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A result on a singular Cauchy problem with a radial point

revisited using microdifferential calculus
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Abstract – We study the ramified Cauchy problem for a linear PDE with a radial point

using the theory of microdifferential operators.
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1. Introduction

The theory of microdifferential operators, developed since [11] and exposed in [12],

contains a number of powerful analytic results stated in algebraic language and

relevant to the study of the ramified Cauchy problem for linear PDEs in the

complex domain. Results on existence of ramified analytic solutions of PDEs, due

to Leray, Hamada, Wagschal, and their school, can be reproduced by algebraic

techniques, e.g. [12, §III.2.2].

In the present paper we use the theory of microdifferential operators to prove

the local existence of ramified analytic solutions for a typical equation (1) below

with a radial, or degenerate, point. The solutions are representable as infinite series

involving hypergeometric functions. This result is stated as Theorem 2.5 below.

Let a�.x/ be analytic functions of x 2 C
n and � 2 Z

n be a multi-index. With

a precise definition given in Section 3 below, for an expression of the form

X

�1<j�j<m

a�.x/
@j�j

@x�
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to define a microdifferential operator it is required that a�.x/ satisfy a factorial

growth estimate ja�.x/j < C j � �jŠ for some contant C . This growth estimate

allows one to define an action of microdifferential operators on holomorphic

functions, [1, §2.1], and makes them relevant for the study of PDEs in complex

analytic settings.

Very roughly, the algebraic approach to a ramified Cauchy problem uses the

following tools. Given a differential operator P with analytic coefficients on a

complex analytic manifold X , locally on T �X one seeks to transform irreducible

components of the characteristic variety charP to the normal form which is a

conormal bundle to the hypersurface ¹x1 D 0º � C
n. On the level of microdiffer-

ential operators, such a purely geometric transformation gives rise to a quantized

contact transformation, see [12, §I.5]. The difficult and general analytic result is

that a quantized cntact transformation preserves the factorial growth conditions on

the coefficients of a microdifferential operator. After the quantized contact trans-

formation and some additional work, the differential equation P� D 0 transforms

into the equation x1
Q� D 0, where Q� belongs to an appropriate space of generalized

functions formalized as a module over a ring of microdifferential operators, [12,

§I.4]. The theory of quantized contact transformations allows one to transform a

solution Q� into a ramified analytic solution � of the original equation.

An alternative to the reduction to the normal form is the use of sophisticated

majorant series, e.g. [14].

However, the characteristic variety charP can have what is called degenerate,

or radial, points, see Section 4.1 below. In a neighborhood of a radial point charP

is not equivalent to the conormal bundle of ¹x1 D 0º � C
n, so different normal

forms become relevant. In the smooth settings, PDEs with a radial points have

been studied since Guillemin and Schäffer [4].

The starting point of our investigation is the paper by Urabe [13] where he

studied the ramified complex analytic solutions of the following typical PDE with

a radial point in two complex variables:

(1) Lˆ.x; t/ WD .D2
t �.xCbt2/D2

x�a.t; x/Dt �c.t; x/Dx�d.t; x//ˆ.x; t/ D 0:

The plan of the present paper is as follows. In Section 2 we follow [13] to give

the notation, assumptions, and state the Cauchy problem for the equation (1). To

discuss (1), we work with the cotangent bundle T �C2 whose standard coordinates

are denoted by .t; xI �; �/. We treat the operator L from (1), and its main part

Pc , see (3), as elements of the ring of microdifferential operators EC2;.0;0I0;1/; the

relevant definitions and results are given in Section 3. In the Section 4 we transform

our equation to a more convenient normal form by means of a quantized contact
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transformation. In Section 5 we use the result of [9] to prove that operators Pc

and L are conjugate inside EC2;.0;0I0;1/, thus making precise the idea that L is a

perturbation of Pc . In Section 6 we show that expansions related to the ansatz (8)

form modules EC2;.0;0I0;1/U
c
˛ and EC2;.0;0I0;1/V

c
˛ over the ring EC2;.0;0I0;1/ and are

in fact quotient modules of EC2;.0;0I0;1/=EC2;.0;0I0;1/Pc. This gives morphisms of

E-modules from EC2;.0;0I0;1/=EC2;.0;0I0;1/L to EC2;.0;0I0;1/U
c
˛ and EC2;.0;0I0;1/V

c
˛ ,

i.e. a family of solutions of the PDE L' D 0. In Section 7 we form a linear

combination of these solutions to satisfy the initial conditions of the Cauchy

problem. Our main result, Theorem 2.5 below, is a modification of [13, Theorem

on p. 3]; the differences are discussed in Section 8.

The point of our paper is to show that algebraic techniques can give an alterna-

tive, more transparent treatment of this equation, by referring it to normal forms

of [7] and [9]. We demonstrate that the division theorem in microdifferential cal-

culus can replace some of the difficult majorant series estimates in [13] if one views

expansions (8) as elements of an appropriate E-module. While we are primarily

interested in illustration and development of the techniques, we note that the radial

points have been attracting attention in several scattering theory papers, e.g. [5].

Some algebraic discussion of this equation is present in [16].

2. Statement of the problem, notation, and the main result

We are solving the Cauchy problem for the PDE (1), where a.t; x/; c.t; x/; d.t; x/

are analytic functions on a neighborhood .0; 0/ 2 � � C
2 and b 2 C is a

constant. We are interested in solutions in a class of ramified analytic functions.

Ramifications are expected along the union of two characteristic curves (notice a

prefactor 1=8 corrected from Urabe’s 1=4)

(2) K D
°

x � 1

8
.1˙D/t2 D 0

±

;

where

D WD
p

1C 16b; Re D � 0 or D 2 iRC:

Assumption 2.1 ([13, Condition (c)]). c.0; x/ D c where c is a constant, i.e.

c.t; x/ D c C t Qc.t; x/.

