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The isoperimetric problem

in the Grushin space R
hC1 with density jxjp

He, Guoqing (�) – Zhao, Peibiao (��)

Abstract – In this paper we study the isoperimetric problem in a class of x-spherically

symmetric sets in the Grushin space R
hC1 with density jxjp, p > �h C 1. First we

prove the existence of weighted isoperimetric sets. Then we deduce that, up to a vertical

translation, a dilation and a negligible set, the weighted isoperimetric set is only of the

form
®

.x; y/ 2 R
hC1W jyj <

R
�
2

arcsin jxj
sin˛C1.t/dt; jxj < 1

¯

.
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1. Introduction

Manifolds with density, a new category in geometry, arise naturally in geometry as

quotients of Riemannian manifolds, in physics as spaces with different mediums,

in probability as the famous Gauss space and in a number of other places as well

(see [23, 25, 26]).

The isoperimetric problem in Euclidean spaces with density has been investi-

gated with increasing interest in recent years. Given a positive function f on an

n-dimensional Euclidean space, usually called “density”, for any set E of locally

finite perimeter, the weighted volume Vf .E/ and the weighted perimeter Pf .E/
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are defined by

Vf .E/ WD
Z

E

f .x/dx; Pf .E/ WD
Z

@�E

f .x/dHn�1.x/;

where @�E denotes the reduced boundary ofE, which coincides the usual bound-

ary ofE if it is a smooth or piecewise affine set. The theory of finite perimeter sets

and functions of bounded variation in Euclidean spaces with density or in more

general metric spaces with density are studied in [6, 1, 2, 3, 4, 5]. The isoperimetric

problem in Euclidean spaces with density concerns the existence and characteri-

zation of minimizers of

(1) inf¹Pf .E/WE 2 A such that Vf .E/ D vº;

for a given volume v > 0 and for a given admissible sets A. Minimizers in (1) are

called weighted isoperimetric sets.

One of the first and most important examples is Gauss space, an Euclidean

space with Gaussian density exp.��jxj2/. The mathematical interest in the Gauss-

ian density question comes from its wide range of applications in Probability The-

ory and Functional Analysis. Half-spaces are Gaussian isoperimetric sets. Then

the isoperimetric problem in Euclidean spaces with density has been widely stud-

ied. However, in spite of the last advances, the characterization of the solutions

has been achieved only for some densities having a special form or a nice behav-

ior with respect to a certain subgroup of diffeomorphisms, see the related works

[28, 11, 25, 7, 9, 15, 10, 14, 27, 8] and reference therein.

On the other hand, in the context of sub-Riemannian spaces, the perimeter of

a Lebesgue measurable set E � R
n is defined via a system X D ¹X1; : : : ; Xhº,

2 � h � n, of self-adjoint vector fields in R
n, Xj D �X�

j ,

(2) PX .E/ D sup

² Z

E

divX 'dxW ' 2 C 1c .RnIRh/; max j'.x/j � 1

³

;

where divX ' WD �
Ph
iD1X

�
i 'i .x/ D

Ph
iD1Xi'i .x/ is called X-divergence

of the vector field ' 2 C 1.RnIRh/. This definition is introduced and studied

systematically in [16]. The perimeterPX is known asX-perimeter (horizontal, sub-

elliptic, or sub-Riemannian perimeter). One important example is the ˛-perimeter

P˛ in R
hCk D ¹.x; y/W x 2 R

h; y 2 R
kº defined via Grushin vector fields

Xi D @

@xi
; Yj D jxj˛ @

@yj
; i D 1; : : : ; h; j D 1; : : : ; k;

where ˛ > 0, jxj is the standard Euclidean norm.
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The isoperimetric problem in the Grushin plane R
2 was thoroughly resolved

by Monti and Morbidelli [22]. Franceschi and Monti [13] studied the isoperimet-

ric problem in a class of x-spherically symmetric sets in the high dimensional

Grushin space R
hCk, h > 1, k � 1. They proved that, up to a vertical translation

and a null set, any isoperimetric set is of the form ¹.x; y/ 2 R
hCkW jyj < f .jxj/º

for some decreasing function f W .0; r0/ ! R
C which satisfies a differential equa-

tion. Particularly, when k D 1, up to a vertical translation, a dilation and a null

set, any x-spherically symmetric isoperimetric set is of the form

(3) E˛ D
²

.x; y/ 2 R
hC1W jyj <

Z �
2

arcsin jxj

sin˛C1.t /dt; jxj < 1
³

:

In the respect of studying sub-Riemannian manifolds with density, the weighted

Sobolev and Poincaré inequalities for Hörmander’s vector fields were well studied

in [12, 19, 18]. Recently, the weighted isoperimetric and Sobolev inequalities for

hypersurfaces in Carnot groups have been obtained in [17]. As far as we know,

there is very little about the isoperimetric problem in sub-Riemannian manifolds

with density.

