Rend. Sem. Mat. Univ. Padova, Vol. 139 (2018), 195–204 DOI 10.4171/RSMUP/139-7

Some sufficient conditions for *p*-nilpotence of a finite group

LI, CHANGWEN (*) – HUANG, JIANHONG (**) – HU, BIN (***)

ABSTRACT – In this paper, we give some new characterizations of finite *p*-nilpotent groups by using the notion of $\mathcal{H}C$ -subgroups and extend several recent results.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20D10, 20D15, 20D20.

KEYWORDS. HC-subgroup, p-nilpotent, Sylow p-subgroup.

1. Introduction

In the present paper, we consider only finite groups. We use conventional notions and notation, as in Huppert (see [9]). *G* always denotes a finite group, |G| is the order of *G*, *p* denotes a fixed prime, \mathfrak{U} is the class of all supersoluble groups and $Z_{\mathfrak{U}}(G)$ is the product of all the normal subgroups of *G* whose *G*-chief factors have prime order. A normal subgroup *E* of *G* is said to be hypercyclically (resp. *p*-hypercyclically) embedded in *G* if every chief factor (resp. *p*-chief factor) of *G* below *E* is cyclic. If G/L is a supersoluble (resp. *p*-supersoluble), then *G* is supersoluble (resp. *p*-supersoluble) if and only if *L* is hypercyclically (resp. *p*-hypercyclically) embedded in *G*.

A subgroup H of G is said to be C-normal in G if G has a normal subgroup T such that G = HT and $H \cap T \leq H_G$, where H_G is the normal core of

(*) *Indirizzo dell'A*.: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, China E-mail: lcw2000@126.com

(**) *Indirizzo dell'A*.: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116,China E-mail: jhh320@126.com

(***) *Indirizzo dell'A*.: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, China E-mail: hubin118@126.com *H* in *G* (see [16]). A subgroup *H* of *G* is said to be an \mathcal{H} -subgroup of *G* if $H^g \cap N_G(H) \leq H$ for all $g \in G$ (see [3]). Many people studied the structure of finite groups based on those two concepts and a lot of research has been given; see for example [1, 2, 3, 4, 6, 7, 11, 15, 16]. Recently, Wei and Guo (see [18]) introduced the following concept:

DEFINITION 1.1. A subgroup *H* of *G* is said to be an $\mathcal{H}C$ -subgroup of *G* if there exists a normal subgroup *T* of *G* such that G = HT and $H^g \cap N_T(H) \leq H$ for all $g \in G$.

It is clear that each of *C*-normal subgroup and \mathcal{H} -subgroup implies that $\mathcal{H}C$ -subgroup. The converse does not hold in general, see Examples 1 and 2 in [18]. In [17, 18], some conditions for a group to be supersolvable are given and many known results are generalized. In this paper, we give some new criteria for *p*-nilpotence of a finite group by assuming that some kind of subgroups having some fixed prime power order are $\mathcal{H}C$ -subgroups.

2. Preliminaries

LEMMA 2.1 ([18, Lemma 2.2]). Suppose that H is an $\mathcal{H}C$ -subgroup of G.

- (1) If $H \leq K \leq G$, then H is an $\mathcal{H}C$ -subgroup of K.
- (2) If $N \leq G$ and $N \leq H \leq G$, then H/N is an $\mathcal{H}C$ -subgroup of G/N.
- (3) If H is a p-subgroup and N is a normal p'-subgroup of G, then HN is an HC-subgroup of G and HN/N is an HC-subgroup of G/N.

PROOF. (1) and (2) is [18, Lemma 2.3]. (3) is [18, Lemma 2.4]. \Box

LEMMA 2.2 ([17, Lemma 2.8]). Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. If P is cyclic or P has a subgroup D with 1 < |D| < |P| such that every subgroup of P of order |D| or 4 (if |D| = 2) is an $\mathcal{H}C$ -subgroup of G, then G is p-nilpotent.

LEMMA 2.3. Let P be a nontrivial normal p-subgroup of G. If there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup of P of order |D| or 4 (if |D| = 2) is C-normal in G, then $P \le Z_{\mathfrak{U}}(G)$.

PROOF. It is a corollary of [13, Theorem].

LEMMA 2.4 ([18, Lemma 2.5]). Let K be a normal subgroup of G and H a normal subgroup of K. If H is an $\mathcal{H}C$ -subgroup of G, then H is C-normal in G.