In the precise sense described in Proposition 5.1, the operator L is a perturba-

tion of

(3) Pc D D2
t � .x C bt2/D2

x � cDx :
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The Cauchy problem will be stated as follows:

(4) Lu.t; x/ D 0 with initial data

´

u.0; x/ D x˛f .x/=�.˛ C 1/I
ut .0; x/ D x˛g.x/=�.˛ C 1/;

where f .x/; g.x/ are holomorphic functions in � \ ¹t D 0º.

Assumption 2.2. ˛ 62 Z.

The following functions will be used as elementary building blocks for the

solution of our differential equation

U c
˛ .t; x/ D

�

x � 1

8
.1CD/t2

�˛

�.˛ C 1/

� 2F1

�

� ˛;
1

4

�

1C 1

D

�

C ˛ C c � 1
D

I 1
2

I � Dt2

4
�

x � 1

8
.1CD/t2

�

�

I

V c
˛ .t; x/ D

t
�

x � 1

8
.1CD/t2

�˛

�.˛ C 1/

� 2F1

�

� ˛;
3

4

�

1C 1

D

�

C ˛ C c � 1
D

I 3
2

I � Dt2

4
�

x � 1

8
.1CD/t2

�

�

;

(5)

where 2F1 denotes the Gauss hypergeometric functions.

Their choice is motivated by the following properties:

(6)
PcU

c
˛ D 0; U c

˛ .0; x/ D x˛=�.˛ C 1/; DtU
c
˛ .0; x/ D 0I

PcV
c

˛ D 0; V c
˛ .0; x/ D 0; DtV

c
˛ .0; x/ D x˛=�.˛ C 1/:

Our expressions for U c
˛ , V c

˛ already contain the correction entailed by (2) and

were double-checked numerically with Wolfram Mathematica. Refer to [4, §6] for

a systematic way of obtaining such hypergeometric solutions.

The following estimate follows from the proof of [13, Proposition (E.U), p. 23],

especially the bottom of [13, p. 22], and the Cauchy integral formula, with a slight

change in the notation !�.

Proposition 2.3 (Urabe). Assume [13, Condition .˛; b; c/]:

(7) ˛ C 1

4
˙ 1

D

�

˛ � 3

4
C c

�

62 Z and ˛ C 3

4
˙ 1

D

�

˛ � 1

4
C c

�

62 Z:
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Let

!� D
°

.t; x/W x ¤ 1

8
.1˙D/t2; jxj < �; jt2j < �

±

� �;

and Q!� be its universal covering space. There exist positive constants T1; T2,

B.˛; c/, such that for any compact subset zK � Q!� that wraps around the charac-

teristic curves ¹x D 1
8
.1˙D/t2º at most ˇ times,

jU c�kC1
˛Cr�1 j; j@tU

c�kC1
˛Cr�1 j; jV c�kC1

˛Cr�1 j; j@tV
c�kC1

˛Cr�1 j

� B.˛; c/ˇ.r�k/T r
1 T

k
2

1

rŠ
�r on zK:

We make the following assumption which will play the role in Proposition 5.1:

Assumption 2.4. Assume b ¤ 0 is such that at least one of the numbers

.1˙
p
1C 16b/=.2b/ falls outside of .�1;�1

2
�[ ¹�1

4
º [ Œ0;C1/.

The main result of the present paper is:

Theorem 2.5. Under assumptions 2.1, 2.2, 2.4, and equation (7), for every

ˇ 2 N0, there is a sufficiently small neighborhood ! (depending on ˇ) of the

origin in C
2 where the Cauchy problem (4) has a holomorphic solution defined

on any compact subset of ! � K (see (2)) that wraps around K at most ˇ times.

The solutions is expressed by

u.t; x/ D
1

X

rD0

r
X

kD0

¹ur;k.t; x/U
c�kC1
˛Cr�1 .t; x/C gr;k.t; x/DtU

c�kC1
˛Cr�1 .t; x/

C vr;k.t; x/V
c�kC1

˛Cr�1 .t; x/C hr;k.t; x/DtV
c�kC1

˛Cr�1 .t; x/º;
(8)

where ur;k, gr;k, vr;k, and hr;k are holomorphic functions on ! and U c
˛ , V c

˛ were

defined in (5).

Moreover, there are constants ar , br and functions u`.t; x/, g`.t; x/, v`.t; x/,

h`.t; x/ such that ur;k D arur�k , gr;k D argr�k, vr;k D brvr�k, hr;k D brhr�k.

3. Preliminaries from the microdifferential calculus

Recall from [12, §I.1] that a microdifferential operator (MDO) of order m on an

open subset U � T �
C

n is defined by a formal series P D
P

�1<j �m pj , where

pj is a section of OT �X .j / on U , with an additional requirement that for any

compact set K � U there is an " > 0 such that
P

j �0 jp�j jK"j=j Š < 1, where

jpj jK D supK jpj j. The spaces of such operators are denoted ECn.U /.m/, they

form a sheaf ECn.m/, and ECn WD
S

m2Z ECn.m/. The noncommutative product

is defined by [12, (I.1.2.4)].
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The spaces of MDOs are topologized by means of Boutet de Monvel-Krée

quasi-norms

(9) Nm.P;K; t/D
X

k�0
˛;ˇ2Nn

0

2.2n/�kkŠ

.j˛j C k/Š.jˇj C k/Š
jD˛

xD
ˇ

�
pm�k jK t2kCj˛jCjˇ j:

A formal sum P D
P

�1<j �m pj belongs to ECn.U /.m/ iff for any compact set

K in U there exists t > 0 such that Nm.P;K; t/ < 1.

Generalizing [12, Definition I.2.1.1], for a compact set K � T �
C

n denote

by Xm.K; t/ the vector space of formal sums P D
P

�1<j �m pj such that

Nm.P;K; t/ is finite, and endow this space with the norm Nm.�; K; t/.
The rest of this Section 3 consists of a few preparatory facts about MDOs for

which we do not know a reference.

3.1 – Characterization of EC2;.0;0I0;1/.