In this paper we will consider the Grushin space R
hC1 with a certain density

and study the isoperimetric problem in a class of x-spherically symmetric sets.

It is well known that the existence of weighted isoperimetric sets depends on

the form of the density. So the choice of the density is very important. Here we

endow the Grushin space R
hC1 with density f D jxjp , p > �hC 1. Following

the classical approach by De Giorgi, we define the weighted ˛-perimeter of a

Lebesgue measurable set E in R
hC1 with density jxjp as follows:

P˛;f .E/ D sup

² Z

E

div˛.jxjp'.x; y//dxdyW ' 2 C 1c .RhC1IRhC1/;

max j'.x; y/j � 1

³

;
(4)

where

div˛ ' WD X1'1 C � � � CXh'h C Y'hC1 D @'1

@x1
C � � � C @'h

@xh
C jxj˛ @'hC1

@y

is called ˛-divergence of a vector valued function ' 2 C 1.RhC1IRhC1/.

The weighted volume of a measurable set E in R
hC1 with density jxjp is

defined as

(5) Vf .E/ D
Z

E

jxjpdxdy:
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We will study the existence and characterization of minimizers of

(6)

inf¹P˛;f .E/WE � R
hC1 is an x-spherically symmetric set with Vf .E/ D v0º:

Minimizers in (6) are called weighted x-spherically symmetric isoperimetric sets.

Though the density jxjp is simple, it has some interesting properties. Since

jxjp is homogeneous, we can prove that the weighted perimeter measure and the

weighted volume measure are .d � 1/-homogeneous and d -homogeneous with

respect to a dilation ı�.x; y/ D .�x; �˛C1y/ (8� > 0), respectively, where

d D hC 1C ˛ C p. So the minimizers in (6) are just minimizers of

inf
°P˛;f .E/

d

Vf .E/
d�1

WE � R
hC1 is an x-spherically symmetric set with

0 < Vf .E/ < C1
±

:

(7)

On the other hand, for every x-spherically symmetric set E in the Grushin

space R
hC1 with density jxjp, whose generating set is F � R

C � R, we have the

following reduction formulas:

P˛;f .E/ D h!hQ.F /; Vf .E/ D h!hV.F /;

where the definitions ofQ.F / and Vf .E/ are introduced in Section 2. Then (7) is

equivalent to

(8) h!h inf
° Q.F /d

V.F /d�1
WF � R

C � R is a set with 0 < V.F / < C1
±

:

Minimizers in (8) are calledQ-isoperimetric sets. Thus the isoperimetric problem

in the class of x-spherically symmetric sets in the Grushin space R
hC1 with

density jxjp is turned into theQ-isoperimetric problem in R
C �R , which can be

studied by using the argument in [20].

Our main result in this paper is as follows:

Theorem 1.1. In the Grushin space R
hC1 with density jxjp, p > �hC 1, the

infimum in (6) is attained. Up to a dilation, a vertical translation and a negligible

set, the weighted x-spherically symmetric isoperimetric set is only of the from

(9) E˛ D
²

.x; y/ 2 R
hC1W jyj <

Z �
2

arcsin jxj

sin˛C1.t /dt; jxj < 1
³

:

Here, by a vertical translation we mean a mapping of the form .x; y/ 7! .x; yCy0/
for some y0 2 R.
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Remark 1.2. Using Theorem 1.1 we can get a weighted isoperimetric inequal-

ity in the Grushin space RhC1 with density jxjp . Namely, letE be any measurable

set with finite weighted volume in the Grushin space R
hC1 with density jxjp,

p > �hC 1. Then we have

Vf .E/ � d � 1

d.hC p/
.h!h/

� 1
d�1

�

2

Z �
2

0

.sin t /h�1CpC˛dt

�� 1
d�1

ŒP˛;f .E/�
d

d�1 :

Remark 1.3. When h > 1 and p is zero, Theorem 1.1 is exactly a result in [13].

