
Rend. Sem. Mat. Univ. Padova, Vol. 139 (2018), 159–183

DOI 10.4171/RSMUP/139-5

Weak local-global compatibility and ordinary representations

Przemyslaw Chojecki (�)

Abstract – We introduce a general formalism with minimal requirements under which
we are able to prove the pro-modular Fontaine–Mazur conjecture. We verify it in the
ordinary case using the recent construction of Breuil and Herzig.
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1. Introduction

In [10], Emerton has shown that the completed cohomology of modular curves
realises the p-adic local Langlands correspondence and used this result to prove
the Fontaine–Mazur conjecture for GL2.Q/. We start from the observation that
Emerton’s methods can be well formalized to work for other groups, at least if
we assume certain hypotheses, for example the existence of the p-adic Langlands
correspondence. Fortunately, only some of the properties of the conjectural p-adic
local Langlands correspondence are needed for applications to the pro-modular
Fontaine–Mazur conjecture. We list them under hypothesis (H1) in the body of
this text. After introducing this local definition, we move to the global setting.
We work on the unitary Shimura varieties of type U.n/ (also called arithmetic
manifolds). After establishing certain basic results on the completed cohomology
of these objects, we introduce the notion of an allowable set, which is a dense set
of points on the eigenvariety, such that the specialisation at its points of a certain
universal deformation of N� lies in the completed cohomology of our Shimura
varieties. This gives a necessary global condition to link the local hypothesis (H1)
with the completed cohomology. Having to deal only with allowable sets is easier,
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as we may hope that the description of the p-adic Langlands correspondence for
certain representations (regular and crystalline) will be explicit.

We remark that eventually we use two deformation arguments: one at the local
level and the other at the global level (the existence of allowable points). They
are related to two hypotheses ((H1) and (H2) respectively) on our global Galois
representation N�. Assuming also a mild hypothesis (H3), we are able to prove the
pro-modular Fontaine–Mazur conjecture for U.n/ in the following form (actually,
we develop even more general formalism).

Proposition 1.1. Let F be a CM field and let E be a finite extension of Qp.

Let �WGal. xF=F /! GLn.E/ be a continuous Galois representation such that

(1) � is pro-modular;

(2) �v is de Rham and regular for every vjp;

(3) N� satisfies hypotheses (H1)–(H3).

Then � is a twist of a Galois representation associated to an automorphic form on

U.n/.

The pro-modularity condition is explained in Section 3. It should not be very
restrictive, as it is believed that any representation � for which N� is modular, is
pro-modular (this is proved by Emerton for GL2 over Q).

As a corollary to this proposition, we obtain a version of the Fontaine–Mazur
conjecture on the respective eigenvariety.

Corollary 1.2. Let N�WGal. xF=F / ! GLn.k/ be a continuous Galois repre-

sentation which satisfies hypotheses (H1)–(H3). LetXŒ N�� be the N�-part of the eigen-

varietyX associated toU.n/ by the construction of Emerton from [9]. Let x 2 XŒ N��

be an E-point such that its associated representation �xWGal. xF=F / ! GLn.E/

is de Rham and regular at every place of F above p. Then x is modular.

There is one principal example (besides GL2.Qp/) when our formalism is sat-
isfied and it was the motivation behind writing this text - namely, the recent con-
struction of the ordinary representations of Breuil–Herzig ([3]). We review this
setting in the second part of this paper and then we prove unconditionally the pro-
modular Fontaine–Mazur conjecture for U.n/ in the ordinary totally indecompos-
able setting at the end of this text (see Theorem 4.18 and its Corollary 4.19). Inter-
estingly, the proof is relatively simple and we do not use in it the full construction
of Breuil–Herzig. Our main unconditional result is



Weak local-global compatibility 161

Theorem 1.3. Let z 2 Xord
Kp.E/, where Xord

Kp is the ordinary part of the

eigenvariety of some tame level Kp associated to U.n/ and let � be the Galois

representation associated to z. For each v j p we assume that

(1) �v is de Rham and regular;

(2) the reduction N�v is generic and totally indecomposable.

Then z is classical (i.e. z arises from a classical automorphic representation of

U.n/).

This result is also implied by a well-known classicality theorem of Hida.
Nevertheless, our proof is completely different.

Acknowledgements. We thank Jean-Francois Dat, Toby Gee, Christian Johans-
son, and Claus Sorensen for useful remarks regarding this text. We also thank John
Bergdall, Christophe Breuil, and Florian Herzig for a useful correspondence. The
author was partially funded by Polish grant 2015/17/B/ST1/02634.

2. Definitions and basic facts

Let L denote an imaginary quadratic field in which p splits and let c be the
complex conjugation. Choose a prime u above p. Let us denote by FC a totally
real field of degree d . Set F D LFC. We will assume that p totally decomposes
in F . Let D=F be a central simple algebra of dimension n2 such that F is the
centre ofD, the opposite algebraDop is isomorphic toD˝L;cL, andD is split at
all primes above u. Choose an involution of the second kind � on D and assume
that there exists a homomorphism hWC ! DR for which b 7! h.i/�1b�h.i/ is a
positive involution on DR.

Define the reductive algebraic group G=Q where

G.R/ D ¹.�; g/ 2 R� �Dop ˝Q R j gg
� D �º

for any Q-algebra R. We assume thatG is a unitary group of signature .0; n/ at all
infinite places.

We choose a p-adic field E with ring of integers O and residue field k. These
will be our coefficient rings.

We will fix an integral model of G over OF C Œ1=N � (see for example 4.1 in [3]
for details). We consider 0-dimensional Shimura varieties SK D G.Q/nG.Af /=K

for G, where K is a compact open subgroup of G.Af /.
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LetW be a finite-dimensional representation ofG overE. By the construction
described in Chapter 2 of [9], we can associate to W a local system VW on SK .

Let us fix a finite set† of primesw of F , such that wjF C splits andw does not
divide pN . We can now define the abstract Hecke algebra

Tabs
† D OŒT .i/

w �w…†

where T .i/
w are the Hecke operators for 1 � i � n. The operator T .i/

w acts on the

Shimura variety SK by a double coset GLn.OFw
/
�

1n�j 0

0 $w1j

�
GLn.OFw

/, where

$w is a uniformiser of OFw
.