LEMMA 2.5 ([3, Theorem 6 (2)]). Let H be an \mathcal{H} -subgroup of G. If H is subnormal in G, then H is normal in G.

LEMMA 2.6. Let P be a nontrivial normal p-subgroup of G. If there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup of P of order |D| or 4 (if |D| = 2) is an \mathcal{H} -subgroup of G, then $P \leq Z_{\mathfrak{U}}(G)$.

PROOF. By Lemma 2.5, every subgroup of *P* of order |D| or 4 (if |D| = 2) is normal in *G*. In view of Lemma 2.3, $P \leq Z_{\mathfrak{U}}(G)$.

LEMMA 2.7. Let P be a nontrivial normal p-subgroup of G. If every maximal subgroup of P is an \mathcal{HC} -subgroup of G, then $P \leq Z_{\mathfrak{U}}(G)$.

PROOF. By Lemma 2.4, every maximal subgroup of *P* is *C*-normal in *G*. In view of Lemma 2.3, $P \leq Z_{\mathfrak{U}}(G)$.

LEMMA 2.8. Let P be a nontrivial normal p-subgroup of G. If there exists a subgroup D of P with 1 < |D| < |P| such that every subgroup of P of order |D| or 4 (if |D| = 2) is an \mathcal{HC} -subgroup of G, then $P \leq Z_{\mathfrak{U}}(G)$.

PROOF. If every subgroup of *P* of order |D| or 4 (if |D| = 2) is an \mathcal{H} -subgroup of *G*, then $P \leq Z_{\mathfrak{U}}(G)$ by Lemma 2.6. Hence we may assume that there exists a subgroup *H* of *P* with |H| = |D| such that *H* is not an \mathcal{H} -subgroup of *G*. By hypothesis, there exists a proper normal subgroup *K* of *G* such that G = HK and $H^g \cap N_K(H) \leq H$ for all $g \in G$. Then we can pick a normal subgroup *M* of *G* such that $K \leq M$ and |G : M| = p. Obviously, $P \cap M$ is a maximal subgroup of *P*. If |P : D| = p, then $P \leq Z_{\mathfrak{U}}(G)$ by Lemma 2.7. Hence we may assume that |P : D| > p. Then every subgroup of $P \cap M$ of order |D| or 4 (if |D| = 2) is an $\mathcal{H}C$ -subgroup of *G*. By induction, $P \cap M \leq Z_{\mathfrak{U}}(G)$. Since $|P/P \cap M| = p$, it follows that $P \leq Z_{\mathfrak{U}}(G)$.

LEMMA 2.9 ([18, Theorem 3.3]). Let P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and every maximal subgroup of P is an \mathcal{HC} -subgroup of G.

LEMMA 2.10 ([5, Theorem 8.3.1]). Let P be a Sylow p-subgroup of G, where p is an odd prime divisor of |G|. Then G is p-nilpotent if and only if $N_G(Z(J(P)))$ is p-nilpotent, where J(P) is the Thompson subgroup of P.

LEMMA 2.11 ([8, Lemma 3.3]). If G is p-supersoluble and $O_{p'}(G) = 1$, then G is supersoluble.

For any group *G*, the generalized Fitting subgroup $F^*(G)$ is the set of all elements *x* of *G* which induce an inner automorphism on every chief factor of *G*. Clearly, $F^*(G)$ is a characteristic subgroup of *G* (see [10, X, 13]).

LEMMA 2.12 ([14, Theorem C]). Let E be a normal subgroup of G. If $F^*(E)$ is hypercyclically embedded in G, then E is also hypercyclically embedded in G.

In the following, we shall denote by $F_p(G)$ the *p*-Fitting subgroup of *G*. In fact, $F_p(G) = O_{p'p}(G)$.

LEMMA 2.13. A p-soluble normal subgroup E of G is p-hypercyclically embedded in G if and only if $F_p(E)$ is p-hypercyclically embedded in G.

