}\left(F_{0}\right)$ which has exponent p and $r \geq 2$, we have that $\left[x^{k}, a\right]{ }_{\binom{p^{r}}{2}}=1$. So $\left(a x^{k}\right)^{p^{r}}=1$.

If w is an element of N we set

$$
\left[w, y^{h}\right]=a_{1} \in A, \quad\left[a_{1}, w\right]=c_{1} \in \Gamma_{3}\left(F_{0}\right), \quad\left[a_{1}, y^{h}\right]=c_{2} \in \Gamma_{3}\left(F_{0}\right)
$$

For $n \geq 2$ it is easy to prove by induction the following results

$$
\begin{equation*}
\left[w, y^{h n}\right]=a_{1}^{n} c_{2}^{\binom{n}{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(w y^{h}\right)^{n}=w^{n} y^{h n} a_{1}^{-\binom{n}{2}} c_{1}^{-\binom{n}{3}} c_{2}^{-2\binom{n}{3}-\binom{n}{2}} . \tag{2}
\end{equation*}
$$

Since N is of exponent p^{r} and a has order 2^{r-1} for $p=2$, we have by (2) that the exponent of F_{0} is p^{r} for all p.

From now on we identify F_{0} with F.
b) By the structure of F we can write an element $z \in F$ in the form

$$
z=u^{k} v_{1}^{l} v_{2}^{m} x^{i} y^{j}
$$

We have $z \in Z(F)$ if and only if $[z, x]=[z, y]=1$. So

$$
\begin{aligned}
1 & =[z, y]=\left[u^{k} x^{i} y^{j}, y\right] \\
& =\left[u^{k}, y\right]\left[u^{k}, y, x^{i}\right]\left[x^{i}, y\right] \\
& =[u, y]^{k}[x, y]^{i} v_{1}^{\binom{i}{2}} \\
& =u^{i} v_{1}^{\left(\frac{i}{2}\right)} v_{2}^{k+i j} .
\end{aligned}
$$

Similarly we have

$$
\begin{equation*}
1=[z, x]=u^{-j} v_{1}^{k} v_{2}^{-\binom{j}{2}} \tag{4}
\end{equation*}
$$

Therefore, for $p \geq 3$ we have $i \equiv j \equiv 0\left(\bmod p^{r}\right)$ and $k \equiv 0(\bmod p)$. It follows $z=u^{p k_{1}} v_{i}^{l} v_{2}^{m}$ with $k=p k_{1}$. This implies

$$
Z(F)=\left\langle u^{p}\right\rangle \times\left\langle v_{1}\right\rangle \times\left\langle v_{2}\right\rangle \simeq \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}
$$

If $p=2$ we must have $i \equiv j \equiv 0\left(\bmod 2^{r-1}\right)$ and $k \equiv 0(\bmod 2)$. So we have $z=u^{2 k_{1}} v_{1}^{l} v_{2}^{m} x^{2^{r-1} i_{1}} y^{2^{r-1} j_{1}}$ where $k=2 k_{1}, i=2^{r-1} i_{1}, j=2^{r-1} j_{1}$. Then, if $r \geq 3$ we get

$$
Z(F)=\left\langle u^{2}\right\rangle \times\left\langle v_{1}\right\rangle \times\left\langle v_{2}\right\rangle \times\left\langle x^{2^{r-1}}\right\rangle \times\left\langle y^{2^{r-1}}\right\rangle \simeq \mathbb{Z}_{2^{r-2}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

If $p=2$ and $r=2$, we have $u^{2}=1$, so $z=v_{1}^{l} v_{2}^{m} x^{2 i_{1}} y^{2 j_{1}}$ with $i=2 i_{1}$, $j=2 j_{1}$. But the condition $\binom{i}{2} \equiv 0(\bmod 2)$ implies $i_{1}\left(2 i_{1}-1\right) \equiv 0(\bmod 2)$. So $i_{1} \equiv 0(\bmod 2)$. Similarly we obtain $j_{1} \equiv 0(\bmod 2)$. Therefore $z=v_{1}^{l} v_{2}^{m}$ and

$$
Z(F)=\left\langle v_{1}\right\rangle \times\left\langle v_{2}\right\rangle=\Gamma_{3}(F) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

c) Observe that for all $a, b, c \in F$ we have $\left[a^{p}, b, c\right]=[a, b, c]^{p}=1$. So $\left[F^{p}, F\right] \leq Z(F)$.
d) We have $[\Phi(F), F]=\left[F^{\prime} F^{p}, F\right]$. Since $\left[F^{\prime}, F\right]=\Gamma_{3}(F) \leq Z(F)$ and $\left[F^{p}, F\right] \leq Z(F)$ by Part c $)$, it follows that $[\Phi(F), F] \leq Z(F)$. So by Lemma 2.4 every proper subgroup of F is nilpotent of class two.

Theorem 3.3. Let p be a prime and $r \geq 2$.
a) Let G be a 2-generator group in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ with $\exp G=p^{r}$. Then

$$
|G| \leq \begin{cases}p^{3 r} & \text { if } p \geq 3 \\ 2^{3(r-1)} & \text { if } p=2, r \geq 3 \\ 2^{3 r-1} & \text { if } p=2, r=2\end{cases}
$$

b) For each one of the above three cases, there is a group of exponent p^{r} in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ whose order attains the upper bound.

Proof. a) Every 2-generator group $G \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent p^{r} is a quotient F / H of F where $H \cap Z(F)$ does not contain $\Gamma_{3}(F)$ because $G \simeq F / H$ is of class three. As $Z(G)$ is cyclic by Lemma 2.1, also $Z(F) /(H \cap Z(F))$ must be cyclic. Then $H \cap Z(F)$ is abelian of rank ≥ 2 if $p \neq 2$; of rank ≥ 4 if $p=2$ and $r \geq 3$; of rank 1 if $p=2$ and $r=2$. Thus if $p \geq 3$ we have $|H| \geq p^{2}$ and $|G| \leq p^{3 r}$; if $p=2$ and $r \geq 3$ we have $|H| \geq 2^{4}$ and $|G| \leq 2^{3(r-1)}$. Finally we observe that, if $p=2$ and $r=2$, no quotient of F by a proper subgroup of $Z(F)$ is in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$. In fact, there are only three proper subgroups of $Z(F)$, namely $H_{1}=\left\langle v_{1}\right\rangle$, $H_{2}=\left\langle v_{2}\right\rangle, H_{3}=\left\langle v_{1} v_{2}\right\rangle$. We see that in each quotient $F / H_{i},(i=1,2,3)$ there are couples of independent elements of $Z\left(F / H_{i}\right)$: for example, $x^{2} H_{1}, v_{2} H_{1}$ in $Z\left(F / H_{1}\right) ; y^{2} H_{2}, v_{1} H_{2}$ in $Z\left(F / H_{2}\right)$ and $(x y)^{2} H_{3}, v_{1} v_{2} H_{3}$ in $Z\left(F / H_{3}\right)$. So no F / H_{i} belongs to $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ and therefore $|G| \leq 2^{3 r-1}$.
b) For the first two cases of a) we consider respectively the subgroups of $Z(F)$:

$$
\begin{cases}R_{1}=\left\langle v_{2}, u^{p^{r-1}} v_{1}\right\rangle & \text { if } p \geq 3, r \geq 2 \\ R_{2}=\left\langle v_{2}, v_{1} u^{2^{r-2}}, v_{1} x^{2^{r-1}}, v_{1} y^{2^{r-1}}\right\rangle & \text { if } p=2, r \geq 4 \\ R_{3}=\left\langle v_{2}, u^{2}, x^{4}, v_{1} y^{4}\right\rangle & \text { if } p=2, r=3\end{cases}
$$

We want to show that $G_{t}=F / R_{t} \in \operatorname{Min}\left(\mathcal{N}_{2}\right)(t=1,2,3)$. First, since R_{t} does not contain $\Gamma_{3}(F)$ it follows that G_{t} is of class three. Moreover, as every proper subgroup of F is of class two, the same holds for G_{t}. By definition of G_{t}, we also have $\left|\Gamma_{3}\left(G_{t}\right)\right|=p$. Therefore, by Lemma 2.1, it is sufficient to show that $Z\left(G_{t}\right)$ is cyclic.

Let us consider a typical element $z R_{t} \in G_{t}$ with $z=u^{k} v_{1}^{l} v_{2}^{m} x^{i} y^{j} \in F$. Then $z R_{t} \in Z\left(F / R_{t}\right)$ if and only if $[z, y] \in R_{t}$ and $[z, x] \in R_{t}$. By (3) and (4), this holds if and only if

$$
u^{i} v_{1}^{\binom{i}{2}} v_{2}^{k+i j} \in R_{t}
$$

and

$$
u^{-j} v_{1}^{k} v_{2}^{-\binom{j}{2}} \in R_{t}
$$

For $p \geq 3$ this happens if and only if there are $\alpha, \beta \in \mathbb{Z}$ such that

$$
\begin{align*}
& u^{i} v_{1}^{\binom{i}{2}}=\left(u^{p^{r-1}} v_{1}\right)^{\alpha} \tag{5}\\
& u^{-j} v_{1}^{k}=\left(u^{p^{r-1}} v_{1}\right)^{\beta} \tag{6}
\end{align*}
$$

By equation (5) we obtain that $i \equiv \alpha p^{r-1}\left(\bmod p^{r}\right)$ and $\frac{i(i-1)}{2} \equiv \alpha(\bmod p)$. So

$$
\begin{equation*}
i\left(1-\frac{i-1}{2} p^{r-1}\right) \equiv 0\left(\bmod p^{r}\right) \tag{7}
\end{equation*}
$$

which gives $i \equiv 0\left(\bmod p^{r}\right)$.
By Equation (6) we get $-j \equiv p^{r-1} \beta\left(\bmod p^{r}\right)$ and $k \equiv \beta(\bmod p)$. So

$$
\begin{equation*}
j \equiv-p^{r-1} k\left(\bmod p^{r}\right) \tag{8}
\end{equation*}
$$

Therefore, we have that $z R_{1} \in Z\left(F / R_{1}\right)$ if and only if

$$
z=u^{k} v_{1}^{l} y^{-p^{r-1} k}=\left(u y^{-p^{r-1}}\right)^{k} v_{1}^{l} .
$$

We observe that

$$
\left(u y^{-p^{r-1}}\right)^{-p^{r-1}}=u^{-p^{r-1}} y^{p^{2 r-2}}=u^{-p^{r-1}}
$$

Since $u^{p^{r-1}} v_{1} \in R_{1}$, we have $v_{1} R_{1}=u^{-p^{r-1}} R_{1}=\left(u y^{-p^{r-1}}\right)^{-p^{r-1}} R_{1}$. Then $z R_{1}=\left(u y^{-p^{r-1}}\right)^{k-p^{r-1} l} R_{1}$. Thus $Z\left(F / R_{1}\right)=\left\langle u y^{-p^{r-1}}\right\rangle R_{1}$ is cyclic.

If $p=2$ and $r \geq 3$ an analogous calculation yields

$$
\begin{equation*}
u^{i} v_{1}^{\binom{i}{2}}=\left(u^{2^{r-2}} v_{1}\right)^{\alpha} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{-j} v_{1}^{k}=\left(u^{2^{r-2}} v_{1}\right)^{\beta} \tag{10}
\end{equation*}
$$

By (9) and (10) we obtain

$$
i\left(1-(i-1) 2^{r-3}\right) \equiv 0\left(\bmod 2^{r-1}\right)
$$

and

$$
j \equiv-2^{r-2} k\left(\bmod 2^{r-1}\right)
$$

So if $r \geq 4$, we obtain $i \equiv 0\left(\bmod 2^{r-1}\right)$; while if $r=3$ we have $i \equiv 0(\bmod 2)$.
In the case $p=2, r \geq 4$ it follows that $z R_{2} \in Z\left(F / R_{2}\right)$ if and only if $z=$ $\left(u y^{-2^{r-1}}\right)^{k} v_{1}^{l} x^{2^{r-1} i_{1}}$ with $i=2^{r-1} i_{1}$. Since $\left(u y^{-2^{r-1}}\right)^{-2^{r-2}}=u^{-2^{r-2}}$, we have $u^{-2^{r-2}} R_{2}=v_{1} R_{2}=x^{2^{r-1}} R_{2}=y^{2^{r-1}} R_{2}$. Thus $z R_{2}=\left(u y^{-2^{r-1}}\right)^{k-2^{r-2}\left(l+i_{1}\right)}$ and $Z\left(F / R_{2}\right)=\left\langle u y^{-2^{r-2}}\right\rangle R_{2}$ is cyclic.