We define the completed cohomology of Emerton by

bH 0.Kp/ D .lim
 �

s

lim
�!
Kp

H 0.SKpKp ;O=$ sO//˝O E

where Kp � G.Qp/ and Kp � G.A
p

f
/ are open compact subgroups. We also

define its O-submodule

bH 0.Kp/O D lim
 �

s

lim
�!
Kp

H 0.SKpKp ;O=$ s
O/:

We will fix the tame level Kp for the rest of the text. Let K† D
Q

l…†G.Zl/. We
assume that .Kp/l D G.Zl / at each l … †.

We write T.KpK
p/ for the image of Tabs

† in EndO.H
0.SKpKp ;O//. Then we

define
T D T.Kp/ WD lim

 �
Kp

T.KpK
p/

where the limit runs over open compact subgroupsKp of G.Qp/. We remark that
T has a finite number of maximal ideals and is a product of its localisation at those
maximal ideals. We refer the reader to p. 28 of [17] for details. In particular, if m
is a maximal ideal of T, then Tm is a direct factor of T.

We define also

H 0.Kp;VW / D lim
�!
Kp

H 0.SKpKp ;VW /

where W is an irreducible algebraic representation of G and VW is the E-local
system on .SK/K associated to W .

We recall the definition of locally algebraic vectors from [12] (for the following
G we will take G=Qp

eventually using the previous notation).
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Definition 2.1. Let G be the group of Qp-points in some connected linear
algebraic group G over Qp and let V be a representation of G over E. Let W
be a finite-dimensional algebraic representation W of G over E. A vector v in
V is locally W -algebraic if there exists an open subgroup H of G, a natural
number n, and anH -equivariant homomorphismW n ! V whose image contains
the vector v. We write VW �la for the set of locally W -algebraic vectors of V .

Emerton proved in Proposition 4.2.2 of [12] that VW �la is a G-invariant sub-
space of V .

Definition 2.2. A vector v in V is locally algebraic, if it is locallyW -algebraic
for some finite-dimensional algebraic representation W of G. We denote the set
of locally algebraic vectors of V by Vl.alg.

It is a G-invariant subspace of V by Proposition 4.2.6 of [12]. We have the
following proposition

Proposition 2.3. We have a G.A†0
/-equivariant isomorphism

bH 0.Kp/l.alg '
M

W

H 0.Kp;VW /˝W
_

where the sum is taken over all isomorphism classes of irreducible algebraic

representations of G.

Proof. This follows from the Emerton spectral sequence. See Corollary 2.2.18
of [9]. �

Let m be a maximal ideal of T which we fix and let N�mWGF ! GLn.k/ be
the continuous Galois representation which is unramified outside † and whose
characteristic polynomial satisfies

char N�m.Frobw/ D

nX

iD0

.�1/n�i Nm.w/i.i�1/=2T .i/
w X i mod m

for all places w which do not belong to † and which split when restricted to FC

(here Frobw is the geometric Frobenius). This is the Galois representation associ-
ated to m. We refer the reader to Proposition 3.4.2 in [8] for the construction. We
remark that we can suppose that N�m is valued in GLn.k/ after possibly extending
E (which we allow).
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We assume that the maximal ideal m of T is non-Eisenstein, that is N�m is
absolutely irreducible. We let �m be the universal automorphic deformation of N�m
overTm (its construction is standard and we do not recall it here; precise references
may be found in Section 4.3 of [7]). It is an n-dimensional Galois representation
over Tm which satisfies

char�m.Frobw/ D

nX

iD0

.�1/n�i Nm.w/i.i�1/=2T .i/
w X i

for all places w which do not belong to † and which split when restricted to FC.

3. General formalism

We now explain the general formalism for proving the pro-modular Fontaine–
Mazur conjecture which we specialize at the end to the ordinary setting.

LetT0
m

be a local complete reducedO-algebra finite overTm and let �0
m
WGF !

GLn.T
0
m
/ be the pushout of the universal representation �m toT0

m
. In what follows,

we will always write p0 for an ideal of T0
m

and p for its inverse image in Tm. In
particular, we will write m0 for the maximal ideal of T0

m
.

We will make certain hypotheses (the last one depending on an ideal p0 2

SpecT0
m

).

(H1) There exists an admissible representation ….�0
m;v/ of GLn.Qp/ over

T0
m

associated to each local representation �0
m;v for vjp. This represen-

tation is such that for each prime ideal p0 of T0
m

which comes from
Spm.T0

m
Œ1=p�/ (where Spm is the maximal spectrum, i.e. the set of

maximal ideals) for which �0
m;v=p

0Œ1=p� is regular and de Rham at all
places v dividing p, the locally algebraic vectors of ….�0

m;v/=p
0Œ1=p�

are non-zero for all vjp. Moreover we assume that the k-representation
�m;v WD ….�

0
m;v/=m

0 is of finite length.

(H2) There exists an allowable set of points for ….�0
m;v/ (for each vjp), that

is, there exists a dense set of points C in Spec.T0
m
/ which is contained in

Spm.T0
mŒ1=p�/ and such that for each p0 2 C we have

HomTmŒG.Qp/�.b̋vjp….�
0
m;v/=p

0; bH0.Kp// 6D 0:

(H3)[p0] Every non-zero TmŒG.Qp/�-linear map

b̋vjp….�
0
m;v/=p

0 �! bH 0.Kp/

is an embedding.
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Let us make some comments before showing how these hypotheses imply the
pro-modular Fontaine–Mazur conjecture.

Hypothesis (H1) gives an existence of a representation which shall be viewed
as an approximation of the p-adic local Langlands correspondence applied to �0

m
.

In what follows (H1) will be satisfied by using the construction of Breuil–Herzig
of the ordinary part of the p-adic local Langlands correspondence.

Regarding the hypothesis (H3)[p0] we will not say anything here. It is needed
to deduce that certain locally algebraic vectors are non-zero.

We are left with discussing (H2). Let us define

…p D b̋vjp….�
0
m;v/:

We define T0
m-module

X D HomTmŒG.Qp/�.…p; bH0.Kp/O/

of TmŒG.Qp/�-linear homomorphisms which are G.Qp/-equivariant and continu-
ous, where …p is given the m-adic topology.

Hypothesis (H2) is equivalent to demanding the existence of an allowable set
for N� that is a dense subset C on SpecT0

m, such that for all p0 2 C we have

XŒp0� D HomTmŒG.Qp/�.…p=p
0; bH0.Kp/O;m/ 6D 0:

Let us prove a preliminary lemma.

Lemma 3.1. HomO.X;O/˝O E is a finitely generated T0
m
Œ1=p�-module.