Consider C
2 with coordinates .x1; x2/ and T �

C2 with symplectic coordinates

.x1; x2I �1; �2/. Let x D .0; 0I 0; 1/.
Given a neighborhood x 2 U � T �

C
2 and a formal sum P D

P

�1<j �m pj ,

pj 2 OT �X.U /.j /, by [12, Remark I.1.2.2], P can also be written as a formal sum

X

�m�j <1;
n�0

an;j .x1; x2/.�1=�2/
n�

�j
2 ;

where an;j are analytic functions near the origin in C
2, such that all the series

'j .x1; x2; s/ WD
P

j �0 an;j .x1; x2/s
n converge in a neighborhood of origin in C

3

independent of j .

Proposition 3.1. A formal sum
P

j;n a.x1; x2/.�1=�2/
n�

�j
2 defines an element

of EC2;x iff there is a neighborhood U of the origin in C
2 and constants C; �; �

such that

(10) jan;j .x1; x2/j < C�n�j j Š:

Proof. Suppose
P

j;n a.x1; x2/.�1=�2/
n�

�j
2 defines an MDO in EC2;x. Then

there is an " > 0 and a compact neighborhood K of x such that

(11)
X

j

ˇ
ˇ
ˇ
ˇ

X

n

an;j .x1; x2/.�1=�2/
n�

�j
2

ˇ
ˇ
ˇ
ˇ
K

"j=j Š < 1I
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in particular, the summands in (11) are bounded by a constant C , hence, with

� D 1=",

(12)

ˇ
ˇ
ˇ
ˇ

X

n

an;j .x1; x2/.�1=�2/
n�

�j
2

ˇ
ˇ
ˇ
ˇ
K

< Cj Š�j :

Shrink K so that it has the form, for some � > 0,

K D ¹j�1=�2j � �I j�2 � 1j � �I jx1j � �I jx2j � �º:

For such a K, (12) becomes

(13)

ˇ
ˇ
ˇ
ˇ

X

n

an;j .x1; x2/.�1=�2/
n

ˇ
ˇ
ˇ
ˇ
K

.1� �/�j < Cj Š�j ;

and the extra factor on the left can be dropped by weakening the inequality

ˇ
ˇ
ˇ
ˇ

X

n

an;j .x1; x2/.�1=�2/
n

ˇ
ˇ
ˇ
ˇ
K

< Cj Š�j :

Denote .�1=�2/ D s and get

max
jt j��

ˇ
ˇ
ˇ

X

n

an;j .x1; x2/s
n
ˇ
ˇ
ˇ < Cj Š�

j ; for all .x1; x2/ such that jx1; x2j < �:

By Cauchy’s inequality this implies

jan;j .x1; x2/j < C��n�j j Š; for all .x1; x2/ such that jx1; x2j < �I

putting � D 1=�, we get (10).

The proof of the converse is similar and left to the reader. �

3.2 – Approximation of an MDO by finite sums

We continue to use the notation of the previous subsection.

Theorem 3.2. Let P D
P

n�0Ij ��m an;j .x1; x2/.Dx1
=Dx2

/mD
�j
x2

be an

MDO in a neighborhood of x. Order the pairs .j; n/ as .jk; nk/, k 2 N, and

define PN D
P

k�N ank ;jk
.x1; x2/.Dx1

=Dx2
/nkD

�jk
x . Then there is a t > 0 and

a compact neighborhoodK 0 of x, both depending on P , such that

Nm.PN IK 0; t / �! 0 as N ! 1:
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Proof. Let P D
P

j ��m p�j such that for some " > 0 and some compact

neighborhood K of x
X

j

ˇ
ˇp�j

ˇ
ˇ
K
"j=j Š < 1:

Then P defines an MDO on any open set contained in K.

Suppose further that p�j D
P

n�0 p�j;n and each of these sums converges

uniformly and absolutely on K. Then the double sum
P

j;n p�j;n"
j=j Š converges

uniformly and absolutely on K (in particular, the sum is independent of the order

of summation, i.e. of the linear ordering .jk; nk/ of the pairs of indices). In the

situation of the theorem p�j;n D an;j .x1; x2/.�1=�2/
n�

�j
2 .

Denote by PN the MDO with the total symbol
P1

kDN p�jk ;nk
defined on any

open subset ofK. We are going to show that there exists a compact neighborhood

K 0 of x such that Nm.PN ; K
0; t / ! 0 for sufficiently small ts.

Denote by Q any one of the operators PN and let
P

j ��m q�j be its total

symbol. Imitating the proof of [3, Chapter 4, Lemma 3.2], let us take a polydisc

� of radius ı centered at x such that 2� � K. It follows that jqm�j j2� �
A1j ŠC

j
1 for some constants A1; C1. Cauchy’s inequality gives j@˛

x@
ˇ

�
qm�j j� �

.˛Š/.ˇŠ/ı�j˛j�jˇ jjqm�j j2� and hence

Nm.Q;�; t/ �
X

k;˛;ˇ

2 � 4�k.kŠ/.˛Š/.ˇŠ/

.k C j˛j/Š.k C jˇj/ŠkŠ
jqm�k jK
kŠ

ı�j˛j�jˇ jt2kCj˛jCjˇ j:

Using .˛Š/kŠ � .k C j˛j/Š and .ˇŠ/kŠ � .k C jˇjŠ/, we have

Nm.Q;�; t/ �
X

k;˛;ˇ

2 � 4�k jqm�k jK
kŠ

ı�j˛j�jˇ jt2kCj˛jCjˇ jI

assuming t < 1=.2ı/ and summing over ˛ and ˇ, we obtain

Nm.Q;�; t/ � 8
X

k

4�k jp�k jK
kŠ

t2k:

Assuming t <
p
4" we have

(14) Nm.QI�; t/ � 8
X

k

jqm�k jK
kŠ

"k:

From this it is clear that Nm.PN ; �; t/ ! 0 as N ! 1, and the theorem

follows with K 0 D �. �
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3.3 – Division theorem with a continuity supplement

The proof of [12, Theorem I.2.2.1] implies, in fact, the following more detailed

statement. We highlight the part not included in the book’s formulation:

Theorem 3.3 (Späth). Let P be an MDO defined in a neighborhood of

.x0; �0/ 2 T �X . Assume that @j

@�
j
1

.�.P // is zero at .x0; �0/ for 0 � j < p and

different from zero for j D p. Then for any sectionQ of EX of order m defined in

a neighborhood of .x0; �0/ there exist unique S and R such that

Q D SP CR; ordR � ordQ; ad p
x1
.R/ D 0:

Moreover, there is a compact neighborhood K of .x0; �0/ and a positive t such

that Q 7! R defines a continuous map Xm.K; t/ ! Xm.K; t/.