In the case $p=2, r=3$ we have $z R_{3} \in Z\left(F / R_{3}\right)$ if and only if $z=$ $\left(u y^{-2}\right)^{k} v_{1}^{l}$. Since $\left(u y^{-2}\right)^{-2}=u^{-2} y^{4}=u^{-2}$ and $u^{-2} R_{3}=v_{1} R_{3}$, we have $z R_{3}=\left(u y^{-2}\right)^{k-2 l} R_{3}$. Thus, $Z\left(F / R_{3}\right)=\left\langle u y^{-2} R_{3}\right\rangle$ is cyclic.

Finally, in the case $p=2$ and $r=2$, we consider the normal (non central) subgroup

$$
R_{4}=\left\langle v_{2}, y^{2}\right\rangle
$$

Then $z R_{4} \in Z\left(F / R_{4}\right)$ if and only if $z=u^{k} v_{1}^{l} x^{i} y^{j}$ with $k \equiv 0(\bmod 2)$, $j \equiv 0(\bmod 2), i \equiv 0(\bmod 2)$ and $\frac{i(i-1)}{2} \equiv 0(\bmod 2)$. The last two conditions implies $i \equiv 0(\bmod 4)$. Then $z R_{4}=v_{1}^{l} R_{4}$ and thus $Z\left(F / R_{4}\right)=\left\langle v_{1}\right\rangle R_{4}$ is cyclic.

Theorem 3.4. Let p be a prime and $r \geq 2$. If $p \geq 3$ or $p=2$ and either $r=3$ or $r=2$, then all 2-generator groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent p^{r} and maximal order are isomorphic.

Proof. Using the same notation as in the proof of Theorem 3.3, let $F / H \in$ $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ be of exponent $p^{r}(p \geq 3)$ and maximal order $|F / H|=p^{3 r}$. By the proof of Theorem 3.3 it follows that $H \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. We will show that there exists
an automorphism φ of F with $\varphi(H)=R_{1}$ and so $F / H \simeq F / R_{1}$. Since F / H is of nilpotency class three, we have that $\Gamma_{3}(F) \nsubseteq H$. As $Z(F)$ is of rank three and $H \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, we get $\left|H \cap \Gamma_{3}(F)\right|=p$. We construct the automorphism φ in two steps. First we give an automorphism which maps $H \cap \Gamma_{3}(F)$ onto the subgroup $\left\langle v_{2}\right\rangle$ of R_{1}.

If $H \cap \Gamma_{3}(F)=\left\langle v_{1}\right\rangle$, we consider the automorphism α of F with $\alpha(x)=y$ and $\alpha(y)=x$. In this case we have $\alpha([x, y, x])=[y, x, y]=[x, y, y]^{-1}$, that is $\alpha\left(v_{1}\right)=v_{2}^{-1} \in R_{1}$.

If $H \cap \Gamma_{3}(F)=\left\langle v_{2} v_{1}^{h}\right\rangle$ for some $h \in \mathbb{Z}$, we consider the automorphism β of F with $\beta(x)=x$ and $\beta(y)=x^{-h} y$. Then we have $\beta\left(v_{1}\right)=\left[x, x^{-h} y, x\right]=v_{1}$ and $\beta\left(v_{2}\right)=\left[x, x^{-h} y, x^{-h} y\right]=[x, y, y][x, y, x]^{-h}=v_{2} v_{1}^{-h}$. So we have $\beta\left(v_{2} v_{1}^{h}\right)=v_{2} v_{1}^{-h} v_{1}^{h}=v_{2} \in R_{1}$.

In both cases we have now found an automorphism of F which maps H onto a subgroup H^{*} of $Z(F)$ with

$$
H^{*} \cap \Gamma_{3}(F)=\left\langle v_{2}\right\rangle
$$

Therefore we may assume that $H^{*}=\left\langle v_{2}, v_{1}^{m} u^{n p^{r-1}}\right\rangle$ with $m, n \in \mathbb{Z}$ and $n \not \equiv$ $0(\bmod p)$. Since $n \not \equiv 0(\bmod p)$, we have

$$
H^{*}=\left\langle v_{2}, v_{1}^{h} u^{p^{r-1}}\right\rangle
$$

with $h \equiv m n^{-1}(\bmod p)$. First let $h \not \equiv 0(\bmod p)$. We consider the automorphism γ of F such that $\gamma(x)=x^{h}$ and $\gamma(y)=y$. We have $\gamma\left(v_{2}\right)=v_{2}^{h} \in H^{*}$ and

$$
\gamma\left([x, y, x][x, y]^{p^{r-1}}\right)=[x, y, x]^{h^{2}}[x, y]^{h p^{r-1}}=\left([x, y, x]^{h}[x, y]^{p^{r-1}}\right)^{h} \in H^{*}
$$

So $\gamma\left(v_{1} u^{p^{r-1}}\right)=\left(v_{1}^{h} u^{p^{r-1}}\right)^{h}$ and $R_{1}^{\gamma}=H^{*}$.
Finally let $h \equiv 0(\bmod p)$. So $H^{*}=\left\langle v_{2},, u^{p^{r-1}}\right\rangle$. Since $\left[x^{p^{r-1}}, y\right]=u^{p^{r-1}} \in$ H^{*}, we have that $x^{p^{r-1}} H^{*} \in Z\left(F / H^{*}\right)$. Similarly $y^{p^{r-1}} H^{*} \in Z\left(F / H^{*}\right)$. But the images of $x^{p^{r-1}}$ and $y^{p^{r-1}}$ under the canonical epimorphism of F / H^{*} onto $F / F^{\prime} \simeq \mathbb{Z}_{p^{r}} \times \mathbb{Z}_{p^{r}}$ are independent, and so the center of F / H^{*} is not cyclic. This case does not occur.