PROOF. We only need to prove the sufficiency. Suppose that the assertion is false and let (G, E) be a counterexample with |G||E| minimal. We claim that $O_{p'}(E) = 1$. Indeed, since $F_p(E/O_{p'}(E)) = F_p(E)/O_{p'}(E)$, it is easy to verify that the hypothesis of the lemma holds for $(G/O_{p'}(E), E/O_{p'}(E))$. If $O_{p'}(E) \neq 1$, then the minimal choice of (G, E) implies that $E/O_{p'}(E)$ is *p*-hypercyclically embedded in $G/O_{p'}(E)$. Clearly $O_{p'}(E)$ is *p*-hypercyclically embedded in *G*. Therefore, *E* is *p*-hypercyclically embedded in *G*, a contradiction. Since *E* is *p*-soluble and $O_{p'}(E) = 1$, it follows that $F^*(E) = F(E) = F_p(E) = O_p(E)$, and so $F^*(E)$ is hypercyclically embedded in *G*. Applying Lemma 2.12, *E* is hypercyclically embedded in *G*, a contradiction again.

3. Main Results

THEOREM 3.1. Let L be a p-soluble normal subgroup of G such that G/L is p-supersoluble, where p is a prime divisor of |G|. Suppose that for a Sylow p-subgroup P of $F_p(L)$, there exists a subgroup D of P such that 1 < |D| < |P| and every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is an $\mathcal{H}C$ -subgroup of G. Then G is p-supersoluble. In particular, if p is the smallest prime divisor of |G|, then G is p-nilpotent.

PROOF. We distinguish two cases.

CASE I: $O_{p'}(L) \neq 1$.

We consider the factor group $G/O_{p'}(L)$. Obviously, $(G/O_{p'}(L))/(L/O_{p'}(L)) \cong G/L$ is *p*-supersoluble. Since $O_{p'}(L/O_{p'}(L)) = 1$, we have

$$F_p(L/O_{p'}(L)) = O_p(L/O_{p'}(L)) = F_p(L)/O_{p'}(L) = PO_{p'}(L)/O_{p'}(L)$$

198

In view of Lemma 2.1(3), every subgroup of $F_p(L/O_{p'}(L))$ with order |D| is an $\mathcal{H}C$ -subgroup of $G/O_{p'}(L)$. Thus $G/O_{p'}(L)$ satisfies the hypothesis of the theorem. By induction, we have $G/O_{p'}(L)$ is *p*-supersoluble and so *G* is *p*-supersoluble.

CASE II: $O_{p'}(L) = 1$.

Obviously, $F_p(L) = F(L) = O_p(L) = P$. Applying Lemma 2.8, $F_p(L)$ is hypercyclically embedded in *G*. In particular, $F_p(L)$ is *p*-hypercyclically embedded in *G*. In view of Lemma 2.13, *L* is *p*-hypercyclically embedded in *G*. Since G/L is *p*-supersoluble by hypothesis, it follows that *G* is *p*-supersoluble.

THEOREM 3.2. Let L be a normal subgroup of G such that G/L is p-supersoluble, where p is the smallest prime divisor of |L|. Suppose that for a Sylow p-subgroup P of L, there exists a subgroup D of P such that 1 < |D| < |P| and every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is an \mathcal{HC} -subgroup of G. Then G is p-supersoluble. In particular, if p is also the smallest prime divisor of |G|, then G is p-nilpotent.

PROOF. By Lemma 2.1(1), it is easy to see that every subgroup H of P with |H| = |D| (and order 4 if |D| = 2) is an $\mathcal{H}C$ -subgroup of L. Applying Lemma 2.2, L is p-nilpotent. Then $O_{p'}(L)$ is the normal Hall p'-subgroup of L.

We distinguish two cases.

Case I: $O_{p'}(L) \neq 1$.

We consider the factor group $G/O_{p'}(L)$. Obviously,

$$(G/O_{p'}(L))/(L/O_{p'}(L)) \cong G/L$$

is *p*-supersoluble. In view of Lemma 2.1(3), every subgroup of $PO_{p'}(L)/O_{p'}(L)$) with order |D| is an $\mathcal{H}C$ -subgroup of $G/O_{p'}(L)$. Thus $G/O_{p'}(L)$ satisfies the hypothesis of the theorem. By induction, we have $G/O_{p'}(L)$ is *p*-supersoluble and so *G* is *p*-supersoluble.

CASE II: $O_{p'}(L) = 1$.

Then *L* is a normal *p*-subgroup of *G*. Applying Lemma 2.8, *L* is hypercyclically embedded in *G*. Since G/L is *p*-supersoluble by hypothesis, it follows that *G* is *p*-supersoluble.