Notation 3.4. By Q mod � P we denote the operator R from the above

theorem.

4. A quantized contact transformation relating

PcD�1
x2

and ˇ1y1Dy1
C ˇ2y2Dy2

C ˇ3

4.1 – Classification of radial points

We begin by giving some mathematical context for the operator Pc .

In at least three sources, [4], [9], [7], plus [8], the following question is dis-

cussed. Suppose given a linear (micro-, pseudo-) differential operator with ho-

mogeneous involutive characteristic variety V � T �
K

n (K D R or C), let

˛ D
P
pidxi be the canonical 1-form on T �

K
n. Consider those smooth points

x 2 V outside of the zero section, called degenerate or radial points, where ˛jV
vanishes. These points are interesting because in their neighborhood the operator

P is not microlocally equivalent to @=@x1, i.e. results such as [12, corollaries A.4.5

and I.6.2.3] do not extend to the case of radial points. So what are the microlocal

normal forms for V and P near radial point?

A much-simplified result from [7], [8], and [9] says:

Theorem 4.1 (Lychagin and Oshima). If �1; : : : ; �n�1I�1; : : : ; �n�1 are com-

plex numbers such that the sets ¹�1; : : : ; �n�1º ¤ ¹�1; : : : ; �n�1º, then the equa-

tions

(15)

n�1
X

iD1

�ixi�i C xn�n D 0 and

n�1
X

iD1

�ixi�i C xn�n D 0

define non-equivalent germs at the point x D .0; : : : 0I 0; ::; 0; 1/ of homogeneous

involutive submanifolds in T �
C

n for which x is a radial point.
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Equivalence is understood with respect to the group of germs of homogeneous

symplectic biholomorphisms preserving x.

It follows from the theorem that the corresponding microdifferential operators

n�1
X

iD1

�ixiDxi
C xnDxn

;

n�1
X

iD1

�ixiDxi
C xnDxn

2 ECn;x

are pairwise microlocally inequivalent.

However, not every codimension one involutive submanifold with a radial point

is equivalent to (15). In fact, the classification of radial points is parallel and sim-

ilar in difficulty to the Birkhoff normal form, compare [8, especially §§1.5–1.8]

and [15, §19]. The result of Theorem 4.1 comes from linearized theory of Hamil-

tonians near a stationary point; the possibility of resonances (Z-linear relations

among eigenvalues of the linear part of the Hamiltonian) makes an exhaustive list

of normal forms unfeasible in either case.

A different system of normal forms of an operator whose characteristic mani-

fold has a radial point at .t; xI �; �/ D .0; 0I 0; 1/ is presented in [4, (1.3) and (1.7)],

and our Pc is one of these normal forms. The content of the next subsection 4.2 is

to explicitly transform the operator Pc , which is in the normal form from the point

of view of [4], into another operator whose principal symbol is in the normal form

from the point of view of [7] and [9].

4.2 – Construction of the transformation

A quantized contact transformation [12, §I.5] is an isomorphism of EX .U / onto

EY .V /, where U; V are some open sets in T �X , T �Y , respectively, where X; Y

are complex manifolds. Such a transformation is often found staring from a ho-

mogeneous contact transformation between U and V , hence the name.

In this subsection we will re-denote our coordinates .t; xI �; �/ as .x1; x2I �1; �2/.
Then

Pc D D2
x1

� .x2 C bx2
1/D

2
x2

� cDx2
:

As before x D .0; 0I 0; 1/.
Let us perform a transformation of the ring EC2;x:

(16)
x1 D z1 � CDz1

D�1
z2
; Dx1

D Dz1
I

x2 D z2 C C
2
D2

z1
D�2

z2
; Dx2

D Dz2
;

where C is a constant.
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We see, using [12, (I.1.1.9)], that the commutation relations among operators

are respected. The analytic part of the proof of the fact that (16) defines an

automorphism of EC2;x goes through [12, §I.5] applied to the ideal

(17) I WD EC2�C2

�

x1 � z1 C C�1=�2; x2 � z2 � C

2
�2

1=�
2
2 ; �1 C �1; �2 C �2

�

:

Formulas [12, (I.5.1.2)] are obvious directly and [Sch,(I.5.1.3)] follows by unique-

ness in the division theorem, so we do not need to worry about calculating the

symbol ideal of I. Notice the opposite sign in front of �’s in (17) compared to (16)

taken to counteract the order reversal in [12, (I.5.1.4)].

We will omit the notation for the automorphism and will simply write Pc in

the new coordinates:

Pc D D2
z1

�
°

z2 C C

2
D2

z1
D�2

z2
C b.z1 � CDz1

D�1
z2
/2

±

D2
z2

� cDz2

D
�

1 � C

2
� bC 2

�

D2
z1

� z2D
2
z2

� bz2
1D

2
z2

C 2Cz1Dz1
Dz2

� cDz2
:

Setting to zero the coefficient in front of D2
z1

, we C D .�1 ˙
p
1C 16b/=.4b/,

the sign chosen in such a way that �2C satisfies Assumption 2.4.

We now perform one more change of variables defining an automorphism of

EC2;x; this one is simply induced by a biholomorphism of the .y1; y2/-plane:

z1 D y1; Dz1
DDy1

CKy1Dy2
;

z2 D y2 � K

2
y2

1 ; Dz2
DDy2

:

Then

Pc D �
�

y2 � K

2
y2

1

�

D2
y2

� by2
1D

2
y2

C 2Cy1.Dy1
CKy1Dy2

/Dy2
� cDy2

D
�K

2
� b C 2CK

�

y2
1D

2
y2

� y2D
2
y2

C 2Cy1Dy1
Dy2

� cDy2

and equate to zero the coefficient of y2
1D

2
y2

. K D b=.1
2

C 2C /, the denominator

equals 1
2

C �1˙
p

1C16b
2b

; the assumption 2.4 contains the condition C ¤ �1=4 in

order to avoid division by zero at this step.

