On H_{σ} -permutably embedded subgroups of finite groups

Guo, W. (*) – Zhang, C. (**) – A. N. Skiba (***) – D. A. Sinitsa (****)

ABSTRACT – Let *G* be a finite group. Let $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P} and *n* an integer. We write $\sigma(n) = \{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}, \sigma(G) = \sigma(|G|)$. A set \mathcal{H} of subgroups of *G* is said to be a *complete Hall* σ -*set* of *G* if every member of $\mathcal{H} \setminus \{1\}$ is a Hall σ_i -subgroup of *G* for some σ_i and \mathcal{H} contains exact one Hall σ_i -subgroup of *G* for every $\sigma_i \in \sigma(G)$. A subgroup *A* of *G* is called (i) a σ -Hall *subgroup* of *G* if $\sigma(A) \cap \sigma(|G : A|) = \emptyset$; (ii) σ -permutable in *G* if *G* possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^x A$ for all $H \in \mathcal{H}$ and all $x \in G$. We say that a subgroup *A* of *G* is H_{σ} -permutably embedded in *G* if *A* is a σ -Hall subgroup of some σ -permutable subgroup of *G*. We study finite groups *G* having an H_{σ} -permutably embedded subgroup of order |A| for each subgroup *A* of *G*. Some known results are generalized.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20D10, 20D15, 20D30.

Keywords. Finite group, σ -Hall subgroup, σ -subnormal subgroup, σ -nilpotent group, H_{σ} -permutably embedded subgroup.

(*) *Indirizzo dell'A*.: Department of Mathematics, University of Science and Technology of China, 230026, Hefei, P. R. China E-mail: wbguo@ustc.edu.cn

(**) *Indirizzo dell'A*.: Department of Mathematics, University of Science and Technology of China, 230026, Hefei, P. R. China

(***) *Indirizzo dell'A*.: Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, 246019, Gomel, Belarus E-mail: alexander.skiba49@gmail.com

(****) *Indirizzo dell'A*.: Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, 246019, Gomel, Belarus

1. Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover, *n* is an integer, \mathbb{P} is the set of all primes, and if $\pi \subseteq \mathbb{P}$, then $\pi' = \mathbb{P} \setminus \pi$. The symbol $\pi(n)$ denotes the set of all primes dividing *n*; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of *G*. We use n_{π} to denote the π -part of *n*, that is, the largest π -number dividing *n*; n_p denotes the largest degree of *p* dividing *n*.

In what follows, $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_i = \emptyset$ for all $i \neq j$; Π is a subset of σ and $\Pi' = \sigma \setminus \Pi$.

Let $\sigma(n) = \{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$ and $\sigma(G) = \sigma(|G|)$. Then we say that *G* is σ -*primary* [1] if *G* is a σ_i -group for some $\sigma_i \in \sigma$.

A set \mathcal{H} of subgroups of G is said to be a *complete Hall* σ -set of G [2, 3] if every member of $\mathcal{H} \setminus \{1\}$ is a Hall σ_i -subgroup of G for some σ_i and \mathcal{H} contains exact one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$. We say that G is σ -full if G possesses a complete Hall σ -set. Throughout this paper, G is always supposed to be a σ -full group.

A subgroup A of G is called [1]

- (i) a σ -Hall subgroup of G if $\sigma(A) \cap \sigma(|G:A|) = \emptyset$;
- (ii) σ -subnormal in G if there is a subgroup chain $A = A_0 \le A_1 \le \cdots \le A_t = G$ such that either $A_{i-1} \le A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \dots, t$;
- (iii) σ -quasinormal or σ -permutable in G if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^x A$ for all $H \in \mathcal{H}$ and all $x \in G$.

In particular, A is called S-quasinormal or S-permutable in G [4, 5] provided AP = PA for all Sylow subgroups P of G.

DEFINITION 1.1. We say that a subgroup *A* of *G* is H_{σ} -subnormally (respectively H_{σ} -permutably, H_{σ} -normally) embedded in *G* if *A* is a σ -Hall subgroup of some σ -subnormal (respectively σ -permutable, normal) subgroup of *G*.

In the special case when $\sigma = \{\{2\}, \{3\}, ...\}$ the definition of H_{σ} -normally embedded subgroups is equivalent to the concept of Hall normally embedded subgroups in [6], the definition of H_{σ} -permutably embedded subgroups is equivalent to the concept of Hall *S*-quasinormally embedded subgroups in [7] and the definition of H_{σ} -subnormally embedded subgroups is equivalent to the concept of Hall subnormally embedded subgroups in [8].

EXAMPLE 1.2. (i) For any σ , all σ -Hall subgroups and all σ -subnormal subgroups of any group S are H_{σ} -subnormally embedded in S. Now, let G = $(C_7 \rtimes C_3) \times A_5$, where $C_7 \rtimes C_3$ is a non-abelian group of order 21 and A_5 is the alternating group of degree 5, and let $H = (C_7 \rtimes C_3)A$, where A is a Sylow 2-subgroup of A_5 . Let $\sigma = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \{7\}$ and $\sigma_2 = \{7\}'$. Then H is σ -subnormal in G and $C_7 \rtimes C_3$ is a σ -Hall subgroup of G. In view of Lemma 2.1(1, 5) below, the subgroup C_3A is neither σ -subnormal in G nor H_{σ} -normally embedded in G.