THEOREM 3.3. Let *p* be an odd prime divisor of |G|. Suppose that *G* has a normal subgroup *L* such that G/L is *p*-nilpotent and *P* is a Sylow *p*-subgroup of *L*. If there exists a subgroup *D* of *P* with 1 < |D| < |P| such that every subgroup *H* of *P* with |H| = |D| is an $\mathcal{H}C$ -subgroup of *G* and $N_G(P)$ is *p*-nilpotent, then *G* is *p*-nilpotent.

PROOF. Suppose that the theorem is false and let G be a counterexample of minimal order.

(1) $O_{p'}(G) = 1.$

Denote $T = O_{p'}(G)$. If T > 1, consider G/T. It is obvious that $(G/T)/(LT/T) \cong G/LT$ is *p*-nilpotent. Let HT/T be a subgroup of PT/T with order |D|, where *H* is a subgroup of *P* with order |D|. Since *H* is an $\mathcal{H}C$ -subgroup of G, HT/T is an $\mathcal{H}C$ -subgroup of G/T by Lemma 2.1(3). Again, $N_{G/T}(PT/T) = N_G(P)T/T$ is *p*-nilpotent since $N_G(P)$ is *p*-nilpotent. Hence G/T satisfies the hypothesis of the theorem. The choice of *G* implies that G/T is *p*-nilpotent, and hence *G* is *p*-nilpotent, a contradiction.

(2) Let K be a proper subgroup of G such that with $P \leq K$. Then K is *p*-nilpotent.

By Lemma 2.1(1), every subgroup H of P with order |D| is an $\mathcal{H}C$ -subgroup of K. Since $N_K(P) \leq N_G(P)$ and $N_G(P)$ is p-nilpotent, it follows that $N_K(P)$ is p-nilpotent. Hence K satisfies the hypothesis of the theorem. Then K is p-nilpotent by the minimal choice of G.

(3) L = G.

If L < G, then L is p-nilpotent by step (2). Let T be the normal p-complement of L. Then T char $L \leq G$, so $T \leq G$ and T = 1 by step (1). It follows that L = P and $G = N_G(P)$ is p-nilpotent, a contradiction.

(4) $O_p(G) \neq 1$.

Consider the group Z(J(P)), where J(P) is the Thompson subgroup of P. If $N_G(Z(J(P))) < G$, then $N_G(Z(J(P)))$ is p-nilpotent by step (2). Then G is p-nilpotent by Lemma 2.10, a contradiction. Hence $N_G(Z(J(P))) = G$ and $1 < Z(J(P)) \le O_p(G) < P$.

(5) $G/O_p(G)$ is *p*-nilpotent. In particular, $G/O_p(G)$ is *p*-supersoluble.

Let $\overline{G} = G/O_p(G)$, $\overline{P} = P/O_p(G)$, $\overline{K} = Z(J(\overline{P}))$ and $G_1/O_p(G) = N_{\overline{G}}(Z(J(\overline{P})))$. Since $O_p(\overline{G}) = 1$, we have $N_{\overline{G}}(Z(J(\overline{P})) < \overline{G}$. Thus $G_1 < G$.

By step (2), we have G_1 is *p*-nilpotent. Then $N_{\overline{G}}(Z(J(\overline{P})))$ is *p*-nilpotent. Thus \overline{G} is *p*-nilpotent by Lemma 2.10.

(6) G = PQ, where Q is a Sylow q-subgroup of G with p > q.

Step (5) shows that *G* is *p*-soluble. Then there exists a Sylow *q*-subgroup *Q* of *G* such that *PQ* is a subgroup of *G* for any $q \in \pi(G)$ with $q \neq p$ by [5, Theorem 6.3.5]. If *PQ* < *G*, then *PQ* is *p*-nilpotent by step (1). Hence $Q \leq C_G(O_p(G)) \leq O_p(G)$ by [12, Theorem 9.3.1], a contradiction. Thus PQ = G. By virtue of Lemma 2.2, p > q.

(7) |P| > p|D|.

This follows from Lemma 2.9.

(8) $O_p(G)$ is a maximal subgroup of *P*.