Proof. By Proposition C.5 of [10] we have to show that X is cofinitely gen-
erated. By Definition C.1, because bH 0.Kp/O;m is$ -adically complete, separated
and O-torsion free, we are left to show that .X=$X/Œm0� is finite-dimensional over
k. But we have

.X=$X/Œm0� ,�! HomkŒG.Qp/�.…p=m
0; bH0.Kp/k;m/

and we show that Hom is finite-dimensional. Because …p=m
0 D ˝vjp�m;v and

each �m;v is of finite length, for each v we can choose a finite-dimensional
k-subspace Wv of �m;v which generates �m;v as a GLn.Qp/-representation. Let
W D ˝vjpWv. Since Wv is smooth and finite-dimensional we can choose a com-
pact open subgroup Kv fixing Wv point-wise. Let Kp D

Q
vjp Kv. By restriction

we have

HomkŒG.Qp /�.…p=m
0; bH 0.Kp/k;m/ ,�! HomkŒKp�.W; bH 0.Kp/k;m/:
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Since Kp acts trivially on W we moreover have

HomkŒKp�.W; bH0.Kp/k;m/ ' W
_ ˝k H

0.SKpKp ; k/m

which is of finite dimention over k. �

Lemma 3.2. Assume (H2). Then XŒp0� 6D 0 for all p0 2 SpecT0
m.

Proof. By Lemma C.14 of [10], we have

.T0
m=p

0/˝T0
m

HomO.X;O/˝O E ' HomO.XŒp
0�;O/˝O E

and so it suffices to show that the elements on the right are non-zero for all p0 if
and only if they are non-zero for all p0 in C. Consider things in more generality. Let
M be a finitely generated T0

mŒ1=p�-module such that M=p0M 6D 0 for all p0 2 C.
Because T0

m
Œ1=p�=p0 is a field, it follows that M=p0M is a faithful T0

m
Œ1=p�=p0-

module. If t 2 T0
m
Œ1=p� acts by 0 onM then it acts by 0 onM=p0M for all p0, and

as M=p0M 6D 0 if p0 2 C, we have t 2 p0 for all p0 2 C, that is t 2 \p02Cp
0 D 0.

So T0
m
Œ1=p� acts faithfully on M . Now, let p0 be any maximal ideal of T0

m
Œ1=p�

and suppose that M=p0M D 0, that is M D p0M . As M is finitely generated
T0

m
Œ1=p�-module, Nakayama’s lemma gives us a non-zero element t of T0

m
Œ1=p�

such that tM D 0, which is impossible as we have shown above. We deduce that
M=p0M 6D 0 for all p0. Applying this reasoning toM D HomO.X;O/˝OE which
is finitely generated by Lemma 3.1, we conclude. �

Definition 3.3. We say that a representation �WGal. xF=F / ! GLn.E/ is
pro-modular with respect to T0

m if there exists a prime ideal p0 of T0
m such that

� ' �m=pŒ1=p� and bH 0.Kp/Œp� 6D 0, where p is the inverse image of p0 in Tm.

One natural source of pro-modular representations are representations attached
to points on the eigenvariety for G. We shall review this notion later on.

An automorphic representation � of G and tame level Kp is an irreducible
G-subrepresentation of H 0.Kp;VW / for some irreducible algebraic representa-
tion W of G. We can associate to � a Galois representation, see [8]. We say that
� is modular if it is the Galois representation associated to some automorphic
representation of G of tame level Kp. This is equivalent to bH 0.Kp/l.algŒp� 6D 0

by Proposition 2.3. Our three hypotheses imply the pro-modular Fontaine–Mazur
conjecture in the following form.

Theorem 3.4. Let �WGal. xF=F / ! GLn.E/ be a pro-modular Galois repre-

sentation with respect to T0
m with the associated prime ideal p0 of T0

m. Assume

that � is de Rham and regular at all places dividing p. Assume also that hypothe-

ses (H1), (H2), and (H3)[p0] hold. Then � is modular.
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Proof. As �v is de Rham and regular for every vjp, by (H1) we have that
….�v/l.alg 6D 0 for every vjp. By Lemma 3.2 and the hypothesis (H3)Œp0� we
conclude that also

bH 0.Kp/l.algŒp� 6D 0

which is what we wanted. �

In the rest of this text we will explain the ordinary setting.

4. Ordinary case

In this section, we show that the ordinary part of Breuil–Herzig ([3]) fulfills the
formalism presented in the previous section.

4.1 – Preliminaries on reductive groups

We recall certain results on reductive groups used in [3]. Let G be a split con-
nected reductive Zp-group with a Borel subgroup B and a torus T � B . We let
.X.T /; R;X_.T /; R_/ be the root datum of G, where R � X.T / (respectively
R_ � X_.T /) is the set of roots (resp. coroots). For each ˛ 2 R, let s˛ be the
reflection on X.T / associated to ˛. Let W be the Weyl group, the subgroup of
automorphisms of X.T / generated by s˛ for ˛ 2 R.

We fix a subset of simple roots S � R and we letRC � R be the set of positive
roots (roots in ˚˛2SZ�0˛). Let Gder be the derived group of G and let yG be the
dual group scheme of G (which we get by taking the dual root datum). We have
also dual groups yB and yT .

To ˛ 2 R one can associate a root subgroup U˛ � G. We have ˛ 2 RC if
and only if U˛ � B . We let g˛ be the Lie algebra of U˛ . We call a subset C � R
closed if for each ˛ 2 C; ˇ 2 C such that ˛ C ˇ 2 R, we have ˛ C ˇ 2 C . If
C � RC is a closed subset, we let UC � U be the Zariski closed subgroup of B
generated by the root subgroups U˛ for ˛ 2 C . We let BC D T UC be the Zariski
closed subgroup of B determined by C .

Let us spell out all the assumptions that we put on G and its dual group
yG. We suppose throughout this text that both G and yG have connected centers.
Moreover we suppose that Gder is simply connected (some of these conditions
are equivalent, see Proposition 2.1.1 in [3]). This condition implies that there exist
fundamental weights �˛ for ˛ 2 S . They satisfy for any ˇ 2 S

h�˛; ˇ
_i D

´
1 if ˛ D ˇ;

0 if ˛ 6D ˇ:
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We define as in Section 3.1 of [3] a twisting element � for G by setting � DP
˛2S �˛. For any ˛ 2 S we have h�; ˛_i D 1.