(ii) For any σ , all σ -Hall subgroups and all σ -permutable subgroups of any group *S* are H_{σ} -permutably embedded in *S*. Now, let p > q > r be primes, where r^2 divides q - 1. Let $\sigma = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \{q, r\}$ and $\sigma_2 = \{q, r\}'$. Let $H = Q \rtimes R$ be a group of order qr^2 , where $C_H(Q) = Q$. Let *P* be a simple $\mathbb{F}_p H$ -module which is faithful for *H* and $G = P \rtimes H$. Let R_1 be a subgroup of *R* of order *r*. Then the subgroup $V = PR_1$ is σ -permutable in *G* and R_1 is a σ -Hall subgroup of *V*. Hence R_1 is H_{σ} -permutably embedded in *G*. It is also clear that *G* has no a normal subgroup *W* such that R_1 is a Hall subgroup of *W*, so R_1 is not H_{σ} -normally embedded in *G*.

(iii) For any σ , all σ -Hall subgroups and all normal subgroups of any group S are H_{σ} -normally embedded in S. Now, let P be a simple $\mathbb{F}_{11}(C_7 \rtimes C_3)$ -module which is faithful for $C_7 \rtimes C_3$. Let $G = (P \rtimes (C_7 \rtimes C_3)) \times A_5$. Let $\sigma = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \{5, 7, 11\}$ and $\sigma_2 = \{5, 7, 11\}'$. Then the subgroup $M = (P \rtimes C_7) \times A_5$ is normal in G and a subgroup B of A_5 of order 12 is a σ -Hall subgroup of M, so B is H_{σ} -normally embedded in G.

Recall that G is σ -nilpotent [9] if $G = H_1 \times \cdots \times H_t$ for some σ -primary groups H_1, \ldots, H_t . The σ -nilpotent residual $G^{\mathfrak{N}_{\sigma}}$ of G is the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N, $G^{\mathfrak{N}}$ denotes the nilpotent residual of G. It is clear that every subgroup of a σ -nilpotent group G is σ -permutable and σ -subnormal in G.

THEOREM 1.3. Let $\mathcal{H} = \{1, H_1, \dots, H_t\}$ be a complete Hall σ -set of G and $D = G^{\mathfrak{N}_{\sigma}}$. Then any two of the following conditions are equivalent:

- (i) G has an H_σ-permutably embedded subgroup of order |A| for each subgroup A of G;
- (ii) D is cyclic of square-free order and $|\sigma_i \cap \pi(G)| = 1$ for all i such that $\sigma_i \cap \pi(D) \neq \emptyset$;
- (iii) for each set $\{A_1, \ldots, A_t\}$, where A_i is a subgroup (respectively normal subgroup) of H_i for all $i = 1, \ldots, t$, G has an H_{σ} -permutably embedded (respectively H_{σ} -normally embedded) subgroup of order $|A_1| \ldots |A_t|$.

Let \mathfrak{F} be a class of groups. A subgroup H of G is said to be an \mathfrak{F} -covering subgroup of G [10, VI, Definition 7.8] if $H \in \mathfrak{F}$ and for every subgroup E of Gsuch that $H \leq E$ and $E/N \in \mathfrak{F}$ it follows that E = NH. We say that a subgroup H of G is a σ -*Carter subgroup* of G if H is an \mathfrak{N}_{σ} -covering subgroup of G, where \mathfrak{N}_{σ} is the class of all σ -nilpotent groups.

A group *G* is said to have a *Sylow tower* if *G* has a normal series $1 = G_0 < G_1 < \cdots < G_{t-1} < G_t = G$, where $|G_i/G_{i-1}|$ is the order of some Sylow subgroup of *G* for each $i \in \{1, \ldots, t\}$. A chief factor of *G* is said to be σ -central (in *G*) [1] if the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is σ -primary. Otherwise, H/K is called σ -eccentric (in *G*).

We say that G is an $H\sigma E$ -group if the following conditions hold.

- (i) $G = D \rtimes M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is a σ -Hall subgroup of G and $|\sigma(D)| = |\pi(D)|$;
- (ii) *D* has a Sylow tower and every chief factor of *G* below *D* is σ -eccentric;
- (iii) M acts irreducibly on every M-invariant Sylow subgroup of D.

We do not still know the structure of a group G having an H_{σ} -subnormally embedded subgroup of order |A| for each subgroup A of G. Nevertheless, the following fact is true.

THEOREM 1.4. Any two of the following conditions are equivalent:

- (i) every subgroup of G is H_{σ} -subnormally embedded in G;
- (ii) every σ -subnormal subgroup H of G is an $H\sigma E$ -group of the form $H = D \rtimes M$, where $D = H^{\mathfrak{N}_{\sigma}}$ and M is a σ -Carter subgroup of H;
- (iii) every σ -subnormal subgroup of G is an $H\sigma E$ -group.

Now, let us consider some corollaries of Theorems 1.3 and 1.4. First note that since a nilpotent group *G* possesses a normal subgroup of order *n* for each integer *n* dividing |G|, in the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$, Theorem 1.3 covers Theorem 11 in [6], Theorem 2.7 in [8] and Theorems 3.1 and 3.2 in [7].

From Theorem 1.3 we also get the following result.

COROLLARY 1.5. Suppose that G possesses a complete Hall σ -set $\mathcal{H} = \{1, H_1, \ldots, H_t\}$ such that H_i is nilpotent for all $i = 1, \ldots, t$. Then G has an H_{σ} -normally embedded subgroup of order |H| for each subgroup H of G if and only if $G^{\mathfrak{N}}$ is cyclic of square-free order and $|\sigma_i \cap \pi(G)| = 1$ for all i such that $\sigma_i \cap \pi(D) \neq \emptyset$.

147

In the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$ we get from Corollary 1.5 the following known result.

COROLLARY 1.6 (Ballester-Bolinches and Qiao [11]). *G* has a Hall normally embedded subgroup of order |H| for each subgroup H of G if and only if $G^{\mathfrak{N}}$ is cyclic of square-free order.

On the basis of Theorems 1.3 and 1.4 we prove also the next two theorems.