In summary, we have found a quantized contact transformation transforming

Pc into �y2D
2
y2

C2Cy1Dy1
Dy2

�cDy2
, or, PcD

�1
x into �y2Dy2

C2Cy1Dy1
�c.
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5. Operators L and Pc are conjugate

Proposition 5.1. Under Assumption 2.4, there is an operator U 2 EC2;x of

order 0, with principal symbol invertible near x, such that

ULD�1
x D PcD

�1
x U:

Proof. From Assumption 2.1, we see that .L � Pc/D
�1
x is an operator

of order 0, with principal symbol vanishing at x. Therefore also in terms of

y1; y2; Dy1
; Dy2

from Section 4.2, the operator L can be written as

L D �y2D
2
y2

C 2Cy1Dy1
Dy2

� cDy2
� ADy2

;

where A 2 EC2;x of order 0, with principal symbol vanishing at x.

The proposition therefore reduces to finding U conjugating

y2Dy2
� 2Cy1Dy1

C c C A

into y2Dy2
� 2Cy1Dy1

C c, and this is accomplished the result below. �

From [9, Theorem 3.2], we extract the following particular case.

Proposition 5.2. (Oshima) Suppose that

Q.y1; y2; Dy1
; Dy2

/ D ˇy1Dy1
C y2Dy2

C c

and

P.y1; y2; Dy1
; Dy2

/ D ˇy1Dy1
C y2Dy2

C c C A

belong to EC2;x where A is an MDO of order � 0 with �0.A/ vanishing at x.

Assume moreover

(18) 0 62 convex hull¹1; ˇ; 1� ˇº:

Then near x there is an invertible MDO U of order 0, with principal symbol

invertible near x, such that PU D QU.

A simple drawing shows that (18) is equivalent to

(19) ˇ 62 .�1; 0�[ Œ1;1/ � R

which follows from Assumption 2.4.
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Remark 5.3. In interpreting [9, Theorem 3.2] we prioritize conditions which

seem to be actually used in its proof on [9, p. 77] over the literal meaning of

the assumption [9, A.3.4]; [9, A.3.4] as stated would be trivially true for any ˇ.

Namely, let (in our situation and notation) u�k.y; �/ be the .�k/-th homogeneous

component of the total symbol of U and let U�k be the MDO with total symbol

u�k . Then ŒU�k ; Q1� from [9, (3.7)] is ŒU�k; ˇy1Dy1
Cy2Dy2

� and has the symbol

(20) � ˇy1

@u�k

@y1

� y2

@u�k

@y2

C ˇ
@u�k

@�1

C �2

@u�k

@�2

:

As u�k has to be homogeneous with respect to �’s of degree �k, we can (cf. [6,

(3.8)]) rewrite (20) as

(21) � ˇy1

@u�k

@y1

� y2

@u�k

@y2

C .ˇ � 1/�1

@u�k

@�1

� ku�k :

Inserting this into [9, (3.7)], we impose (18) in order to satisfy [9, A.1.3 and A.1.4]

and apply [9, Theorem 1.1].

Remark 5.4. The purpose of assumption (18) and ultimately of Assump-

tion 2.4 is, as explained in the previous remark, to avoid too close approximations

of ˇ and 1 � ˇ by negative rationals. The condition (18) is most likely not the

minimal assumption, but the need of some kind of Diophantine property can be

traced back to counterexamples [10, Examples 8 and 9, p. 87]. The paper [2] works

with similar Poincaré conditions. On the other hand, we admit that we do not fully

understand the discussion of Poincaré conditions in [13, p. 8]; we prefer however

to postpone the discussion of this issue until our more basic concerns posed in

Section 8 are resolved.

Let us rewrite the result of the Proposition 5.1 in terms of an isomorphism of

E-modules. We have L D U�1PcD
�1
x UDx and notice that U�1PcDx is an MDO

of order 0. Hence we can construct an (iso)morphism of EC2;x modules

(22) iWEC2;x=EC2;xL �! EC2;x=EC2;xPc; Œ1� 7�! ŒD�1
x U

�1Dx�:

6. Modules EC2;.0;0I0;1/U
c
˛ , EC2;.0;0I0;1/V

c
˛

Let K be the ramification locus (2), let !ı , Q!ı be as in Proposition 2.3. Define M

to be the set of ramified analytic functions on some Q!ı representable as infinite

sums, absolutely and uniformly convergent on compact sets – a.u.c.c.s. for short:

(23)
X

j ��N

.uj .x; t /U
c�j
˛Cj C gj .t; x/DtU

c�j
˛Cj /;
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with N 2 Z and satisfying the condition

there exist � > 0 and ı > 0 such that

juj .x; t /j; jgj .x; t /j < �j j Š on !ı for all j > 0:

This is of course equivalent to

there exist � > 0 and ı > 0 such that

juj .x; t /j; jgj .x; t /j < �j CN .j CN/Š on !ı for all j > �N:

By Cauchy’s integral inequality on some, possibly smaller, !ı , there exists

� > 0 such that

uj .x; t /D
X

k�0

uj;k.t /x
k; juj;k.t /j � �j CN �k.j CN/Š(24a)

and

gj .x; t /D
X

k�0

gj;k.t /x
k; jgj;k.t /j � �j CN �k.j CN/Š:(24b)

By Proposition 2.3, any sum (23) represents a ramified analytic function on

some Q!ı .

Clearly, M is closed under multiplication by analytic functions of .x; t /.

We will now define action of D�1
x , Dx, and Dt on M that will make M into a

EC2;x-module. The action will be denoted by ı to distinguish it, at this stage, from

usual operations on functions and from the product in E.

Every element ' 2 M has the following property: for every n 2 N0,

.@n'=@tn/jtD0 is of the form x˛fn.x/, where fn is meromorphic at the origin.