If C � R is a closed subset, write GC for the Zariski closed subgroup scheme
of G generated by T , U˛ and U�˛ for ˛ 2 C . For C D ¹˛º we write simply G˛

for GC . A subset J � S of pairwise orthogonal roots is closed (see the proof of
Lemma 2.3.7 in [3]) and hence we can define GJ as above.

Lemma 4.1 (Lemma 3.1.4, [3]). Let J � S be a subset of pairwise orthogonal

roots. Then there is a subtorus T 0
J � T which is central in GJ such that

GJ ' T
0
J �GLJ

2 :

We use this lemma in the construction of ….�/ord which we define as a sum
over certain induced representations of GJ .Qp/. We construct representations of
GJ .Qp/ by using the p-adic local Langlands correspondence for GL2.Qp/.

4.2 – Ordinary part of the p-adic local Langlands correspondence

Let E be a finite extension of Qp with ring of integers O and let k be its residue
field. We fix also a uniformiser$ . LetA be a complete local NoetherianO-algebra
with residue field k.

We have

T .Qp/ D HomSpec.Qp/.Spec.Qp/; Spec.QpŒX.T /�//

D HomZ.X.T /;Q
�
p /

D HomZ.X.T /;Z/˝Z Q�
p

D X. yT /˝Z Q�
p :

To a continuous character

y�WGal.xQp=Qp/ �� Gal.xQp=Qp/
ab �! yT .A/

we can associate a continuous character �WT .Qp/! A� by taking the composite
of the maps

T .Qp/ ' X. yT /˝ZQ�
p ,�! X. yT /˝Z Gal.xQp=Qp/

ab �! X. yT /˝Z
yT .A/ �! A�

where the first injection comes from local class field theory (we normalize the
reciprocity map of local class field theory so that uniformizers correspond to
geometric Frobenius elements).
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We define the p-adic cyclotomic character �WGQp
! A� by composing the

standard p-adic cyclotomic character which takes values in O� with the inclusion
O� ,! A�. By the local class field theory we can also consider it as a character of
Q�

p which we tacitly do in what follows.

Let us consider a continuous homomorphism

�WGal.xQp=Qp/ �! yG.A/:

Definition 4.2. We say that � is triangular when it takes values in our fixed
Borel yB.A/ of yG.A/.

We let C� � R
C_ be the smallest closed subset such that yBC�

.A/ contains all
the �.g/ for g 2 Gal.xQp=Qp/ (compare with Lemma 2.3.1 of [3]). Here by BC for
C � RC (and dually yBC for C � RC_) we mean T UC , where T is a torus as in
B D T U and UC is the group generated by U˛ (the standard notation) for ˛ 2 C .
For more details see Section 2.3 of [3].

Thus � factorises via yBC�
.A/

�WGal.xQp=Qp/ �! yBC�
.A/ � yB.A/ � yG.A/:

We associate a character y�� to � by composing � with the natural surjection

y��WGal.xQp=Qp/ �! yBC�
.A/ �� yT .A/:

We attach to y�� a continuous character ��WT .Qp/ ! A� by the local class field
theory as above.

Definition 4.3. We say that a triangular � is generic if ˛_ ı y�� … ¹1; �; �
�1º

for all ˛ 2 RC (or equivalently all ˛ 2 R). We say that a triangular N� is generic if
˛_ ı y� N� … ¹1; N�; N�

�1º for all ˛ 2 RC.

In what follows we will consider only triangular representations �. We assume
that N� is generic.

We now construct several representations of G.Qp/ over A attached to �. Let
I � S_ be a subset of pairwise orthogonal roots. We shall firstly construct an
admissible continuous representation z….�/I of GI _.Qp/ over A. We imitate the
proof of Proposition 3.3.3 in [3], though we present a simplified construction,
because we do not need to show unicity of z….�/I . Only later on and under
additional assumptions we will show that we recover the construction of Breuil
and Herzig over fields. Then we obtain a representation….�/ord of G.Qp/ over A,
which generalizes the construction of Breuil and Herzig over fields, and which we
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define as a direct limit of ….�/I over different I (where ….�/I is simply z….�/I
induced to G.Qp/). In particular, we shall consider a representation ….�/; D

.Ind
G.Qp /

B.Qp/
�� �.�

�1ı�//C
0

which we use for the proof of the pro-modular Fontaine–
Mazur conjecture. All these representations are functorial in A and hence behave
well with respect to reduction modulo prime ideals.

If ˇ 2 I_, Tˇ is the maximal torus of Bˇ (a Borel subgroup of GL2.Qp/) and
�ˇ WTˇ .Qp/! A� is a continuous character, we define

…ˇ .�ˇ / D .Ind
GL2.Qp/�

� 0
� �

� �ˇ � .�
�1 ı �/jTˇ.Qp//

C0

:

This is a representation of GL2.Qp/ which we use as a building block. We let
�ˇ WGal.xQp=Qp/! GL2;ˇ_.A/ be the representation which we get by composing
�WGal.xQp=Qp/ ! yB.A/ with yB.A/ ! yBˇ .A/ ! GL2;ˇ_.A/. We define Eˇ as
the representation attached to the 2-dimensional Galois representation �ˇ by the
p-adic local Langlands correspondence for GL2.Qp/. In order to have a functorial
construction we fix a quasi-inverse MF�1 to the Colmez functor MF for GL2.Qp/

(we use the notation of Emerton from [10]). For any ˇ it sends a lifting of N�ˇ to a
lifting of N�ˇ with a central character (where N�ˇ is the smooth representation over
k corresponding to N�ˇ by the mod p local Langlands correspondence). Then we
define

Eˇ D MF�1.�ˇ /:

We remark that over k this is an extension of…ˇ .sˇ .��jTˇ.Qp/// by…ˇ .��jTˇ.Qp//

because �ˇ is lower-triangular with the appropiate character on the diagonal (see
Proposition 3.4.2 in [10]).

Let �0
�;I _ D ��jT 0

I _.Qp/. We define an admissible continuous representation of

T 0
I _.Qp/ � GL2.Qp/

I _

z….�/I D �
0
�;I _ � .�

�1 ı �jT 0

I _ .Qp//˝A .b̋ˇ2I _Eˇ /:

This is exactly the representation we look for.

We set
….�/I D .Ind

G.Qp/

B�.Qp/GI _ .Qp/
z….�/I /

C0

where we view z….�/I as a continuous representation of B�.Qp/GI _.Qp/ by
inflation. The representation ….�/I of G.Qp/ is admissible and continuous.