THEOREM 1.7. Any two of the following conditions are equivalent:

- (1) every subgroup of G is H_{σ} -normally embedded in G;
- (2) $G = D \rtimes M$ is an $H \sigma E$ -group, where $D = G^{\mathfrak{N}_{\sigma}}$ is a cyclic group of squarefree order and M is a Dedekind group;
- (3) $G = D \rtimes M$, where D is a σ -Hall cyclic subgroup of G of square-free order with $|\sigma(D)| = |\pi(D)|$ and M is a Dedekind group.

In the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$ we get from Theorem 1.7 the following known result.

COROLLARY 1.8 (Li and Liu [8]). Every subgroup of G is a Hall normally embedded subgroup of G if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}}$ is a cyclic Hall subgroup of G of square-free order and M is a Dedekind group.

THEOREM 1.9. Any two of the following conditions are equivalent:

- (1) every subgroup of G is H_{σ} -permutably embedded in G;
- (2) $G = D \rtimes M$ is an $H\sigma E$ -group, where $D = G^{\mathfrak{N}_{\sigma}}$ is a cyclic group of squarefree order;
- (3) $G = D \rtimes M$, where D is a σ -Hall cyclic subgroup of G of square-free order with $|\sigma(D)| = |\pi(D)|$ and M is σ -nilpotent.

COROLLARY 1.10. Every subgroup of G is a Hall S-quasinormally embedded subgroup of G if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}}$ is a cyclic Hall subgroup of G of square-free order and M is a Carter subgroup of G.

In conclusion of this section, consider the following example.

EXAMPLE 1.11. Let $5 < p_1 < p_2 < \cdots < p_n$ be a set of primes and p a prime such that either $p > p_n$ or p divides $p_i - 1$ for all $i = 1, \ldots, n$. Let A be a group of order p and P_i a simple $\mathbb{F}_{p_i} A$ -module which is faithful for A. Let $L_i = P_i \rtimes A$ and $B = (\cdots ((L_1 \land L_2) \land L_3) \land \cdots) \land L_n$ (see [10, p. 50]). We can assume without loss of generality that $L_i \leq B$ for all $i = 1, \ldots, n$. Let $G = B \times A_5$, where A_5 is the alternating group of degree 5, and let σ be a partition of \mathbb{P} such that for some different indices $i, j, i_1, \ldots, i_n \in I$ we have $p \in \sigma_i, \{2, 3, 5\} \subseteq \sigma_j$ and $p_k \in \sigma_{i_k}$ for all $k = 1, \ldots, n$. Then $D = P_1 P_2 \ldots P_n = G^{\mathfrak{M}_\sigma}$ is a σ -Hall subgroup of Gand $G = D \rtimes (A \times A_5)$.

We show that every subnormal subgroup H of G satisfies condition (ii) in Theorem 1.4. If $H^{\mathfrak{N}_{\sigma}} = 1$, it is evident. Hence we can assume without loss of generality $A \leq H$ since every p'-subgroup of G is σ -nilpotent. But then $H = (H \cap D) \rtimes (A \times (H \cap A_5))$ by Lemma 2.1(4) below, where $H \cap D$ is a normal σ -Hall subgroup of H and $M = A \times (H \cap A_5)$ is a σ -nilpotent subgroup of H. Moreover, M induces on every non-identity Sylow subgroup of $H \cap D$ a non-trivial irreducible group of automorphisms. Therefore $H^{\mathfrak{N}_{\sigma}} = H \cap D$ and $|\sigma(H^{\mathfrak{N}_{\sigma}})| = |\pi(H^{\mathfrak{N}_{\sigma}})|$. It is also clear that M is a σ -Carter subgroup of Hand every chief factor of H below $H^{\mathfrak{N}_{\sigma}}$ is σ -eccentric in H. Thus G satisfies condition (ii) in Theorem 1.4, and so every subgroup H of G is H_{σ} -subnormally embedded in G. On the other hand, the subgroup DAC_2 , where C_2 is a subgroup of order 2 of G, is not Hall subnormally embedded in G since C_2 is not a Sylow subgroup of any subnormal subgroup of G.

Finally, if p divides $p_i - 1$ for all i = 1, ..., n, then $|P_i| = p_i$ for all i = 1, ..., n, so G satisfies condition (ii) in Theorem 1.9 and hence satisfies condition (ii) in Theorem 1.3.

2. Basic lemmas

An integer *n* is called a Π -*number* if $\sigma(n) \subseteq \Pi$. A subgroup *H* of *G* is called a *Hall* Π -*subgroup* of *G* [1] if |H| is a Π -number and |G : H| is a Π '-number.

LEMMA 2.1 ([1, Lemma 2.6]). Let A, K and N be subgroups of G, where A is σ -subnormal in G and N is normal in G.

- (1) $A \cap K$ is σ -subnormal in K.
- (2) If K is σ -subnormal in G, then $A \cap K$ and $\langle A, K \rangle$ are σ -subnormal in G.
- (3) AN/N is σ -subnormal in G/N.
- (4) If H ≠ 1 is a Hall Π-subgroup of G and A is not a Π'-group, then A∩H ≠ 1 is a Hall Π-subgroup of A.

- (5) If |G : A| is a σ_i -number, then $O^{\sigma_i}(A) = O^{\sigma_i}(G)$.
- (6) If V/N is a σ -subnormal subgroup of G/N, then V is σ -subnormal in G.
- (7) If K is a σ -subnormal subgroup of A, then K is σ -subnormal in G.

A group G is said to be σ -soluble [1] if every chief factor of G is σ -primary.

LEMMA 2.2 ([1, Lemmas 2.8 and 3.2 and Theorems B and C]). Let A, K and N be subgroups of G, where A is σ -permutable in G and N is normal in G.