By step (5), we may assume that $G/O_p(G)$ has a normal Hall p'-subgroup $T/O_p(G)$. Obviously, T is normal in G and G/T is p-group. Then there exists a normal subgroup M of G such that $T \leq M$ and |G : M| = p. It is easy to see that $P \cap M$ is a maximal subgroup of P and also a Sylow p-subgroup of M. If $N_G(P \cap M) < G$, then, by step (1), $N_G(P \cap M)$ is p-nilpotent and so is $N_M(P \cap M)$. From step (7) and Lemma 2.1(1), every subgroup H of $P \cap M$ with order |D| is an $\mathcal{H}C$ -subgroup of M. Consequently, M satisfies the hypothesis of our theorem. Hence M is p-nilpotent by the minimal choice of G. Then G is p-nilpotent. This contradiction shows that $P \cap M$ is a normal p-subgroup of G. Since $O_p(G) < P$, it follows that $P \cap M = O_p(G)$ and so $O_p(G)$ is a maximal of P.

(9) $O_p(G)$ is hypercyclically embedded in G.

By steps (7) and (8), $|D| < |O_p(G)|$. By the hypothesis of the theorem, every subgroup *H* of $O_p(G)$ with order |D| is an $\mathcal{H}C$ -subgroup of *G*. Applying Lemma 2.8, we have step (9).

(10) G is supersoluble.

Since $G/O_p(G)$ is *p*-supersoluble and $O_p(G)$ is hypercyclically embedded in *G*, it follows that *G* is *p*-supersoluble. By Lemma 2.11 and step (1), *G* is supersoluble. (11) Final contradiction.

Since *G* possesses a Sylow tower of supersolvable type, it follows that *P* is normal in *G* by step (6). Therefore, $G = N_G(P)$ is *p*-nilpotent by hypothesis, a contradiction.

THEOREM 3.4. Let *p* be an odd prime divisor of |G|. Suppose that *G* has a normal subgroup *L* such that G/L is *p*-nilpotent and *P* is a Sylow *p*-subgroup of *L*. If there exists a subgroup *D* of *P* with 1 < |D| < |P| such that every subgroup *H* of *P* with |H| = |D| is an $\mathcal{H}C$ -subgroup of *G* and $N_G(H)$ is *p*-nilpotent, then *G* is *p*-nilpotent.

PROOF. We consider the following two case.

CASE I: L = G.

Assume the theorem is not true and let G be a counterexample of minimal order. With a similar argument as in steps (1) and (2) of the proof of Theorem 3.3, we have the following steps (1) and (2).

- (1) $O_{p'}(G) = 1.$
- (2) Let K be a proper subgroup of G such that with $P \leq K$. Then K is p-nilpotent.
- (3) P is a normal subgroup of G.

If $N_G(P) < G$, then $N_G(P)$ is *p*-nilpotent by step (2). Applying Theorem 3.3, *G* is *p*-nilpotent. This contradiction implies *P* is normal in *G*.

(4) P is hypercyclically embedded in G.

By hypothesis every subgroup *H* of *P* with order |D| is an $\mathcal{H}C$ -subgroup of *G*, then, from Lemma 2.8, (4) holds.

(5) Let N be a minimal normal subgroup of G. Then |N| < |D| < |P|.

In view of step (3), *G* is *p*-soluble. Then *N* is a *p*-subgroup by step (1) and so $N \le P$. By virtue of step (4), |N| = p. If |N| = |D|, then $G = N_G(N)$ is *p*-nilpotent by the hypothesis of the theorem. This contradiction shows that |N| < |D|.

202

(6) Final contradiction.

By Lemma 2.1(2), it is easy to see that G/N satisfies the hypothesis of the theorem. Hence G/N is *p*-nilpotent by the minimal choice of *G*. Since the class of all *p*-nilpotent groups is a saturated formation, it follows that *N* is a unique minimal subgroup of *G* and $\Phi(G) = 1$. Consequently, F(G) = N. By steps (1) and (3), $F(G) = O_p(G) = P$. Hence N = P, contrary to step (5).

Case II: L < G.

By Lemma 2.1(1), every subgroup H of P with order |D| is an $\mathcal{H}C$ -subgroup of L. Obviously, $N_L(H)$ is p-nilpotent. By virtue of Case I, L is p-nilpotent. It follows that $L_{p'}$ is the normal Hall p'-subgroup of L. Clearly, $L_{p'} \leq G$. If $L_{p'} \neq 1$, then it is easy to see that $G/L_{p'}$ satisfies the hypothesis of the theorem by virtue of Lemma 2.1(3). Hence $G/L_{p'}$ is p-nilpotent by induction. It follows that G is p-nilpotent. Hence we may assume that $L_{p'} = 1$. Then L = P. Since G/P is p-nilpotent, we may let V/P be the normal Hall p'-subgroup of G/P. By Schur-Zassenhaus Theorem, V has a Hall p'-subgroup $V_{p'}$. By Lemma 2.1(1), every subgroup H of P with order |D| is an $\mathcal{H}C$ -subgroup of V. Obviously, $N_V(H)$ is p-nilpotent. In view of Case I, $V = PV_{p'}$ is p-nilpotent and so $V_{p'}$ is normal in V. Obviously, $V_{p'}$ is also a normal p-complement of G and so G is p-nilpotent.