We now use an argument similar to the one of Breuil–Herzig appearing
before Lemma 3.3.5 in [3] to construct a direct limit. Following the proof of
Proposition 3.4.2 of [10] we have natural injections of …ˇ .��jTˇ.Qp// into Eˇ .
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Indeed, Proposition 3.2.4 of [10] gives us a natural embedding ��jTˇ.Qp/ ,!

Ord.Eˇ /, where we have denoted by Ord the ordinary part functor of Emerton.
By adjointness property of Ord this gives us a GL2.Qp/-equivariant injection
…ˇ .��jTˇ.Qp// ,! Eˇ . We remark that those injections will be functorial because
of Proposition 3.2.4 of [10] and because we have fixed a quasi-inverse MF�1.

By Theorem 4.4.6 and Corollary 4.3.5 of [11], we have for I 0 � I

HomG.Qp /.….�/I 0 ;….�/I /

' HomGI _ .Qp/..Ind
GI _ .Qp/

.B�.Qp/\GI _ .Qp//G
I

0_ .Qp/
z….�/I 0/C

0

; z….�/I /:

Observe that our injections

…ˇ .��jTˇ.Qp// ,�! Eˇ

invoked above induce an injection

Ind
GI _ .Qp/

.B�.Qp/\GI _ .Qp//G
I

0_ .Qp/
. z….�/I 0/C

0

,�! z….�/I

and hence also a G.Qp/-equivariant injection

….�/I 0 ,�! ….�/I :

This actually gives a compatible system of injections, by which we mean that for
any I 00 � I 0 � I , the corresponding diagram of injections is commutative. We
then define an admissible continuous representation of G.Qp/ over A by

….�/ord D lim
�!

I

….�/I

where I runs over subsets of S_ of pairwise orthogonal roots.

4.3 – Compatibility with the construction of Breuil–Herzig

We study in this section how ….�/ord behaves with respect to reduction modulo
prime ideals in A. Recall that G and its dual are split, hence we can canonically
identify R_.A/ and R_.A=p/ for any prime ideal p of A.

Lemma 4.4. Let A! A0 be a morphism of complete local O-algebras and let

� be triangular over A with N� generic. Then

….�˝A A
0/I ' ….�/I ˝A A

0

for any subset I � S_ of pairwise orthogonal roots and

….�˝A A
0/ord ' ….�/ord ˝A A

0:
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Proof. Observe that � ˝A A
0 is triangular because � is. By the definition of

….�/I it is enough to check, that the construction of z….�/I we have given above
is compatible with the base change A ! A0 (because the parabolic induction
is compatible with the base change A ! A0 by the main result of [14]). This
follows from the fact that the p-adic local Langlands correspondence for GL2.Qp/

is compatible with the base change A ! A0 (cf. [15] where functorial properties
of the correspondence are explained). �

To put more content into this lemma let us specialize to the totally indecom-
posable case.

Definition 4.5. We say that � is totally indecomposable if C� D RC_ is
minimal among all conjugates of � by B (equivalently, Cb�b�1 D RC_ for all
b 2 B).

We prove now that for GLn we retrieve the construction of Breuil–Herzig after
reducing modulo p. Before continuing, we shall give another characterisation of
totally indecomposable representations valable for G D GLn.

Lemma 4.6. Let �WGal.xQp=Qp/ ! GLn.A/ be a triangular representation

and A be a field. The following conditions are equivalent.

(1) All semi-simple subquotients of � are simple (equivalently, the graded pieces

of the filtration by the socle are irreducible).

(2) B is the unique Borel that contains the image of � (equivalently, the image

of � fixes a unique Borel B ( flag)). Here B is the Borel we have fixed before

in the definition of being triangular.

(3) � is totally indecomposable.

Proof. (1 () 2) If there exists socj C1 = socj which is not irreducible then
we can construct two distinct flags which are stable by the image of �. On the other
hand, if there exists two distinct flags fixed by the image of �, say

V1 � V2 � � � � � Vn

and

V 0
1 � V

0
2 � � � � � V

0
n

and let j be the smallest index such that Vj 6D V 0
j . Then .Vj C V

0
j /=Vj �1 is of

dimension 2 and semi-simple, hence � is not totally indecomposable.
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(2 () 3) Suppose that � stabilizes another Borel B 0 (apart from B). Let
b 2 B be an element which conjugates B 0 into a Borel containing the maximal
torus T . This Borel bB 0b�1 is of the form w.B/ for some w in the Weyl group.
Hence we see that Cb�b�1 is contained in the intersection of RC_ and w.RC_/,
and in particular is different from RC_.

If C� is different from RC_, then there exists a positive simple root ˛ which
does not belong to C�. It follows that s˛.C�/ is contained in RC_ and hence the
image of � is contained in s˛.B/. �

Lemma 4.7. Let �WGal.xQp=Qp/ ! GLn.O/ be a triangular representation

such that N� is triangular, generic and totally indecomposable. Then �E D �˝OE

is also totally indecomposable and generic.

Proof. The statement about genericity of �E is clear. Let us prove that it is
totally indecomposable. Let us denote by N�j characters appearing on the diagonal
of N� which we have supposed to be pairwise distinct hence linearly independent.
Let B be a Borel in GLn.E/ containing the image of �. It corresponds to a flag

V1 � V2 � � � � � Vn D E
n:

By intersection with On we obtain a flag

!1 � !2 � � � � � !n D On

of On stable by the image of � which reduces to the standard flag modulo m by
the hypothesis that N� is totally indecomposable. In particular, we see that G acts
on Vi=Vi�1 by a character �i with values in O� which lifts the character N�i . By
genericity of N�, the characters �i are mutually distinct and each appears in the
semi-simplification of � with multiplicity 1.

Suppose now that we have another Borel B 0 different from B and stable by the
image of � with the associated flag

V 0
1 � V

0
2 � � � � � V

0
n:

Let i be the smallest index i such that V 0
i 6D Vi . Then G acts on the 2-dimensional

subquotient .Vi C V
0

i /=Vi�1 by the character �i , which contradicts the fact that
�i appears with multiplicity 1. Hence B 0 D B and we see that � is totally
indecomposable by Lemma 4.6. �

Proposition 4.8. Suppose that N� is generic, triangular and totally indecom-

posable and � is triangular. Then for any morphism A! E 0 (where E 0 is a finite

extension ofE), theE 0-Banach representation….�/ord˝AE
0 is the representation

….� ˝A E
0/ord of Breuil and Herzig.
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Proof. By Lemma 4.4 we can suppose that A D OE 0 . Observe that �E 0 D

� ˝OE0 E
0 is generic and totally indecomposable by Lemma 4.7. To finish the

proof we have to show that �E 0 is a good conjugate of itself (Definition 3.2.4
in [3]). This follows from (3) of Lemma 4.6 and we conclude by Lemma 3.3.5
of [3]. �

4.4 – Universal ordinary modular representation

In this subsection we will apply the formalism developed above to a particular
example. We consider triangular deformations of modular representations and our
goal is to define ….�m;w/

ord, where �m;w is a certain universal modular Galois
representation at a place wjp.