- (1) AN/N is σ -permutable in G/N.
- (2) If G is σ -soluble, then $A \cap K$ is σ -permutable in K.
- (3) If $N \leq K$, K/N is σ -permutable in G/N and G is σ -soluble, then K is σ -permutable in G.
- (4) A is σ -subnormal in G.
- (5) If G is σ -soluble and K is σ -permutable in G, then $K \cap A$ is σ -permutable in G.

LEMMA 2.3. Let H be a normal subgroup of G. If $H/H \cap \Phi(G)$ is a Π -group, then H has a a Hall Π -subgroup, say E, and E is normal in G. Hence, if $H/H \cap \Phi(G)$ is σ -nilpotent, then H is σ -nilpotent.

PROOF. Let $D = O_{\Pi'}(H)$. Then, since $H \cap \Phi(G)$ is nilpotent, D is a Hall Π' -subgroup of H. Hence by the Schur-Zassenhaus theorem, H has a Hall Π -subgroup, say E. It is clear that H is π' -soluble, where $\pi' = \bigcup_{\sigma_i \in \Pi'} \sigma_i$, so any two Hall Π -subgroups of H are conjugate. By the Frattini argument, $G = HN_G(E) = (E(H \cap \Phi(G)))N_G(E) = N_G(E)$. Therefore E is normal in G. The lemma is proved.

LEMMA 2.4. If every chief factor of G below $D = G^{\mathfrak{N}_{\sigma}}$ is cyclic, then D is nilpotent.

PROOF. Assume that this is false and let *G* be a counterexample of minimal order. Let *R* be a minimal normal subgroup of *G*. Then from the *G*-isomorphism $D/D \cap R \simeq DR/R = (G/R)^{\mathfrak{N}_{\sigma}}$ we know that every chief factor of G/R below DR/R is cyclic, so the choice of *G* implies that $D/D \cap R \simeq DR/R$ is nilpotent. Hence $R \leq D$ and *R* is the unique minimal normal subgroup of *G*. In view of Lemma 2.3, $R \not\leq \Phi(G)$ and so $R = C_R(R)$ by [12, A, 15.2]. But by hypothesis, |R| is a prime, hence $G/R = G/C_G(R)$ is cyclic, so *G* is supersoluble and so $G^{\mathfrak{N}_{\sigma}}$ is nilpotent since $G^{\mathfrak{N}_{\sigma}} \leq G^{\mathfrak{N}}$. The lemma is proved. The following lemma is evident.

LEMMA 2.5. The class of all σ -soluble groups is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of the σ -soluble group by a σ -soluble group is a σ -soluble group as well.

Let A, B and R be subgroups of G. Then A is said to R-permute with B [13] if for some $x \in R$ we have $AB^x = B^x A$.

If G has a complete Hall σ -set $\mathcal{H} = \{1, H_1, \dots, H_t\}$ such that $H_i H_j = H_j H_i$ for all i, j, then we say that $\{H_1, \dots, H_t\}$ is a σ -basis of G.

LEMMA 2.6 ([2, Theorems A and B]). Assume that G is σ -soluble.

- (i) G has a σ -basis $\{H_1, \ldots, H_t\}$ such that for each $i \neq j$ every Sylow subgroup of H_i G-permutes with every Sylow subgroup of H_j .
- (ii) For any Π, G has a Hall Π-subgroup E, every Π-subgroup of G is contained in some conjugate of E and E G-permutes with every Sylow subgroup of G.

LEMMA 2.7. Let H, E and R be subgroups of G. Suppose that H is H_{σ} -subnormally embedded in G and R is normal in G.

- (1) If $H \leq E$, then H is H_{σ} -subnormally embedded in E.
- (2) HR/R is H_{σ} -subnormally embedded in G/R.
- (3) If S is a σ -subnormal subgroup of G, then $H \cap S$ is H_{σ} -subnormally embedded in G.
- (4) If |G : H| is σ -primary, then H is either a σ -Hall subgroup of G or σ -subnormal in G.

PROOF. Let V be a σ -subnormal subgroup of G such that H is a σ -Hall subgroup of V.

(1) This assertion is a corollary of Lemma 2.1(1).

(2) In view of Lemma 2.1(3), VR/R is σ -subnormal subgroup of G/R. It is also clear that HR/R is a σ -Hall subgroup of VR/R. Hence HR/R is H_{σ} -subnormally embedded in G/R.

(3) By Lemma 2.1(1, 2), $V \cap S$ is σ -subnormal both in V and in G and so $H \cap (V \cap S) = H \cap S$ is a σ -Hall subgroup of $V \cap S$ by Lemma 2.1(4), as required.

(4) Assume that *H* is not σ -subnormal in *G*. Then H < V. By hypothesis, |G : H| is σ -primary, say |G : H| is a σ_i -number. Then |V : H| is a σ_i -number. But *H* is a σ -Hall subgroup of *V*. Hence *H* is a σ -Hall subgroup of *G*.

The lemma is proved.

LEMMA 2.8. Let H be a σ -subnormal subgroup of a σ -soluble group G. If |G:H| is a σ_i -number and B is a σ_i -complement of H, then $G = HN_G(B)$.

PROOF. Assume that this lemma is false and let *G* be a counterexample of minimal order. Then H < G, so *G* has a proper subgroup *M* such that $H \le M$, $|G : M_G|$ is a σ_i -number and *H* is σ -subnormal in *M*. The choice of *G* implies that $M = HN_M(B)$. On the other hand, clearly that *B* is a σ_i -complement of M_G . Since *G* is σ -soluble, Lemma 2.6 and the Frattini argument imply that $G = M_G N_G(B) = MN_G(B) = HN_M(B)N_G(B) = HN_G(B)$. The lemma is proved.

The following lemma is well known (see, for example, [14, 3.29] or [15, 1.10.10]).