Remark 1.4. In the case of ˛ D 1, following the argument of Proposition 2.3

in [13], we also have PH;f .E/ D P˛;f .E/ for any z-spherically symmetric set

E where PH;f .E/ denotes the weighted horizontal perimeter in the Heisenberg

group H
n with a horizontal radial density f .jzj/ D jzjp . So by Theorem 1.1, we

derive that up to a Heisenberg dilation, a vertical translation and a negligible set,

any weighted z-spherically symmetric isoperimetric set in the Heisenberg group

is a Bubble set, i.e.,

Eisop D
°

.z; t / 2 H
nW jt j < 1

2

�

arccos jzj C jzj
q

1� jzj2
�

; jzj < 1
±

:

The paper is organized as follows. In Section 2, we give some definitions and

deduce reduced formulas for the weighted ˛-perimeter and the weighted volume

of x-spherically symmetric sets in the Grushin space R
hC1 with density jxjp.

In Section 3, we rearrange the generating sets in the half-plane R
C � R by the

rearrangement techniques in [20], and prove the existence of Q-isoperimetric

sets. In Section 4, we use a variational method to obtain the equation of weighted

isoperimetric sets.

2. The reduction formulas of the weighted ˛-perimeter and weighted volume

For any open set A and m 2 N, let us denote the family of test functions

Fm.A/ D ¹' D .'1; : : : ; 'm/ 2 C 1c .AIRm/W k'k1 D max
.x;y/2A

j'.x; y/j � 1º:

For a fixed real number ˛ > 0, the Grushin vector fields in R
hC1 are given by

Xi D @

@xi
; Y D jxj˛ @

@y
; i D 1; : : : ; h;

where jxj is the standard Euclidean norm. For any function �.x;y/2C 1.RhC1IR/,
the ˛-gradient of � is given by

r˛� D .X1�; : : : ; Xh�; Y�/:
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The ˛-divergence of a vector field ' D .'1; : : : ; 'hC1/ 2 C 1.RhC1IRhC1/ is

defined as

div˛ ' D X1'1 C � � � C Xh'h C Y'hC1:

Let f D e� be a smooth density on the Grushin spaceRhC1. The weighted vol-

ume measure on R
hC1 is defined as dvf D e�dxdy. For all ' 2 C 1.RhC1IRhC1/,

we define the weighted ˛-divergence of ' as

div˛;f ' D div˛ ' C h';r˛�i;

where h�; �i denotes the standard scalar product.

In the sense of De Giogi, the weighted ˛-perimeter of any Borel setE is defined

as

(10) P˛;f .E/ D sup
'2FhC1.R

hC1/

² Z

E

div˛;f '.x; y/dvf

³

:

Since div˛;f '.x; y/dvf D div˛.e
�'.x; y//dxdy, equation (10) is equivalent to

(11) P˛;f .E/ D sup
'2FhC1.R

hC1/

² Z

E

div˛.e
�'.x; y//dxdy

³

:

Now we endow the Grushin space R
hC1 with the density f D jxjp , p >

�hC1. By (11), the weighted ˛-perimeter of a measurable setE � R
hC1 is given

by

(12) P˛;f .E/ D sup
'2FhC1.R

hC1/

² Z

E

div˛.jxjp'.x; y//dxdy
³

:

If P˛;f .E/ < C1, the set E is said to have finite weighted ˛-perimeter. The

weighted volume of a measurable set E � R
hC1 is given by

(13) Vf .E/ D
Z

E

jxjpdxdy:

For a set E � R
hC1 with Lipschitz boundary, the outer unit normal NE D

.NE
x ; N

E
y / is defined atHh-a.e. point of @E. The vector fieldNE

˛ D .NE
x ; jxj˛NE

y /

is called the ˛-normal to @E.

Following the argument of Proposition 3.1 in [21], we have the following

proposition.

Proposition 2.1. LetE be a bounded open set with Lipschitz boundary in the

Grushin space R
hC1 with density jxjp , then the weighted ˛-perimeter of E is

(14) P˛;f .E/ D
Z

@E

jNE
˛ j jxjpdHh;

where H
h is the standard h-dimensional Hausdorff measure.
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Remark 2.2. The formula (14) holds also in the case of general density.