We take up the setting of Section 2. For each place wjp of FC we choose a
place Qw of F , so as to get an identification

G.Qp/ '
Y

wjp

GLn.F Qw/ D GLn.Qp/
f

where f D ŒFC W Q�. We denote by B the upper triangular Borel subgroup and
we have B ' Bn.Qp/

f .

We will now define a certain quotient T.Kp/ord of T.Kp/. There are two
equivalent approaches for this.

Firstly, we may follow Geraghty who introduced in 2.4 [13] a certain direct fac-
tor T.KpKp.n//

ord ofT.KpKp.n//whereKp.n/ denotes the group of matrices in
GLn.Zp/

f that reduce to a unipotent upper-triangular matrix mod pn. More pre-
cisely, in loc. cit is defined the algebra T

T;ord
�

.U.ln;n/;O/. There, � is a dominant
weight for G (but we take � D 0 in this case), U.ln;n/ is our KpKp.n/ (our p is
denoted by l), T is our†. Beware that Geraghty’s algebra contains diamond oper-
ators at places above p (his l), in contrast with ours. So our T.KpKp.n//

ord is the
image of T.Kp/ in Geraghty’s TT;ord

0 .U.ln;n/;O/. When n varies, these construc-
tions are compatible and we may take the projective limitTT;ord

0 .U.l1/;O/. We get
a quotient T.Kp/ord as the image of the natural map T.Kp/! T

T;ord
0 .U.l1/;O/

in Geraghty’s notation on p.14 of loc. cit.

Alternatively, we may use Emerton’s ordinary part functor and define

T.Kp/ord WD image of T.Kp/ in EndO.OrdB.bH 0.Kp///

Note that OrdB.bH 0.Kp// is a continuous representation of T .Qp/ over T.Kp/

and in particular is a T.Kp/ŒŒT .Zp/��-module. Then Geraghty’s algebra can be
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identified with the image of T.Kp/ŒŒT .Zp/�� in EndO.OrdB.bH 0.Kp/// (compare
with 5.6 of [10]).

Let now m be a maximal ideal of T.Kp/ as in Section 2. We say that m

is ordinary if it comes from a maximal ideal of T.Kp/ord. The quotient map
T.Kp/m ! T.Kp/ord

m
is a surjection.

Let us fix an ordinary non-Eisenstein maximal ideal m of T.Kp/. Recall that
we have defined N�m and �m in Section 2. For any prime ideal p inT.Kp/ord

m coming
from the maximal spectrum Spm.T.Kp/ord

m Œ1=p�/, we will write

�p WD �m ˝T.Kp/ord
m

T.Kp/ord
m =pŒ1=p�

which is a continuous Galois representation over a finite extension of Qp . We will
need the following result of Geraghty.

Proposition 4.9. Consider the set P cris
autom of maximal ideals in T.Kp/ord

m Œ1=p�

such thatH 0.KpKp.0/;VW /Œp� is non-zero for some irreducible algebraic repre-

sentation W of G.

� This set is Zariski dense in Spec.T.Kp/ord
m Œ1=p�/.

� For any p in P cris
autom, the representation �p is triangularisable (and crys-

talline) at each place dividing p.

Here, by triangularisable, we mean a representation conjugate to an (upper)
triangular representation.

Proof. The second point follows from Corollary 2.7.8 of [13]. The first point
is the density of cristalline points which is proved in Corollary 4 of [17], or can
be deduced from the density result of Hida used by Geraghty in the proof of
Corollary 3.1.4 in [13]. �

As a consequence of this proposition, the residual representation N�m;w is
triangularisable for each wjp.

We now assume further that N�m;w is totally indecomposable and generic for
eachwjp. Note that generic was only defined for triangular representations. How-
ever the definition extends unambiguously to triangularisable representations,
provided they are totally indecomposable, because such representations factor
through a unique Borel subgroup.

In what follows we will write Tord
m for T.Kp/ord

m . This should cause no confu-
sion.
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Our goal is to define ….�m;w/
ord where �m;w is the restriction of �m to the

decomposition group GFw
D Gal. NFw=Fw/ for any place wjp of F . In order to do

so, we need to prove that �m;w is triangularisable. We basically do so, but not over
Tord

m but rather over a bigger O-algebra T0
m. This is sufficient for our applications.

Following Geraghty (Section 3.1 of [13]) we introduce a subfunctor G of
SpecTord

m � F defined on A-points as the set of O-homomorphisms Tord
m !

A and filtrations Fil 2 F.A/ (F is the flag variety) preserved by the induced
representation �A;w . In fact, Geraghty defined this functor over a universal ring
R, but we shall need it only over the Hecke algebra.

This functor is representable by a closed subscheme G of SpecTord
m � F

(Lemma 3.1.2 in [13]). We consider the resulting morphism f WG! SpecTord
m

.

Proposition 4.10. The morphism f WG! SpecTord
m is proper with geometric

fibres of cardinality one.

Proof. The properness of f follows from that of the flag variety (cf. the proof
of Lemma 3.1.3 in [13]). Let us now prove that each geometric fibre is of cardinality
one. Let us denote by N�1;w ; N�2;w ; : : : ; N�n;w characters of GFw

appearing on the
diagonal of N�m;w . Firstly, we remark that geometric fibres are non-empty. Indeed,
f is dominant by Proposition 4.9, hence surjective since it is proper. On the
other hand, there is at most one filtration Fil over each geometric point, because
N�m;w is generic and totally indecomposable hence each j -th graded piece grj D
Filj =Filj �1 has to be a lifting of N�j;w (see proofs of Lemma 4.6 and Lemma 4.7).
This allows us to conclude. �

By Proposition above and Zariski main theorem we conclude that f is finite
and hence G D SpecT0

m;w for some O-algebra T0
m;w finite over Tord

m
.

Corollary 4.11. The morphism f WSpecT0
m;w ! SpecTord

m is a homeo-

morphism which induces an isomorphism of residual fields at each prime p0 2

SpecT0
m;w with perfect residual field.