LEMMA 2.9. Let H/K be an abelian chief factor of G and V a maximal subgroup of G such that $K \leq V$ and HV = G. Then $G/V_G \simeq (H/K) \rtimes (G/C_G(H/K))$.

3. Proofs of the results

PROOF OF THEOREM 1.3. Without loss of generality we may assume that H_i is a σ_i -group for all i = 1, ..., t.

(i), (iii) \implies (ii) Assume that this is false. Then $D \neq 1$ and so t > 1. First we prove the following claim

First we prove the following claim.

(*) If $p \in \sigma_i \cap \pi(G)$, then G has a σ -permutable subgroup E with $|E| = |G|_{\sigma'_i} p$.

We can assume without loss of generality that i = 1. In fact, to prove claim (*), we consistently build the σ -permutable subgroups E_2, \ldots, E_t such that $|H_2| \ldots |H_j|$ divides $|E_j|$ and $|E_j|_{\sigma_1} = p$ for all $j = 2, \ldots, t$.

By hypothesis, *G* has an H_{σ} -permutably embedded subgroup *X* of order *p*. Let *V* be a σ -permutable subgroup of *G* such that *X* is a σ -Hall subgroup of *V*. Then $|V|_{\sigma_1} = p$ and *G* has a complete Hall σ -set $\{1, K_1, \ldots, K_t\}$, where K_i is a σ_i -group for all $i = 1, \ldots, t$, such that $VK_i = K_i V$ for all $i = 1, \ldots, t$. Let $W = VK_2$. Then $|W|_{\sigma_1} = p$.

Next we show that there is an H_{σ} -permutably embedded subgroup *Y* of *G* such that |Y| = |W|. It is enough to consider the case when condition (iii) holds. Let A_1 be a subgroup of H_1 of order p, $A_2 = H_2$ and $A_i = H_i \cap V$ for all i > 2. Then $|A_2| = |H_2| = |K_2|$. On the other hand, $V \cap K_i$ and $V \cap H_i$ are Hall σ_i -subgroups of *V* by Lemmas 2.1(4) and 2.2(4) and so $|V \cap K_i| = |V \cap H_i|$. Also, for every

i > 2 we have $|W : V \cap K_i| = |VK_2 : V \cap K_i| = |V||K_2| : |V \cap K_2||V \cap K_i|$ is a σ'_i -number and hence $V \cap K_i = W \cap K_i$ is a Hall σ_i -subgroup of W. Therefore, $|W| = p|H_2||V \cap H_3| \dots |V \cap H_t|$ and so G has an H_σ -permutably embedded subgroup Y of order $|W| = |A_1| \dots |A_t|$ by hypothesis.

Let E_2 be a σ -permutable subgroup of G such that Y is a σ -Hall subgroup of E_2 . Then $|H_2| = |K_2|$ divides $|E_2|$ and $|E_2|_{\sigma_1} = p$. Now, arguing by induction, assume that G has a σ -permutable subgroup E_{t-1} such that $|H_2| \dots |H_{t-1}|$ divides $|E_{t-1}|$ and $|E_{t-1}|_{\sigma_1} = p$. Then for some Hall σ_t -group L we have $E_{t-1}L = LE_{t-1}$, and if $E_t = E_{t-1}L$, then $|E_t| = |G|_{\sigma'_1}p$ and E_t clearly is σ -permutable in G, as required.

Now, let $p \in \sigma_i \cap \pi(D)$ and let P be a Sylow p-subgroup of D. Then, by claim (*), G possesses a σ -permutable subgroup E such that $|E| = |G|_{\sigma'_i} p$. Lemma 2.2 (4) implies that E is σ -subnormal in G, so Lemma 2.1 (4) shows that G/E_G is a σ_i -group. Hence $D \leq E_G \leq E$, so |P| = p. Therefore G is supersoluble by [10, IV, 2.9] and so every chief factor of G below D is cyclic. Hence D is nilpotent by Lemma 2.4, so D is cyclic of square-free order.

Finally, assume that $|\sigma_i \cap \pi(G)| > 1$ and let $q \in \sigma_i \cap \pi(G) \setminus \{p\}$. Then *G* possesses a σ -permutable subgroup *F* such that $|F| = |G|_{\sigma'_i}q$. Then $D \leq F_G \leq F$. Therefore $D \leq E \cap F$ and so *p* does not divide |D|. This contradiction completes the proof of the implications (i) \implies (ii) and (iii) \implies (ii).

(ii) \implies (iii) First we show that for every *i* and for every subgroup (respectively normal subgroup) A_i of H_i , there is an H_{σ} -permutably embedded (respectively H_{σ} -normally embedded) subgroup E_i of *G* such that $|E_i| = |A_i||G|_{\sigma'_i}$. Since *G* evidently is σ -soluble, it has a σ_i -complement *E* by Lemma 2.6. Therefore, it is enough to consider the case when $A_i \neq 1$ since every σ -Hall subgroup of *G* is an H_{σ} -normally embedded in *G*.

First suppose that $D \le E$. Then E/D is normal in G since G/D is σ -nilpotent. Therefore $(E/D) \times (A_i D/D) = EA_i/D$ is σ -permutable (respectively normal) in $G/D = (E/D) \times (H_i D/D)$. Hence $E_i = EA_i$ is σ -permutable (respectively normal) in G by Lemma 2.2 (3) and $|E_i| = |A_i||G|_{\sigma'_i}$.