Let $F / H \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ be of exponent 2^{3} and maximal order 2^{6}. Then $|H|=2^{4}$ and H must contain exactly one of the three subgroups $\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle,\left\langle v_{1} v_{2}\right\rangle$ of $\Gamma_{3}(F)$. The automorphism α of F, defined by $\alpha(x)=y$ and $\alpha(y)=x^{-1} y^{-1}$, is of order 3 and acts transitively on the non-identity elements of $\Gamma_{3}(F)$. So without loss of generality we may assume $H \cap \Gamma_{3}(F)=\left\langle v_{2}\right\rangle$ and $v_{1} \notin H$. Now consider the intersection of H with the subgroup $E=\left\langle v_{1}, v_{2}, u^{2}\right\rangle=\Omega_{1}\left(F^{\prime}\right)$. Since $E / E \cap H \cong E H / H \leq Z(F / H)$ which is cyclic, we get $|E \cap H|=2^{2}$.

The subgroups of E of order 2^{2}, that contain v_{2} but not v_{1} are precisely $L_{1}=$ $\left\langle v_{2}, u^{2}\right\rangle$ and $L_{2}=\left\langle v_{2}, u^{2} v_{1}\right\rangle$. If $L_{2} \leq H$, then $v_{1} L_{2}, x^{2} L_{2}, u y^{2} L_{2} \in Z\left(F / L_{2}\right)$. So $Z(F / H)$ is not cyclic, because $Z(F / H) \cong Z\left(\left(F / L_{2}\right) /\left(H / L_{2}\right)\right)$ contains $Z\left(F / L_{2}\right) /\left(H / L_{2}\right)$ and $x^{2} L_{2}, u y^{2} L_{2} \notin H / L_{2}$ since $H \leq Z(F)$. Therefore $L_{1} \leq H$ and H / L_{1} is a subgroup of rank 2 of $Z\left(F / L_{1}\right)$ that does not contain $v_{1} L_{1}$. Since $\left|Z(F) / L_{1}\right|=2^{3}$, we get the following four subgroups:

$$
\begin{array}{ll}
H_{1}=\left\langle v_{2}, u^{2}, v_{1} x^{4}, v_{1} y^{4}\right\rangle, & H_{2}=\left\langle v_{2}, u^{2}, x^{4}, v_{1} y^{4}\right\rangle \\
H_{3}=\left\langle v_{2}, u^{2}, v_{1} x^{4}, y^{4}\right\rangle, & H_{4}=\left\langle v_{2}, u^{2}, x^{4}, y^{4}\right\rangle
\end{array}
$$

By a simple calculation, using the relations (3) and (4), we see that F / H_{1} and F / H_{2} have cyclic center, while the centers of the two remaining quotients are not cyclic. Finally, the theorem for the case $p=2$ and $r=3$ is proved by the automorphism β defined by $\beta(x)=x y, \beta(y)=y$ that fixes v_{2} and u^{2} and maps H_{1} onto H_{2}.

Let $F / H \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ be of exponent 4 and maximal order 2^{5}. Then $|H|=4$ and F / H is nilpotent of class 3 with cyclic center (see Lemma 2.1). Since $\Gamma_{3}(F)=$ $\left\langle v_{1}, v_{2}\right\rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, we must have $\left|H \cap \Gamma_{3}(F)\right|=2$. As in the previous case, without loss we may assume $H \cap \Gamma_{3}(F)=\left\langle v_{2}\right\rangle$. Let $L=\left\langle v_{2}\right\rangle$. It is easy to see that $Z(F / L)=\left\langle v_{1} L\right\rangle \times\left\langle y^{2} L\right\rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Now $H / L \unlhd F / L$ and $|H / L|=2$. If $v_{1} L \in H / L$, then $\Gamma_{3}(F)=\left\langle v_{1}, v_{2}\right\rangle \leq L$ and so F / L would be of class two, a contradiction. Hence $v_{1} \notin H / L$, and hence either $H=\left\langle v_{2}, y^{2}\right\rangle$ or $H=\left\langle v_{2}, v_{1} y^{2}\right\rangle$. But the automorphism γ of F, defined by $\gamma(x)=x$ and $\gamma(y)=x^{2} y$, centralizes $\Gamma_{3}(F)$ and maps y^{2} to $v_{1} y^{2}$. Therefore all the quotients $F / H \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ of order 2^{5} are isomorphic.

Remark 3.1. In the case $p=2$ and $r \geq 4$, there are non-isomorphic groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent 2^{r} and maximal order $2^{3(r-1)}$. In fact, the two quotients F / R_{2} and F / R_{2}^{*}, where $R_{2}=\left\langle v_{2}, v_{1} u^{2^{r-2}}, v_{1} x^{2^{r-1}}, v_{1} y^{2^{r-1}}\right\rangle$ and $R_{2}^{*}=\left\langle v_{2}, v_{1} u^{2^{r-2}}, x^{2^{r-1}}, y^{2^{r-1}}\right\rangle$, have cyclic center but one can check that the power 2^{r-1} of an element $g=u^{k} v_{1}^{l} v_{2}^{m} x^{i} y^{j}$ in F is

$$
g^{2^{r-1}}=\left(u^{k} x^{i} y^{j}\right)^{2^{r-1}}=\left(x^{2^{r-1}}\right)^{i}\left(y^{2^{r-1}}\right)^{j}\left(u^{-2^{r-2}\left(2^{r}-1\right)}\right)^{i j}
$$

so we have

$$
g^{2^{r-1}} R_{2}=v_{1}^{i+j+i j} R_{2}
$$

and

$$
g^{2^{r-1}} R_{2}^{*}=v_{1}^{i j} R_{2}^{*}
$$

It follows that the number of the elements of order 2^{r} is different in the two quotients and $F / R_{2}, F / R_{2}^{*}$ are not isomorphic.