Setting d D h C ˛ C 1 C p, the weighted volume and the weighted ˛-

perimeter are d -homogeneous and .d � 1/-homogeneous with respect to the

dilations .x; y/ 7! ı�.x; y/ D .�x; �˛C1y/ for any � > 0, respectively.

Proposition 2.3. Let E be a measurable set in the Grushin space R
hC1 with

density jxjp . Then we have

(i) Vf .ı�.E// D �dVf .E/,

(ii) P˛;f .ı�.E// D �d�1P˛;f .E/.

Proof. (i) The formula is directly obtained by the definition of the weighted

volume.

(ii) Assuming that ' 2 FhC1.R
hC1/, we have

Z

ı�.E/

div˛.jxjp'.x; y//dxdy

D
Z

ı�.E/

h

h
X

iD1

@xi
.jxjp'i .x; y//C jxj˛@y.jxjp'hC1.x; y//

i

dxdy

D
Z

ı�.E/

h

h
X

iD1

pjxjp�1 xi

jxj'i .x; y/

C
h

X

iD1

jxjp@xi
'i .x; y/C jxj˛Cp@y'hC1.x; y/

i

dxdy

D
Z

E

h

h
X

iD1

pj��jp�1 ��i

�j�j'i ı ı�.�; �/C
h

X

iD1

j��jp.@xi
'i / ı ı�.�; �/

C j��j˛Cp.@y'hC1/ ı ı�.�; �/
i

�hC˛C1d�d�

D
Z

E

�hC˛Cp
h

h
X

iD1

pj�jp�1 �i

j�j'i .ı�.�; �//C
h

X

iD1

j�jp@�i
.'i ı ı�.�; �//

C j�jpC˛@�.'hC1 ı ı�.�; �//
i

d�d�

D �hC˛Cp

Z

E

div˛.j�jp.' ı ı�/.�; �//d�d�:
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Obviously we have ' ı ı� 2 FhC1.R
hC1/. Taking the supremum over test

functions we have

P˛;f .ı�.E// � �d�1P˛;f .E/:

The converse inequality is obtained in the same way. �

We say a set E � R
hC1 is x-spherically symmetric if there exists a set

F � R
C � R such that

E D ¹.x; y/ 2 R
hC1W .jxj; y/ 2 F º:

The set F � R
C � R is called the generating set of E.

Proposition 2.4. Let E be a measurable x-spherically symmetric set in the

Grushin space R
hC1 with density jxjp . Assume that E has finite weighted ˛-

perimeter and let F be its generating set. Then we have

(15) P˛;f .E/ D h!h sup
 2F2.RC�R/

² Z

F

Œ@r.r
h�1Cp 1/Crh�1C˛Cp@y 2�drdy

³

;

where !h denotes the Euclidean volume of a h-dimension unit ball.

In particular, if E has Lipschitz boundary then we have

(16) P˛;f .E/ D h!h

Z

@F

j.NF
r ; r

˛NF
y /jrh�1CpdH1.r; t /;

where NF D .NF
r ; N

F
y / is the outer Euclidean unit normal to the boundary @F

and H
1 denotes the 1-dimensional Hausdorff measure.

Proof. We call

Q.F / D sup
 2F2.RC�R/

² Z

@F

Œ@r .r
h�1Cp 1/C rh�1C˛Cp@y 2�drdy

³

the Q-perimeter of the generating set F in R
C � R.

Step 1. We claim that if E is a x-spherically symmetric set generated by the

set F � R
C � R and has finite weighted ˛-perimeter, then we have P˛;f .E/ �

h!hQ.F /.

For any  2 F2.R
C � R/, we define the test function ' 2 FhC1.R

hC1/ as

'.x; y/ D
� x

jxj 1.jxj; y/;  2.jxj; y/
�

; for jxj ¤ 0;
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and

'.0; y/ D 0:

For any i D 1; : : : ; h and x ¤ 0, we have

@xi
'i .x; y/ D

� 1

jxj �
x2i

jxj3
�

 1.jxj; y/C
x2i

jxj2 @r 1.jxj; y/;

@y'hC1.x; y/ D @y 2.jxj; y/:

Then we have

div˛.jxjp'.x; y// D jxjp div˛ ' C h';r˛jxjpi

D jxjp
�

h
X

iD1

@xi
'i .jxj; y/C jxjp@y'hC1.jxj; y/

�

C pjxjp�1h';r˛jxji

D jxjp
hh � 1

jxj  1.jxj; y/C @r 1.jxj; y/C jxj˛@y 2.jxj; y/
i

C pjxjp�1 1.jxj; y/
D .h � 1C p/jxjp�1 1.jxj; y/C jxjp@r 1.jxj; y/C jxjpC˛@y 2.jxj; y/:

(17)

For any y 2 R, we define the section Fy D ¹r > 0W .r; y/ 2 F º. Using Fubini

theorem, the symmetry of E, the Coarea formula and (17) we obtain

Z

E

div˛.jxjp'/dxdy

D
Z

R

Z

Fy

Z

jxjDr

�

.h � 1C p/jxjp�1 1.jxj; y/C jxjp@r 1.jxj; y/

C jxjpC˛@y 2.jxj; y/
�

dH2n�1.x/drdy

D
Z

R

Z

Fy

h!hr
h�1

�

.h � 1C p/rp�1 1.r; y/C rp@r 1.r; y/

C rpC˛@y 2.r; y/
i

drdy

D h!h

Z

R

Z

Fy

Œ@r.r
h�1Cp 1 C rh�1CpC˛@y 2�drdy

D h!h

Z

F

Œ@r.r
h�1Cp 1 C rh�1CpC˛@y 2�drdy:

(18)

Taking the supremum over all  2 F2.R
C �R/ of the right side of (18), we obtain

P˛;f .E/ � h!hQ.F /:
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Step 2. We claim that when E � R
hC1 is a x-spherically symmetric set with

smooth boundary, it holds P˛;f .E/ � h!hQ.F /.

The unit outer normal NE D .NE
x ; N

E
y / is continuously defined on @E. At

points .0; y/ 2 @E, we have NE
x .0; y/ D 0 and thus NE

˛ .0; y/ D 0. For any " > 0

we consider a compact set K � @EnY , where Y D ¹.0; y/ 2 R
hC1; y 2 Rº, such

that

(19)

Z

@EnK

jNE
˛ j jxjpdHh < ":

LetH � R
C �R be the generating set of K. By standard extension theorems,

there exists  2 F2.R
C � R/ such that

 .r; y/ D
.NF

r ; r
˛NF

y /

j.NF
r ; r

˛NF
y /j

; for .r; y/ 2 K:

Setting '.x; y/ D
�

x
jxj
 1.jxj; y/;  2.jxj; y/

�

for jxj ¤ 0 and '.0; y/ D 0, then

we know ' 2 FhC1.R
hC1/. And we have

(20) '.x; y/ D NE
˛ .x; y/

jNE
˛ .x; y/j

; for .x; y/ 2 K:

By the definition of Q.F /, the identity (18), the divergence theorem, (19)

and (20), we have

h!hQ.F / � h!h

Z

F

Œ@r.r
h�1Cp 1/C rh�1C˛Cp@t 2�drdy

D
Z

E

div˛.jxjp'.x; y//dxdy

D
Z

@E

jxjph';NE
˛ idHh

D
Z

K

jxjp
D NE

˛

jNE
˛ j ; N

E
˛

E

dHh C
Z

@EnK

jxjph';NE
˛ idHh

�
Z

@E

jxjp jNE
˛ jdHh � 2"

D PH;f .E/ � 2":

Letting " ! 0, we get h!hQ.F / � PH;f .E/.

Step 3. The general case h!hQ.F / � PH;f .E/ follows by the approximation

argument as in [20].

Starting from (15), the formula (16) is obtained by using the divergence theo-

rem and taking the supremum. �
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Using the spherical coordinates, we obtain the reduction formula of the

weighted volume for x-spherically symmetric sets E in the Grushin space R
hC1

with density jxjp , i.e.

Vf .E/ D
Z

E

jxjpdxdy

D
Z C1

�1

Z C1

0

Z

jxjDr

jxjpdHh�1.z/drdy

D
Z C1

�1

Z C1

0

h!hr
h�1Cpdrdy

D h!h

Z

F

rh�1Cpdrdy:

Letting V.F / D
R

F
rh�1Cpdrdy , then we haveVf .E/ D h!hV.F /. Moreover

we have

Pf .E/
d

Vf .E/
d�1

D h!h
Q.F /d

V.F /d�1
:

Thus the weighted isoperimetric problem (7) is turned into

(21) h!h inf
° Q.F /d

V.F /d�1
WF � R

C � R with 0 < V.F / < C1
±

:

Minimizers (21) are called Q-isoperimetric sets.