Proof. It follows from the fact that geometric fibres of f are of cardinality
one. �

We define T0
m to be the tensor product over Tord

m of T0
m;w for all wjp. This is

still an O-algebra finite over Tord
m with SpecT0

m homeomorphic to SpecTord
m .

Consider the base-change of �m to T0
m, that is �0

mWGF ! GLn.T
0
m/. By the

definition of T0
m, �0

m;w can be conjugated to a triangular representation �00
m;w for
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each wjp, which is also generic and totally indecomposable at eachwjp, because
N�m;w is by our assumption. By Corollary above, for each prime ideal p � Tm

associated to an automorphic representation � on G.A/, there exists a unique p0

in T0
m such that �0

m=p
0�0

mŒ1=p� ' �m=p�mŒ1=p�.

The above discussion leads us to the following definition (which is independent
of the choices, see below)

….�m;w/
ord WD ….�00

m;w/
ord

and similarly
….�m;w/I WD ….�

00
m;w/I

for any I , in particular for I D ; which we shall use below. These are representa-
tions over T0

m
. To conclude using our preceding results that the reduction modulo

prime ideals (O-points) of ….�m;w/
ord is well-behaved and compatible with the

construction of Breuil–Herzig we need the following fact.

Lemma 4.12. For each prime ideal p of T0
m

which comes from a maximal ideal

of T0
m
Œ1=p�, the representation….�00

m;w/
ord=pŒ1=p� does not depend on the chosen

triangulation �00
m;w of �0

m;w (where by triangulation of �0
m;w we mean a triangular

representation which can be conjugated to �0
m;w).

Proof. By Proposition 4.8 we deal with the construction of Breuil–Herzig
and hence we can use facts from [3]. We have to prove that for any triangulation
�00
m;w the reduction �00

m;w=p is a good conjugate of �m;w=p (Definition 3.2.4 in [3]).
This would give our claim by Lemma 3.3.5 of [3]. By our assumption that N�m;w

is generic triangular and totally indecomposable, any triangular lift � of N�m;w is
totally indecomposable and generic by Lemma 4.7. Then we conclude by (3) of
Lemma 4.6 that each triangulation of �0

m;w=p (in particular �00
m;w=p) is a good

conjugate of �0
m;w=p. �

Thus we can define

….�0
m;w/

ord WD ….�00
m;w/

ord

where �00
m;w is any triangulation of �0

m;w .
We summarize our efforts so far in the following theorem.

Theorem 4.13. Let m be an ordinary non-Eisenstein ideal of T such that

N�m;w is totally indecomposable and generic for each wjp in F . Then we have

for any prime ideal p0 of T0
m

(with the inverse image p in Tord
m

) which comes from

a maximal ideal of T0
m
Œ1=p�:

….�0
m;w/

ord=p0….�0
m;w/

ordŒ1=p� ' ….�m;w=p�m;w Œ1=p�/
ord
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Similar compatibilities with reduction modulo prime ideals hold for….�m;w/I .

4.5 – On the pro-modular Fontaine–Mazur conjecture

We come back to our general formalism which we will apply to ….�m;w/;. We
assume that m is a non-Eisenstein ordinary ideal of T such that N�m;w is triangular,
generic and totally indecomposable for each wjp. We take T0

m
to be T0

m
from

preceding sections. We start with two lemmas.

Lemma 4.14. Let  1;  2WGal.xQp=Qp/! E be two de Rham characters such

that  1 
�1
2 … ¹1; "; "�1º and let 0 !  1 ! V !  2 ! 0 be the non-split

extension (there is a unique one; see below). Suppose that V is de Rham. Then

HT. 1/ < HT. 2/ (normalizing HT."/ D �1).

Proof. The fact that there is a unique extension of  1 by  2 follows from
the fact that H 1 D H 1.Gal.xQp=Qp/;  1 

�1
2 / is of dimension 1 because  1 

�1
2

is generic. Observe that V 2 H 1. One can define the Selmer group H 1
g D

H 1
g .Gal.xQp=Qp/;  1 

�1
2 / which measures whether V is de Rham (we refer the

reader to Chapter II of [1]; Definition is given before Proposition 2.17). By Corol-
lary 2.18 of [1] we see that V 2 H 1

g . Hence H 1
g is of dimension one. But Propo-

sition 2.19 of [1] gives us a formula for the dimension of H 1
g , by which we in-

fer in our case that dimH 1
g D 1 is equal to the number of negative Hodge–

Tate numbers (compare with the discussion after Proposition 2.19 in [1]). Hence
HT. 1/ < HT. 2/. �

Recall that we have defined the character � in Section 4.1. For GLn this
character is simply diag.z1; : : : ; zn/ 7!

Q
i z

1�i
i .

Lemma 4.15. Let �WGal.xQp=Qp/! GLn.E/ be a de Rham, triangular, totally

indecomposable, generic Galois representation. Then the character �� � ."
�1 ı �/

is locally algebraic dominant.

Proof. Triangularity permits us to define ��. It is clear that the character is
locally algebraic because � is de Rham. We conclude that �� �."

�1ı�/ is dominant
by applying the lemma above to each pair of consecutive characters on the diagonal
of � (which we can do because � is totally indecomposable and generic). �

We can now check that for representations ….�m;w/; hypothesis (H1) holds.

(H1) We have to check that if p is a prime ideal of T0
m corresponding to

the Galois representation �p which is de Rham and regular at all places wjp,
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then locally algebraic vectors in ….�m;w/;=pŒ1=p� D ….�p;w/;Œ1=p� are non-
zero. Indeed, the locally algebraic vectors in….�p;w/;Œ1=p� are non-zero because
it is the representation induced from the locally algebraic dominant character
� D �� ˝ ."

�1 ı �/ (by Lemma 4.15); to see it we write � D �smıW for this
character, where�sm is smooth and ıW is algebraic corresponding to an irreducible
algebraic representationW of G.Qp/. We haveW D .Ind

G.Qp/

B�.Qp/
ıW /

alg. Then the

universal completion of the locally algebraic representation .IndG.Qp/

B�.Qp/
�sm/

sm ˝

W is equal to .Ind
G.Qp/

B�.Qp/
�/C

0
D ….�p;w/;Œ1=p� because � is unitary (we inject

the locally algebraic induction into the continuous induction by sending fsm ˝

falg to fsm � falg, where fsm,falg are functions on smooth, respectively algebraic
part) - this is clear from the definition of the universal completion and the fact
that .IndG.Qp/

B�.Qp/
�/la D .IndG.Qp/

B�.Qp/
�sm/

sm ˝ W . In particular, the set of locally
algebraic vectors in….�p;w/;Œ1=p� is non-empty. The fact that….�m;w/;=m

0 is of
finite length is clear from the definition.