Remark 3.2. The referee suggested to investigate the existence of groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent p^{r} and order p^{k} for all k with $r+2 \leq k<3 r$. He gave an example of minimal order p^{r+2}. Namely the group:

$$
G_{1}=\left\langle\bar{x}, \bar{y}, \bar{u} \mid \bar{x}^{p^{r}}=1=\bar{y}^{p}=\bar{u}^{p},[\bar{x}, \bar{y}]=\bar{u},[\bar{u}, \bar{x}]=\bar{x}^{p^{r-1}},[\bar{u}, \bar{y}]=1\right\rangle .
$$

We have $G_{1}=F / L_{1}$ where $L_{1}=\left\langle v_{2}, u^{p}, x^{p^{r-1}} v_{1}^{-1}, y^{p}\right\rangle$.
An other example of minimal order non-isomorphic to the previous one is given by

$$
G_{2}=\left\langle\bar{x}, \bar{y}, \bar{u} \mid \bar{x}^{p}=1=\bar{y}^{p^{r}}=\bar{u}^{p},[\bar{x}, \bar{y}]=\bar{u},[\bar{u}, \bar{x}]=\bar{y}^{p^{r-1}},[\bar{u}, \bar{y}]=1\right\rangle
$$

in fact, G_{2} has an abelian maximal subgroup $\langle\bar{u}, \bar{y}\rangle$, while G_{1} has no abelian maximal subgroup. This is the quotient of F by the subgroup:

$$
L_{2}=\left\langle v_{2}, u^{p}, x^{p}, y^{p^{r-1}} v_{1}^{-1}\right\rangle
$$

Other examples of order $p^{r+\frac{r+1}{2}}$, with $r=2 h+1$, are given by splitting metacyclic groups:

$$
M_{h}=\left\langle\bar{x}, \bar{y}, \mid \bar{y}^{p^{2 h+1}}=1=\bar{x}^{p^{h+1}},[\bar{y}, \bar{x}]=\bar{y}^{p^{h}}\right\rangle
$$

These are the quotients of F by the subgroups:

$$
N_{h}=\left\langle v_{2}, u y^{p^{h}}, x^{p^{h+1}}, v_{1} y^{p^{2 h}}\right\rangle
$$

The problem of the existence of groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of order other than of the maximal one seems of non easy solution. We have to construct quotients F / L of F with cyclic center. Considering the automorphisms α and β used in the proof of the Theorem 3.4, we can assume, W.L.O.G., that $L \geq H^{*}=\left\langle v_{2}, u^{p^{r-1}}\right\rangle$. We prove that the orders of such quotients cannot be greater than $p^{2 r+1}$. Since $Z\left(F / H^{*}\right) \cong \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, L$ has to contain a subgroup isomorphic to $\mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. In fact

$$
F / L \cong\left(F / H^{*}\right) /\left(L / H^{*}\right)
$$

and

$$
Z(F / L) \geq\left(Z\left(F / H^{*}\right)\left(L / H^{*}\right)\right) /\left(L / H^{*}\right)
$$

since both

$$
Z\left(F / H^{*}\right)=\left\langle u^{p} H^{*}, v_{1} H^{*}, x^{p^{r-1}} H^{*}, y^{p^{r-1}} H^{*}\right\rangle
$$

and

$$
\left(Z\left(F / H^{*}\right)\left(L / H^{*}\right)\right) /\left(L / H^{*}\right)
$$

has to be cyclic, it follows that L / H^{*} has to contain a complement of $\left\langle v_{1} H^{*}\right\rangle$ in $Z\left(F / H^{*}\right)$. Thus $|L| \geq p^{r+1}$ and $|F / L| \leq p^{2 r+1}$.

4. $\operatorname{Min}\left(\mathcal{N}_{2}\right)$-groups with three generators

It follows from Lemma 2.3 that a group $G \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$, with three generators and exponent $3^{r}(r \geq 1)$, belongs to the variety \mathbf{V} of all 2-Engel groups of exponent 3^{r}. So G is a quotient of $F r_{3}(\mathbf{V})$.

Proposition 4.1. Let $F=F r_{3}(V)$ be the relatively free group with free generators x, y, z in the variety \mathbf{V}.
a) $\left|\Gamma_{3}(F)\right|=3$ and $|F|=3^{6 r+1}$.
b) $Z(F) \cong \mathbb{Z}_{3^{r-1}} \times \mathbb{Z}_{3^{r-1}} \times \mathbb{Z}_{3^{r-1}} \times \mathbb{Z}_{3}$.
c) Every proper subgroup of F is nilpotent of class two.
d) F belongs to $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ if and only if $r=1$.
e) Let F / H be a quotient of F of class three. Then $F / H \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ if and only if $Z(F / H)$ is cyclic.

Proof. a) Note that F / F^{\prime} is a 3-generated group of exponent 3^{r}, so $\left|F / F^{\prime}\right| \leq$ $3^{3 r}$. Similarly, we have $\left|F^{\prime} / \Gamma_{3}(F)\right| \leq 3^{3 r}$. Now we show that $\left|\Gamma_{3}(F)\right|=3$. In fact, $\Gamma_{3}(F)$ is generated by the basic commutators of weight three and, as F is 2-Engel, they are all equal to 1 , except at most $[y, x, z]$ and $[z, x, y]$ (see, for example [2, p. 54]). Moreover, in a 2 -Engel group G, for all $x_{1}, x_{2}, x_{3} \in G$ the following conditions hold:
i) $\left[x_{1}, x_{3}, x_{2}\right]=\left[x_{1}, x_{2}, x_{3}\right]^{-1}$,
ii) $\left[x_{1}^{-1}, x_{2}\right]=\left[x_{1}, x_{2}^{-1}\right]=\left[x_{1}, x_{2}\right]^{-1}$
(see (2) and (3) in the proof of Satz 6.5 in [1, p. 288]).
So we get

$$
\begin{aligned}
{[z, x, y] } & =\left[[x, z]^{-1}, y\right] & & \text { by ii) } \\
& =[x, z, y]^{-1} & & \text { by i) } \\
=[x, y, z] & =\left[[y, x]^{-1}, z\right] & & \text { by ii) } \\
& =[y, x, z]^{-1} . & &
\end{aligned}
$$

Hence $\Gamma_{3}(F)=\langle[x, y, z]\rangle$ is cyclic of order 3 (see [4, p. 358]) and $|F| \leq 3^{3 r+1}$.
We now construct a group F_{0}, belonging to the variety \mathbf{V}, which has order $3^{3 r+1}$. Then it follows that $F_{0} \cong F$ and $|F|=3^{3 r+1}$.