Now suppose that $D \not\leq E$. Then $D \cap H_i \neq 1$, so H_i is a *p*-group for some prime *p* since for each $\sigma_i \in \sigma(D)$ we have $|\sigma_i \cap \pi(G)| = 1$ by hypothesis. Hence H_i has a normal subgroup *A* such that $D_p \leq A$ and $|A| = |A_i|$, where D_p is a Sylow *p*-subgroup of *D*. Then $D \leq AE$. Moreover, $AE/D = (DA/D) \times (ED/D)$ since ED/D is a Hall σ'_i -subgroup of G/D. Therefore $E_i = AE$ is σ -permutable (respectively normal) in *G* by Lemma 2.2 (3) and $|E_i| = |A_i||G|_{\sigma'_i}$.

Let $E = E_1 \cap \cdots \cap E_t$. Then $|E| = |A_1| \dots |A_t|$ since $(|G : E_i|, |G : E_j|) = 1$ for all $i \neq j$. Note that E_i is either a σ -Hall subgroup of G or σ -permutable (respectively normal) in G. Indeed, let V be a σ -permutable (respectively normal) subgroup of G such that E_i is a σ -Hall subgroup of V. Assume that E_i is not σ -permutable (respectively not normal) in G. Then $E_i < V$. Since $|G : E_i|$ is a σ_i -number, $|V : E_i|$ is a σ_i -number. But E_i is a σ -Hall subgroup of V. Hence $E_i = V$ is a σ -Hall subgroup of G.

Assume that E_1, \ldots, E_r are σ -permutable (respectively normal) in G and E_i is a σ -Hall subgroup of G for all i > r. Then $E^0 = E_1 \cap \cdots \cap E_r$ is σ -permutable (respectively normal) in G by Lemma 2.2 (5) and $E^* = E_{r+1} \cap \cdots \cap E_t$ is a σ -Hall subgroup of G. Now, $E = E^0 \cap E^*$ is a σ -Hall subgroup of E^0 by Lemmas 2.1 (4) and 2.2 (4), so E is H_σ -permutably (respectively H_σ -normally) embedded in G. Hence (ii) \Longrightarrow (iii).

(ii) \implies (i) Since *G* is σ -soluble, *H* is σ -soluble. Hence *H* has a σ -basis $\{L_1, \ldots, L_r\}$ such that $L_i \leq H_i$ for all $i = 1, \ldots, r$ by Lemma 2.6. Therefore from the implication (ii) \implies (iii) we get that *G* has an H_{σ} -permutably embedded subgroup of order $|L_1| \ldots |L_r| = |H|$.

The theorem is proved.

PROOF OF THEOREM 1.4. (i) \implies (ii) Assume that this is false and let G be a counterexample of minimal order. Then some σ -subnormal subgroup V of G is not an $H\sigma E$ -group. Moreover, $D = G^{\mathfrak{N}_{\sigma}} \neq 1$, so $|\sigma(G)| > 1$.

- (1) Condition (ii) is true on every proper section H/K of G, that is, $K \neq 1$ or $H \neq G$. Hence V = G (This directly follows from Lemma 2.7(1, 2) and the choice of G).
- (2) *G* is σ -soluble.

In view of claim (1) and Lemma 2.5, it is enough to show that *G* is not simple. Assume that this is false. Then 1 is the only proper σ -subnormal subgroup of *G* since $|\sigma(G)| > 1$. Hence every subgroup of *G* is a σ -Hall subgroup of *G*. Therefore for a Sylow *p*-subgroup *P* of *G*, where *p* is the smallest prime divisor of |G|, we have |P| = p and so |G| = p by [10, IV, 2.8]. This contradiction shows that we have (2).

- (3) If |G : H| is a σ_i -number and H is not a σ -Hall subgroup of G, then H is σ -subnormal in G and a σ_i -complement E of H is normal in G (This follows from Lemmas 2.7 (4) and 2.8).
- (4) *D* is a σ -Hall subgroup of *G*. Hence *D* has a complement *M* in *G*.

Suppose that this is false. Then for some $i \in I$ and for some Hall σ_i -subgroups U and H_i of D and G, respectively, we have $1 < U < H_i$. Let R be a minimal normal subgroup of G contained in D. Claim (2) implies that R

is a σ_k -group for some k. Moreover, $D/R = (G/R)^{\mathfrak{N}_{\sigma}}$ is a σ -Hall subgroup of G/R by claim (1). Hence UR/R is a σ -Hall subgroup of G/R. Suppose that $UR/R \neq 1$, then UR/R is a Hall σ_i -subgroup of G/R.

If $k \neq i$, then U is a Hall σ_i -subgroup of G by order considerations. This contradicts that $U < H_i$. If k = i, then $R \leq U$ and so U/R is a Hall σ_i -subgroup of G/R. It follows that U is a Hall σ_i -subgroup of G, which contradicts that $U < H_i$. Therefore UR/R = 1. Consequently, $U \leq R$ and U = R. But, clearly, $H_i \not\leq UR \leq D$. Thus $R = U = H_i \cap D$ is a Hall σ_i -subgroup of D. Therefore R is the unique minimal normal subgroup of G contained in D.

Now we show that $R \not\leq \Phi(G)$. Indeed, assume that $R \leq \Phi(G)$. Then $D \neq R$ by Lemma 2.3 since $D = G^{\mathfrak{N}_{\sigma}}$. On the other hand, D/R is a σ'_i -group since R = U is a Hall σ_i -subgroup of D. Hence $O_{\sigma'_i}(D) \neq 1$ by Lemma 2.3. But $O_{\sigma'_i}(D)$ is characteristic in D and so it is normal G. Therefore G has a minimal normal subgroup L such that $L \neq R$ and $L \leq D$. This contradiction shows that $R \not\leq \Phi(G)$.

Let *S* be a maximal subgroup of *G* such that RS = G. Then |G : S| is a σ_i -number. It is also clear that *S* is not a σ -Hall subgroup of *G*. Hence *S* is σ -subnormal in *G* by claim (3) and so G/S_G is a σ_i -group, which implies that $R \le D \le S_G \le S$ and so G = RS = S. This contradiction completes the proof of (4).