It is easily verified thatQ.F / and V.F / are invariant under Euclidean vertical

translations of the form .r; y/ ! .r; y C y0/, for some y0 2 R. Q.F / and V.F /

are homogeneous with respect to dilations ı�.r; t / D .�r; �˛C1t / for any � > 0.

Namely, we have

Q.ı�.F // D �d�1Q.F /; V .ı�.F // D �dV.F /:

3. Existence of Q-isoperimetric sets

In this section we first rearrange the generating sets F by using the rearrangement

technique introduced in [20]. Then we prove the existence ofQ-isoperimetric sets.

By the homogeneity of Q.F / and V.F /, we can define the constant

(22) CI D inf¹Q.F /WF � R
C � R with V.F / D 1º:
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Theorem 3.1. The infimum in (22) is attained and anyQ-isoperimetric set F

satisfies:

i) up to a L
2-negligible set, F D F ] WD ¹.r; y/ 2 R

C � RW r < g.y/º where

gWR ! Œ0;C1� is a nonnegative function;

ii) the sections Fr are intervals for L1-a.e. r 2 R
C;

iii) F is bounded. In fact it holds

F �
°

.r; y/ 2 R
C � RW 0 � r �

�hC ˛ C p

2
Q.F /

�
1

hC˛Cp

;

jy � y0j �
� 2

hC p

�h�1Cp Q.F /hCp

V.F /h�1Cp

±

(23)

for some y0 2 R.

Proof. We will complete the proof by three steps.

Step 1. Since V.F / < C1, by Fubini theorem we know

h.r/ D 1

2
L
1.Fr / 2 L1loc.R

C/;

where Fr D ¹t 2 RW .r; t / 2 F º is a section. So we can rearrange the set F using

the Steiner symmetrization in direction y. Namely, we let

F � D ¹.r; y/ 2 R
C � RW jyj < h.r/º:

By Theorem 3.2 in [20], we have

Q.F �/ � Q.F /;

and the equalityQ.F �/ D Q.F / implies that Fr are intervals for L1-a.e. r 2 R
C.

Moreover we have

V.F �/ D
Z

F �

rh�1Cpdrdy

D
Z C1

0

dr

Z

F �
r

rh�1Cpdy

D
Z C1

0

rh�1Cp
L
1.Fr/dr

D
Z C1

0

rh�1Cpdr

Z

Fr

dy

D V .F /:

(24)
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Assume that F D F � and Q.F / < C1. We rearrange F in the coordinate

r using the function rh�1C˛Cp. Namely, we define the function gWR ! Œ0;C1�

via the identity

(25)
1

hC ˛ C p
g.y/hC˛Cp D

Z g.y/

0

rh�1C˛Cpdr D
Z

Fy

rh�1C˛Cpdr:

Let F
]
1 D ¹.r; y/ 2 R

C � RW 0 < r < g.y/º. By Theorem 1.5 in [20], we

know Q.F
]
1 / � Q.F / and moreover, if Q.F

]
1 / D Q.F /, then F D F

]
1 , up to a

L
2-negligible set.

Using Example 2.5 in [20], we know that for any measurable set Fy � R
C, for

any p > �hC 1, it holds that

(26)

�

.hC ˛ C p/

Z

Fy

rh�1C˛Cpdr

�
1

h�1C˛Cp

�
�

.hC p/

Z

Fy

rh�1Cpdr

�
1

hCp

:

By (25) and (26), we get

(27)

Z

F
]
1y

rh�1Cpdr �
Z

Fy

rh�1Cpdr

and (27) is an equality if and only if Fy D F
]
1y D .0; g.y//, up to a L

1-negligible

set.

Using (27) and Fubini theorem we have V.F
]
1 / � V.F /, with equality if and

only if F D F
]
1 , up to a L

2-negligible set.

Setting � D
�

V.F /

V.F
]
1
/

�
1
d � 1 and F ] D ı�.F

]
1 /, we have

V.F ]/ D V.F /

and

Q.F ]/ D �d�1Q.F
]
1 / � Q.F

]
1 / � Q.F �/ � Q.F /:

Moreover, if Q.F ]/ D Q.F /, then it must � D 1 and Q.F
]
1 / D Q.F /. Thus we

have F D F ], up to a L
2-negligible set.