Let A be the abelian group of exponent 3^{r} defined by

$$
A=\langle z\rangle \times\left\langle v_{1}\right\rangle \times\left\langle v_{2}\right\rangle \times\left\langle v_{3}\right\rangle \cong \mathbb{Z}_{3^{r}} \times \mathbb{Z}_{3^{r}} \times \mathbb{Z}_{3^{r}} \times \mathbb{Z}_{3}
$$

and let Q be the group of exponent 3^{r} and of nilpotency class 2 defined by

$$
Q=\left\langle x, y \mid x^{3^{r}}=y^{3^{r}}=1, u=[x, y], u^{3^{r}}=1,[u, x]=[u, y]=1\right\rangle .
$$

Let $F_{0}=[A] Q$ be the semidirect product of A and Q with the action of Q on A defined by

$$
\begin{array}{llll}
z^{x}=z v_{2}^{-1}, & v_{1}^{x}=v_{1} v_{3}, & v_{2}^{x}=v_{2}, & v_{3}^{x}=v_{3} \tag{11}\\
z^{y}=z v_{1}, & v_{1}^{y}=v_{1}, & v_{2}^{y}=v_{2} v_{3}, & v_{3}^{y}=v_{3} .
\end{array}
$$

Since

$$
u=[x, y], \quad v_{1}=[z, y], \quad v_{2}=[x, z], \quad v_{3}=\left[v_{1}, x\right]=\left[v_{2}, y\right]
$$

we obtain that $F_{0}=\langle x, y, z\rangle$ and we have $\left|F_{0}\right|=|A||Q|=3^{3 r+1} 3^{3 r}=3^{6 r+1}$.
Also we have

$$
\begin{equation*}
[z, u]=v_{3}, \quad\left[u, v_{1}\right]=\left[u, v_{2}\right]=\left[u, v_{3}\right]=1 . \tag{12}
\end{equation*}
$$

So $F_{0}^{\prime}=\left\langle u, v_{1}, v_{2}, v_{3}\right\rangle$ and $\Gamma_{3}\left(F_{0}\right)=\left\langle v_{3}\right\rangle$ is of order 3. Therefore F_{0} is nilpotent of class 3 .

To prove a) we only need to show that the group F_{0} we have constructed belongs to the variety \mathbf{V}. In other words, we have to show that F_{0} is a 2-Engel group of exponent 3^{r}. Since the right 2-Engel elements form a subgroup of a group (see [3]), it is sufficient to check that the generators x, y, z of F_{0} are right 2-Engel elements. In fact, by the definition of F_{0}, it is easy to see that the basic commutators of weight three on the generators, are the following:

$$
\begin{aligned}
& {[x, y, y]=[x, y, x]=[z, x, x]=[z, y, z]=[z, y, y]=[z, x, z]=1} \\
& {[x, y, z]=v_{3}^{-1}, \quad[z, y, x]=v_{3} .}
\end{aligned}
$$

We observe that $v_{3} \in Z\left(F_{0}\right)$ by (11) and (12). Then it follows that F_{0} is nilpotent of class 3 and $\Gamma_{3}\left(F_{0}\right)=\left\langle v_{3}\right\rangle$ is of order 3 .

Moreover, since A is abelian, the relations (11), (12) yield

$$
\begin{array}{lll}
{\left[x^{\alpha}, z^{a}\right]=v_{2}^{a \alpha},} & {\left[v_{1}^{b}, x^{\alpha}\right]=v_{3}^{b \alpha},} & {\left[z^{a}, y^{\beta}\right]=v_{1}^{a \beta}} \tag{13}\\
{\left[v_{2}^{c}, y^{\beta}\right]=v_{3}^{c \beta},} & {\left[u^{\nu}, z^{a}\right]=v_{3}^{-a \gamma}} &
\end{array}
$$

where $a, b, c, \alpha, \beta, \gamma$ belong to $\mathbb{Z}_{3^{r}}$. Using the above relations, we can directly check that for all $g \in F_{0}$ we have

$$
[x, g, g]=[y, g, g]=[z, g, g]=1 .
$$

Write $g=v w$ with $v \in A$ and $w \in Q$. Since Q is of class 2 and A is abelian, we have $[x, w, w]=[x, v, v]=1$. So

$$
[x, g, g]=[x, v, w][x, w, v] .
$$

Letting $w=y^{i} s$, where $s \in\langle x, u\rangle$, and $v=z^{j} \widehat{v}$, where $\widehat{v} \in\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, the relations displayed in (11), (12), and (13) yield

$$
[x, v, w]=\left[x, z^{j}, w\right]=\left[v_{2}^{j}, y^{i}\right]=v_{3}^{i j}
$$

and

$$
[x, w, v]=\left[x, y^{i}, v\right]=\left[u^{i}, z^{j}\right]=v_{3}^{-i j}
$$

So $[x, g, g]=1$.
The proof that y is right 2-Engel is analogous.
For z we observe that, since A is abelian and $[z, Q]$ is contained in A, we have

$$
[z, v, v]=[z, v, w]=[z, w, v]=1
$$

Moreover, letting $w=x^{h} y^{i} u^{k}$, by relations (11), (12), and (13) we have

$$
[z, w]=\left[z, x^{h} y^{i} u^{k}\right]=\left[z, y^{i}\right]\left[z, x^{h}\right] c, \quad c \in Z\left(F_{0}\right)
$$

It follows that

$$
[z, w, w]=\left[v_{1}^{i} v_{2}^{-h}, x^{h} y^{i}\right]=v_{3}^{h i} v_{3}^{-h i}=1
$$

It remains to check that the exponent of F_{0} is 3^{r}. By the Hall-Petrescu identity (see [1, p. 317]) we have

$$
\left.\left.g^{3^{r}}=(v w)^{3^{r}}=v^{3^{r}} w^{3^{r}} c_{1}^{\left(3^{3^{r}} 2\right.}\right)_{2}^{\left(3^{3^{r}} 3\right.}\right)^{2},
$$

where $c_{1} \in F_{0}^{\prime}$ and $c_{2} \in \gamma_{3}\left(F_{0}\right)=\left\langle v_{3}\right\rangle$. Since Q, A, F_{0}^{\prime} are of exponent 3^{r} and $\left|\Gamma_{3}\left(F_{0}\right)\right|=3$, we have $(w v)^{3^{r}}=1$.

We can now identify F with F_{0}.
b) By the relations (11) and (12) we have that $u^{3}, v_{1}^{3}, v_{2}^{3}, v_{3} \in Z(F)$.