(5) If $M \le E < G$, then E is not σ -subnormal in G and so E a σ -Hall subgroup of G.

Assume that *E* is σ -subnormal in *G*. Then *G* has a proper subgroup *V* such that $E \leq V$ and G/V_G is σ -primary, so $D \leq V_G$. Hence $V = M(D \cap V) = MD = G$, a contradiction. Hence *E* is not σ -subnormal in *G*. By hypothesis, *G* has a σ -subnormal subgroup *W* such that *E* is a σ -Hall subgroup of *W*. But then W = G, so *E* is a σ -Hall subgroup of *G*.

(6) D is soluble, |σ(D)| = |π(D)| and M acts irreducibly on every M-invariant Sylow subgroup of D.

Let $p \in \sigma_i \in \sigma(D)$. Lemma 2.6 and claims (2) and (4) imply that for some Sylow *p*-subgroup *P* of *G* we have PM = MP. Moreover, *MP* is a σ -Hall subgroup of *G* by claim (5). Hence $|\sigma_i \cap \pi(G)| = 1$ for all *i* such that $\sigma_i \cap \pi(D) \neq \emptyset$ and so $|\sigma(D)| = |\pi(D)|$. Therefore *D* is soluble since *G* is σ -soluble by claim (2) and hence *M* acts irreducibly on every *M*-invariant Sylow subgroup of *D* by claim (5).

(7) *M* is a σ -Carter subgroup of *G*.

Let *R* be a minimal normal subgroup of *G* contained in *D* and *E* a subgroup of *G* containing *M*. We need to show that $E = E^{\mathfrak{N}_{\sigma}}M$. Claim (1) implies that RM/R is a σ -Carter subgroup of G/R, so $ER/R = (ER/R)^{\mathfrak{N}_{\sigma}}(RM/R)$. Hence $ER = E^{\mathfrak{N}_{\sigma}}MR$ since $(ER/R)^{\mathfrak{N}_{\sigma}} = E^{\mathfrak{N}_{\sigma}}R/R$. Claim (6) implies that *R* is a *p*-group for some prime *p*. Claims (4), (5) and (6) imply that *R*, *E* and $E^{\mathfrak{N}_{\sigma}}M$ are σ -Hall subgroups of *G*. Therefore, if $R \not\leq E$, then *E* and $E^{\mathfrak{N}_{\sigma}}M$ are Hall *p'*-subgroups of $ER = E^{\mathfrak{N}_{\sigma}}MR$, so $E = E^{\mathfrak{N}_{\sigma}}M$. Finally, assume that $R \leq E$ but $R \not\leq E^{\mathfrak{N}_{\sigma}}M$. Then $R \cap E^{\mathfrak{N}_{\sigma}} = 1$. On the other hand, since $DE/D \simeq E/D \cap E$ is σ -nilpotent, $E^{\mathfrak{N}_{\sigma}} \leq D$ and so $M \cap E^{\mathfrak{N}_{\sigma}} = 1$. Therefore

$$E^{\mathfrak{N}_{\sigma}} \cap RM = (E^{\mathfrak{N}_{\sigma}} \cap R)(E^{\mathfrak{N}_{\sigma}} \cap M) = 1.$$

Then $E/E^{\mathfrak{N}_{\sigma}} = E^{\mathfrak{N}_{\sigma}}MR/E^{\mathfrak{N}_{\sigma}} \simeq MR$ is σ -nilpotent. Hence $M \leq C_G(R)$. Suppose that $C_G(R) < G$ and let $C_G(R) \leq W < G$, where G/W is a chief factor of G. Claim (2) implies that G/W is σ -primary, so $D \leq W$. But then $G = DM \leq W < G$, a contradiction. Therefore $C_G(R) = G$, that is, $R \leq Z(G)$. Let V be a complement to R in D. Then V is a Hall normal subgroup of D, so it is characteristic in D. Hence V is normal in G and $G/V \simeq RM$ is σ -nilpotent, so $D \leq V < D$. This contradiction completes the proof of (7).

(8) D possesses a Sylow tower.

Let *R* be a minimal normal subgroup of *G* contained in *D*. Then *R* is a *p*-group for some prime *p* by claim (6). Moreover, the Frattini argument implies that for some Sylow *p*-subgroup *P* of *D* we have $M \le N_G(P)$ and so R = P since *M* acts irreducible on *P* by claim (6). On the other hand, by claim (1), D/R possesses a Sylow tower. Hence we have (8).

(9) Every chief factor of G below D is σ -eccentric.

Let H/K be a chief factor of G below D. Then H/K is a p-group for some prime p since D is soluble by claim (6). By the Frattini argument, there exist a Sylow p-subgroup P and a p-complement E of D such that $M \leq N_G(P)$ and $M \leq N_G(E)$. Then $M \leq N_G(P \cap K)$ and $M \leq N_G(P \cap H)$. Hence $P \cap K = 1$ and $P \cap H = P$ by claim (6), so $H = K \rtimes P$. Let V = EM. Then $K \leq V$ and HV = G, so V is a maximal subgroup of G. Hence $G/V_G \simeq (H/K) \rtimes (G/C_G(H/K))$ by Lemma 2.9. Therefore, if H/K is σ central in G, then $D \leq V_G$, which is impossible since evidently p does not divide |V|. Thus we have (9). From claims (4)–(9) it follows that G is a $H\sigma E$ -group, contrary to our assumption on G = V. Hence (i) \implies (ii).

(ii) \implies (iii) This implication is evident.

(iii) \implies (i) By hypothesis, $G = D \rtimes M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is a σ -Hall subgroup of G, $|\sigma(D)| = |\pi(D)|$ and M acts irreducibly on every M-invariant Sylow subgroup of D.