Step 2. Assume that F D F ] and the sections Fr are intervals. We claim that

F �
°

.r; y/ 2 R
C � RW 0 � r �

�hC ˛ C p

2
Q.F /

�
1

hC˛Cp

;

jy � y0j �
� 2

hC p

�h�1Cp Q.F /hCp

V.F /h�1Cp

±

for some y0 2 R.
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Up to a L
2-negligible set, the set F is of the form

(28) F D ¹.r; y/ 2 R
C � RW 0 < r < g.y/; y 2 Rº

for some function gWR ! Œ0;C1�which is decreasing on .y0;C1/ and increas-

ing on .�1; y0/ for some y0 2 R. Set

M D sup
y2R

g.y/:

By the definition of Q.F /, we have

Q.F / � sup
 2F1.RC�R/

Z

F

rh�1C˛Cp@y .r; y/drdy

� sup
 2F1.R/

Z

F

rh�1C˛Cp@y .y/drdy

�
Z 1

0

rh�1C˛Cp sup
 2F1.R/

Z

¹g.y/>rº

@y. .y//dydr

D 2

Z 1

0

rh�1C˛Cpdr D 2M hC˛Cp

hC ˛ C p
:

Then we get the estimate

(29) M �
h.hC ˛ C p/Q.F /

2

i
1

hC˛Cp
:

On the other hand, the set F in (28) is also of the form

F D ¹.r; y/ 2 R
C � RW k.r/ < y < h.r/; r 2 R

Cº

for some functions k; hWRC ! Œ�1;C1� such that h and �k are decreasing,

thanks to F D F ]. Moreover, we can assume that h.r/ D k.r/ D y0 for all

r > M . Thus by the definition of Q.F /, we have

Q.F / � sup
 2F1.RC�R/

Z

F

@r.r
h�1Cp .r; y//drdy

� sup
 2F1.RC/

Z

RC

.h.r/� k.r//@r.rh�1Cp .r//dr

� lim
r!0C

.h.r/ � k.r//M 2n�1Cp:

Then we get

(30) jy � y0j � lim
r!0C

.h.r/� k.r// � Q.F /

M h�1Cp
:
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From (29) and (30), we know

(31) F � R WD Œ0;M� �
h

y0 � Q.F /

M h�1Cp
; y0 C Q.F /

M h�1Cp

i

:

Now from (31) we have

V.F / � V.R/ D
Z

R

rh�1Cpdrdt D 2Q.F /

hC p
M:

Thus we get an estimate from below for M :

(32) M � .hC p/V .F /

2Q.F /
:

Finally from (29), (31), and (32) we get (23).

Step 3. We claim that the infimum in (22) is attained.

Let ¹Fj ºj2N be a minimizing sequence for (22). Namely, let

V.Fj / D 1; lim
j!1

Q.Fj / D CI > 0:

By Step 1, without loss of generality we can assume that every set satisfies

Fj D F �
j D F

]
j . So we let Fj D ¹.r; y/ 2 R

C � RW jyj < hj .r/º for some

function hj WRC ! Œ0;C1�which is decreasing on .0;C1�. By Step 2 functions

hj are uniformly bounded and moreover, there exists r0 > 0 such hj .r/ D 0 for all

r > r0 and for all j 2 N. So there exists a subsequence of ¹hj ºj2N, still denoted

by ¹hj º, such that limj!1 hj .r/ D h.r/, for all r > 0 and the function h.r/ is also

decreasing. Let

F D ¹.r; y/ 2 R
C � RW jyj < h.r/; r 2 R

Cº:

By the dominated convergence theorem, we have

V.F / D lim
j!C1

V.Fj / D 1:

Moreover, �Fj
! �F in L1loc.R

2
C/. Then by the lower semicontinuity of the

perimeter, we have

Q.F / � lim
j!1

infQ.Fj / D CI :

By the definition of CI , we haveQ.F / D CI .

Now let F be any Q-isoperimetric set. By Step 1, F satisfies F D F ] and the

section Fr are intervals for L1-a.e. r > 0. By Step 2, the set F satisfies (23). �
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4. Characterization of weighted x-spherical symmetric isoperimetric sets

In this section we give the main result and use the variational principle to finish

its proof.