Conversely, computing the commutators between an element $g=v w=$ $z^{a} v_{1}^{b} v_{2}^{c} v_{3}^{d} x^{\alpha} y^{\beta} u^{\gamma}$ and the generators x, y, z of F, we obtain

$$
\begin{align*}
& \text { (14) }[x, v w]=[x, w][x, v][x, v, w]=u^{\beta} v_{2}^{a} v_{3}^{-b}\left[v_{2}^{a}, y^{\beta}\right]=v_{2}^{a} v_{3}^{a \beta-b} u^{\beta} \\
& \text { (15) }[y, v w]=[y, w][y, v][y, v, w]=u^{-\alpha} v_{1}^{-a} v_{3}^{c}\left[v_{1}^{-a}, x^{\alpha}\right]=v_{1}^{-a} v_{3}^{-c-a \alpha} u^{-\alpha} \tag{14}\\
& \text { (16) }[z, v w]=[z, w]=\left[z, x^{\alpha} y^{\beta} u^{\gamma}\right]=\left[z, u^{\gamma}\right]\left[z, y^{\beta}\right]^{x^{\alpha}}\left[z, x^{\alpha}\right]=v_{1}^{\beta} v_{2}^{-\alpha} v_{3}^{\gamma-\alpha \beta} \tag{16}
\end{align*}
$$

It follows that $g \in Z(F)$ only if $a \equiv \beta \equiv \alpha \equiv 0\left(\bmod 3^{r}\right)$ and $b \equiv c \equiv \gamma \equiv$ $0(\bmod 3)$. So the elements of $Z(G)$ have the following form

$$
g=v_{1}^{3 b_{1}} v_{2}^{3 c_{1}} v_{3}^{d} u^{3 \gamma_{1}}
$$

where $b_{1}, c_{1}, \gamma_{1} \in \mathbb{Z}_{3^{r-1}}$ and $d \in \mathbb{Z}_{3}$. Thus

$$
Z(F)=\left\langle v_{1}^{3}\right\rangle \times\left\langle v_{2}^{3}\right\rangle \times\left\langle v_{3}\right\rangle \times\left\langle u^{3}\right\rangle
$$

c) It is sufficient to show that every maximal subgroup M of F is of class two. As $F / \Phi(F) \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, we have $M=\left\langle\Phi(F), x_{1}, x_{2}\right\rangle$ for some $x_{1}, x_{2} \in M$. We want to show that $M^{\prime}=\left\langle\left[x_{1}, x_{2}\right],\left[x_{i}, F^{\prime}\right],\left[x_{i}, F^{3}\right], \Phi(F)^{\prime}\right\rangle(i=1,2)$ is contained in $Z(M)$. In fact, F is nilpotent of class 3 , so $\left[x_{i}, F^{\prime}\right] \leq Z(F)$. We observe that $Z(F)=\left\langle v_{3}, F^{\prime 3}\right\rangle$ is contained in M and then $Z(F) \leq Z(M)$. Therefore $\left[x_{i}, F^{\prime}\right] \leq Z(M)$. Since the identity $\left[g_{1}, g_{2}^{n}\right]=\left[g_{1}, g_{2}\right]^{n}$ holds in the 2-Engel group F, for all $n \in \mathbb{Z}$ and $g_{1}, g_{2} \in F$, we have $\left[x_{i}, F^{3}\right]=$ $\left[x_{i}, F\right]^{3} \leq F^{\prime 3} \leq Z(M)$. In the same way we see that $\Phi(F)^{\prime} \leq Z(M)$. Finally $\left[x_{1}, x_{2}\right] \in Z(M)$ because $\left[x_{1}, x_{2}, x_{1}\right]=\left[x_{1}, x_{2}, x_{2}\right]=1$ holds in the 2-Engel group F.
d) Suppose $r>1$, then $v_{1}^{3}, v_{2}^{3}, u^{3}$ belong to $Z(F)$ (see b)). So $Z(F)$ is not cyclic, contradicting Lemma 2.1.

Conversely, let $r=1$, then $Z(F)=\left\langle v_{3}\right\rangle$ is cyclic of order three. So, by Lemma 2.1 and c), F belongs to $\operatorname{Min}\left(\mathcal{N}_{2}\right)$.
e) Let $L=F / H$ be a quotient of F of class precisely three. If M / H is a maximal subgroup of L, then M is a maximal subgroup of F and, by c), it is nilpotent of class two. Since $\Gamma_{3}(L)=\Gamma_{3}(F) H / H$ is cyclic of order 3, by Lemma 2.1, $L \in \operatorname{Min}\left(\mathcal{N}_{2}\right)$ if and only if $Z(L)$ is cyclic.

Proposition 4.2. a) Let G be a 3 -generated group in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ with $\exp (G)=9$. Then $|G| \leq 3^{7}$.
b) There are at least two non-isomorphic groups in $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ of exponent 9 and order 3^{7}.

Proof. a) Using the same notation as in the previous theorem, G has to be isomorphic to a quotient F / H of the relatively free group F with $\exp (F)=3^{2}$. Since F / H has to be nilpotent of class 3, we have $v_{3} \notin H$. As $Z(F / H)$ must be cyclic and $Z(F)$ is elementary abelian of rank 4, then H must contain a subgroup K of $Z(F)$ which is of rank 3 and $v_{3} \notin H$. Now $Z(F)$ contains 40 subgroups of index 3. Among these, 13 contain v_{3}. So there are 27 subgroups of $Z(F)$ which do not contain $\left\langle v_{3}\right\rangle$. The subgroup $K_{1}=\left\langle v_{1}^{3}, v_{2}^{3}, u^{3}\right\rangle=\left(F^{\prime}\right)^{3}$ is characteristic in F and the other 26 form a single orbit under the automorphism φ of F defined by

$$
\begin{equation*}
x^{\varphi}=y, \quad y^{\varphi}=z, \quad z^{\varphi}=x^{-1} y \tag{17}
\end{equation*}
$$