The only function independent of x, ramified only along K with this property

is the zero function. Hence, any function of the form (23) has a most one anti-

derivative with respect to x of the form (23). Let us explicitly construct such an

antiderivative.

Let .z/
N
k denote the descending factorial, .z/

N
k D z.z � 1/ : : : .z � k C 1/.

We begin by defining

(25) D�1
x ı xmU

c�j
˛Cj WD

m
X

kD0

.�1/k.m/
N
kx

m�kU
c�j �1�k

˛Cj C.1Ck/

which is inspired by [12, equation (I.1.1.9)] and [13, Proposition 2.(3)]. One checks

by hand that the RHS is indeed an antiderivative of xmU
c�j
˛Cj .
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We can define the following as an a.u.c.c.s. series on a neighborhood of the

origin; convergence will be shown a few lines below:

D�1
x ı

° X

j ��N
m�0

ujm.t /x
mU

c�j
˛Cj

±

WD
X

j ��N
m�0

m
X

kD0

.�1/kujm.t /.m/
N
kx

m�kU
c�j �1�k

˛Cj C.1Ck/

(set m D `C k)

D
X

j ��N
k;`�0

.�1/kuj;kC`.t /.k C `/
N
kx

`U
c�j �1�k

˛Cj C.1Ck/

(set j C k D s �N )

D
X

s;`�0

s
X

kD0

.�1/kus�k�N;kC`.t /.k C `/
N
kx

`U c�sCN �1
˛Cs�N C1:

Let us now estimate the coefficient of x`U c�sCN �1
˛Cs�N C1:

ˇ
ˇ
ˇ
ˇ

s
X

kD0

.�1/kus�k�N;kC`.t /.k C `/
N
k

ˇ
ˇ
ˇ
ˇ

�
s

X

kD0

jus�k�N;kC`.t /j.k C `/
N
k

(by (24))

�
s

X

kD0

�s�k.s � k/Š�kC`.k C `/
N
k

D
s

X

kD0

�kC`�s�k.s � k/Š.k C `/Š=`Š

�
s

X

kD0

�s�k.s � k/Š.2�/kC`kŠ

� sŠ.2�/`�s

s
X

kD0

��k.2�/k

� sŠ.2�/`.�C 2�/s;(26)

hence the required convergence statement.
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Analogously, define

D�1
x ı

° X

j ��N
m�0

gjm.t /x
mDtU

c�j
˛Cj

±

WD
X

j ��N
m�0

m
X

kD0

.�1/kgjm.t /.m/
N
kx

m�kDtU
c�j �1�k

˛Cj C.1Ck/
:

As differentiation commutes with u.a.c.c.s. series of analytic function, termwise

differentiation shows that D�1
x ı ' is indeed an antiderivative of ' 2 M.

Define further

Dx ı uj .x; t /U
c�j
˛Cj D @uj

@x
U

c�j
˛Cj C ujU

c�j C1
˛Cj �1 ;

Dx ı gj .x; t /@tU
c�j
˛Cj D @gj

@x
@tU

c�j
˛Cj C gj @tU

c�j C1
˛Cj �1

(27)

(inspired by the Leibniz rule and [13, Proposition 2.(3)]) and

Dt ı a.x; t/U c�j
˛Cj D @a.x; t/

@t
U

c�j
˛Cj C a.x; t/@tU

c�j
˛Cj ;

Dt ı a.x; t/@tU
c�j
˛Cj D @a.x; t/

@t
@tU

c�j
˛Cj

C a.x; t/Œ.x C bt2/@2
xU

c�j
˛Cj C .c � j /@xU

c�j
˛Cj �

D @a.x; t/

@t
@tU

c�j
˛Cj

C a.x; t/.x C bt2/U
c�j C2
˛Cj �2 C a.x; t/.c � j /U c�j C1

˛Cj �1

(28)

(inspired by the Leibniz rule and the property Pc�jU
c�j
˛Cj D 0).

Notice that estimates in (26) are the same as would be used in a low-tech by-

hand proof of the fact that P 2 EC2;x H) D�1
x ıP 2 EC2;x. Similarly but easier,

imitating the proofs of P 2 EC2;x H) Dx ıP 2 EC2;x P 2 EC2;x H) Dt ıP 2
EC2;x, one proves that the actions ofDx andDt extend to the whole M and are in

fact the usual differentiations of functions with respect to x and t , respectively.
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With the actions of D�1
x , Dx, and Dt thus unambiguously defined on M, we

can make the following observation.

For any ' 2 M, there is a MDO P 2 EC2;x, with degDt
P � 1, such

that ' D P ı U c
˛ (in the sense that if P D

P

�1<j �N Pj , Pj is the

homogeneous part of order j , then ' D
P

�1<j �N PjU
c
˛ and the sum

is a.u.c.c.s.

To recapitulate, at this point P ı ' has been defined a) for P D a.x; t/ or

P D D�1
x or P D Dx or P D Dt and any ' 2 M, as well as b) for any P 2 EC2;x,

with degDt
P � 1 and ' D U c

˛ .

Further, from the formulas (25), (27), (28), and using notation 3.4 we see that

D�1
x ı .PU c

˛ / D .D�1
x P /U c

˛ I Dx ı .PU c
˛ / D .DxP /U

c
˛ I

Dt ı .PU c
˛ / D .DtP mod � .D2

t � .x C bt2/D2
x � cDx/ /U

c
˛ ;

where on the left hand side we have an action of an operator on M, and on the

right we have a composition of operators in E.

The issue that we have to deal with is that a given analytic function ' might

have a non-unique representation as PU c
˛ .

Definition-Proposition 6.1. EC2;x acts on M as follows:

Q � PU c
˛ WD .QP mod � .D2

t � .x C bt2/D2
x � cDx/ /U

c
˛

where degDt
P � 1.

We stress that quite a non-trivial analytic statement, following from the divi-

sion theorem, has just been used: namely, that

QP mod � .D2
t � .x C bt2/D2

x � cDx/

is an MDO.