REMARK 3.5. Frobenius asserts that G is p-nilpotent if $N_G(H)$ is p-nilpotent for every p-subgroup H of G (see [9, Satz. IV.5.8]). In Theorem 3.4, we replace a condition of the Frobenius' theorem, namely, H is restricted to be a p-subgroup of a fixed order and we assume that H is an $\mathcal{H}C$ -subgroup of G. Hence Theorem 3.4 can be considered as an extension of the Frobenius' theorem.

COROLLARY 3.6 ([1, Theorem 1.1]). Let P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and every maximal subgroup of P is an \mathcal{H} -subgroup of G.

COROLLARY 3.7 ([6, Theorem 3.1]). Let p be an odd prime dividing |G| and P a Sylow p-subgroup of G. If every maximal subgroup of P is C-normal in G and $N_G(P)$ is p-nilpotent, then G is p-nilpotent.

Acknowledgments. C. Li is supported by NNSF of China (Grant No.11571145). J. Huang is supported by NNSF of China (Grant No.11401264).

References

- M. ASAAD, On p-nilpotence and supersolvability of finite groups, Comm. Algebra 34 (2006), pp. 189–195.
- [2] M. ASAAD M. M. AL-SHOMRANI A. A. HELIEL, The influence of weakly H-subgroups on the structure of finite groups, Studia Sci. Math. Hungar. 51 (2014), pp. 27–40.
- [3] M. BIANCHI A. GILLIO BERTA MAURI M. HERZOG L. VERARDI, On finite solvable groups in which normality is transitive relation, J. Group Theory 3 (2000), pp. 147–156.
- [4] P. Csörgö M. Herzog, On supersolvable groups and the nilpotator, Comm. Algebra 32 (2004), pp. 609–620.
- [5] D. GORENSTEIN, *Finite groups*, 2nd ed.. Chelsea Publishing Co., Chelsea, New York, 1980.
- [6] X. Guo K. P. Shum, On C-normal maximal and minimal subgroups of Sylow *p*-subgroups of finite groups, Arch. Math. (Basel) **80** (2003), pp. 561–569.
- [7] X. GUO K. P. SHUM, *The influence of* H-subgroups on the structure of finite groups, J. Group Theory 13 (2010), pp. 267–276.
- [8] W. GUO K. P. SHUM A. N. SKIBA, G-covering systems of subgroups for classes of p-supersoluble and p-nilpotent finite groups, Siberian Math. J., 45 (2004), pp. 433–442.
- [9] B. HUPPERT, Endliche Gruppen I, Springer, Berlin etc., 1967.
- [10] B. HUPPERT N. BLACKBURN, *Finite groups* III, Springer-Verlag, Berlin etc., 1982.
- [11] X. LI T. ZHAO Y. XU, Finite groups with some H-subgroups, Indagat. Math. 21 (2011), pp. 106–111.
- [12] D. J. S. ROBINSON, A Course in the theory of groups, Spring-Verlag, Berlin etc., 1993.
- [13] A. N. SKIBA, Cyclicity conditions for G-chief factors of normal subgroups of a group G, Siberian Math. J. 52 (2011), pp. 127–130.
- [14] A. N. SKIBA, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra 215 (2011), pp. 257–261.
- [15] H. P. TONG-VIET, Influence of strongly closed 2-subgroups on the structure of finite groups, Glasg. Math. J. 53 (2011), pp. 577–581.
- [16] Y. WANG, On C-normality and its properties, J. Algebra 180 (1996), pp. 954-965.
- [17] X. WEI, On HC-subgroups and its influence on the structure of finite groups, Indagat. Math. 26 (2015), pp. 468–475.
- [18] X. WEI X. GUO, On HC-subgroups and the structure of finite groups, Comm. Algebra 40 (2012), pp. 3245–3256.

Manoscritto pervenuto in redazione il 28 settembre 2016.