For p 2 P cris
autom as in Proposition 4.9, we know that each �p;w is crystalline

triangularisable. Our hypothesis on N�m;w implies that �p;w is also totally inde-
composable (Lemma 4.7) and generic. So we may unambigously associate to it a
character ��p;w

of Tn.Qp/.

Let us recall a classical local-global compatibility result.

Lemma 4.16. Fix p 2 P cris
autom. Let W be the irreducible algebraic representa-

tion of G.Qp/ such that H 0.Kp;VW /Œp� 6D 0. Let � be an automorphic represen-

tation such that �Kp

f
� H 0.Kp;VW /Œp�. Then

W _ D ˝wjp.IndGLn.Qp//

B�.Qp/
.��� ;w � ."

�1 ı �//alg/
alg;

�p D ˝wjp.Ind
GLn.Qp/

B�.Qp/
.��� ;w � ."

�1 ı �//sm/
sm;

where we have denoted by .:/sm (respectively, .:/alg) the smooth (resp. algebraic)

part of the character.

Proof. The first isomorphism follows from Corollary 2.7.8(i) of [13] with the
following dictionary:

� ourW is Geraghty’s M�, therefore W _ D IndGLn

B� .w0�/
�1;

� his � D .�� /� WF C,!E D .�w/wjp since p was assumed to be totally split in
F ;

� for each wjp, loc. cit. tells us that .���;w
/alg D .w0�w/

�1 � � .
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The second isomorphism follows from Corollary 2.7.8(ii) of [13] and the first
formula on p. 27 of [13] (proof of Lemma 2.7.5). Namely, loc. cit. tells us that �w is
the unramified subquotient of .n�IndGLn.Qp/

B.Qp/
.���

/sm/˝j det j.n�1/=2 (normalized
induction). But the genericity of �p;w implies that

�w D .n� IndGLn.Qp/

B.Qp/
.���

/sm/˝ j det j.n�1/=2

and smooth representation theory tells us that this is also

.n� Ind
GLn.Qp/

B�.Qp/
.���

/sm/˝ j det j.n�1/=2

D .Ind
GLn.Qp/

B�.Qp/
.���

/smı
�1=2
B /˝ j det j.n�1/=2

where ıB is the modulus character. We conclude by observing that

ı
�1=2
B � j det j.n�1/=2 D ."�1 ı �/smW .z1; : : : ; zn/ 7�!

Y
jzi j

i�1: �

Using ….�m;w/; we can make use of our formalism (Theorem 3.4) to get the
pro-modular Fontaine–Mazur conjecture in the following form.

Theorem 4.17. Let m be an ordinary non-Eisentein ideal of T such that N�m;w

is totally indecomposable and generic for all wjp. Let � be pro-modular with

respect to Tord
m

which is de Rham and has regular Hodge–Tate weights. Then � is

modular.

Proof. To conclude by Theorem 3.4 we have to check that hypotheses (H2)
and (H3) hold for ….�m;w/;. Hypothesis (H2) says that there exists an allowable
set for ….�m;w/;, which means that there exists a dense set of prime ideals p in
the Hecke algebra T0

m for which the associated Galois representation �p;w (wjp is
a split place) gives a Banach representation ….�p;w/; with an injection

˝wjp….�p;w/; ,�! bH 0.Kp/E

We can prove it for the set P cris
autom which is dense by Proposition 4.9. Indeed, if

p corresponds to a classical automorphic representation � with the Galois rep-
resentation �� . Following Lemma 4.16 we put �w D ��� ;w � ."

�1 ı �/. Take
� D ˝wjp�w and write � D �smıW as above in the verification of (H1). Then
by the description of locally algebraic vectors of bH 0.Kp/E;l:alg from Proposi-

tion 2.3 we see thatW _˝ .Ind
G.Qp/

B�.Qp/
�sm/

sm injects into bH 0.Kp/E;l:alg , (we use
here Lemma 4.16). Hence taking the completion we see that the universal comple-

tion
4
W _ ˝ .Ind

G.Qp/

B�.Qp/
�sm/

sm ofW _ ˝ .Ind
G.Qp/

B�.Qp/
�sm/

sm sits in bH 0.Kp/E . But
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because � is unitary, we have

4
W _ ˝ .Ind

G.Qp /

B�.Qp/
�sm/

sm D .Ind
G.Qp/

B�.Qp/
�/C

0

D ˝wjp….�p;w/;

by which we conclude.

The hypothesis (H3)[p0] (p0 is the prime ideal of T0
m

corresponding to � by our
pro-modularity assumption and Corollary 4.11) says that we have a closed injection

….�p0;w/; ,�! bH 0.Kp/E Œp
0�

This is clear in our context because �p0;w is generic and hence ….�p0;w/; is
topologically irreducible (see Theorem 3.1.1(ii) in [3]).

This allows us to conclude. �

We can get a more explicit result by using eigenvarieties. In [9] Emerton
has constructed the eigenvariety X associated to the group G using completed
cohomology. We do not recall here this construction explicitely, but let us mention
that X parametrises (certain) pro-modular representations. Let XŒ N�m�ord be the
N�m-part of the eigenvariety associated to U.n/ parametrising ordinary points
(i.e. points associated to ordinary p-adic automorphic forms). In particular every
point x 2 XŒ N�m�

ord is pro-modular with respect to Tord
m

. We denote by �x its
corresponding Hecke character and by �x its associated Galois representation.

The above theorem implies the following result.

Corollary 4.18. Let m be an ordinary non-Eisenstein ideal of T such that

N�m;w is totally indecomposable and generic for all wjp. Let x be an E-point on

the eigenvarietyXŒ N�m�
ord.E/ such that for each placewjp the representation �x;w

is regular and de Rham. Then x is classical.

Proof. Modularity is clear so we need only to comment upon the classicality
of x. It follows under our assumptions by Lemma 4.15 that �x;w has dominant
weights which is enough to conclude that x is classical as it was modular. �

We obtain a similar result (i.e. pro-modularity with additional assumptions im-
plies modularity) forU.2/ in [7] in the setting of irreducible Galois representations
(rather than triangular).
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