In fact consider the subgroup $K_{2}=\left\langle v_{1}^{3}, v_{2}^{3} v_{3}^{-1}, u^{3}\right\rangle$ of $Z(F)$. We observe that $v_{1}^{\varphi}=v_{1}^{-1} v_{2}^{-1}, v_{2}^{\varphi}=u, u^{\varphi}=v_{1}^{-1}$. A straightforward calculation shows that $K_{2}^{\varphi^{13}}=\left\langle v_{1}^{3}, v_{2}^{3} v_{3}, u^{3}\right\rangle \neq K_{2}$. As φ is an automorphism of order 26 , the orbit of K_{2} has length 26 . So we may assume that H contains one of the two subgroups $K_{i}, i=1,2$. Consider F / K_{1}. A generic element of K_{1} can be written in the form

$$
v_{1}^{3 l} v_{2}^{3 m} u^{3 n} \quad \text { with } l, m, n \in\{0,1,2\}
$$

From the relations (14), (15), and (16) we get that an element

$$
g K_{1}=z^{a} v_{1}^{b} v_{2}^{c} v_{3}^{d} x^{\alpha} y^{\beta} u^{\gamma} K_{1}
$$

of F / K_{1} belongs to $Z\left(F / K_{1}\right)$ if and only if

$$
\begin{aligned}
v_{2}^{a} v_{3}^{a \beta-b} u^{\beta} & =v_{1}^{3 l_{1}} v_{2}^{3 m_{1}} u^{3 n_{1}}, \\
v_{1}^{-a} v_{3}^{-c-a \alpha} u^{-\alpha} & =v_{1}^{3 l_{2}} v_{2}^{3 m_{2}} u^{3 n_{2}}, \\
v_{1}^{\beta} v_{2}^{-\alpha} v_{3}^{\gamma-\alpha \beta} & =v_{1}^{3 l_{3}} v_{2}^{3 m_{3}} u^{3 n_{3}},
\end{aligned}
$$

for some $l_{i}, m_{i}, n_{i} \in\{0,1,2\} ; i=1,2,3$. It follows $a \equiv \beta \equiv b \equiv c \equiv \alpha \equiv \gamma \equiv$ $0(\bmod 3)$. Let $a=3 a_{1}, \beta=3 \beta_{1}, b=3 b_{1}, c=3 c_{1}, \alpha=3 \alpha_{1}$ and $\gamma=3 \gamma_{1}$. Then

$$
g K_{1}=z^{3 a_{1}} v_{1}^{3 b_{1}} v_{2}^{3 c_{1}} v_{3}^{d} x^{3 \alpha_{1}} y^{3 \beta_{1}} u^{3 \gamma_{1}} K_{1}=z^{3 a_{1}} v_{3}^{d} x^{3 \alpha_{1}} y^{3 \beta_{1}} K_{1}
$$

In a similar way we see that $g K_{2} \in Z\left(F / K_{2}\right)$ if and only if $\beta \equiv c \equiv \alpha \equiv$ $0(\bmod 3)$ and $a \equiv 3 b(\bmod 9) \alpha \equiv 3 \gamma(\bmod 9)$. If $\beta=3 \beta_{1}, c=2 c_{1}$ and $\alpha=3 \alpha_{1}$, we have that

$$
g K_{2}=z^{3 b} v_{1}^{b} v_{2}^{3 c_{1}} v_{3}^{d} x^{3 \gamma} y^{3 \beta_{1}} u^{\gamma} K_{2}=\left(z^{3} v_{1}\right)^{b} v_{3}^{d+c_{1}}\left(x^{3} u\right)^{\gamma} y^{3 \beta_{1}} K_{2}
$$

Therefore $Z\left(F / K_{1}\right)$ and $Z\left(F / K_{2}\right)$ are abelian groups which can be represented as direct product

$$
Z\left(F / K_{1}\right)=\left\langle z^{3} K_{1}\right\rangle \times\left\langle v_{3} K_{1}\right\rangle \times\left\langle x^{3} K_{1}\right\rangle \times\left\langle y^{3} K_{1}\right\rangle
$$

and

$$
Z\left(F / K_{2}\right)=\left\langle z^{3} v_{1} K_{2}\right\rangle \times\left\langle v_{3} K_{2}\right\rangle \times\left\langle x^{3} u K_{2}\right\rangle \times\left\langle y^{3} K_{2}\right\rangle
$$

In order that a quotient $\left(F / K_{i}\right) /\left(H / K_{i}\right),(i=1,2)$ of F / K_{i} would be nilpotent of class 3 with cyclic center, we need that $v_{3} K_{i} \notin Z\left(F / K_{i}\right)$ and that H / K_{i} would contains a subgroup of rank 3 of $Z\left(F / K_{i}\right)$. So the order of a group $F / H \in$ $\operatorname{Min}\left(\mathcal{N}_{2}\right)$ is at most 3^{7}.
b) Consider the subgroups

$$
H_{1}=\left\langle v_{1}^{3}, v_{2}^{3}, u^{3}, x^{3}, y^{3}, z^{3} v_{3}^{-1}\right\rangle \quad \text { and } \quad H_{2}=\left\langle v_{1}^{3}, v_{2}^{3} v_{3}^{-1}, u^{3}, x^{3} u, y^{3}, z^{3} v_{1}\right\rangle
$$

which contain K_{1} and K_{2}, respectively. By the same argument used above to determine the center of F / K_{i}, one can check easily that the center of $Z\left(F / H_{i}\right)$ is cyclic. If $g=z^{a} v_{1}^{b} v_{2}^{c} v_{3}^{d} x^{\alpha} y^{\beta} u^{\gamma}$ is, as before, a generic element of F, we have

$$
g^{3}=z^{3 a} v_{1}^{3(b-a \beta)} v_{2}^{3(c+a \alpha)} x^{3 \alpha} y^{3 \beta} u^{3(\gamma-\alpha \beta)}
$$

Using this relation we see that the exponent of F / H_{i} is 9 . Moreover we see that the $\mho_{1}\left(F / H_{1}\right)=\left\langle v_{3} H_{1}\right\rangle$ while $\mho_{1}\left(F / H_{2}\right)=\left\langle v_{1} H_{2}, v_{3} H_{2}, u H_{2}\right\rangle$ which is not cyclic.

References

[1] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, 134, Springer Verlag, Berlin etc., 1967.
[2] E. I. Khuкhro, Nilpotent groups and their automorphisms, De Gruyter Expositions in Mathematics, 8. Walter de Gruyter \& Co., Berlin, 1993.
[3] W. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), pp. 187-197.
[4] J. S. Robinson, A Course in the theory of groups, Graduate Texts in Mathematics, 80, Springer-Verlag, Berlin etc., 1982.

Manoscritto pervenuto in redazione il 21 novembre 2015.