Proof. The only non-obvious thing is to show that if PU c
˛ D P 0U c

˛ as

functions, then Q � PU c
˛ D Q � P 0U c

˛ as functions.

We will approximate Q by finite sums QN of monomials a.x; t/D
j
xD

k
t as

in theorem 3.2; because D˙1
x , Dt are unambiguously defined on the level of

functions in M, QN � PU c
˛ D QN � P 0U c

˛ . Let

RN WD QNP mod � .D2
t � .x C bt2/D2

x � cDx/

and

R0
N D QNP

0 mod � .D2
t � .x C bt2/D2

x � cDx/:

It remains to show that as a function .RN �R0
N /U

c
˛ ! 0 u.c.s. That follows from

the lemma below. �
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Lemma 6.2. Suppose Pn 2 EC2;x are such that for some value t > 0 and a

compact neighborhoodK of x, Nm.Pn; K; t/! 0. Then PnU
c
˛ ! 0 u.c.s in some

neighborhood of the origin.

Idea of the proof. Since Nm.Pn; K; t/, defined by the sum (9) tends to zero

as n ! 1, so does the subsum
P

k�0
2�4�k

kŠ
jpm�k jK t2k. From this the lemma

follows in a routine way. �

The construction of EC2;xV
c

˛ is analogous.

7. Solution of the Cauchy problem

As PcU
c
˛ D PcV

c
˛ D 0, we have the quotient morphisms of EC2;x-modules

EC2;x=EC2;xPc ! EC2;xU
c
˛ and EC2;x=EC2;xPc ! EC2;xV

c
˛ . Pre-composing them

with i from (22), we get two morphisms

�U WEC2;x=EC2;xL �! EC2;xU
c
˛ and �V WEC2;x=EC2;xL �! EC2;xV

c
˛ ;

where the image of Œ1� is PU c
˛ , PV c

˛ , with P which is the same MDO in both cases,

of order 0, with �0.P/ invertible at x. The operator P depends on c but not on ˛. It

can be assumed that degDt
P � 1, and hence P D P0.t; x;Dx/CP1.t; x;Dx/Dt ,

where P1 is of order � �1.
The morphisms �U ; �V yield two solutions of the equation L' D 0 in the

given classes of ramified analytic functions:

' Q̨ .x; t / D P � U c
Q̨ D P0U

c
Q̨ C P1@tU

c
Q̨ 2 EU c

Q̨
and

 Q̨.x; t / D P � V c
Q̨ D P0V

c
Q̨ C P1@tV

c
Q̨ 2 EV c

Q̨

for any Q̨ 2 ˛ C Z��1 if ˛ satisfies (7).

We will now form an appropriate linear combination of ' Q̨ ’s and  Q̨ ’s that

satisfies initial conditions (4).

We have

@t Q̨ .t; x/ D .DtP0/V
c
Q̨ C .DtP1/@tV

c
Q̨

D ŒDt ;P0�V
c
Q̨ C P0@tV

c
Q̨ C ŒDt ;P1�@tV

c
Q̨ C P1@

2
t V

c
Q̨

D ¹ŒDt ;P0�C P1..x C bt2/D2
x C cDx/ºV c

Q̨ C ¹P0 C ŒDt ;P1�º@tV
c
Q̨

and similarly for @t' Q̨ .

Let Q0.x;Dx/ D P0jtD0 and Q1.x;Dx/ D ¹P0 C ŒDt ;P1�º jtD0; as P1 is of

order � �1, so Q0;Q1 are still invertible MDOs of order � 0.
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We have, using (6),

' Q̨ .0; x/ D Q0

x Q̨

�. Q̨ C 1/
;

@t' Q̨ .0; x/ D ¹ŒDt ;P0�jtD0 C P1jtD0.xD
2
x C cDx/º

x˛

�.˛ C 1/
;

 Q̨.0; x/ D P1jtD0

x Q̨

�. Q̨ C 1/
;

@t Q̨.0; x/ D Q1

x Q̨

�. Q̨ C 1/
:

Denote P1jtD0 D SD�1
x , where S.x;Dx/ is an MDO of order 0, and note that

SD�1.xD2
x C cDx/ D S.xDx C c � 1/ D x.SDx/C ŒS; x�Dx C S.c � 1/. Here

ŒS; x� is of order � �1.
In order to satisfy the initial condition of the Cauchy problem, let us find

constants an; bn, n � �1, such that

X

n��1

an'˛Cn.0; x/C
X

n��1

bn ˛Cn.0; x/

D Q0

X

n��1

anx
˛Cn

�.˛ C nC 1/
C P1jtD0

X

n��1

bnx
˛Cn

�.˛ C nC 1/

D f .x/x˛I

(29)

X

n��1

an@t'˛Cn.0; x/C
X

n��1

bn@t ˛Cn.0; x/

D ¹ŒDt ;P0�jtD0 C S.xDx C c � 1/º
X

n��1

anx
˛Cn

�.˛ C nC 1/

C Q1

X

n��1

bnx
˛Cn

�.˛ C nC 1/

D x˛g.x/:

(30)

Equation (29) can be rewritten as

X

n��1

anx
˛Cn

�.˛ C nC 1/
CQ�1

0 P1jtD0

X

n��1

bnx
˛Cn

�.˛ C nC 1/
D Q

�1
0 f .x/x˛:
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The operator Q�1
0 P1jtD0 shall be denoted D�1

x R, where R.x;Dx/ is an MDO of

order 0:

(31)
X

n��1

anx
˛Cn

�.˛ C nC 1/
D Q

�1
0 f .x/x˛ �D�1

x R

X

n��1

bnx
˛Cn

�.˛ C nC 1/
:

Inserting (31) into (30),

¹ŒDt ;P0�jtD0 C S.xDx C c � 1/º
�

Q
�1
0 f .x/x˛ �D�1

x R

X

n��1

bnx
˛Cn

�.˛ C nC 1/

�

C Q1

X

n��1

bnx
˛Cn

�.˛ C nC 1/
D x˛g.x/;

or

¹Q1 C ŒDt ;P0�jtD0D
�1
x R

C ¹x.SDx/C ŒS; x�Dx C S.c � 1/ºD�1
x Rº

X

n��1

bnx
˛Cn

�.˛ C nC 1/

D x˛g.x/ � ¹ŒDt ;P0�jtD0 C S.xDx C c � 1/ºQ�1
0 f .x/x˛:

Rewrite the left-hand side:

°

Q1
„ƒ‚…

invertible

C ŒDt ;P0�jtD0D
�1
x R

„ ƒ‚ …

ord � �1

C x SR
„ƒ‚…

ord 0

C ŒS; x�
„ƒ‚…

ord� �1

R C .c � 1/ SD�1
x R

„ ƒ‚ …

ord� �1

± X

n��1

bnx
˛Cn

�.˛ C nC 1/

D x˛g.x/ � ¹ŒDt ;P0�jtD0 C S.xDx C c � 1/ºQ�1
0 f .x/x˛:

The operator on the LHS can be inverted, and the second operator on the

RHS is of order � 1, hence indeed we find a series
P

n��1
bn

�.˛CnC1
x˛Cn where

the coefficients bn=�.˛ C n C 1/ � qn for some constant q > 0. The series
P

n��1
bn

�.˛CnC1
x˛Cn with the same property is obtained from (31).

Finally, we study the convergence of the expressions

X

n��1

anPU
c
˛Cn; and

X

n��1

bnPV
c

˛Cn:

The former can be written as

(32)
X

n��1

X

j �0

anuj .t; x/U
c�j
˛CnCj .t; x/C

X

n��1

X

j �0

bngj .t; x/@tU
c�j
˛CnCj .t; x/:
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We have, using (10) and Proposition 2.3

januj .t; x/U
c�j
˛CnCj .t; x/j

� �.˛ C nC 1/qn � C�j j Š � B.˛; c/ˇnT
nCj
1 T

j
2

1

.nC j /Š
�nCj ;

so by choosing � small enough we can estimate the first sum of (32) by a product

of convergent geometric series. Similarly for three other sums.

This finishes the proof of the main result Theorem 2.5.

8. Discussion of Urabe’s argument

In the main result of Urabe, the existence of analytic solutions of the Cauchy

problem (4) is claimed on Q!� – the full universal cover of some neighborhood of

the origin minus the ramification locus. In our Theorem 2.5, the claimed domain

of existence is smaller: the more turns around the ramification locus you want to

allow, the smaller should be the value of �. With that in mind, we would like to

state what we do not understand in Urabe’s paper and where a gap in his work may

be.

Take Pc D L and the Cauchy problem given by

u.0; x/ D f .x/x˛=�.˛C1/ D
X

anx
˛Cn.˛C1/n�1=�.nC1/; @tu.0; x/ D 0;

where .˛/n D ˛.˛C1/ : : : .˛Cn�1/ is the ascending factorial. The most natural

candidate for a solution is

(33)
X

n�0

an.˛ C 1/n�1U
c
˛Cn:

But, unless [13, Proposition (E.U.)] can be dramatically improved, on the whole of

Q!� the function U c
˛Cn are bounded by a geometric series, and we have a factorial

divergence of (33).

Maybe the procedure in [13, §3] leads to a different solution of the initial value

problem? Let us take Urabe’su from [13, Theorem on p. 3] and computeLu D Pcu

as on [13, p. 5, bottom]. Let us take vr;k D hr;k D 0 (i.e. disregard terms containing

V c�k
˛Cr ). We understand that only the Leibniz rule an the following three properties

of U c
˛ are used in this calculation

(34) .D2
t �.xCbt2/D2

x�cDx/U
c
˛ D 0; .tDtC2xDx�2˛/U c

˛ ; DxU
c
˛ D U cC1

˛�1 :
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However, we get a slightly different expression, the discrepancy coming from the

summands at the lower boundary of summation, namely

Pcu D
1

X

rD0

r
X

kD0

.bt2ƒC 2bt/gr;kU
c�kC2
˛Cr�2

C Œ�.M C k � 1/ur;k C .˛ C r C c � k � 1/ƒgr;k

C .Pc � 2.˛ C r � 1/Dx/ur;k �U
c�kC1
˛Cr�1

C
�

�
� t

2
ƒCM C k

�

gr;k Cƒur;k

�

DtU
c�kC1
˛Cr�1

C
h�

Pc � 2
�

˛ C r � 1

2

�

Dx

�

gr;k

i

DtU
c�k
˛Cr :

This leads us to think that one has to start the recursive procedure by equating to

zero the coefficients of U c�kC2
˛Cr�2 and DtU

c�kC1
˛Cr�1 , which gives us different condi-

tions than the k D 0 case on Urabe’s p. 7.

Finally, maybe this indexing issue can be repaired preserving the main idea?

We do not think so. Indeed, the equations on ur;k , gr;k decouple accordingly to

the value r � k, and as no properties of functions U c
˛ are used beyond (34), what

is actually studied are the solutions of the equation Pcu D 0 in the E-module

EC2;x=EC2;x.Pc; .tDt C 2xDx � 2˛//. In terms of the y-coordinates from Sec-

tion 4.2, this is the same as looking for EC2;x-module homomorphisms

EC2;x=EC2;x.Dy2
.�y2Dy2

C 2Cy1Dy1
� c C 1//

�! EC2;x=EC2;x.Dy2
.�y2Dy2

C 2Cy1Dy1
� c C 1/; y1Dy1

C 2y2Dy2
� 2˛/

(35)

because it turns out that tDt C 2xDx D y1Dy1
C 2y2Dy2

. Once we rewrite (35)

as

EC2;x=EC2;x.�y2Dy2
C 2Cy1Dy1

� c C 1/

�! EC2;x=EC2;x.�y2Dy2
C 2Cy1Dy1

� c C 1; y1Dy1
C 2y2Dy2

� 2˛/;

(36)

it is clear that for an irrational value of C there is only a 1-dimensional space

of such morphisms defined by Œ1� ! Œ��, � 2 C. So, generically, no additional

unexpected solutions can be constructed by such a method.
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