Theorem 4.1. In the Grushin space R
hC1 with density jxjp, p > �hC 1, the

infimum in (6) is attained. Up to a dilation, a vertical translation and a negligible

set, any weighted x-spherically symmetric isoperimetric set is of the from

(33) E˛ D
²

.x; y/ 2 R
hC1W jyj <

Z �
2

arcsin jxj

sin˛C1.t /dt; jxj < 1
³

:

Here, by a vertical translation we mean a mapping of the form .x; y/ 7! .x; yCy0/
for some y0 2 R.

Proof. By Theorem 3.1, the infimum in (22) is attained at a set F � R
C � R.

By the homogeneity of Q.F / and V.F /, the set F is also a minimizer for (21).

In the following we will compute the Q-isoperimetric set F by the variational

method.

Let F � R
C � R be a minimizer for (21). By Theorem 3.1, up to a negligible

set and a vertical translation, the set F is of the form

(34) F D ¹.r; y/ 2 R
C � RW jyj < h.r/; r 2 .0; r0/º

where hW .0; r0/ ! .0;C1/ is a decreasing function, for some r0 2 .0;C1�.

By the regularity theory of isoperimetric hypersurfaces (see [24]), the boundary

@F \ .RC � R/ is a curve of class C1. By (16) we have

Q.F / D
Z

@F

j.NF
r ; r

˛NF
y /jrh�1CpdH1.r; y/;

where .NF
r ; N

F
y / is the outer unit normal to @F . Thus by (34) we get

Q.F / D 2

Z r0

0

p

h0.r/2 C r2˛rh�1Cpdr;

V .F / D
Z

F

rh�1Cpdrdy D 2

Z r0

0

h.r/rh�1Cpdr:

For any 2 C1
c .0; r0/ and " 2 R, we consider perturbation hC" , and define

the set F" D ¹.r; y/ 2 R
C � RW jyj < h.r/C " .r/º. Then we have

Q."/ WD Q.F"/ D 2

Z r0

0

q

.h
0 C " 0/2 C r2˛rh�1Cpdr;
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V."/ WD V.F"/ D 2

Z r0

0

.hC " /rh�1Cpdr:

Since F is a Q-isoperimetric set, we have

d

d"

ˇ

ˇ

ˇ

"D0

Q.F"/
d

V.F"/d�1
D dQ."/d�1Q0."/V ."/d�1 � .d � 1/Q."/dV."/d�2V 0."/

V ."/2.d�1/

ˇ

ˇ

ˇ

"D0

D 0:

It follows that

Q0.0/ �KV 0.0/ D 0; where K D d � 1
d

Q.F /

V .F /
:

i.e.
Z r0

0

h0 0

p

.h0/2 C r2˛
rh�1Cpdr D

Z r0

0

Krh�1Cp dr:

Using the divergence theorem and the fact that  2 C1
c .0; r0/ is arbitrary, we

deduce that h solves the following second order ordinary differential equation:

(35)
� h0rh�1Cp

p
h02 C r2˛

�0

D �Krh�1Cp:

We integrate the equation (35) on the interval Œ0; r� and get

(36)
h0

p
h02 C r2˛

D � K

hC p
r C D

rh�1Cp
;

where D is some constant.

Because ofp > �hC1, we deduce thatD D 0. In fact, the left-hand side of (36)

is bounded as r ! 0C, while the right-hand side diverges to ˙1 according to the

sign D ¤ 0. So (36) is

(37)
h0

p
h02 C r2˛

D � K

hC p
r:

By a dilation of the set F , we can assume that K D hCp. Noting that h0 � 0,

we have

(38) h0.r/ D � r˛C1

p
1 � r2

:

From (38) we know the function h0 is defined on the interval .�1; 1/.
On the other hand, because @F \ .RC �R/ is of class C1, it must be h.1/ D 0.

With this condition, the solution of equation (38) is

h.r/ D
Z 1

r

t˛C1

p
1 � t2

ds D
Z �

2

arcsin r

sin˛C1.t /dt; r < 1:
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So the weighted x-spherically symmetric isoperimetric set E generated by F

is the form

E˛ D
²

.x; y/ 2 R
hC1W jyj <

Z �
2

arcsin jxj

sin˛C1.t /dt; jxj < 1
³

: �
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