(*) Every subgroup A of G containing M is a σ -Hall subgroup of G.

Let $D_0 = D \cap A$. Then $A = D_0 \rtimes M$ and $D_0 \neq 1$. Let $p \in \pi(D_0)$. The Frattini argument and Lemma 2.6 imply that for some Sylow *p*-subgroup P_0 of D_0 and some Sylow *p*-subgroup *P* of *D* we have $M \leq N_G(P_0)$, $M \leq N_G(P)$ and $P_0M \leq PM$. Hence, since *M* acts irreducibly on every *M*-invariant Sylow subgroup of *D*, $P_0 = P$. Therefore every Sylow subgroup of *A* is a Sylow subgroup of *G*. Hence *A* is a σ -Hall subgroup of *G* since $|\sigma(D)| = |\pi(D)|$ and *M* is a σ -Hall subgroup of *G*.

Now, let *A* be a subgroup of *G*. First assume that DA < G. By Lemma 2.1(6), DA is σ -subnormal in *G*. Therefore every σ -subnormal subgroup of DA is also σ -subnormal in *G*. Hence condition (iii) holds for DA, so *A* is H_{σ} -subnormally embedded in DA by induction. But then *A* is H_{σ} -subnormally embedded in *G* by Lemma 2.1(7).

Finally, suppose that DA = G. Then, since G is σ -soluble, for some x we have $M \leq A^x$ by Lemma 2.6. Hence A^x is a σ -Hall subgroup of G by claim (*), so A^x is an H_{σ} -subnormally embedded subgroup of G. But then A is an H_{σ} -subnormally embedded subgroup of G. But then A is an H_{σ} -subnormally embedded subgroup of G. But then A is an H_{σ} -subnormally embedded subgroup of G. Therefore the implication (iii) \Longrightarrow (i) is true.

The theorem is proved.

PROOF OF THEOREM 1.9. (i) \implies (ii) This follows from Lemma 2.2 (4) and Theorems 1.3 and 1.4.

(ii) \implies (iii) This implication is evident.

(iii) \implies (i) Let *A* be any subgroup of *G*. Then *DA* is σ -permutable in *G* by Lemma 2.2 (3) since *G* is σ -soluble. On the other hand, since $|\sigma(D)| = |\pi(D)|$ and *D* is a cyclic σ -Hall subgroup of *G* of square-free order, *A* is a σ -Hall subgroup of *DA*. Hence *A* is H_{σ} -permutably embedded in *G*. Therefore the implication (iii) \Rightarrow (i) is true.

The theorem is proved.

156

PROOF OF THEOREM 1.7. (i) \implies (ii) In view of Theorem 1.9, it is enough to show that if $D \le L \le G$ and L is a σ -Hall subgroup of some normal subgroup V of G, then L is normal in G. But since G/D is σ -nilpotent, L/D is σ -subnormal in G/D, so L is σ -subnormal in G by Lemma 2.1(6). Hence L is σ -subnormal in V by Lemma 2.1(1). But then L is a normal in V by Lemma 2.1(4) and so L is a characteristic subgroup of V. It follows that L is normal in G.

- (ii) \implies (iii) This implication is evident.
- (iii) \implies (i) See the proof of the implication (iii) \implies (i) in Theorem 1.9.

The theorem is proved.

Acknowledgments. The authors are deeply grateful for the helpful suggestions and remarks of the referee.

Support by a NNSF grant of China (Grant # 11771409) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences is acknowledge.

References

- A. N. SKIBA, On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra 436 (2015), pp. 1–16.
- [2] A. N. SKIBA, A generalization of a Hall theorem, J. Algebra and its Application 15(4) (2015), pp. 21–36.
- [3] A. N. SKIBA, On some results in the theory of finite partially soluble groups, Commun. Math. Stat. 4 (2016), no. 3, 281–309.
- [4] A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO M. ASAAD, Products of finite groups, De Gruyter Expositions in Mathematics, 53, Walter de Gruyter & Co., Berlin, 2010.
- [5] W. Guo, Structure theory for canonical classes of finite groups, Springer, Heidelberg, 2015.
- [6] S. LI J. HE G. NONG L. ZHOU, On Hall normally embedded subgroups of finite groups, Comm. Algebra 37 (2009), pp. 3360–3367.
- [7] J. Lio S. Li, *CLT-groups with Hall S-quasinormally embedded subgroups*, Ukrain. Math. Journal 66 (2014), pp. 1281–1287.
- [8] S. Li J. Liu, On Hall subnormally embedded and generalized nilpotent groups, J. Algebra 388 (2013), pp. 1–9.
- [9] W. GUO A. N. SKIBA, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory 18 (2015), pp. 191–200.

- [10] B. HUPPERT, *Endliche Gruppen* I, Die Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin etc., 1967.
- [11] A. BALLESTER-BOLINCHES SHOU HOMG QIAO, On a problem posed by S. Li and J. Liu, Arch. Math. 102 (2014), pp. 109–111.
- [12] K. DOERK T. HAWKES, *Finite soluble groups*, De Gruyter Expositions in Mathematics, 4, Walter de Gruyter & Co., Berlin, 1992.
- W. GUO K. P. SHUM A. N. SKIBA, X-semipermutable subgroups of finite groups, J. Algebra 315 (2007), pp. 31–41.
- [14] L. A. SHEMETKOV A. N. SKIBA, *Formations of algebraic systems*, Nauka, Moskow, 1989. In Russian.
- [15] W. Guo, *The theory of classes of groups*, Translated from the 1997 Chinese original, Mathematics and its Applications, 505, Kluwer Academic Publishers Group, Dordrecht, and Science Press Beijing, Beijing, 2000.

Manoscritto pervenuto in redazione il 7 giugno 2016.